WO 2005/091198 A1 |0 |00 000 0 000 0 0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date (10) International Publication Number
29 September 2005 (29.09.2005) PCT WO 2005/091198 A1l
(51) International Patent Classification’: GOG6F 19/00, (74) Agents: FOURNIER, Claude et al.; BCF LLP, 1100
15/18 René-Lévesque Blvd. West, 25th Floor, Montréal, Québec

(21) International Application Number: H3B 5C9 (CA).

PCT/CA2005/000426 (81) Designated States (unless otherwise indicated, for every

(22) International Filing Date: 18 March 2005 (18.03.2005) kind of national protection available): AE, AG, AL, AM,

.] AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,

(25) Filing Language: English CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,

(26) Publication Language: English GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,

KG, KP,KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,

(30) Priority Data: MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,

60/554,357 19 March 2004 (19.03.2004) US PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ,

(71) Applicant (for all designated States except US): BGT BI- TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA,
OGRAPHIC TECHNOLOGIES INC. [CA/CA]; 3981 IM, ZW.

St-L. t Blvd., Suite M1, Montréal ébec H2W 1Y5

© A;l urent Blvd., Suite M1, Montréal, Québec (84) Designated States (unless otherwise indicated, for every

’ kind of regional protection available): ARIPO (BW, GH,

(72) Inventor; and GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

(75) Inventor/Applicant (for US only): KRUSZEWSKI, Paul 7ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[CA/CA]; 234 Redfern, Westmount, Québec H3Z 2G3 European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

(CA). FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,

[Continued on next page]

(54) Title: METHOD AND SYSTEM FOR ON-SCREEN NAVIGATION OF DIGITAL CHARACTERS OR THE LIKES

(57) Abstract: A method for moving a digital entity such as a char-

100
\ acter or an object on-screen from a starting point to an end point in a
102 digital world by: providing the position of the obstacles for the digital
Providing respective positions of obstacles for the movable digital entity and defining the portion of the digital world without obstacles
entity in the digital world and definng atleast portions of the digital as reachable space; creating a navigation mesh for digital entity by di-
world without obstacles as reachable space for the movable digital entity viding the reachable space into convex cells; locating the starting and
7 104 ending cells among the convex cells; if the starting cell corresponds
Creating a navigation mesh for the movable digita ently by dividing |~ to the ending cell then the digital entity is moved from the starting to
the reachable space into convex cells the ending point. If the starting cell does not correspond to the end cell
! 106 determining intermediary points located on the boundary between con-
Locating a staring cell and an end cell among the convex cels J secutive cells in a sequence of cells among the convex cells from the
including respectively the starting and end paints of the path starting to the end point and moving the digital entity from the starting

point to each consecutive intermediary point to the end point.
108

Starting cel corresponds
tothe end cell ?

110

~{ Moving the digtal entity from the starfing point to the end point |

122
Determining a sequence of cells among the convex cells -~
from the starting cell to the end cell
1 174

Determining intermediary points located on a respective
boundary between consecutive cells in the sequence of cells
] 176

Moving the digftal entity from the starting point to each —/
consecufive intermediary points o the end point

Stop

WO 2005/091198 A1 II}H10 Y A08OH0 00 0000 000

SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, For two-letter codes and other abbreviations, refer to the "Guid-
GQ, GW, ML, MR, NE, SN, TD, TG). ance Notes on Codes and Abbreviations” appearing at the begin-
Published: ning of each regular issue of the PCT Gagzette.

— with international search report

WO 2005/091198 PCT/CA2005/000426

TITLE OF THE INVENTION

METHOD AND SYSTEM FOR ON-SCREEN NAVIGATION
OF DIGITAL CHARACTERS OR THE'LIKES

FIELD OF THE INVENTION

The present invention relates to the digital entertainment
industry and to computer simulation. More specifically, the present
10 invention concerns a method and system for on-screen navigation of

digital objects or characters.

BACKGROUND OF THE INVENTION

15 Since many years three-dimensional (3D) computer graphics
is a well established field having many applications including movie
animation and digital effects, gaming and simulations.

Figure 1 of the appended drawings illustrates a generic 3D

20 application from the prior art which can be in the form of an animation
package, a video/computer game, a trainer or a simulator for example.

The 3D application shares the basic high-level architecture of objects,
which can be more generally referred to as digital entity, being
manipulated by controllers via input devices or physics and artificial

25 intelligence (Al) systems and made real to the user by synthesizers,

including visual rendering and audio.

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

One level deeper, 3D applications are typically broken down
into two components: the simulator and the image generator. As illustrated
in Figures 2 and 3, the simulator takes in many inputs from both human
operators and CGE the simulator then modifies the world database
accordingly and outputs the changes to the image generator for

visualization.

A typical simulation/animation loop structure is illustrated in
Figure 4. The world state manager first loads up the initialisation data from
the world database. For each frame/tick of the simulation, the world state
manager updates the controllers, the controller acts accordingly and sends
back object updates to the manager. The world state manager then
resolves all the object updates into a new world state in the world
database (WDB) and passes this to the image generator (IG). The IG
updates the characters’ body limb positions and other objects and renders
them out to the screen.

More recently, procedural animation, which is driven by
physics and artificial intelligence (Al) techniques, has been introduced in
the fields of 3D animation, visual effects and gaming. Al animation allows
augmenting the abilities of digital entertainers and simulators across
disciplines. It gives game designers and simulators the breadth,
independence and tactics of film actors. Film-makers get the temporal
performance of game characters and behavioural realism of simulation

entities.

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

For over twenty years, the visual effects departments of film
studios have increasingly relied on éomputer graphics for whenever a
visual effect is too expensive, too dangerous or just impossible to create
any other way than via a computer. Unsurprisingly, the demands on an
animator’s artistic talent to produce even more stunning and realistic visual
effects have also increased. It is currently not uncommon that the
computer animation team is just as important to the success of a film as
the lead actors.

Large crowd scenes, in particular battle scenes, are ideal
candidates for computer graphics techniques since the sheer number of
extras required make them extremely expensive, their violent nature make
them very dangerous, and the use of fantastic elements such as beast
warriors make them impractical, if not impossible, to film with human
extras. Given the complexity, expense, and danger of such scenes, it is
clear that an effective artificial intelligence (Al) animation solution is
preferable to actually staging and filming such battles with real human
actors. However, despite the clear need for a practical commercial method
to generate digital crowd scenes, a satisfactory solution has been a long

time in coming.

Commercial animation packages such as MayaTM by Alias
Systems have made great progress in the last twenty years to the point
that virtually all 3D production studios rely on them to form the basis of
their production pipelines. These packages are excellent for producing
special effects and individual characters. However, automatic/crowd

animation remains a significant problem.

WO 2005/091198 PCT/CA2005/000426

In the computer game field, game Al has been in existence
since the dawn of video games in the 1970s. However, it has come a long
way since the creation of PongTM and Pac-Man™. Nowadays, game Al is

5 increasingly becoming a critical factor to a game’s success and game
developers are demanding more and more from their Al. Today’s Al need
to be able to seemingly think for themselves and act according to their
environment and their experience giving the impression of intelligent
behaviour, i.e. they need to be autonomous.

10 |
Game Al makes games more immersive. Typically game Al

is used in the following situations:

 tocreate intelligent non-player characters (NPCs), which
15 could be friend or foe to the player-control characters;
e to add realism to the world. Simply adding some non-
game play related game Al that reacts to the changing
game world can increase realism and enhance the game
experience. For example, Al can be used to fill sporting
20 arenas with animated spectators or to add a flock of bats
to a dungeon scéne;
 to create opponents when there are none. Many games
are designed for two or more players however, if there is
'no one to play against intelligent Al opponents are
25 needed; or

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

* to create team members when there are not enough.
‘Some games require team play, and game Al can fill the
gap when there are not enough players.

Another application for real-time intelligent 3D agents (such
as vehicles and people that can interact in 3D cities for example) are
military simulation and training (MS&T) and more specifically in the context
of Military Operations Urban Terrain (MOUT). Indeed, all conflicts within
the last 15 years involving western forces have been urban in nature (e.g.,
Mogadishu, Bosnia, and Iraq). Nonetheless, real-time crowd simulation in

complex urban terrain has been neglected for a multitude of reasons:

* Up until recently the hardware simply was not powerful
enough;

e The military establishment moves very slowly to
acknowledge change; so they have been
correspondingly slow to emphasize it as a need; and

* Application developers have avoided human simulation

as it is much more difficult than machine simulation.

Artificial Intelligence’s role is to simulate the people (notonly
the ground forces but also the drivers of vehicles) in the battle, the
combatants (blue and red forces) and increasingly the civilians (green
forces). In the context of MS&T, these are often called Computer
Generated Forces (CGFs) or Semi-Automated Forces (SAFs). The types
of possible simulated agents are now described.

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

Vehicle drivers and pilots: although vehicles have very
complex models for physics (e.g., helicopters will wobble realistically as
they bank into turns and tanks will bounce as they jump ditches) and
weapon / communication systems (e.g., line of sight radios will not work
through hills), they tend to have simplistic line of sight navigation systems
that fail in the 3D concrete canyons of MOUT (e.g., helicopters fly straight
through skyscrapers rathérthan around them and tanks get confused and
stuck in the twisty garbage filled streets of the third world). Al can be used
to simulate of the brain of the human driver in the vehicle (with or without

the actual body being simulated).

Groups of individual doctrinal combatants: United States
government-created SAFs of groups of individual doctrinal combatants
limited in their usefulness to MS&T applications since they are limited to
US installations only and are unable to navigate properly in urban
environments. VWhile aggregate SAFs operate on a stratégic and often
abstract level, individual combatant simulators operate on a tactical and

often 3D physical level.

Groups of individual irregular combatants: by definition
irregular combatants such as militiamen and terrorists are non-doctrinal
and hence it is difficult to express their personalities and tactics with a

traditional SAF architecture.

Crowds of individual non-combatants (clutter): one of the
most difficult restrictions of MOUT is how to conduct military operations in

an environment that populated with non-combatants. These large civilian

WO 2005/091198

10

15

20

25

PCT/CA2005/000426

populations can affect a mission by acting as only operational “clutter” to

actually affecting the outcome of the battle.

One of the more specific aspects of game Al and MS&T is
real-time intelligent navigation of agent per se and, for example, in the
context of crowd simulation.

Computer graphics crowd simulation has been pioneered by
C.W. Reynolds in “Flocks, Herds, and Schools: A Distributed Behavioural
Model”, In Computer Graphics, 21 (4) (SIGGRAPH’ 87 Conference
Proceedings), 25-34, 1987. Reynolds established the core idea that
movement is a fundamental goal of intelligence and as such intelligent
characters can be represented by a simple vehicle model. This system
was extremely effective at producing simple “flocking” behaviours and has
been used with great success in the simulation of animals such as bats

and birds in non-real-time applications such as film special effects.

Musse and Thalmann in “Hierarchical model for real time
simulation of virtual human crowds”, in IEEE Transactions on Visualization
and Computer Graphics 7, (No. 2 Apr.-Jun. 2001), 152-164, developed a
hierarchical model for real-time crowd simulation called ViCrowd in which

humans ére controlled at not only at the individual but also group level.

By representing crowds as a particle system and using
clever pre-computed alpha-channel rendering techniques, Tecchia et al.
(TecchiaF. Loscos C., Chrysanthou Y. “Visualizing crowds in real-time”, In
Computer Graphics Forum 21:1, Eurographics, 2002.) succeed in

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

simulating and rendering large numbers of very simple milling crowds in

pseudo-real-time on a PC. However, the crowds could not react to stimuli.

Reece develops a system for modelling crowds within the
Dismounted Infantry Semi-Automated Forces (DISAF) system (Reece,
D.A. “Crowd Modeling in DISAF.”, In Proceedings of the Eleventh
Conference on Computer-Generated Forces and Behavior Representation -
(Orlando, FL, May 7-9, 2002), 87-95.).

Sung et al. expand on the notion of crowd members as
intelligent particles by allowing the author to paint information for the
crowd’s behaviour directly to the world geometry. This authoring
optimization limits the crowd members to dynamically change between
varied behaviours such as transitioning from milling to panicking (Sung,
M., Gleicher, M., and Chenney, S. “Scalable behaviors for Crowd
Simulation”, In Computer Graphics Forum 23:3, Eurographics, 2004.).

Movement is fundamental to all entities in a simulation
whether bipedal, wheeled, tracked or aerial. Hence, an Al system should
allow an entity to navigate in a realistic fashion from point X to point Y. For
example, for a vehicle this means in normal operations driving on the road
and obeying traffic rules such as staying in lane and stopping a traffic
lights; and in military operations, avoiding roadblocks and trying not to run
over civilian bystanders. For a militiaman, this means in normal operations
walking down the sidewalk in an inconspicuous fashion but in military
operations quickly running into a building, up its staircase and onto the

rooftop to launch an RPG. Intelligent navigation can be broken down into

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

two basic levels: dynamically finding a path from X to Y and avoiding
dynamic obstacles along that path.

An example of agent navigation is following a pre-
determined path (e.g., guards on a patrol path). Such a predetermined
path is an ordered set of waypoints that digital characters may be
instructed to follow. For example, a path around a racetrack would consist
of waypoints at the turns of the track. Path following consists of locating
the nearest waypoint on the path, navigating to it by direct line of sightand
then navigating to the next point on the path. The character looks for the
next waypoint when it has arrived the current waypoint (i.e., within the
waypoint's bounding sphere). For example, Figure 5 shows how a path

can be used to instruct a character to patrol an area in a certain way.

It has been found that path following as a navigation
mechanism works well when not only both the start and destination are

known but also the path is explicitly known.

However, this is the exception rather than the rule as
normally we want to tell the character the destination and let it find its own

path around barriers based on its knowledge of itself and its world.

A method for automatically moving a digital entity on-screen
from starting to end points in a digital world is however desirable.

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

10

OBJECTS OF THE INVENTION

An object of the present invention is therefore to provide an

improved navigation method for a digital e ntity in a digital world.

Another object of the invention is to provide a method for

automatically moving a digital entity on-screen from start to end points.

SUMMARY OF THE INVENTION

More specifically, in accordance with a first aspect of the
present invention, there is provided a method in a computer system for
moving at least one digital entity on-screen from starting to end points in a
digital world, comprising:

i) providing respective positions of obstacles for the at least
one movable digital entity in the digital world; defining at least portions of
the digital world without obstacles as reachable space for the at least one
movable digital entity;

ii) creating a navigation mesh for the at least one movable
digital entity by dividing the reachable space into at least one convex cell;

iii) locating a start cell and an end cell among the at least
one convex cell including respectively the start and end points; and

iv) verifying whether the starting cell corresponds to the end
cell; if the starting cell corresponds to the end cell, then: iv)a) moving the
at least one movable digital entity from the starting point to the end point; if

the starting cell does not correspond to the end cell, then iv)b) i)

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

11

determining a sequence of cells among the at least one convex cell from
the starting cell to the end cell, and iv)b)ii)determining at least one
intermediary point located on a respective boundary between consecutive
cells in the sequence of cells, and iv)b)iii) moving the at least one movable
digital entity from the starting point to each consecutive the at least one
intermediary point to the end point.

In accordance to a second aspect of the present invention,
there is provided a system for moving a digital entity on-screen from
starting to end points in a digital world, comprising:

a world database for storing information about the digital
world and for providing respective positions of obstacles for the movable
digital entity in the digital world;

a navigation module

i) for defining at least portions of the digital world without
obstacles as reachable space for the movable digital entity;
ii) for creating a navigation mesh for the movable digital
entity by dividing the reachable space into at least one convex cell;
iii) for locating a start cell and an end cell among the at
least one convex cell including respectively the start and end points; and
iv) for verifying whether the starting cell corresponds to
the end cell; and
if the starting cell does not correspond to the end cell, for
further
v) determining a sequence of cells among the at least
one convex cell from the starting cell to the end cell,

and vi) determining at least one intermediary point

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

12

located on a respective boundary between
consecutive cells in the sequence of cells;
and
a simulator coupled to the navigation module and to the
world database for moving the digital entity on-screen via an image
generator coupled to the simulator from the starting point to the end point
if the starting cell corresponds to the end cell as verified in iv); or for
moving the digital entity from the starting point to each consecutive the at
least one intermediary point to the end point; if the starting cell does not

correspond to the end cell.

It is to be noted that the expression “character” should be

construed herein as broadly as “entity”.

Other objects, advantages and features of the present
invention will become more apparent upon reading the following non
restrictive description of preferred embodiments thereof, given by way of

example only with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

In the appended drawings:

Figure 1, which is labeled “prior art”, is a block diagram

illustrating the first level of a generic three-dimensional (3D) application;

Figure 2, which is labeled “prior art”, is a block diagram

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

13

illustrating the second level of the generic 3D application from Figure 1;

Figure 3, which is labeled “prior art”, is an expanded view of
the block diagram from Figure 2;

Figure 4, which is labeled “prior art”, is a flowchart illustrating
the flow of data from the generic 3D application from Figure 1 to the
image generator part of the 3D application from Figure 1;

Figure 5, which is labeled “prior art”, is a schematic view
illustrating the use of waypoint to navigate a digital entity in a digital world:

Figure 6 is a block diagram illustrating a system for on-
screen animation of digital entities including a navigation module
embodying a system for moving a digital entity on-screen from starting to
end points in a digital world according to an illustrative embodiment of the

present invention;

Figure 7 is a flowchart illustrating a method for moving a
digital entity on-screen from starting to end points in a digital world

according to an illustrative embodiment of the present invention;

Figure 8 is a schematic view illustrating a two-dimensional

barrier used with the method of Figure 7;

Figure 9 is a schematic view illustrating a three-dimensional
barrier used with the method of Figure 7; '

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

14

Figure 10 is a schematic view illustrating a co-ordinate

system used with the method of Figure 7;

Figure 11 is a top plan schematic view of a two-dimensional
world in the form of a one-floor building according to a first example of the
reachable space for a specific movable digital entity according to the
method from Figure 7;

Figure 12 is a top plan schematic view of the one-floor
building from Figure 11 illustrating a navigation mesh created through the

method from Figure 7;

Figure 13 is a schematic view of a connectivity graph

obtained from the navigation mesh from Figure 12;

Figure 14 is a top plan schematic view of a two-dimensional
world according to a second example of the reachable space for a specific

movable digital entity according to the method from Figure 7;

Figure 15 is a top plan schematic view of the world from
Figure 11 illustrating a navigation mesh created through the method from
Figure 7;

Figure 16 is a top plan schematic view similar to Figure 15,
illustrating steps from the method from Figure 7;

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

15

Figure 17 is a top plan view schematic view similar to

Figure 15, illustrating a path resulting from the method from Figure 7;

Figure 18 is a top plan view schematic view similar to
Figure 17, illustrating a first alternative path to the path illustrated in
Figure 17 resulting from the blocking of a first passage;

Figure 19 is a top plan view schematic view similar to
Figure 18, illustrating a second alternative path to the path illustrated in

Figures 17 and 18 further resulting from the blocking of a second passage;

Figure 20 is a top plan schematic view similar to Figure 17,
illustrating a third alternative path to the path illustrated in Figure 17,

resulting from new starting and end points;

Figure 21 is a top plan view schematic view similar to
Figure 20, illustrating an alternative path to the path illustrated in
Figure 20, resulting from doubling the width of the movable digital entity;

Figure 22 is a perspective view of a floor plan generatoron a
small city part of a simulator;

Figure 23 is a perspective view illustrating the navigation
mesh created from the floor plan generator from Figure 22 using the
method from Figure 7;

WO 2005/091198 PCT/CA2005/000426

16

Figure 24 is a perspective view of a digital world in the form

of a city street;

Figure 25 is a perspective view of the city street from
5 Figure 24, illustrating the navigation mesh creating step according to the
method from Figure 7, including the used of blind data to characterize the

resulting cells;

Figure 26 is a cut out perspective view of a digital world in
10 the form of a building;

Figure 27 is a perspective view of the navigation mesh

resulting from the building from Figure 26 using the method from Figure 7;

15 Figure 28 is flowchart of a collision avoidance method for a
digital entity moving on-screen from starting to end points in a digital world

according to a specific illustrative embodiment of the present invention;

Figure 29 is a perspective view of an entity in a 3D
20 application, in the form of a character, illustrating character's sensor

according to the present invention;

Figure 30 is a top plan view of an entity in a digital world
illustrating the entity’s vision sensor according to the present invention,

25 and more specifically illustrating the field of view provided by the sensor;

WO 2005/091198 PCT/CA2005/000426

17

Figure 31 is a perspective view of an entity in a digital world
similar to Figure 30 illustrating the selection of a sub path to avoid
obstacles according to a specific embodiment of the method from the

Figure 7;

Figures 32A-32C are schematic views illustrating avoidance
strategies (Figures 32B-32C) that can be used by a movable digital entity
according to a specific embodiment of the method from Figure 7 in the
case of a stationary obstacle (Figure 32A);

10

Figures 33A-33C are schematic views illustrating avoidance
strategies (Figures 33B-33C) that can be used by a movable digital entity
according to a specific embodiment of the method from Figure 7 in the
case of an incoming obstacle (Figure 33A);

15

Figures 34A-34C are schematic views illustrating avoidance
strategies (Figures 34B-34C) that can be used by a movable digital entity
according to a specific embodiment of the method from Figure 7 in the
case of an outgoing obstacle (Figure 34A);

20

Figures 35A-35C are schematic views illustrating avoidance
strategies (Figures 35B-35C) that can be used by a movable digital entity
according to a specific embodiment of the method from Figure 7 in the
case of an sideswiping obstacle (Figure 35A); and

25
Figures 36A-36E are schematic views illustrating paths for

simultaneously moving five movable digital entities using the method from

WO 2005/091198

10

15

20

25

18

Figure 7 and applying a group-based movement modifier.

DETAILED DESCRIPTION

A system 10 for on-screen animation of digital image entities
(IE) including a navigation module 12 embodying a method for moving a
digital entity on-screen from starting to end points in a digital world
according to an illustrative embodiment of the pre sent invention will now

be described with reference to Figure 6.

Since the system 10 shares similarit'y with conventional 3D
applications, such as the one illustrated in Figure 2, and for concision
purposes, only the differences between the systeam 10 and conventional

3D application systems will be described herein im more detail.

The system 10 comprises a simulator 14 a world database
(WDB) 16 coupled to the simulator 14, a plurality of image generators (IG)
18 (three shown) coupled to both the world DB and to the simulator 14, a
navigation module 12 according to an illustratiwve embodiment of the
present invention, coupled to the simulator 14, a descision-making module,
also coupled to the simulator 14, and a plurality (three shown) of

animation control module, each coupled to a resp ective |G 18.

The number of IG 18 may of course vary depending on the
application. For example, in the case wherein the system 10 is embodied
in a 3D animation application, the number of IG 18 may effect the

rendering time.

PCT/CA2005/000426

WO 2005/091198 PCT/CA2005/000426

19

The simulator 14 and IG 18 may be in the form of a single
computer. The world database 16 is stored on any suitable memory
means, such as, but not limited to, a hard drive, a dvd or cd-rom disk to be

5 read on a corresponding drive, or a random-access memory part of the

computer 14.

The simulator 14 and IG 18 are in the form of computers or
of any processing machines provided with processing units, which are
10 programmed with instructions for animating, simulating or gaming as will

be explained hereinbelow in more detail.

The simulator 14, IG 18 and world DB 16 can be remotely

coupled via a computer network (ndt shown) such as Internet.

15
Of course, depending on the application of the system 10,
the simulator 14 can take another form such as a game engine or a 3D
animation system.
20 The modules 12, 20 and 22 are in the form of sub-routines or

dedicated instructions programmed in the simulator 14 for example. The
characteristics and functions of the modules 20, 22 and more specifically
of module 12 will become more apparent upon reading the following non-
restrictive description of a method 100 for moving a digital entity on-screen
25 from a starting point to an end point in a digital world according to an

illustrative embodiment of the present invention.

WO 2005/091198 PCT/CA2005/000426

20

The method 100, which is illustrated in Figure 7, comprises
the following steps:

102 — providing respective positions of obstacles for the
5 movable digital entity in the digital world and defining at least portions of
the digital world without obstacles as reachable space for the movable
digital entity; ‘
104 - creating a navigation mesh for the movable digital
entity by dividing the reachable space into convex cells;

10 106 - locating a starting cell and an end cell among the
convex cells including respectively the starting and end points;

108 - verifying whether the starting cell corresponds to the
end cell;
if the starting cell corresponds to the end cell then :
15 110 - moving the digital entity from the starting point to
the end point and stopping the method;
if the starting cell does not correspond to the end cell then :
112 - determining a sequence of cells among the convex
cells from the starting cell to the end cell;

20 114 - determining intermediary points located on a
respective boundary between consecutive cells in the sequence of cells;
ahd

116 - moving the digital entity from the starting point to
each consecutive intermediary points to the end point.

25

Each of these steps will now be described in more details.

WO 2005/091198 PCT/CA2005/000426

21

In step 102, the respective position of obstacles for the
movable digital entity in the digital world are defined yielding the portion of
the digital world without obstacles as reachable space for the movable
digital entity. The reachable space can be defined as regions of the digital

5 world enclosed by barriers.

‘ It is to be noted that what the simulator 14 will consider an
obstacle for a specific movable digital entity may not be an obstacle for
another one as further examples given hereinbelow will allow to enlighten.

10 '

Of course, the digital world may have been previously
defined including any autonomous or non-autonomous entity with which
the movable digital entity may interact. The concept of digital world and of
digital entity will now be described according to an illustrative embodiment

15 of the present invention.

The digital world model includes image object elements. The
image object elements include two or three-dimensional (2D or 3D)
graphical representations of objects, autonomous and non-autonomous

20 characters, building, animals, trees, etc. It also includes barriers, terrains,
and surfaces. As will become more apparent upon reading the following
description, the movable entity that is to be moved using the method 100
can be either autonomous or non-autonomous. The concepts of
autonomous and non-autonomous characters and objects will be

25 described hereinbelow in more detalil.

WO 2005/091198 PCT/CA2005/000426

22

As it is believed to be commonly known in the art, the
graphical representation of objects and characters can be displayed,
animated or not, on a computer screen or on another display device, but
can also inhabit and interact in the virtual world without being displayed on

5 the display device.

Barriers are triangular planes that can be used to build walls,
moving doors, tunnels, etc., or any obstacles for any movable entity in the
digital world. Terrains are 2D height-fields to which entities can be

10 automatically bound (e.g. keep soldier characters marching over a hill).
Surfaces are triangular planes that may be combined to form fully 3D

shapes to which autonomous characters can also be constrained.

In combination, these elements are to be used to describe
15 the world in which the characters inhabit. They are stored in the world DB
16.

In addition to the image object elements, the digital world
model includes a solver, which allows managing entities, including

20 autonomous characters, and other objects in the digital world.

The solver can have a 3D configuration, to provide the
entities with complete freedom of movement, or a 2D configuration, which
is more computationally efficient, and allows an operator to insert a greater

25 number of movable entities in a scene without affecting performance of

the animation system.

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

23

A 2D solver is computationally more efficient than a 3D
solver since the solver does not consider the vertical (y) co-ordinate of an
image object element or of an entity. The choice between the 2D and 3D
configuration depends on the movements that are allowed in the virtual
world by the movable entities and other objects. If they do not move in the
vertical plane then there is no requirement to solve for in 3D and a 2D
solver can be used. HoweVer, if any entity requires complete freedom of
movement, a 3D solver is used. It is to be noted that the chéice of a 2D
solver does not limit the dimensions of the virtual world, which may be 2D
or 3D.

Non-autonomous characters are objects in the digital world
that, even though they may potentially interact with the digital world, are
not driven by the solver. These can range from traditionally animated
characters (e.g. the leader of a group) to player characters to objects (e.g.
flying debris) driven by other components of the simulator.

Barriers are used to represents obstacles for movable
entities, and are equivalent to one-way walls, i.e. an object or a digital
entity inhabiting the digital world can pass through them in one direction
but not in the other. When a barrier is created, spikes (forward orientation
vectors) are used to indicate the side of the wall that can be detected by
an object or an entity. Therefore, an object or an entity can pass from the
non-spiked side to the spiked side, but not vice-versa. It is to be noted
that, in some application, a specific avoidance constraint can be defined

and activated for a digital entity to attempt to avoid the barriers in the

WO 2005/091198 PCT/CA2005/000426

24

digital world. The concept of behaviours and constraints will be described

hereinbelow in more detail.

As illustrated in Figures 8 and 9 respectively, a barrier is

5 represented in a 2D solver by a line and by a triangle in a 3D solver. The
direction of the spike for 2D and 3D barriers is also shown in Figures 8-9
(see arrows 24 and 26 respectively) where P1-P3 refers to the order in
which the points of the barrier are drawn. Since barriers are unidirectional,
two-sided barriers are made by superimposing two barriers and by setting

10 their spikes opposite to each other.

Each barrier can be defined by the following parameters:

Parameter Description

Exists This parameter allows the system to determine whether
or not the barrier exists in the solver world. If this is set to
off the solver ignores the barrier.

Collidable This parameter allows the system to determine whether
or not collisions with other collidable objects will be
resolved. If this parameter is set to off entities can pass
through the barrier from either side.

Opaque This parameter allows setting whether or not objects can
see through the barrier using a sensor as will be
explained hereinbelow.

Surface This parameter allows setting whether or not the barrier
will be considered as a surface. A barrier that is a surface
is considered for surface hugging by the solver.

Use This parameter allows the system to determine whether
gg;’”d’”g or not to create barriers based on the bounding boxes for
the selected objects. If the currently active solver has a
2D configuration then the barriers created with this option
will only be created around the bounding-perimeter. If the

WO 2005/091198 PCT/CA2005/000426

10

15

25

Parameter Description

solver is 3D, then barriers will be created and positioned
the same way as the bounding box for the object.

Use If the “Use Bounding Box “parameter is enabled and this

gg)‘:’;’ggzg option is also enabled a barrier-bounding box per

Object selected object will be created. If it is disabled, a barrier-
bounding box will be created at the bounding box for the
group of selected items.

Reverse This parameter reverses the normals for the selected

Barrier | parriers.

Normal

Group When this parameter is activated, all barriers are grouped

Barriers

under a group node.

Asitis commonly known, a bounding box is a rectilinear box
that encapsulates and bounds a 3D object.

The solver of the digital world model may include subsolvers,
which are the various engines of the solver that are used to run the
simulation. Each subsolver manages a particular aspect of object and

simulation in order to optimize computations.

As it is commonly known in the art, each animated digital
entity is associated to animation clips allowing representing the entity in
movement in the digital world. According to a specific embodiment of the
present invention, virtual sensors are assigned to and used by some
entities to allow them gathering data information about image object

elements or other entities within the digital world. Decision trees can also

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

26

be used for processing the data information resulting in selecting and

triggering one of the animation cycle or selecting a new behaviour.

As it is believed to be well known in the art, an animation
cycle, which will also be referred to herein as “animation clip” is a unit of
animation that typically can be repeated. For example, in order to get a
character to walk, the animator creates a “walk cycle”. This walk cycle
makes the character walks one iteration. In order to have the character
walk more, more iterations of the cycle are pIayéd. If the character speeds
up or slows down during time, the cycle is “scaled” accordingly(so that the
cycle speed matches the character displacement so that there is no

slippage (e.g., it looks like the character is slipping on the ground).

The autonomous image entities are tied to transform nodes
of the animating engine (or platform). The nodes can be in the form of
locators, cubes or models of animals, vehicles, etc. Since animation clips
and transform nodes are believed to be well known in the art, they will not

be described herein in more detail.

Figure 10 shows a co-ordinate system for moving the IE and
used by the solver.

Examples of attributes that can be associated to a movable

digital image entity are briefly described in the following tables.

Attribute Description .

Exists This attribute allows the solver whether or not to

consider the character in the world. If this attribute it is

WO 2005/091198

PCT/CA2005/000426

27

Attribute

Description

set to off, the solver ignores the |E and does not update
it. This attribute allows dynamically creating and killing
characters (IEs).

Hug Terrain

This attribute allows setting whether or not the IE will
hug the terrain. If this is set to on the |IE will remain on
the terrain. It is to be noted that terrains are activated
only when the solver is in 2D mode.

Align Terrain
Normal

This attribute allows setting whether or not the IE will
align with the terrain’s surface normal. This parameter is
taken into account when the IE is hugging the terrain.

Terrain Offset

This attribute specifies an extra height that will be given
to a character when it is on a terrain. The offset is only
taken into account when the IE is hugging the terrain. A
positive value causes the IE to float above the terrain,
and a negative value causes the IE to be sunken into
the terrain.

Hug Surface

This attribute specifies whether or not the IE will hug a
surface. A surface is a barrier with the Surface attribute
set to true. Surface hugging applies in a 3D solver. The
IE hugs the nearest surface below it.

Align Surface
Normal

This attribute specifies whether or not the IE's up
orientation aligns to the surface normal. This parameter
is taken into account when the IE is on a surface. An |IE
with both hug surface and align surface enabled will
follow a 3D surface defined by barriers, while aligning
the up of the IE according to the surface.

Surface Offset

This attribute specifies an extra height that will be given
to an IE when it is on a surface. The offset is taken into
account only when the IE is hugging a surface. A
positive value will cause the IE to float above the
surface, and a negative value will cause the IE to be
sunken into the surface.

Collidable

This attribute specifies whether or not collisions with
other collidable objects will be resolved. If this parameter
is set to false then nothing will prevent the IE from
occupying the same space as other objects, as would
(for instance) a ghost.

Radius

This attribute specifies the radius of the IE’s bounding
sphere. Since the concept of bounding sphere is

WO 2005/091198

PCT/CA2005/000426

28

Attribute Description
believed to be well known in the art, it will not be
described herein in more detail.

Right Turning | 1his attribute specifies the maximum right turning angle

Radius (clockwise yaw) per frame measured in degrees. The
angle can range from 0-180 degrees.

Left Turning Thig attribu_te specifies the maximum left ?urning angle

Radius (anticlockwise yaw) per frame measured in degrees. The
angle can range from 0-180 degrees.

Up Turning This_attribgte specifies themaximum up turning angle

Radius (positive pitch) per frame measured in degrees. The

angle can range from 0-180 degrees.

Down Turning
Radius

This attribute specifies the maximum down turning angle
(negative pitch) per frame measured in degrees. The
angle can range from 0-180 degrees.

Maximum This attribute specifies the maximum positive change2 in
Angular angular speed of the IE, measured in degrees/frame®. If
Acceleration | this variable is larger than the turning radii, it will have no
effect. If set smaller than the turning radi, it will increase
the IE’s resistance to angular change. In general, the
maximum angular acceleration should be set smaller
than the maximum angular deceleration to avoid
overshoot and oscillation effects. '
Maximum This attribute specifies the maximum negative change in
Angular angular speed of the character, measured in
Deceleration | degrees/frame®. If this variable is larger than the turning
radii, it will have no effect. If set smaller than the turning
radii, it will increase the IE’s resistance to angular
change. In general, the maximum angular acceleration
should be set smaller than the maximum angular
deceleration to avoid overshoot and oscillation effects.
Maximum This attribute specifies the maximum angle of deviation
Pitch (a.k.a. from the z-axis that the object's top vector may have,
Max Stability | measured in degrees. The maximum pitch can range
Angle) from -180 to 180 degrees. This attribute can be used to

limit how steep a hill the IE can climb or descend to
prevent objects from incorrectly turning upside down.

Maximum Roll

This attribute specifies the maximum angle of deviation
from the x-axis that the object's top vector may have,
measured in degrees. The maximum can roll range from

WO 2005/091198

PCT/CA2005/000426

29

Attribute

Description

-180 to 180 degrees. This attribute can be used to limit
the side-to-side tilting of the IE to prevent objects from
incorrectly turning upside down.

Min Speed

This attribute specifies the minimum speed (distance
units/frame) of the IE.

Max Speed

This attribute specifies the maximum speed (distance
units/frame) of the IE.

Max
Acceleration

This attribute specifies the maxnmum positive change in
speed (distance units/frame?) of the IE.

Max
Deceleration

This attribute specifies the maX|mum negative change in
speed (distance units/frame?) of the IE.

Brake.
Padding

and

Braking
Softness

Braking is only applied when an IE tries to turn at an
angle greater than one of its turning radii. When this
occurs, the Brake Padding and Braking Softness
parameters work together to slow the [E down so that it
doesn't overshoot the turn.

Brake Padding controls when braking is applied. It can
be set to 0, which means that braking will be applied as
soon as the object tries to turn beyond one of its
maximum turning radii, or 1 which means that braking is
never applied. Values between 0 and 1 interpolate those
extremes. The default value can be set to 0.

Braking softness controls the gentleness of braking and
can be set to any positive number, including zero. A
value of 0 corresponds to maximum braking strength
and the IE will come to a complete stop as soon as the
brakes are applied. A value of 1 corresponds to normal
strength, and values greater than 1 result in
progressively gentler braking. The default value can be
setto 1.

Setting a very large Braking Softness (effectively +«) is
equivalent to setting the Brake Padding to 1, which is
equivalent to turning braking off.

Forward
Motion Only

This attribute is set to on to limit the movement of the IE
such that it may only move in the direction it is facing.
Off will allow the IE to move and face in different
directions, provided that its behaviours are set up to
produce such motion. The default value can be set to
on.

WO 2005/091198

10

15

PCT/CA2005/000426

30

Attribute Description

Initial Speed | T his attribute specifies the initial speed of the IE
(distance units/frame) at start time.

Initial Position | This attribute specifies the initial position of the IE at

XYz start time. The default is the position where the object

was created.

Initial This attribute specifies the initial orientation of the IE at

Orientation start time. The default is the orientation of the object

XY, Z when created.

Display This attribute specifies whether or not the radius and

Radius heading of the IE will be displayed.

Current This attribute specifies the current speed (distance

Speed units/frame) of the IE. The solver controls this variable.

Translate This attribute specifies the current position of the IE. The
Al solver controls this variable.

Rotate This attribute specifies the current orientation of the IE.
The solver controls this variable.

Of course, other attributes can also be used to characterize
an |E.

The concept of IE behaviour will now be described

hereinbelow in more detail.

'In addition to attributes, IE from the present invention can

also be characterized by behaviours. Along with the decision trees, the

behaviours are the low-level thinking apparatus of an |E. They take raw

input from the digital world using virtual sensors, process it, and change

the IE's condition accordingly.

Behaviours can be categorized, for example, as Locomotive

behaviours allowing an IE to move. These locomotive behaviours generate

WO 2005/091198 PCT/CA2005/000426

31

steering forces that can affect any or all of an IE’s direction of motion,

speed, and orientation (i.e. which way the IE is facing) for example.

The following table includes examples of behaviours:

5
Simple behaviours: Targeted behaviours:
> Avoid Barriers > Seek To
> Avoid Obstacles > Flee From
> Accelerate At > Look At
» Maintain Speed At > Follow Path
> Wander Around > Seek To Via Network
> OrientTo ‘
Group behaviours:
> Align With
> Join With
> Separate From
> Flock With

A locomotive behaviour can be seen as a force that acts on
the IE. This force is a behavioural force, and is analogous to a physical
force (such as gravity), with a difference that the force seems to come

10 from within the |E itself.

It is to be noted that behavioural forces can be additive. For
example, an autonomous character may simultaneously have more then
one active behaviours. The solver calculates the resulting motion of the

15 character by combining the component behavioural forces, in accordance
with behaviour's priority and intensity. The resultant behavioural force is

then applied to the character, which may impose its own limits and

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

32

constraints (specified by the character's turning radius attributes, etc) on

the final motion.

The behaviours allow creating a wide variety of actions for
IEs. Behaviours can be divided into four subgroups: simple behaviours,

targeted behaviours, and group behaviours.

Simple behaviours are behaviours that only involve a single

Targeted behaviours apply to an IE and a target object,
which can be any other object in the digital world (including groups of
objects).

Group behaviours allow IEs to act and move as a group
where the individual IEs included in the group will maintain approximately

the same speed and orientation as each other.
Examples of behaviours will now be provided in each of the
four categories. Of course, it is believed to be within a person skilled in the

art to provide an |IE with other behaviours.

Simple Behaviours

Avoid Barriers

WO 2005/091198

PCT/CA2005/000426

33

The Avoid Barriers behaviour allows a character to avoid

colliding with barriers.

Parameters specific to this behaviour may include, for

5 example:

Parameter

Description

Avoid Distance

The distance from a barrier at which the IE will attempt
to avoid it. This is effectively the distance at which
barriers are visible to the IE.

Avoid Distance
Is Speed
Adjusted

Whether or not the avoidance distance is adjusted
according to the IE’s speed. If this is set to on, the
faster the |IE moves, the greater the avoidance
distance.

Avoid Width
Factor

The avoidance width factor defines how wide the
"avoidance capsule" is (the length of the “avoidance
capsule” is equal to the Avoid Distance). If a barrier
lies within the avoidance capsule, the IE will take
evasive action. The value of the avoidance width
factor is multiplied by the IE's width in order to
determine the true width (and height in a 3D solver) of
the capsule. A value of 1 sets the capsule to the same
width as the IE’s diameter.

Barrier
Repulsion Force

Allows controlling how much the IE is pushed away
from barriers. A value of 0 indicates no repulsion and
the IE will tend to move parallel to nearby barriers.
Larger values will add a component of repulsion based
on the |IE's incident angle.

Avoidance
Queuing

Allows controlling the IE’s barrier avoidance strategy. If
set to on the IE will slow down when approaching a
barrier, if set to off the IE will dodge the barrier. The
default value can be set to off.

The Avoid Obstacles behaviour allows an IE to avoid

colliding with obstacles, which can be other autonomous and non-

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

34

autonomous image entities. Similar parameters than those detailed for the

Avoid Barriers behaviour can also be used to define this behaviour.
Accelerate At

The Accelerate At behaviour attempts to accelerate the IE by
the specified amount. For example, if the amount is a negative value, the
IE will decelerate by the specified amount. The actual
acceleration/deceleration may be limited by max acceleration and max

deceleration attributes of the IE.

A parameter specific to this behaviour is the Acceleration,
which represents the change in speed (distance units/frame2) that the |IE
will attempt to maintain.

Maintain Speed At

The Maintain Speed At behaviour attempts to set the target

_|IE's speed to a specified value. This can be used to keep a character at

rest or moving at a constant speed. If the desired speed is greater than
the character's maximum speed attribute, then this behaviour will only
attempt to maintain the character’s speed equal to its maximum speed.
Similarly, if the desired speed is less than the character's minimum speed
attribute, this behaviour will attempt to maintain the character's speed

equal to its minimum speed.

WO 2005/091198

10

PCT/CA2005/000426

35

A parameter allowing defining this behaviour is the desired

speed (distance units/frame) that the character will attempt to maintain.

Wander Around

The Wander Around behaviour applies random steering

forces to the IE to ensure that it moves in a random fashion within the

solver area.

Parameters allowing defining this behaviour may be for
example:
Parameter Description

Is Persistent

This parameter allows defining whether or not the
desired motion calculated by this behaviour is applied
continuously (at every frame) or only when the desired
motion changes (see the Probability attribute). A
persistent Wander Around behaviour produces the
effect of following random waypoints. A non-persistent
Wander Around behaviour causes the IE to slightly
change its direction and/or speed when the desired
motion changes.

Probability

This parameter allows defining the probability that the
direction and/or speed of wandering will change at any
time frame. For example, a value of 1 means that it will
change each time frame, a value of 0 means that it will
never change. On average, the desired motion
produced by this behaviour will change once every
1/probability frames (i.e. average frequency =
1/probability)

Max Left Turn

This parameter allows defining the maximum left
wandering turn angle in degrees at any time frame.

Max Right Turn

This parameter allows defining the maximum right .

WO 2005/091198

PCT/CA2005/000426

36

Parameter

Description

wandering turn angle in degrees at any time frame.

Left Right Turn

This parameter affects the value of the pseudo-random

Radii Noise left and right turn radii generated by this behaviour. A

Frequency valid range can be between 0 and 1. The higher the
frequency the more frequent an IE will change
direction. The lower the frequency the less often an IE
will change direction.

Max Up Turn This parameter allows defining the maximum up

wandering turn angle in degrees at any time frame.

Max Down Turn

This parameter allows defining the maximum down
wandering turn angle in degrees at any time frame.

Up Down Turn
Radii Noise

This parameter affects the value of the pseudo-random
up and down turn radii generated by this behaviour.

Frequency The valid range is between 0 and 1. The higher the
frequency the more frequent an IE will change
direction. The lower the frequency the less often an IE
will change direction.

Max _ This parameter allows defining the maximum wander

Deceleration | deceleration (distance units/frame?) at any time frame.

Max) This parameter allows defining the maximum wander

Acceleration | acceleration (distance units/frame?) at any time frame.

Speed Noise This parameter affects the value of the pseudo-random

Frequency speed generated by this behaviour. The valid range is
between 0 and 1. The higher the frequency the more
frequent an [E will change direction. The lower the
frequency the less often an |IE will change direction.

Min Speed This parameter allows defining the minimum speed

(distance units/frame) that the behaviour will attempt to
maintain.

Use Min Speed

This parameter allows defining whether or not the Min
Speed attribute will be used.

Max Speed This parameter allows defining the maximum speed
(distance units/frame) that the behaviour will attempt to
maintain.

Use Max Speed | This parameter allows defining whether or not the Max

Speed attribute will be used.

WO 2005/091198 PCT/CA2005/000426

10

15

37

Orient To

The Orient To behaviour allows an IE to attempt to face a

specific direction.

Parameters allowing defining this behaviour are:

Parameter Description
Desired This parameter allows defining the direction this IE will
Forward

attempt to face. For example, a desired forward
orientation of (1,0,0) will make an IE attempt to align itself
with the x-axis. When a 2D solver is used, the y
component of the desired forward orientation is ignored.

Relative If true, then the desired forward orientation attribute is
interpreted to be relative to the current character forward.
If false, then the desired forward is in absolute world
coordinates. By default, this value is set to false.

Orientation

Targeted Behaviours

The following behaviours apply to an IE (the source) and
another object in the world (the target). Target objects can be any objectin
the world such as autonomous or non-autonomous image entities, paths,
groups and data. If the target is a group, then the behaviour applies only
to the nearest member of the group at any one time. If the target is a
datum, then it is assumed that this datum is of type ID and points to the
true target of the behaviour. An ID is a value used to uniquely identify
objects in the world. The concept of datum will be described in more detail
hereinbelow.

WO 2005/091198 PCT/CA2005/000426

38

The following parameters, shared by all targeted behaviours,

are.

Parameter Description

Activation | The Activation Radius determines at what point the

Radius behaviour is triggered. The behaviour will only be activated
and the IE will only actively seek a target if the IE is within
the activation radius distance from the target. A negative
value for the activation radius indicates that there is no
activation radius, or that the feature is not being used. This
means that the behaviour will always be on regardless of
the distance between the |IE and the target.

Use This parameter allows defining whether or not the
Activation | Activation Radius feature will be used. If this is off, the
Radius behaviour will always be activated regardless of the
location of the IE.

5 SeekTo

The Seek To behaviour allows an IE to move towards
another IE or towards a group of IEs. If an IE seeks a group, it will seek
the nearest member of the group at any time. Of course, a Seek To

10 behaviour may be programmed according to the navigation method 100.

Parameters allowing defining this behaviour are for example:

Attribute | Description

Look This parameter instructs the IE to move towards a projected
Ahead | fytyre point of the object being sought. Increasing the

Time amount of look-ahead time does not necessarily make the
Seek To behaviour any “smarter” since it simply makes a
linear interpolation based on the target’s current speed and
position. Using this parameter gives the behaviour

WO 2005/091198

PCT/CA2005/000426

39

Attribute

} Description

sometimes referred to as “Pursuit”.

Offset
radius

This parameter allows specifying an offset from the target’s
centre point that the IE will actually seek towards.

Offset
Yaw
Angle

This parameter allows defining the angle in degrees about
the front of the target in the yaw direction that the offset is
calculated. The angle describes the amount of counter-
clockwise rotation about the front of the target. For example,
to make a soldier follow a leader, the soldier seek the leader
with a positive offset radius and an offset yaw angle of 180°.

This attribute is ignored if the Strafing parameter is turned
on. Strafing automatically sets an appropriate value for the
offset angle.

Offset
Pitch
Angle

This parameter is the similar to Offset Yaw Angle but for the
offset angle in the pitch direction relative to the target
object's orientation. This applies only in the case of a 3D
solver and will be ignored in a 2D solver.

Contact
Radius

This parameter allows specifying a proximity radius at which
point the behaviour is triggered. In other words, it defines the
point at which the |E has reached the target and has no
reason to continue seeking it. If the parameter is set to -1,
this feature is turned off and the IE will always attempt to
seek the target regardless of their relative positions. Since
the contact radius extends the target's radius, a value of 0
means that the IE will stop seeking when it touches (or
intersects with) the target.

Use
Contact
Radius

This parameter allows defining whether or not the Contact
Radius feature is used. If this is off, the IE will always
attempt to seek the target regardless of their relative
positions

Slowing
Radius

The slowing radius specifies the point at which the IE begins
to attempt to slow down and arrive at a standstill at the
contact radius (or earlier). If set to -1, this feature is turned
off and the IE will never attempt to stop moving when it
reaches its target. This feature of Seek To is sometimes
referred to as "Arrival". It is to be noted that the slowing
radius is taken to be the distance from the contact radius,
which itself is the distance from the external radius of the
target.

WO 2005/091198 PCT/CA2005/000426

10

15

40

Attribute | Description

Use This parameter allows defining whether or not the Slowing
g’ogfmg Radius feature is used. If this is off, the IE will not attempt to
adlls | slow down when reaching the target.

Desired | The desired speed instructs an IE to move towards the

Speed | target at the specified speed. If this is set to a negative
number or Use Desired Speed is off, this feature is turned off
and the |IE will attempt to approach the target at its maximum
speed.

Use This parameter allows defining whether or not the Desired
Desired | gpeed attribute will be used. If this is off, the IE will attempt

Speed to approach the target at its maximum speed.

Flee From

The Flee From behaviour allows an IE to flee from another
IE or from a group of IEs. When an |E flees from a group, it will flee from
the nearest member of the group at any time. The Flee From behaviour
has the same attributes as the Seek To behaviour, however, it produces
the opposite steering force. Since the parameters allowing defining the
Flee From behaviour are very similar to those of the Seek To behaviour,

they will not be described herein in more detail.
Look At

The Look At behaviour allows an IE to face another IE or a
group of |Es. If the target of the behaviour is a group, the IE attempts to

look at the nearest member of the group.

Strafe

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

41

The Strafe behaviour causes the IE to “orbit” its target, in
other words to move in a direction perpendicular to its line of sight to the
target. A probability parameter allows to determine how likely it is at each
frame that the |IE will turn around and start orbiting in the other direction.

This can be used, for instance, to make a moth orbit a flame.

For example, the effect of a guard walking sideways while
looking or shooting at its target can be achieved by turning off the guard’s
Forward Motion Only property, and adding a Look At behaviour set
towards the guard’s target. It is to be noted that, to do this, Strafe is set to

Affects direction only, whereas Look At is set to Affects orientatior only.

A parameter specific to this behaviour may be, for example,
the Probability, which may take a value between 0 and 1 that determines
how often the IE change direction of orbit. For example, at 24 frames per
second, a value of 0.04 will trigger a random direction change on average
every second, whereas a value of 0.01 will trigger a change on average

every four seconds.

Go Between

The Go Between behaviour allows an IE to get in-between
the first target and a second target. For example this behaviour can be
used to enable a bodyguard character to protect a character from a group
of enemies.

WO 2005/091198 PCT/CA2005/000426

42

The following parameter allow specifying this behaviour:,
which may take a value between 0 and 1 that determines how close to the.
second target one wish the entity to go.

5 Follow Path

The Follow Path behaviour allows an |E to follow a path. For

example this behaviour can be used to enable a racecar to move around a

racetrack.
10
The following parameters allow defining this behaviour:
Parameter Description
Use Speed | This parameter allows defining whether or not the IE will
Limits attempt to use the speed limits of the waypoints on the
path. If this parameter is set to off, the IE will attempt to
follow the path at its maximum speed.
Path Is This parameter allows defining whether or not the IE will
Looped go to the first waypoint when it reaches the last waypoint.
If the parameter is set to off, when the IE reaches the last
waypoint it will hover around that waypoint.
Group Behaviours
15
Group behaviours allow grouping individual IEs so that they
act as a group while still maintaining individuality. Examples include a
school of fish, a flock of birds, etc.
20 The following parameters may be used to define group

behaviours:

WO 2005/091198 PCT/CA2005/000426

10

15

43

Parameter Description

Neighbourhood | This parameter is similar to the "activation radius" in
Radius targeted behaviours. The IE will “see” only those
members that are within its neighbourhood radius. The
neighbourhood radius is independent of the IE’s radius.

Use Max This parameter allows defining whether or not the Max
Neighbours Neighbours attribute will be used. If this parameter is
set to off, then all the group members in the
neighbourhood radius are used to calculate the effect
of the behaviour.

Max This parameter allows defining the maximum number
Neighbours of neighbours to be used in calculating the effect of the
behaviour.

The following includes brief descriptions of examples of

group behaviours.
Align With
The Align With behaviour allows an |E to maintain the same

orientation and speed as other members of a group. The |IE may or may

not be a member of the group.

~Join With

The Join With behaviour allows an IE to stay close to

members of a group. The |IE may or may not be a member of the group.

An example of parameter that can be used to define this

behaviour is the Join Distance, which is similar to the "contact radius" in

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

44

targeted behaviours. Each member of the group within the neighbourhood
radius and outside the join distance is taken into account when calculating
the steering force of the behaviour. The join distance is the external
distance between the characters (i.e. the distanc € between the outsides of
the bounding spheres of the characters). The value of this parameter

determines the closeness that members of the g roup attempt to maintain.
Separate From

The Separate From behaviour allows an IE to keep a certain
distance away from members of a group. For example, this can be used to
prevent a school of fish from becoming too crowsded. The IE to which the

behaviour is applied may or may not be a memboer of the group.

The Separation Distance is an example of parameters that
can be used to define this behaviour. Each memkber of the group within the
neighbourhood radius and inside the separation distance will be taken into
account when calculating the steering force of the behaviour. The
separation distance is the external distance b etween the IEs (i.e. the
distance between the outsides of the bounding spheres of the IEs). The
value of this parameter determines the external separation distance that

members of the group will attempt to maintain.

Flock With

WO 2005/091198 PCT/CA2005/000426

45

This behaviour allows IEs to flock with each other. It
combines the effects of the Align With, Join With, and Separate From
behaviours.

5 The following table describes parameters that can be used to
define this behaviour:

Parameter Description
Alignment This parameter allows defining the relative intensity of
Intensity the Align With behaviour.

Join Intensity | This parameter allows defining the relative intensity of
the Join With behaviour.

Separation | This parameter allows defining the relative intensity of
Intensity the Separate From behaviour.

Join Distance | This parameter determines the closeness that members
of the group will attempt to maintain.

Separation This parameter determines the external separation
Distance distance that members of the group will attempt to
maintain.

10

Combining Behaviours

An IE can have multiple active behaviours associated thereto
15 atany given time. Therefore, means can be provided to assign importance

to a given behaviour.

A first means to achieve this is by assigning intensity and
priority to a behaviour. The assigned intensity of a behaviour affects how

20 strong the steering force generated by the behaviour will be. The higher

WO 2005/091198 PCT/CA2005/000426

46

the intensity the greater the generated behavioural steering forces. The
priority of a behaviour defines the precedence the behaviour should have
over other behaviours. When a behaviour of a higher priority is activated,
those of lower priority are effectively ignored. By assigning intensities and
5 priorities to behaviours the animator informs the solver which behaviours
are more important in which situations in order to produce a more realistic

animation.

In order for the solver to calculate the new speed, position,

10 'and orientation of an IE, the solver calculates the desired motion of all
behaviours, sums up these motions based on each behaviour's intensity,

while ignoring those with lower priority, and enforces the maximum speed,
acceleration, deceleration, and turning radii defined in the IE’s attributes.
Finally, braking due to turning may be taken into account. Indeed, based

15 on the values of the character's Braking Softness and Brake Padding

attributes, the character may slow down in order to turn.

Returning to Figure 7, the detailed description of the method

100 will now continue with reference to a simple digital world in the form of

20 inner rooms of a one-floor building 30 is illustrated in Figure 11, the walls
32, represented by dark lines, being obstacles and the area enclosed

within defining the reachable space 34 for the movable entity (not shown).

In step 104, a navigation mesh 35 is created for the movable
25 digital entity (not shown). This is achieved by dividing or converting the
reachable space 34 into convex cells 36 as illustrated in Figure 12 for the

example of the one-floor building from Figure 11.

WO 2005/091198 PCT/CA2005/000426

47

The navigation mesh 35 can be created either manually or
automatically using, for example, the collision layer or the rendering
geometry. A collision layer is a geometric mesh that is a simplification of

5 the rendering geometry for the purposes of physics collision
- detection/resolution. In this case, the navigation mesh is the subset of the
collision layer upon which the movable entity could move (this is typically

the floors and not the walls).

10 Deriving the navigation mesh from the rendering geometry
requires simplifying the geometry as much as possible and fusing the
geometry into a seamless a mesh as possible (e.g., removal of

intersecting polygons, etc.).

15 : In a manual creation, a 3D operator (typically a 3D artist)
inspects the input geometry, fuses the polygons correctly and strips out
the non-reachable space. It is to be noted that algorithms exist that can

automatically handle this to a high degree.

20 Convex polygons are used as cells in the creation of the
navigation mesh 35 since any point within such a cell is directly reachable

in a straight line to any other point in the cell.

An edge Exy connecting cells Cx and Cy in the navigation
25 mesh will be considered “passable”, if the entity can pass from cell Cx to

Cy via Exy.

WO 2005/091198 PCT/CA2005/000426

48

In step 106, the starting and end points (not shown) are
located and the corresponding cells that includes each of those two points

are identified.

5 The expressions “starting point” and “end point” should not
be construed herein in a limited way. Indeed, unless the digital movable
entity is pixel size, the starting and end point will refer to a location or a
zone in the virtual world.

10 ‘ In step 108, a first verification is done whether the starting
and end points are both located in the same cell. If this is the case, the
method 100 proceeds with step 110, wherein the digital entity is moved
from the starting to the end point before the method stops. As it has been
mentio‘ned hereinabove, the use of convex cells allows the digital movable

15 entity to move or to be moved in straight line within a cell. However, in
some cases, objects or other movable entities for example, may force the
movable entities to adopt a collision avoidance strategy. As will be
described hereinbelow in more detail, a method 100 according to a more
specific illustrative embodiment of the present invention may yieldﬂ a

20 movable digital entity with such an adaptive behaviour.

Returning to the method 100, if the starting and end points
are not located in the same cell, a sequence of cells among the convex
cells is determined from the starting cell to the end cell so as to yield a
25 path for the digital movable entity therebetween (step 112).

WO 2005/091198 PCT/CA2005/000426

49

Step 112 can be achieved first by constructing a connectivity
graph 38, which is obtained by replacing each cell 36 by a node 40 and
connecting each pair of passable cell (node) by a line 42. An example of
connectivity graph 38 is illustrated in Figure 13 for the example illustrated

5 in Figures 11 and 12. Of course, such a graph 38 is purely virtual and is
not actually graphically created.

Then, the resulting graph 38 is searched to find a path

between the two nodes 40 representing respectively the starting and end

10 points. Many known techniques can be used to solve such a graph
searching problem so as to yield a path between these two corresponding

nodes. The path, if it exists is returned as corresponding cells.

For example, a breadth first search (BFS) can be used to

15 search the graph 38. The well known BFS method allows providing the

path of lowest cost but can be very expensive in terms of number of nodes

explored. A depth first search (DFS), which can also be used, would be

significantly less expensive in terms of nodes explored but does not allow

to provide the path at the lowest cost. Heuristics can be placed on the

20 DFS to try to improve path quality while maintaining computational
efficiency.

Itis to be noted that there can be situations where there is no
such sequence of cells and the method stop at step 112 with the entity

25 prevented from being able to navigate to the end point.

WO 2005/091198 PCT/CA2005/000426

50

If there exists such a sequence of cells, intermediary points
(not shown) are determined on respective boundary between consecutive
cells in the sequence of cells (step 114). In other words, entry/exit points

to and from each convex cell are selected.

For example, the centerpoint of each edge can be selected.
Of course, other points can alternatively be chosen. The point on the cell
edge (cells interface) can be chosen so as to reduce the distance traveled
between cells and then further smooth the path.

10

The digital entity is then moved from the starting point to
each selected consecutive intermediary points, finally to the ending points
(step 116).

15 Turning now to Figures 14 to 21, the method 100 will be
illustrated with reference to another simple world 44 (see Figure 14)

delimitated by walls 46.

As illustrated in Figure 15, a navigation mesh 47 is created
20 and the world 44 is divided in convex cells 48 identified from A to Z for

reference purposes.

The starting and end points 50 and 52 are shown in

Figure 16. Following step 106 of the method 100, they are found in cells

25 ‘Z'and ‘J’ respectively. Since they are not located in the same cell, the
method continues with step 112 with the determination of a sequence of

cells between the points 50 and 52, yielding the following sequence as-

WO 2005/091198 PCT/CA2005/000426

51

illustrated in Figure 16: ‘Z’, Y’, ‘0°, ‘X', ‘'W’, V', ‘U’, ‘'T’, ‘H’, and 'J'. After
determining intermediary points on the respective boundary between
consecutive cells in the sequence of cells (step 114), the method
continues with the entity moving along the determined path 54 as
5 illustrated in Figure 17. As can be seen in Figure 17, the path can be

smooth to yield a more realistic trail.

Since navigation method according to the present invention

is used when an entity is to seek a target, the navigation mesh can be

10 dynamically modified at run-time (step 104). For example, as illustrated in
Figures 18 and 19, cells can be turned off via blind data to simulate road
blocks or congestion due to excess people or physics-driven debris or
turned on to simulate a door opening, congestion ending or a passage
through a destroyed wall. In Figure 18, former cell ‘H' has been turned off,

15 resulting in a first alternative path 56 and in Figure 19, both former cells ‘B’

and ‘H’ have been turned off, resulting in a second alternative path 58.

The method 100 also allows taking into consideration the
dimension of the movable digital entity, and more specifically its
20 transversal dimension relatively to its moving direction such as its width.
The creation of the navigation mesh in step 104 may take into account
such characteristic of the movable entity so that the method 100 outputs a
path that the entity can pass through. This is illustrated in Figures 20 and
21.
25 4
Figure 20 illustrates a path 60 obtained from the method 100
to move a digital entity from a starting point 62 to and end point 64. By

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

52

doubling the width of the movable digital entity (illustrated by the sphere
66) in Figure 21 (see sphere 66’ in Figure 21), the former cell ‘L’ is no
longer part of the navigation mesh 68 and a new path 70 is provided by
the method 100.

The method 100 is not limited to two-dimensional digital
world. As it is illustrated in Figures 22 and 23, the method 100 can be
used to determine the path between a starting point to an end point and
then move a digital movable entity, such as an animated character,
between those two points in a three dimensional digital world. Figure 22
illustrates the output of the floor plan generator on a small city part of a
simulator, a game or an animation. Figure 23 illustrates the navigation

mesh resulting from step 104 from the method 100.

As will now be described with reference to Figures 24-27, the

method 100 can be adapted for outdoor and indoor environments.

An outdoor environment typically consists of buildings and
open spaces such as market spaces, parks with trees, separated by
sidewalks, roads and rivers. Correspondingly, a floor plan generator uses
the exterior building walls to cut out holes in the navigation mesh.

In order to allow the movable entity to differentiate between
different kinds of reachable space, blind data are used to characterize
different part of the reachable space. In some application, blind data can
then be associated to the cells of the navigation mesh to specify the

differences in navigable surfaces (e.g., roads and sidewalks) and have the

WO 2005/091198 PCT/CA2005/000426

53

entities navigate accordingly (e.g., keep vehicles on the road and humans

on the sidewalks).

Figure 24 illustrates a digital world in the form of a city street.
5 Figure 25 illustrates a navigation mesh obtained from step 104 of method
100. Blind data are used to differentiate between roadway (white cells)

and sidewalk (grey cells).

As illustrated in Figure 26, an indoor environment is typically
10 multi-layer and consists of floors divided into rooms via inner walls and
doors; and connected by stairways. Correspondingly, a floor plan
generator calculates the navigation mesh for each floor using the walls as
barriers and then links the navigation surfaces by the cells that correspond
to the stairways. This results in a 3D navigation mesh in which cells may
15 be ontop onone another. Path finding is now modified to determine which
surface cell the digital movable entity is on rather than which cell the
character is in. In brief, when a three-dimensional world is defined by a
plurality of levels, a navigation mesh is created for each of the levels and
two consecutive navigation meshes are interconnected by connecting

20 cells.

Returning to Figure 7 and more specifically to step 116, it is
reminded that within a convex cell, the method 100 allows the movable
entity to move from a predetermined intermediary point to the next in a

25 straight line. Therefore, the only things that can prevent the entity from
going in a straight line may be dynamic obstacles. To cope with this

situation, the movable entity may be provided with sensors. Before

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

54

describing in more details a dynamic collision avoidance method
according to a method from the present invention, the concept of sensor
and other relevant concepts such as data information, commands,
decisions and decision trees will first be described briefly. It is to be noted
however that neither the collision avoidance method according to the
present invention nor the navigation method 100 are to be construed as
being limited to a specific embodiment of sensors or decision rules for the
digital movable entity, etc.

Data information

An entity’s data information can be thought of as its internal
memory. Each datum is an element of information stored in the entity’s
internal memory. For example, a datum could hold information such as
whether or not an enemy is seen or who is the weakest ally. A Datum can

also be used as a state variable for an IE.

Data are written to by an entity's Sensors, or by Commands
within a Decision Tree. The Datum's value is used by the Decision Tree to
activate and deactivate behaviours and animations, or to test the entity's .
state. Sensors and Decision trees will be described hereinbelow in more
detail.

Sensors

Entities use sensors to gain information about the world. A

sensor will store its sensed information in a datum belonging to the entity.

WO 2005/091198 PCT/CA2005/000426

10

15

95

A parameter can be used to frigger the activation of a
sensor. If a sensor is set off, it will be ignored by the solver and will not

store information in any datum.

An example of sensor will now be described in more detail.
Of course, it is believed to be within the reach of a person skilled in the art

to provide additional or alternate sensors depending on the application.

Vision Sensor

The vision sensor is the eyes and ears of a character and
allows the character to sense other physical objects or movable entities in
the virtual world, which can be autonomous or non-autonomous

characters, barriers, and waypoints, for example.

The following parameters allow, for example, defining the
vision sensor:

Parameter Description
g@;bility This parameter allows defining the maximum distance
iIstance

from the IE that it can sense other objects i.e. how far
can the |E see. The visibility distance is the external
distance between the IE, i.e. the distance between the
outsides of the bounding spheres of the IEs.

Visibility This parameter allows defining the following four angles:
Angles Visibility Right Angle, Visibility Left Angle, Visibility Up
Angle, and Visibility Down Angle, specify the field of
view of the visibility sensor measured in degrees. Any

object outside the frustum defined by these angles will

WO 2005/091198

PCT/CA2005/000426

56

‘Parameter Description
be ignored.
Can See If this parameter is set to off, then the sensor will not
Through sense objects behind opaque barriers.
Opaque
Barriers

Object Type
Filter

This parameter allows defining the type of objects this
sensor will look for. The options are: All Objects,
Barriers, Way Points, or IEs. For example, if Barriers is
chosen then the sensor will only find barriers.

Object Filter

This parameter allows defining the objects this sensor
will look for. If this is set to a group, then the sensor will
only look for objects in the selected group. If this is set
to a path, then the sensor will only look for waypoints on
the path. If this is set to a specific object (e.g. a
character, a waypoint, or a barrier), then the sensor will
ignore all other objects in the world.

Evaluation
Function

This parameter allows defining the evaluation function
assigns a value to each sensed object. The value of the
object, in conjunction with the Min Max attribute, is used
to determine the “best” object of all the ones sensed.
The possible values are:

- Any: this chooses the first object sensed. This is the
most efficient value of the Evaluation Function. This
value could possibly choose the same object every
time. If you want a randomly selected object, set the
value of the Evaluation Function to “Random”.

- Distance: this chooses an object based on its
distance from the character. If the Min Max attribute
is set to minimum, the nearest object to the IE is
chosen. If the Min Max attribute is set to maximum,
the furthest object (within the visibility distance) to
the IE is chosen.

- _Random: this randomly chooses an object.

Min Max

This parameter allows defining whether the object with
the minimum or maximum value is considered the “best”
object.

Is Any Object
Seen Datum

This parameter allows defining the datum that will be
used to store whether or not any object was seen, i.e.

WO 2005/091198 PCT/CA2005/000426

10

15

20

57

Parameter Description

did the IE see what it was looking for.

Best Object This parameter allows defining the datum that will be
Datum used to store which “best” object that was sensed, i.e.

what exactly did the IE see.

Commands, Decisions, and Decision Trees

Decision trees are used to process the data information

gathered using sensors.

A command is used to activate a behaviour or an animation,

or to modify an IE's internal memory.

Commands are invoked by decisions. A single Decision

includes a conditional expression and a list of commands to invoke.

A decision tree includes a root decision node, which can own
child decision nodes. Each of those children may in turn own children of

their own, each of which may own more children, etc.

A parameter indicative of whether or not the decision tree is

to be evaluated can be used in defining the decision tree.

Whenever the command corresponds to activating an
animation and a transition is defined between the current animation and

the new one, then that transition is first activated.

WO 2005/091198 PCT/CA2005/000426

15

20

25

30

58

Similarly, whenever the command corresponds to activating
a behaviour, a blend time can be provided between the current animation

and the new one.

Moreover, whenever the command corresponds to activating

a behaviour, the target is changed to the object specified by a datum.

Dynamic collision avoidance

It will now be described substeps of both the steps 110 and
116 from the method 100 allowing the entity to avoid hitting any moving
obstacle (e.g., another character or a physics object) as it travels along its
path as determined through steps 102-114.

Just as path finding can be seen as a two-step process of i)‘
determining the path and then ii) following it; obstacle avoidance can also
be seen as a two-step method 200, which is illustrated in Figure 28, of:

202 - assessing threats of potential collisions between the
movable digital entity and a moving obstacle, and

204 — if there is such a threat, the movable digital entity
responding accordingly by adopting a strategy to avoid the moving

obstacle
Collision threat assessment

In step 202, each entity 72 uses its sensor (see Figure 29) to

detect what potential obstacles are in its vicinity and decide which of those

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

59

obstacles poses the greatest threat of collision. As illustrated in Figure 30,
the sensor is configured as a field of view 74 around the entity 72,
characterized by a depth of field, defining how far the entity can see. The
field of view of each movable entity can be defined as a pie (or a sphere
depending on the application) surrounding the entity.

If there are no obstacles, then the entity’s field of view 74
around itself would be completely free and the pie is complete. However,
as illustrated in Figure 30, each obstacle removes a piece of this pie. The
size of the piece removed depends on the obstacle's size and its distance

from the entity.

Unobstructed sections of the pie are will be referred to herein
as holes 76-78 (see Figure 31). The entity 72 searches for the best hole to

continue through.

The best hole can be determined in several ways. The
typical way is as follows:

e The holes 76-78 are sorted in order of increasing radial
distance from the desired direction of the entity 72;

e The first hole that is large enough for the entity to pass
through is chosen;

e If there is no hole, the agent is completely blocked and

will stop moving.

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

60

Depending on the chosen hole, the movable entity can move

into that hole by either turning or reversing.

Depending on the application of the simulator and on the
characteristics of the entity, the obstacles can be characterized as having
different avoidance importance. For example, a Hummvee may consider
avoiding other vehicles as its highest priority, pedestrians as a secondary
priority and small animals such as dogs as a very low priority; and a
civilian pedestrian may consider vehicles as its highest priority and other
pedestrians as a secondary priority. Of course, extreme situations such as
a riot may dynamically change these priorities. Thus, different obstacle
groups have different avoidance constraints. The most basic constraint is
assigning an obstacle to be a threat. Accordingly, for each obstacle group,
there is an associated awareness radius. As the character moves through
its world, its sensor sweeps around it, for every obstacle detected in its
sweep that is within its awareness radius, it is flagged as a potential

collision threat.

For each perceived threat, different kinds of collision threat
states can be assigned, including:

o stationary: the obstacle is not moving but is in the
movablé entity’s way;

e incoming: the obstacle is coming towards the movable
entity;

e outgoing: the obstacle is going away from the movable
entity but the entity will rear-end it; and

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

61

e sideswiping: the obstacle is expected to hit the movable

entity from the side.
Avoidance strategies

For each collision threat, there are two kinds of avoidance
strategies (step 204): |
e circumvention: try avoiding the collision by going around
the obstacle; and
e queuing: try avoiding the collision by slowing down (and
potentially stopping) until the obstacle exits the collision
path.

It is to be noted that both above-described avoidance
strategies are heuristics and as such neither is guaranteed to work in all

circumstances.

Figures 32A-32C, 33A-33C, 34A-34C, and 35A-35C illustrate
three examples of collision threats (Figures 32A, 33A, 34A, and 35A),
each with both corresponding avoidance strategies. Figures 32A-35C
show how circumvention is useful for going around stationary obstacles
and getting out of the way of incoming obstacles. However, it can cause a
lot of jostling on outgoing obstacles. Nonetheless, circumvention has the

advantage of minimizing gridlock and eventually finding a way around.

Queuing always works well on outgoing obstacles and

incoming obstacles (provided they are circumventing). However, it has

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

62

been found that queuing incoming obstacles and stationary obstacles can
cause gridlock. In most cases, the most effective way to avoid gridlock is

to use decision logic to change strategies on the fly.

Group-based movement modifiers (formations)

It is a well-observed fact that herd-based animals including
birds, fish and humans move differently when in groups. This movement
behaviour is commonly called flocking. With humans, group based
movement is very varied from the loose groups of Somali militiamen
running through a twisty city street to rigid formations of marching soldiers
on parade to coordinated cover and sweep routines of modern Delta
Force operators. In each case, the group’s “collective conscience”

influences the movement of each navigating individual in the group.

The group movement modifier that is most rapidly identified
with computer graphic artificial intelligence is flocking, made famous by
Reynolds [Reynolds, 1987] who modelled flocks of birds called boids as
super particles. Reynolds identified three basic elements to flocking:

e alignment: the tendency of group members to harmonize
their motion by aligning themselves in the same direction
with the same speed,;

e separation: the tendency of group members to maintain
a certain amount of space between them; and

e joining: the tendency of group members to maintain a

certain proximity with one another.

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

63

Considering now a group of friends walking down the street,
slower members of the group will speed up to catch up to the others, the
fastest members (assuming they are polite) will slow down slightly to allow
the stragglers to catch up. Depending on the cultural background of the
group more or less space is required or tolerated between the friends (cf.

urban dwellers to rural dwellers).

Figures 36A-36F shows the effects of different flocking

strategies on a group of five characters following a leader character.

Such group-based modifier can be used to yield a more
natural effect when the method 100 is used to simultaneously move a
group of entities in a digital world between starting and end points.

Even though the method and system for moving a digital
entity on-screen from starting to end points in a digital world has been
described as being included in a specific illustrative embodiment of a 3D
application, it can be included in any 3D application requiring the
autonomous displacement on-screen of image element. For example, a
navigation method according to the present invention can be used to move
digital entity not characterized by behaviours such as described

hereinabove.

A navigation method according to present invention can be
used to navigate any number of entities and is not limited to any type or
configuration of digital world. The present method and system can be

WO 2005/091198 PCT/CA2005/000426

64

used to plan the displacement of a movable object or entity in a virtual

world without further movement of the object or entity.

Although the present invention has been described
5 hereinabove by way of preferred embodiments thereof, it can be modified
without departing from the spirit and nature of the subject invention, as

defined in the appended claims.

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

65

WHAT IS CLAIMED IS:

1. A method in a computer system for moving at least one
digital entity on-screen from starting to end points in a digital world,
comprising:

i) providing respective positions of obstacles for the at least
one movable digital entity in the digital world; defining at least portions of
said digital world without obstacles as reachable space for the at least one
movable digital entity;

ii) creating a navigation mesh for the at least one movable
digital entity by dividing said reachable space into at least one convex cell;

iii) locating a start cell and an end cell among said at least
one convex cell including respectively the start and end points; and

iv) verifying whether said starting cell corresponds to said
end cell; if said starting cell corresponds to said end cell, then: iv)a)
moving the at least one movable digital entity from the starting point to the
end point; if said starting cell does not correspond to said end cell, then
iv)b) i) determining a sequence of cells among said at least one convex
cell from said starting cell to said end cell, and iv)b)ii)determining at least
one intermediary point located on a respective boundary between
consecutive cells in said sequence of cells, and iv)b)iii) moving the at least
one movable digital entity from the starting point to each consecutive said

at least one intermediary point to said end point.

2. A method as recited in claim 1, wherein said obstacles

being dynamic obstacles, yielding changes in said digital world; wherein in

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

66

i) said navigation mesh is dynamically created to cope for said changes in

said digital world caused by said dynamic obstacles.

3. A method as recited in claim 1, wherein "iv)b)i)
determining a sequence of cells among said at least one convex cell from
said starting cell to said end cell includes constructing a connectivity graph
and searching said connectivity graph for a path between said starting cell
to said end cell.

{

4. A method as recited in claim 2, wherein a breadth first
search (BFS) or depth first search (DFS) is used in searching said
connectivity graph.

5. A method as recited in claim 1, wherein in iv)b)ii) at least
one intermediary point located on a respective boundary between

consecutive cells in said sequence of cells includes a centerpoint.

6. A method as recited in claim 1, wherein in iv)b)ii) at least
one intermediary point located on a respective boundary between
consecutive cells in said sequence of cells is selected so as to improve the

guality of motion.

7. A method as recited in claim 6, wherein said sequence of
cells is selected so as to reduce a distance travelled within at least one of

said consecutive cells.

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

67

8. A method as recited in claim 1, wherein said digital world
further includes at least one moving obstacle within said at least one of
said convex cell; wherein at least one of said iv)a) moving the at least one
movable digital entity from the starting point to the end point and iv)b)iii)
moving the at least one movable digital entity from the starting point to
each consecutive said at least one intermediary point to said end point
further including a) assessing whether there is a collision threat between
said at least one moving obstacle and said at least one digital movable
entity, and b) said at least one digital movable entity adopting a strategy to

avoid said at least one moving obstacle when there is a collision threat.

9. A method as recited in claim 8, wherein a) assessing
whether there is a collision threat between said at least one moving
obstacle and said at least one digital movable entity includes using a

sensor to detect said at least one moving obstacle.

10. A method as recited in claim 9, wherein using said
sensor yields a field of view between said at least one movable digital
entity characterized by a depth of field.

11. Amethod as recited in claim 10, wherein using a sensor
to detect said at least one moving obstacle yields a hole in said field of

view; said hole characterizing said at least one moving obstacle.

12. A method as recited in claim 11, wherein said hole
having at least one characteristic; said at least one digital movable entity

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

68

prioritizes its strategy to avoid said at least one moving obstacle according

to said at least one characteristic of said hole.

13. A method as recited in claim 12, wherein said at least

one characteristic of said hole includes a radial distance and a width.

14. A method as recited in claim 13, wherein said strategy to

avoid said at least one moving obstacle is circumvention or queuing.

15. A method as recited in claim 1, yielding a path between
the staring and end points; the method further comprising smoothing said

path so as to yield a more realistic path.

16. A method as recited in claim 15, wherein said at least
one movable digital entity includes a plurality of movable digital entity all
adopting a flocking strategy to follow said path.

17. A method as recited in claim 16, wherein said flocking
strategy includes at least one of following, alignment, separation and

joining.

18. A method as recited in claim 1, wherein said at least one

movable digital entity includes a plurality of movable digital entity.

19. A method as recited in claim 1, wherein at least one of
said convex cell being characterized by a blind datum allowing

differentiating between types of navigational cells.

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

69

20. A method as recited in claim 19, wherein the digital world
further comprises state changing entity; said state changing entity being
operative onto said blind datum.

21. A method as recited in claim 1, wherein said navigation

mesh is created manually or automatically.

. 22. Amethod as recited in claim 1, wherein said digital world
is defined by a rendering or physics geometry; said navigation mesh being
created using said rendering or physics geometry.

23. Amethod as recited in claim 1, wherein said digital world

is a two-dimensional world.

24. A method as recited in claim 1, wherein said digital world

is a three-dimensional world.

25. A method as recited in claim 24, wherein said three-
dimensional world is defined by a plurality of levels; in ii) a level navigation
mesh is created for each of said plurality of levels; consecutive level

navigation meshes being interconnected by connecting cells.

26. A method as recited in claim 1, wherein said at least one

movable digital entity is autonomous or non-autonomous.

WO 2005/091198 PCT/CA2005/000426

10

15

20

25

70

27.A system for moving a digital entity on-screen from
starting to end points in a digital world, comprising:

a world database for storing information about the digital
world and for providing respective positions of obstacles for the movable
digital entity in the digital world;

a navigation module

i) for defining at least portions of said digital world without
obstacles as reachable space for said movable digital entity;
ii) for creating a navigation mesh for said movable digital
entity by dividing said reachable space into at least one convex cell;
iii) for locating a start cell and an end cell among said at
least one convex cell including respectively the start and end points; and
iv) for verifying whether said starting cell corresponds to
said end cell; and
if said starting cell does not correspond to said end cell,
for further
v) determining a sequence of cells among said at
least one convex cell from said starting cell to said
end cell, and vi) determining at least one intermediary
point located on a respective boundary between
consecutive cells in said sequence of cells;
and

a simulator coupled to said navigation module and to said
world database for moving the digital entity on-screen via an image
generator coupled to said simulator from the starting point to the end point
if said starting cell corresponds to said end cell as verified in iv); or for

moving the digital entity from the starting point to each consecutive said at

WO 2005/091198 PCT/CA2005/000426

10

15

71

least one intermediary point to said end point; if said starting cell does not

correspond to said end cell.

28. A system as recited in claim 27, wherein said world
database being further for storing information about at least one moving
obstacle within said at least one of said convex cell; said navigation
module being further for a) assessing whether there is a collision threat
between said at least one moving obstacle and said at least one digital
movable entity, and b) said at least one digital movable entity adopting a
strategy to avoid said at least one moving obstacle when there is a

collision threat.

29. A system as recited in claim 27, wherein said navigation

module is part of said simulator.

30. A system as recited in claim 27, further comprising a
decision-making module coupled to the simulator for dynamic adjustment
of the navigation unit following said digital world acting on said at least one

digital movable entity.

WO 2005/091198 PCT/CA2005/000426

1/26
4 I
T
—— Data Object
<— Actions Database
World State —— Data ——»

Controllers

manager «——— Updates

Data Synthesizers

_ Generic 3D application architecture)

—

F= = _1 (Prior Art)

PCT/CA2005/000426

WO 2005/091198

2/26

101RI3TRY) SJet]

(17 JoLd) B T =T=L

aseqe)e(

1070130y adet]
e

107019131 930U
e —

PLIOY

i

s10jesado wewmy

o\
I
|

.M%Eém

PCT/CA2005/000426

WO 2005/091198

3/26

(117 JoL]) £~ =Tz L

— . — e ——

- - —— ——— T o — — — —— s oy

S
S
=]
£
D
—
D
O
>
o>
<
£
7

———— e — s — i —— ——

_
!
!
!
!
_
|

SaINXa| |
opny Iopusy H suobfjog [h
i [} mN_wmcE\Aw p
= _ sopdy | Je0uBly SieS PO
A -
138l
P20 ul = S30UBIS
S19][0U07) 30aUY soysed ™)
Suonay sma
-) SO0UB)S
8SeqeIe(PHOM M— S0,
EEN
e suogy I _
7T loenuig™,
N sy [
v, uopnjoss
ww_wﬁ% aborpelao| | s499 | [indusefey ST :%_w____oom
. s__ezook‘ Bk safeueyy ajeig pliop

PCT/CA2005/000426

WO 2005/091198

4/26

(MY I0Ld) &~ =T=L

92ISoUMUAS

oipny | [Jopuay
N W

— | A S ——
o :

ORIy | [COTRITY
18100 | |4eloeleyn)
SI9][0LJU07) JRUY

10}eJousc) afew|

—— — — — — — o — — — — — — o s’

85eqeJeq PHOM,

|
|
|
|
|
|

JaBeue)

SlE}S PHOM

mmw_m_% 260738000| | S499 | (ndurskerg
_ SIR0JU0)

)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
“
1aBeueyy !
oJelS PUOM [“
|

]

|

|

|

|

|

]

|

|

|

|

|

|

|

]

|

)

A

9Segeieq PHoOMm

JoBeuey
olelS PHOM

T e e e e e e e e e e —_—_—_ e —_——— e

Joje|nu

——— —— — — — — — —

Az

WO 2005/091198 PCT/CA2005/000426

5/26

—F=zI=_5 (Prior Art)

PCT/CA2005/000426

WO 2005/091198

6/26

ST/)

éc.

SpOy
[0J)107)
oyeuIy

e,

S[IPO
(01107
TOIJRUIITY

ée,

S[POR
[0)T0)
uorjeuuy

10781919 ddeu]
——

g =r=Z

A

70

107019URY) affet]
——

J07019U3E) 33eU]

gr

aseqele(
PLIoN

174

/4

O[NPOK
JUDRW OISIOA(

J[NPO
TonesARY

WO 2005/091198 PCT/CA2005/000426

7/26

100
\ (Start)

Y

entity in the digital world and defining at least portions of the digital
world without obstacles as reachable space for the movable digital enfity

the reachable space into convex cells

Y

including respectively the starting and end points of the path

108

Starting cell corresponds No

Providing respective positions of obstacles for the movable digital)

to the end cell ?

/]]0

Moving the digital entity from the starting point to the end point

112
P,

Determining a sequence of cells among the convex cells

l———

from the starting cell to the end cell

Y _J
Determining intermediary points located on a respective

boundary between consecutive cells in the sequence of cells

Moving the digital entity from the starting point to each | —/
consecufive intermediary points to the end point

Y
-GS0 T o

102

\ 104
Creating a navigation mesh for the movable digital entity by dividing —

106
Locating a starting cell and an end cell among the convex cells J

174

Y 176

WO 2005/091198 PCT/CA2005/000426

8/26

Forward orientation

vector
34\/\}
P B
2D barrier
_Tz=_4a
P
26
Forward orientation
vector (out of page)
P P
! 3D barrier :

WO 2005/091198 PCT/CA2005/000426

9/26

| h

Q) Yaw

Pitch Roll

—_Fr=_10

WO 2005/091198 PCT/CA2005/000426

10/26

a0

. L

WO 2005/091198 PCT/CA2005/000426

11/26

56 A~

L

Tz=_1d

WO 2005/091198 PCT/CA2005/000426

12/26

’/35

42

40

40

42

£2. 40

WO 2005/091198 PCT/CA2005/000426

13/26

44

46— \l:—|J

i I

48

WO 2005/091198 PCT/CA2005/000426

54\ | 0 ¥
b A I J 2
% I
N U T
0 Y i
/V S ¢
P
X\
N
] ‘ K
N " :

Tz—=_1/

WO 2005/091198 PCT/CA2005/000426

15/26

N

r=r=_14

WO 2005/091198 PCT/CA2005/000426

16/26

62
N

60" | o N R

L A N

T=r=_JdI

PCT/CA2005/000426

WO 2005/091198

17/26

e s

T=l=_d5

WO 2005/091198 PCT/CA2005/000426

18/26

Tz—=_24

e e B]

WO 2005/091198

PCT/CA2005/000426

WO 2005/091198 PCT/CA2005/000426

20/26

<00

202

Collision threat between
a moving obstacle and the
movable digital entity?

204

J

The movable digital entity'
adopting a strategy to avoid
the moving obstacle

T=r=_28

00000000000000000000000000000

WO 2005/091198 PCT/CA2005/000426

22/26

—Trr=_31

PCT/CA2005/000426

WO 2005/091198

23/26

JEE ==L HEE =T=L YEE =[=L
sumanp O USAWINIL) durmoay
il .%s @
JCE =I=L HeE " =T=L YVOE =I=L
duman 0T UAAUINIT) Areuoryerg

()

()

@

@

PCT/CA2005/000426

WO 2005/091198

24/26

JEE ==L goE " =1=L VoE =1=L
suman UOTUSATINDIT) dudimsapig
3PS
- (s <
(yim « @A‘l il A__H@
JvE =1=L HoE ==L VoE =l=L
dumanp UOT)USATINII) dutodn()

WO 2005/091198 PCT/CA2005/000426

Just fOHOWiIlg _F=1=_ S5Q

Separation only _FE=i=_3F[

WO 2005/091198

26/26

Joining only

—T=z=_360

PCT/CA2005/000426

2

Combined flocking
S e B i)

INTERNATIONAL SEARCH REPORT International application No.
PCT/CA2005/000426

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7): GOGF 19/00, GO6F 15/18
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC(7): GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used)
Delphion, IEEE, Association for Computing Machinery database (ACM portal), the internet specifically CiteSeer and Google
keywords used: avatar, character, path finding, navigation, navigation mesh, collision detection, virtual sensor

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X Kuffner, J.J. ‘Goal-Directed Navigation for Animated Characters Using 1,2,5,6,15,18,21,23, 25
Real-Time Path Planning and Control’, Proceedings of CAPTECH’98,
November 1998

Y abstract, 4 Goal-Directed Navigation, 5 Algorithm Overview, Path 3,7,8,16-18, 24, 26-28
Planning the last paragraph, 6.1 Obstacle Projection, 6.2 Path Search, 7
Path Following (citations for both X and Y)

Y |US 4862373 (Meng) 29 August 1989 (29-08-1989) 3,8,24,26-28
abstract, column 1 line 12 - column 2 line 26, column 2 lines 30-37 and
lines 60-67, column 3 lines 1-10, lines 26-28, lines 40-46, column 4 lines
23-66, column 7 lines 27-35, column 9 lines 17-25, Figure 16

Y Salomon et al. ‘Interactive Navigation in Complex Environments Using 3,7,26,28
Path Planning’, Proceedings of the 2003 Symposium on Interactive 3D
graphics, Monterey California, April 27-30. 2003, Pages 41-50.

For Y see pages 45-46

A For A see whole document 1-27
[X] Further documents are listed in the continuation of Box C. [X] Seepatent family annex.
* Special categories of cited documents : “T” later document published afier the international filing date or priority
B) X date and not in conflict with the application but cited to understand
A" document defining the general state of the art which is not considered the principle or theory underlying the invention
to be of particular relevance .
. o 3 X “X" document of particular rel ; the d invention cannot be
“E” earlier application or patent but published on or after the international considered novel or cannot be considered to involve an inventive
filing date step when the document is taken alone
“L docutuent which may throw doubts on priority claim(s) or which is “Y” document of particular relevance; the claimed invention cannot be
cited to establish the publication date of another citation or other considered to involve an inventive step when the documentis =~
special reason (as specified) combined with one or more other such documents, such combination
. being obviaus to a person skilled in the art
“o” document referring to an oral disclosure, use, exhibition or other means .
) . | “&" document member of the same patent family
“pT document published prior to the international filing date but later than
the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
27 May 2005 (27-05-2005) 21 June 2005 (21-06-2005)
Name and mailing address of the ISA/CA Authorized officer
Canadian Intellectual Property Office
Place du Portage I, C114 - 1st Floor, Box PCT Kristina Deczky (819) 934-4156
50 Victoria Street
Gatineau, Quebec K1A 0C9
Facsimile No.: 001(819)953-2476

Form PCT/ISA/210 (second sheet) (April 2005) Page 3 of §

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CA2005/000426

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages |Relevant to claim No.
Y Reynolds, C. W. ‘Steering Behaviors For Autonomous Characters’, 16-18
Proceedings of Game Developers Conference, San Jose, California. Miller

Freeman Game Group, Pages 763-782, 1999,

For Y see page 15
A For A see the paragraphs under the headings Introduction, Locomotion, |1-27
Seek, Evaision, Offset pursuit, Obstacle Avoidance, Path Following,
Separation, Cohesion, and Alignment

A O’Neill J. ‘Efficient Navigation Mesh Implementation’, Journal of Game 1-27

Development, March 2004

see whole document

A Pinter M. ‘Toward More Realistic Pathfinding’, Gamasutra, March 14 1,3,5

2004 http://www.gamasutra.com/features/200103014/pinter_01.htm
see whole document

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

Page4 of 5

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/CA2005/000426
Patent Document Publication Patent Family Publication
Cited in Search Report Date Member(s) Date
US4862373 29-08-1989 JP1065411 A 10-03-1989
1JS4862373 A 29-08-1989
Form PCT/ISA/210 (patent family annex) (April 2005) Page 5 of 5

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

