PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 96/28784
GO6F 15/177 Al . o
(43) International Publication Date: 19 September 1996 (19.09.96)
(21) International Application Number: PCT/US96/03406 | (81) Designated States: AU, BR, CA, JP, KR, NO, NZ, European
patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT,
(22) International Filing Date: 13 March 1996 (13.03.96) LU, MC, NL, PT, SE).
(30) Priority Data: Published
403,418 13 March 1995 (13.03.95) Us With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
(71) Applicant: TRILOGY DEVELOPMENT GROUP [US/US]J; amendments.
Suite 130, 6034 West Courtyard Drive, Austin, TX 78730
(US).
(72) Inventors: GHATATE, Bhalchandra; 803 Single Oak Cove,
Austin, TX 78746 (US). LIEMANDT, Joseph; 4711
Spicewood Springs #244, Austin, TX 78759 (US). PRICE,
Andrew; 1227 Creekford Circle, Sugar Land, TX 77478
(US).
(74) Agents: HECKER, Gary, A. et al.; Hecker & Harriman, Suite
1600, 2029 Century Park East, Los Angeles, CA 90067
(US).
(54) Title: FLASH CONFIGURATION CACHE
(57) Abstract
10
The present invention provides a c
constraint-based configuration (10) sys-
tem using structural hierarchy. The CONFIGURATION SYSTEM
structural aspects of the model provide
the ability to define a model element 12 14 16
as being contained in, or by, another / / /
model element. To configure a sys-
tem, the present invention accepts input
in the form of requests (202), such as CONFIGURATION
an expression of a need for a desktop MODEL GENERATION BUNDLING /
computer system to be used in a CAD MAINTENANCE AND QUOTATION
environment. Using this information, SUBSYSTEW REPORTING SUBSYSTEM
the present invention configures a sys- SUBSYSTEM
tem by identifying the resource (210)
and component needs, constraints im-
posed on or by the resources or com- 18
ponents identified, and structural as- 4 COMMUNICATIONS BUS
pects of the system. In one embodi-
ment, a flash configuration cache (10)
is utilized, and in another embodiment
a bundling cache is used to speed up the INPUT / CENTRAL MASS
process of configuring an end product, OUTPUT MEMORY PROGESSING STORAGE
such as a user computer. UNT
20 22 24 26

applications under the PCT.

AM
AT
AU
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CcM
CN
CS
Ccz
DE
DK
EE
ES
FI
FR
GA

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Armenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada
Central African Republic
Congo
Switzerland
Cdte d'lvoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

GB
GE
GN
GR
IE
JP

KG

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

MW
MX
NE
NL
NO
NZ
PL

RO
RU
SD

SG
SI

SK
SN
Sz
TD
TG
TJ

UA

us
vz

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

WO 96/28784 1 PCT/US96/03406

10

15

20

FLASH CONFIGURATION CACHE

BACKGROUND OF THE INVENTION

This is a continuation in part of United States patent application
entitled “Method and Apparatus for Configuring Systems,” Serial number
08/039,949, filed March 29, 1993, and assigned to the assignee of the present

application.

1. FIELD OF THE INVENTION

This invention relates to the field of computer-based system

configuration.

2. BACKGROUND ART

Configuring a system refers to the process of selecting and connecting
components to satisfy a particular need or request. If a system is based on a
limited number of components, the process of configuring the system can be
relatively straightforward. For example, the purchase of an automobile
requires a salesperson to configure a system (automobile and assorted
options) to satisfy a customer's request. After selecting from a plurality of
models, the salesperson completes the transaction by selecting options to
configure and price an automobile. The configuring of such a simple system

can be accomplished with a pencil and paper.

As system specifications become more customized and varied,
configuration alternatives increase and the task of configuring a system

becomes more complex. This increased complexity has resulted in a need for

WO 96/28784 PCT/US96/03406

10

15

20

computer-based assistance with the configuration process. Early computer-
based systems expand independently-generated configuration orders for
systems into manufacturing orders. They do not address the actual need for
computer-based tools prior to the order expansion. That is, they do not
address the actual generation of a system configuration based on needs

and/or request input.

An example of a complex system is a desktop computer system. The
available configuration alternatives of a computer system are numerous and
varied, including alternatives available when choosing the microprocessor,
motherboard, monitor, video controller, memory chips, power supply,

storage devices, storage device controllers, modems, and software.

Configuring a desktop computer system requires that a selected
component is compatible with the other components in the configured
system. For example, a power supply must be sufficient to supply power to
all of the components of the system. In addition, the monitor must be
compatible with the video controller (e.g., resolution), and the storage device
must be compatible with its controller (e.g., SCSI interface). A motherboard

must have enough slots to handle all of the boards installed in the system.

The physical constraints of the cabinet that houses the system's
components are also considered. The cabinet has a fixed number of bays
available for storage devices (e.g., floppy disk drives, hard disk drives, or tape
backup units). These bays have additional attributes that further define their
use. For example, the bay may be located in the front of the cabinet and

provide access from the front of the cabinet. Another bay may be located

WO 96/28784 PCT/US96/03406

10

15

20

behind the front-accessible bays, and be limited to devices that do not need to
be accessed (e.g., hard disk drive). Bays may be full-height or half-height. |
Before a storage device can be added to the configuration, a configuration
system must identify a bay into which the storage device will be housed. This
requires that at least the accessibility and height of the storage device must be

examined to determine compatibility with an available cabinet bay.

The connection between a storage device and its controller must be
determined based on the location of each. The cable that connects the storage
device and its controller must provide compatible physical interfaces (e.g., 24-

pin male to a 24-pin female).

A method of establishing a communication pathway in a computer
system is known as daisy chaining. Daisy chaining provides the ability to
interconnect components such that the signal passes through one component
to the next. Determining whether a daisy chain may be established requires
that the available logical (e.g., IDE or SCSI) and physical interfaces (e.g., 24
pin) of all elements in a daisy chain be known. In addition, it is important to
know whether conversions from the source datatype to the destination
datatype are allowed. When a daisy chaining candidate is added to the
system, the interconnections and conversions between existing components
may be checked to determine whether the new component should be an

element of the daisy chain.

The power supply and storage device component examples illustrate
the need to define the structural interrelationships between components (i.e.,

physical and spatial relationships). To further illustrate this notion, consider

WO 96/28784 4 PCT/US96/03406

10

15

20

placing components requiring electrical power such as computer,
telecommunication, medical or consumer electronic components into two
cabinets. Further, each cabinet has an associated power supply that supplies
electrical power to the components inside the associated cabinet. To account
for electrical power consumption and the requirement that no power supply
is overloaded, the model must comprehend the specific cabinet in which
each component is placed and update the consumed power for each cabinet.
While the total power available in the two cabinets may be sufficient for all of
the components to be placed in both of the cabinets, a component cannot be
included in a cabinet if its inclusion would cause the cabinet's power supply
to overload. Therefore, the physical placement of the component in a cabinet
must be known to make a determination if the subsequent placement of a
component is valid. Similarly, any physical connections between these
components must be taken into account. Each ccmpcnent's position in the
structural hierarchy is used to determine minimal or optimal lengths for the

connecting components.

Early computer-based configuration systems employed an approach
referred to as the rule-based approach. Rule-based configuration systems
define rules (i.e., "if A, then B") to validate a selection of configuration
alternatives. Digital Equipment Corporation's system, called R1/XCON
(described in McDermott, John, "R1: A Rule-Based Configurer of Computer
Systems", Artificial Intelligence 19, (1982), pp. 39-88) is an example of a rule-

based configuration system. R1/XCON evaluates an existing independently-
generated system order and identifies any required modifications to the
system to satisfy the model's configuration rules. The rules used to perform

the configuration and validation processes are numerous, interwoven, and

WO 96/28784 PCT/US96/03406

10

15

20

interdependent. Before any modification can be made to these rules, the
spider's web created by these rules must be understood. Any changes to ihese
rules must be made by an individual that is experienced and knowledgeable
regarding the effect that any modifications will have to the entire set of rules.

Therefore, it is difficult and time-consuming to maintain these rules.

A possible solution to the problems associated with rule-based systems
is a constraint-based system. A constraint-based system places constraints on
the use of a component in a configuration. For example, a hard disk drive
cannot be added to the configuration unless a compatible storage device
controller is available for use by the request storage device. The requirement

of a controller is a "constraint" on the hard disk drive.

While existing constraint-based systems address some of the
shortcomings of rule-based systems, they do not provide a complete
configuration tool. Pure constraint-solving systems do not employ a
generative approach to configuration (i.e., they do not generate a system
configuration based on needs, component requests, and/or resource requests).
Existing constraint-based systems use a functional hierarchy that does not
address structural aspects associated with the physical placement of a
component in a configuration (e.g., memory chip on motherboard or
memory expansion board, storage device in cabinet bay, or controller in

motherboard slot).

Bennett et al., United States Letters Patent No. 4, 591, 983 provides an

example of a constraint-based system that employs a recognition or

verification approach to system configuration instead of a generative

WO 96/28784 PCT/US96/03406

10

15

20

approach. That is, Bennett merely validates an independently-configured
system. In essence, an order is generated by an independent source such as a
salesperson, and Bennett is used to verify that the system contained in the
order does not violate any constraints. Bennett does not generate a system
configuration based on needs or component requests (i.e., a generative
approach). Thus, Bennett does not provide the capability to interactively

configure a system by interactively selecting its components.

A model consists of all of the elements that may be included in a

configured system. In Bennett, the model elements are grouped into an

aggregation hierarchy. An aggregation hierarchy creates hierarchical levels
that represent a group of elements. Branches from one entry in the current
level expand the entry, and the entry is "composed of" the elements in the
lower level branches. For example, a desktop computer system is "composed
of" a keyboard, a monitor, and a system box. A system box is "composed of" a
power supply, motherboard, cards, and storage devices. The "composed of"
relationship merely describes the elements that comprise another element.
However, the "composed of" relationship does not define the structural
relationships between the model elements. The "composed of" relationship
does not describe the physical, structural relationships among the elements

"nn

such as "physically contained inside,” "physically subordinate part of," and
"physically connected to." Using the desktop computer system previously
described, it cannot be determined whether or not a monitor is "physically
contained inside" a desktop computer system. A system box is "composed of"
storage devices, however it cannot be determined whether one or more of

the storage devices are "physically contained inside" the system box.

WO 96/28784 PCT/US96/03406

10

15

20

A functional hierarchy organizes the components of a model based on
the purpose or function performed by the components in the model. Each
entry in the hierarchy can be further broken down into more specific
functional entries. Thus, an entry's parentage defines its functionality, and
progression from one level to the next particularizes the functionality of a

hierarchy entry.

As used in current configuration systems, a functional hierarchy does
not define the structural interrelationships or the physical and spatial
interconnections among elements. A functional hierarchy cannot place a
storage device in a cabinet bay, a controller card in a particular slot on the

motherboard, or a memory chip in a slot on the memory expansion board.

Figure 2 illustrates an example of a functional hierarchy.
HardwareComponent 30 is the root element of the hierarchy. The next level
below HardwareComponent 30 (i.e., the second level 49) identifies general
functions in the model. For example, ROM 31, Processor Unit 31, Processor
32, Memory 34, Cage 35, Board 36, Connector 37, and Storage Device 38 all
perform the function of Hardware Component 30 in addition to their own
specialized functions. Processor 33 can be specialized to the function of a
SpecialPurpose 40 or GeneralPurpose 41. SpecialPurpose 40 can be specialized

to ArithmeticProcessor 51.

Referring to Figure 2, it can be seen that a functional hierarchy does
not provide the ability to define the structural aspects of the system. For
example, there is no capability to determine the contents of Cage 35. The

physical and spatial location of MotherBoardSlot 54 descending from Slot 46,

WO 96/28784 PCT/US96/03406

10

15

20

in turn descending from Connector 37 cannot be determined from the
functional hierarchy. There is no way of determining that MotherBoardSlot
54 is contained by the motherboard. It is not clear from the functional
hierarchy definition whether ArithmeticProcessor 51 is located on the
MotherBoard 44 or another model element. It cannot be determined
whether MemoryChip 42 and ROM 31 are located on MotherBoard 44,

MemoryBoard 52, or another model element.

A functional hierarchy does not provide the ability to define actual
interconnections between configured instances or the data transfer. That is,
that one component is connected to another with compatible logical
datatypes (e.g., serial interface) and compatible physical interconnections (e.g.,
24 pin). A functional hierarchy only defines the function that a component

performs.

Because it does not define the actual connections between the
components selected for a configuration, it cannot establish a daisy chain
between configured components . Referring to Figure 2, a functional
hierarchy defines Connector 37, Storage Device Controller 53, Floppy Drive
48, and Hard Drive 49 as types of components. To conserve resources, a user
may wish to configure a system such that an occurrence of Floppy Drive 48 is
daisy chained to an occurrence of Storage Device Controller 53 through Hard
Drive 49. However, the functional hierarchy can only reflect that fact that a
configured system may contain the functionality provided by Storage Device
Controller 53, Hard Drive 49, and Floppy Drive 48. It cannot reflect the fact
that an occurrence of Floppy Drive 48 is connected to an occurrence of Storage

Device Controller 53 through an occurrence of Hard Drive 49.

WO 96/28784 PCT/US96/03406

10

15

20

Therefore, a functional hierarchy can not traverse a connection
pathway to identify structural interrelationships among configured instances.
Thus, a functional hierarchy cannot establish a daisy chain. Therefore, a

functional hierarchy can not provide the ability to daisy chain components.

Another example of a constraint-based system using a functional
hierarchy is provided in the following articles: Mittal and Frayman,
"Towards a Generic Model of the Configuration Task," in Proceedings of the
Ninth [JCAI (IJCAI-89), pp. 1395-1401; and Frayman and Mittal, "COSSACK: A
Constraints-Based Expert System for Configuration Tasks," in Sriram and

Adey, Knowledge-Based Expert Systems in Engineering: Planning and
Design, September 1987, pp. 143-66.

The Cossack system employs a functional hierarchy-based
configuration system. According to Cossack, a system using a functional
hierarchy must identify a configured system's required functions. Once the
required functions are identified, Cossack must identify some particular
component, or components, that are crucial, or key, to the implementation of
these required functions. The Cossack represertation does not make
structure explicit. Further, Cossack does not provide mechanisms for
reasoning about or with structural information. Therefore, Cossack cannot
make any structure-based inferences. For example, the internal data transfer
paths within components are not represented. Therefore, there is no ability
to trace data transfer within a component, and no ability to establish a data

connection with another element.

WO 96/28784 PCT/US96/03406

10

10

A configuration system, whether used to configure a computer system
or other system, should provide a tool to interactively: define and maintain a
model; define and maintain (i.e., upgrade) a configured system; generate
marketing bundles; generate a graphic representation of the physical and
spatial locations of the components of the configured system; use the graphic
representation to modify or upgrade a configured system; and generate
configuration reports (e.g., failed requests, quotations, and bill of materials).
Such a system must define the components of a system, the structural
relationships among the components (i.e., spatial and physical locations), the
actual physical and spatial interconnections of the components, and the

constraints imposed by each component.

WO 96/28784 PCT/US96/03406

10

15

20

11

SUMMARY OF THE INVENTION

The present invention employs a generative approach for configuring
systems such that a system may be configured based on component or
resource requests, or input in the form of need. The present invention
provides a constraint-based configuration system using a functional
hierarchy that comprehends hierarchical and non-hierarchical structure, and
associated constraints that can reason about and generate structural
relationships. The structural aspects of the model provide the ability to
define a model element as being contained in, or by, another model element.
In addition, the structural model provides the ability to identify logical
datatype and physical interconnections between elements and establish

connections between elements.

To configure a system, the present invention accepts input in the form
of requests (e.g., component or resource) or needs, such as an expression of a
need for a desktop computer system to be used in a CAD (i.e., computer-aided
design) environment. Using this information, the present invention
configures a system by identifying the resource and component needs,
constraints imposed on or by the resources or components identified, and the

structural aspects of the system.

The system configuration can be based on a general definition of a
system (i.e., desktop computer system to operate in a CAD environment), or
at any level of increased specificity (e.g., disk drive by manufacturer and
model number). The system configuration can be based on specific

component requests (e.g., laser printer), or by need (e.g., printing capability).

WO 96/28784 PCT/US96/03406

10

15

20

12

Once the system is configured, the configured system can be bundled into
products, and a quote can be generated. The bundling process may include
the specification of heuristics to control the product-to-component mapping.
For example, the product that covers the largest number of components can
be selected over other possible product selections that cover a lesser amount

of components.

The functional, structural hierarchy of the present invention provides
the ability to define the structure of the configuration model and the systems
configured from the model. The structural hierarchy includes a container
structure. A container provides the ability to specify that one component is
contained by, or in, another component. Thus, it is possible, for example, to
identify that a component request for a disk drive cannot be satisfied because
there are no empty cabinet bays in the cabinent specified to contain the

component requested.

The structure hierarchy notion provides the ability to pool resources.
Explicit representation of structure, specifically hierarchical structure,
provides the ability to define and access inherited resources. For example,
computer, telecommunication, medical, or consumer electronic components
can be placed in a cabinet that provides power to those components. These
individual components can inherit the electrical power resource from a
structural superior (i.e., a hierarchical entry that resides one or more levels
above the components in the model hierarchy). Further, the structural
superior can pool resources and provide an homogeneous resource to its
structural inferiors (i.e., a hierarchical entry tht resides one or more levels

below the structural superior in the model hierarchy). For example, a cabinet

WO 96/28784 PCT/US96/03406

10

15

20

13

might contain more than one electrical power source, however, the resource
is presented to structurally inferior components as a single resource pool.
Thus, if a component requires a particular resource, this resource can be
supplied by a resource pool. For example, if a desktop computer system's
cabinet contains multiple power supplies, a disk drive component may draw
from resource pool without any knowledge that the resource need is satisfied

by multiple power sources.

In addition, the structural specification provides the ability to specify
the connections between components of a configured system. As
components are added to a configuration, the physical and logical
interconnections that are required to assemble the system components may
be verified. For example, before adding a printer with a serial logical
connection and a 24 pin physical connection to the configuration, a serial port
must be available in the configured system. In addition, a physical
connection must be made between the printer and a serial port. If the serial
port is a 9-pin female physical connection and the printer has a 24-pin female
connection, a cable must be available to physically connect the printer and the
serial port. In addition, the actual connection is created in the configuration
and can be examined in subsequent connection processing . Connection
processing provided the ability to identify any criteria for satisfying a
connection request. For example, connection criteria may include the

cheapeast, longest, or optimal throughput connection.

Connection processing may also be used to optimize the use of the
configured system's resources. For example, a controller's resources can be

optimized by daisy chaining other components together. By connecting one

5

10

15

20

25

WO 96/28784 14 PCT/US96/03406

component to another via multiple intervening components, multiple
components may be connected to a single component via a single port or

connection.

In the present invention, a modeling language is used to define a
model hierarchy. The model hierarchy is structural and functional. The
modeling language provides the ability to define a Product Base that may be
grouped into Product Lines. The structural hierarchy model includes the
Component, Composite, Container, Port, and Connector base classes. These
base classes may branch into derived classes (i.e., system-specific classes) and
terminate at leaf-descendants. Leaf-descendants define the type of
components in the functional, structural hierarchy model. Attributes,

datatypes, resources, and constraints further define the model.

A model language provides the format for defining the elements, the
constraints placed on the elements, and the structure of the model. The
model language may be used directly, or generated based on input from an
interactive model maintenance system used to facilitate the creation and

maintenance of the model.

The maintenance system graphically displays the model, and provides
the interface for the selection of model elements to be updated. Once the
desired updates have been made, the maintenance system provides the
ability to test the new model, or verify that the new model can be successfully

compiled.

WO 96/28784 PCT/US96/03406
15

Once a model has been successfully defined, the present invention
provides the ability to configure a system using the functional, structural
hierarchical model. An interactive interface provides the ability to express a
configuration in terms of a model element (i.e., components) request,

5 resource request, and/or needs (i.e., requirements) request. A configuration

engine is invoked to satisfy these requests.

The configuration engine accesses the Product Base to satisfy the
requests in a defined priority. A request is processed by adding components
10 to the configuration, or identifying existing components that can satisfy the
request. Further, the interconnections, data transfer pathways, and
dynamically-determined structural relationships are defined. When a
request is successfully processed, the configuration modifications are
"committed." Failed requests are reported.
15
A graphical depiction illustrates the configured system and its
structural characteristics. The elements of the configured system are
illustrated in terms of their physical and spatial location relative to other
elements. Elements are contained in other elements, comprised of other
20 elements, or connected to each other. This graphical depiction further
provides an interface to modify and maintain elements of the configured

system.

The configured system's elements are bundled into available
25 marketing and manufacturing packages for system quotation and
manufacturing purposes. The bundling process performs a product-

component mapping based on product definitions.

WO 96/28784 PCT/US96/03406

10

15

20

16

In one embodiment, a flash configuration cache is utilized to speed up
the process of configuring a user computer. This is performed by taking
advantage of the fact that the invention uses a structured set of requests to
configure the user computer. The host computer first makes an initial
determination as to which set of requests take greater time to configure than
the time taken to recall the resulting configuration from the host computer
cache. Those requests are stored in the cache and are arranged in the form of a
tree structure. When a new set of requests is obtained, the sets of old requests
in the request tree are methodically searched to find a matching set of old
requests. The configuration corresponding to the matching set of old requests

is then recalled from the cache.

In other embodiments, the invention’s flash configuration cache is
used to speed up the process of configuring a variety of end products. The
end products are, for example, electronic systems such as voice mail systems,
PBX systems, central office switches, and handheld communication devices.
The present invention’s flash configuration is also used to configure end
products such as airplanes where a variety of power system options, landing
system options, and interior system options need by configured in an efficient
and thorough manner. Other end products configured by the flash
configuration cache of the invention are trucks, test equipment, and chemical
processes. The flash configuration cache is also used to configure vacation
packages where each package involves a number of transportation options,

lodging options, and recreational options.

WO 96/28784 PCT/US96/03406
17

In another embodiment, a bundling cache is used to speed up the
process of bundling, namely, the process of mapping components required
for a user computer configuration, or other end product configuration, into

actual commercial products.

WO 96/28784 PCT/US96/03406
18

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram of the configuration computer system.

5 Figure 2 illustrates a functional hierarchy.

Figure 3 illustrates the functional, structural hierarchy comprised of

the five base classes, derived classes, and component types.

10 Figure 4 is the functional, structural hierarchy for a model to configure

computer systems.

Figure 5 illustrates component interconnections with multiple

intervening components and data types.

15
Figure 6 illustrates the Configuration Engine process flow.
Figure 7 illustrates the SatisfyResourceRequest process flow.
20 Figure 8 illustrates the SatisfyContainerConstraint and
SatisfyComponentConstraint process flow.
Figure 9A illustrates the SatisfyConnectionConstraint process flow.
25 Figure 9B illustrates the CandidatePorts process flow.

Figure 10 illustrates the EstablishSetCover process flow.

WO 96/28784 PCT/US96/03406

10

15

20

19

Figure 11 illustrates a system window for a desktop computer system

configuration.

Figure 12 is a flow diagram illustrating the functional operation of the

Configuration System.

Figures 13A-13C illustrate a flow diagram of the algorithm used to

construct the search tree in the flash configuration cache.

Figure 14 is illustrates an example of how the search tree of the flash

configuration cache is constructed.

Figures 15A-15C illustrate a flow diagram of the algorithm used to

search the search tree of the flash configuration cache.

Figure 16 is a diagram showing products mapped into available

options.

Figure 17 is a diagram showing available options mapped into

products.

WO 96/28784 PCT/US96/03406

10

15

20

20

DETAILED DESCRIPTION OF THE INVENTION

A method and apparatus for configuring systems is described. In the
following description, numerous specific details are set forth in order to
provide a more thorough description of the present invention. It will be
apparent, however, to one skilled in the art, that the present invention may
be practiced without these specific details. In other instances, well-known

features have not been described in detail so as not to obscure the invention.

The present invention provides a tool for configuring systems that has
application to a wide range of domains including the following: computer
hardware, computer software, computer networks, telecommunication
systems (e.g., PBX and voice mail), copiers, medical imaging systems, vehicles
(e.g., fire trucks and construction equipment), electronic control systems,
buildings, modular furniture, manufacturing equipment, manufacturing

systems, consumer electronic equipment, and electronic systems.

Figure 1 is block diagram of the configuration system of this invention.
The configuration system 10 is comprised of the Model Maintenance
Subsystem 12, the Configuration Generation and Reporting Subsystem 14, the
Bundling/Quotation Subsystem, Communications Bus 18, Input/Output 20,

Memory 22, Central Processing Unit 24, and Mass Storage 26.

Figure 12 is flow diagram illustrating the functional operation of the
Configuration System. At block 600, a model base is read. The Configuration

System uses a model base that contains information about all of the elements

10

15

20

25

WO 96/28784 21 PCT/US96/03406

available to configure a system (e.g., components and resources) This model

base is referred to as a Product Base.

A model language is used to create the Product Base. The model
language provides the syntax, or statements, used to define the model
elements, the constraints placed on the model elements, and the structure of
the model. At processing block 604, the model definition can be entered

using the model language and model definition processing is ended at 606.

Model Maintenance - The process of defining a model can be facilitated

if the Model Maintenace Subsystem is chosen at decision block 602 (i.e., "use
Model Maintenance Subsystem?"). At block 608, the model, either new or
existing, is displayed. At block 610, the model can be edited. The Model
Maintenance Subsystem 12 provides the ability to test the validity of and
debug the modified model at decision block 612 (i.e., "write integrity,
ProductBase integrity, or Debugger?”). A "write integrity" selection
determines the integrity of the parse file (i.e., subsets of the Product Base)
with the addition of the modifications. a "ProductBase integrity” selection
determines the integrity of the Product Base with the addition of the

modifications.

If the "Debugger"” is chosen, benchmark system configuration requests
are read from a file at block 618. At block 14, the Configuration Generation
and Report System 14 is invoked to configure a system using the modified
model and the benchmark configuration requests. A trace of the processing
of these requests by the Configuration Generation and Reporting System 14

may be made to examine the configuration process.

WO 96/28784 PCT/US96/03406

10

15

20

If there are additional modifications to the model at decision block 622
(i.e., "modify model?"), a graphic representation of the model is displayed at
608, and the modfication process continues at block 610. If there are no other
modifications, the model definition is generated at block 624, and the Model

Maintenance Subsystem ends at block 606.

Configuration and Reporting System - The Configuration and

Reporting System 14 uses the model definition to generate a system
configured according to the user-specified requests and needs. The resulting
configuration is graphically depicted. Reports are generated to provide
information regarding the configuration. If it is determined that an existing
configuration is being upgraded at decision block 630 (i.e., "upgrading existing
system?"), the existing systm is read and its elements marked as existing in
block 632. If a new system is being configured, a blank system instance is
created at block 634. The forms used to input element requests or needs is
displayed at 636. If input is not complete at decision block 638 9i.e., "requests

completed?”), processing continues at block 636.

Configuration Engine - Once all of the request and need input is
completed, ConfigurationEngine is invoked to generate a configured system
based on the input at 640. A graphical representation of the configuration is
displayed at 642. The configuration may be modified, reports may be
generated, or the components of the configuration may be bundled and a
quotation generated. If modifications are intended at decision block 644 (i.e.,
"configuration modification?"), processing continues at decision block 652

(i.e., "filter model?"). If a filtered model is chosen at decision block 652, a

WO 96/28784 PCT/US96/03406

10

subset of the model is generated at block 654. The model subset includes
those model elements that can be selected given the current configuration.
Processing continues at 636 to display input forms. If a filtered model is not

used, processing continues at 636.

After a system is configured, the elements of the configuration can be
bundled into marketing, or manufacturing, products. Bundler 660 maps the
configuration components to products. Quoter 662 generates a cost quotation
for the configured system. At 664, the quotation is displayed. If there are no
configuration modifications at decision block 666 (i.e., "configuration
modification?"), processing ends at 606. If there are modifications to the
configuation, the Configuration Generation and Reporting Subsystem 14 is
invoked at block 668.

WO 96/28784 PCT/US96/03406

10

15

20

24

STRUCTURAL HIERARCHY

The Configuration System of the present invention is a constraint-
based scheme using a functional, structural hierarchy. Figure 3 illustrates the
functional, structural hierarchy and five intrinsic base classes. The
functional, structural hierarchy contains a class hierarchy comprised of five
intrinsic base classes 70 that define the basic types of model objects. These
five base classes are: Component 60, Composite 62, Connector 64, Container
66, and Port 68. The Component 62 is the base class from which all other
classes and component types are derived. From Component 62, each branch
of the hierarchical tree begins with an intrinsic base class and branches into
system-specific classes called derived classes 88. Derived classes 88 are
definitions of broad component categories, such as storage devices, power
supplies, and peripheral cards. Multiple generations of derived classes can
descend from the base classes. Each branch terminates with "leaf
descendants,” or Component Types 90. Component Types 90, represent

actual components that can be instantiated and configured.

The Composite class 62 is a static structure (i.e., elements that have
substructure). Elements in this class have, or are, subcomponents of a
composition. The Connector class 64 branches from the Composite class 62.
This class defines the model elements that connect elements. An element in
the Container class 66 indicates that the element may contain other elements.
Elements in the Port class 68 provide the port alternatives and define a port's
datatype. Elements derived from the Port class 68 can be physically

connected with other components derived from the Port class 68.

WO 96/28784 PCT/US96/03406

10

15

20

The present invention provides the ability to represent within a
structural hierarchy how components of a particular system exist spatially
and physically. Within the structural hierarchy, there are three type of
substructures: composite hierarchies, container hierarchies, and port
relationships. Composite hierarchies identify components as part of other
components. For example, a chassis has eight card slots. Container
hierarchies identify components as being contained in other components. A
Container hierarchy is a dynamic structure in that the structure is
dynamically created when a configuration is generated. For example, a CPU
card is placed in slot 0 of the chassis). Port relationships identify components
that connect to other components. A connection, or port, relationship is
dynamically created when a configuration is generated The relationships
between generations within these substructures arc expressed by the

keywords "childOf," "containedBy," and "connectsWith."

The "childOf" keyword indicates that a component is part of a
component that is descended from class Composite. The "containedBy"
keyword indicates that a component is contained within a component that is
descended from the Container base class. The "connectsWith" keyword
indicates that a component connects to a component that is descended from

the Port Class.

Container hierarchies typically exhibit an alternating relationship with
Composite hierarchies. That is, a container is often a "childOf" a composite
component, and the composite component is "containedBy" another
container. Each substructure type has a root member that is also a descendant

of the base class of the same name (i.e., Composite, Container, or Port).

WO 96/28784 PCT/US96/03406

10

15

20

26

Members of a substructure can be of any class defined in the Class Hierarchy.
For example, a component of class bay, descended from Container Class
might contain a component of class storage-device (descended from

Component Class) or of class card_chassis (descended from Container Class).

Figure 4 illustrates a structural hierarchy with the five base classes,
derived classes, leaf descendants, and substructure relationships. The
structural relationships further define the structural aspects of the model.
For example, Slot 114 is a "childOf" Cabinet 110. Therefore, Slot 110 is a
subcomponent of the composite component, Cabinet 110. Further, Cabinet
110 is a "ChildOf" System 116. Second occurrences of Card 118 (i.e., 118A) and
Slot (i.e., 114A) illustrate the substructural relationship between Card and
Slot. Card 118A is "containedBy" Slot 114A. Similarly, StorageDevice 120A
is "containedBy" Bay 122A, and DB25MaleDeviceOut 124A "connectsWith"
DB25FemaleDeviceOut 126.

The structural aspects of the present inventions's model provides the
ability to inherit and pool resources. For example, a container component,
Cabinet, may consist of a chassis and two one-hur.dred watt power supplies,
A and B. Each of the elements within the chassis container consume, or
require some amount of power. If the chassis component contains two
central processing units (CPUs) that together consume one-hundred and ten
watts (e.g., fifty-five watts each), random access memory that consumes
seventy watts, and multiple cards (e.g., controllers) that consume a total of
twenty watts, neither of the power supplies independent of the other could

supply sufficient power to the chassis and its elements.

WO 96/28784 PCT/US96/03406

10

15

20

27

However, because the two power supplies are contained in, and are a
part of, the Cabinet container, the two power supplies can be pooled together
to supply the elements within Cabinet. Therefore, when the resource
requisitions are being processed for the elements in this example, one or the
other may be used to satisfy the request. In addition, it is possible to satisfy
the resource need for any one of the elements by using both power supplies.
For example, if one CPU's resource needs are processed first using fifty-five
watts of power supply A, and the resource processing for the RAM is
processed next, the resource needs of the RAM maynot be satisfied by power
supply A alone. However, it is possible to satisfy the RAM's resource needs
by using 45 watts from power supply A and twenty-five from power supply B.
Another resource that may use this resource pooling capability is a heat

dissipation resource.

CONTAINERS

The structural hierarchy provides the ability to structure the model
such that one model element, or group of model elements, may be contained
by another. The use of the contained model element in a configuration will
be constrained by the availability of a container model element in the

configuration.

Figure 8 illustrates the SatisfyContainerConstraint and
SatisfyComponentConstraint process flow. At decision block 500 (i.e.,
"required instance already available in configuration?"), if the required
instance exists and is available to satisfy the constraint, the constraint is

satisfied by this available instance and processing returns at block 526. If not,

WO 96/28784 PCT/US96/03406

10

15

20

25

the required instance is instantiated, and the Modifications List is updated at
processing block 502. At decision block 504 (i.e., "any constraints to be
processed?"), if there are no constraints on the new instance, the constraint is

satisfied by the new instance, and processing returns at block 526.

If there are constraints to be processed, the next constraint is identified
at block 508. If it is determined that it is a requiresContainer constraint at
decision block 510 (i.e., "requiresContainer?"), processing continues at
processing block 512 (i.e., "satisfyContainerConstraint") to satisfy the
requiresContainer constraint, and processing continues at decision block 522

(i.e., "constraint satisfied?").

If it is determined that it is not a requiresContainer constraint at
decision block 510, but it is determined that it is a requiresConnection
constraint at decision block 514 (i.e., "requiresConnection?"), processing
continues at processing block 516 (i.e., "satisfyConnectionConstraint”) to
satisfy the requiresConnection constraint, and processing continues at

decision block 522 (i.e., "constraint satisfied?").

If it is not a requiresContainer constraint at decision block 510 and not
a requiresConnection constraint at decision block 514 (i.e.,
"requiresConnection?"), processing continues at decision block 518 (i.e.,
requiresComponent?”). If it is determined that it is a requiresComponent
constraint at decision block 518 (i.e., "requiresComponent?”), processing
continues at processing block 520 (i.e., "satisfyComponentConstraint”) to
satisfy the requiresComponent constraint, and processing continues at

decision block 522 (i.e., "constraint satisfied?"). At decision block 522 (i.e.,

WO 96/28784 PCT/US96/03406

10

15

20

29

"constraint satisfied?"), if the constraint was satisfied, processing continues at
decision block 504 (i.e., "any constraints to be processed?"). If the constraint
was not satisfied, the constraint is marked as not being satisfied by an existing
instance or the new instance, and the new instance is removed from the

Modifications List at processing block 524. Processing returns at block 526.

CONNECTION PROCESSING

The use of a model element in a configuration may also be constrained
by the ability to establish a connection to another model element. The
requiresConnection constraint requires that a physical connection exist
between two components. Figure 9A illustrates the process flow for satisfying
the requiresConnection constraint. At processing block 280, a target
component is selected and a list of ports is created. At processing block 282,
the requested resources are allocated. At processing block 284,
CandidatePorts(list) is invoked to identify unconnected ports that are
accessible from the target component. At processing block 286, candidate local
ports (i.e., those ports that are unconnected and have the appropriate
datatype) are identified. At processing block 288, candidate connectors are

identified.

At decision block 290 (i.e., have all connectors been tested?"), if all of
the connectors have been tested, the request is marked as failed, and
processing continues at block 306 (i.e., “return”). If not, the next connector is
selected at block 294. At decision block 296 (i.e., "can physical type of
connector's portl connect with physical type of target port?”), if portl of the

connector is not the same physical type (e.g., 25 pin) as the target port's

WO 96/28784 PCT/US96/03406

10

15

20

30

physical type, processing continues at decision block 290 (i.e., "have all

connectors been tested?”).

Otherwise, processing continues at decision block 298. At decision
block 298 (i.e., "can physical type of connector's port2 connect with physical
type of local port?"), if port2 of the connector is not the same physical type
(e.g., 25 pin) as the local port's physical type, processing continues at decision
block 290 (i.e., "have all connectors been tested?"). Otherwise, processing

continues at decision block 300. At decision block 200 fi.e., "does a transfer

path exist between portl and port2?”), if a transfer path does not exist between

portl and port2, processing continues at decision block 290 (i.e., "have all
connectors been tested?"). Otherwise, the requested resource is allocated at
block 302. At processing block 304, the target port is connected to the
connector's port2, and the local port is connected to the connector's portl.

Processing ends at block 306.

Candidate ports must be identified to satisfy a requiresConnection
constraint. Figure 9B illustrates the CandidatePorts(list) process flow.
Processing block 310 of CandidatePorts(list) set thePort variable to the next
port in the list. At decision block 312 (i.e., "is the port connected?"), if the
port is connected, processing continues at processing block 316. If not,
decision block 314 (i.e., "thePort the right datatype or are conversions
allowed?") determines if the datatypes are compatible. If not, processing

continues to block 310 and the next port is found.

If they are compatible, thePort is added to the port list, and processing

continues at block 310. If it is determined that thePort is already connected at

WO 96/28784 PCT/US96/03406

10

15

20

31

decision block 312, processing continues at processing block 316, and newPort
is set to the port to which thePort is connected. At block 320, a new port list is
created for all ports to which newPort transfers. At decision block 322 (i.e.,
"does newList contain a port of the requesting component?"), if the newList
contains one of the requesting component's ports, the connection is marked
as already being in existence at block 326 and processing returns at block 328.

If not, CandidatePorts(list) is invoked for the newList.

CONFIGURATION ENGINE

When the user has selected the components for the system to be
modeled, the user requests the invocation of the configuration engine. The
configurator accesses the Product Base to identify the object class. After
certain validation checks are successfully performed, the configurator
instantiates (i.e., creates) a member of that class, called an object instance. The
configurator only instantiates those objects required to configure the

requested system.

The configuration engine processes component and resource requests
in the priority specified. As each request is processed, the existing
configuration is modified by: (1) adding the requested component and other
components required to support the component requested, or (2) identifying
existing components and new components requirzd to provide the requested
resource. When a request is successfully processed, the configuration
modifications are "committed,” and this configuration becomes the input

configuration in processing the next request.

WO 96/28784 PCT/US96/03406

10

15

20

32

Figure 6 illustrates the Configuration Engine process flow. Processing
block 202 creates a prioritized list of requests. If it is determined that all of the
requests have been processed at decision block 204 (i.e., "all requests
processed?"), processing ends at block 206. If not, the next request is selected

at processing block 208.

The request type is determined at decision block 210 (i.e., "request
type?”). If the request is a component request, processing continues at
processing block 212. At block 212, the component requested is instantiated
and posted to the Modifications List, and processing continues at decision
block 216. If the request is a resource request, the component that can supply
this resource is identified at processing block 214 (i.e.,
"SatisfyResourceRequest"), and processing continues at decision block 216.
At dedision block 216 (i.e., Instantiation or allocation successful?"), if the
component instantiation or resource allocation is successful, processing
continues at decision block 224 (i.e., "any constraints to be processed?"). If the
component instantiation or resource allocation is not successful, processing
continues at decision block 218 (i.e., "do any other alternatives exist to satisfy

this request?").

If it is determined at decision block 218 (i.e., "do any other alternatives
exist to satisfy this request?") that no other alternatives exist to satisfy the
request, the request is identified as a failed request, and processing continues
at decision block 204 (i.e., all requests processed?"). If there are other
alternatives, the failed alternative's modifications are removed from the

Modifications List at 220, the next alternative is posted to the Modifications

WO 96/28784 PCT/US96/03406

10

15

20

33

List at 222, and processing continues at decision block 224 (i.e., "any

constraints to be processed?").

At decision block 224 (i.e., "any constraints to be processed?"), if there
are no constraints to be processed, the modifications are committed to the
configuration at processing block 244, and processing continues at decision
block 204 (i.e., "all requests processed?"). If there are constraints to be
processed, the next constraint is identified at block 226. If it is determined
that it is a requiresContainer constraint at decision block 228 (i.e.,
"requiresContainer?"), processing continues at processing block 230 (i.e.,
"satisfyContainerConstraint") to satisfy the requiresContainer constraint, and
processing continues at decision block 240 (i.e., "constraint satisfied?"). If it is
determined that it is not a requiresContainer constraint at decision block 228
but it is determined that it is a requiresConnection constraint at decision
block 236 (i.e., "requiresConnection?"), processing continues at processing
block 232 (i.e., "satisfyConnectionConstraint") to satisfy the
requiresConnection constraint, and processing continues at decision block 240

(i.e., "constraint satisfied?").

If it is not a requiresContainer constraint at decision block 228 and not
a requiresConnection constraint at decision block 236 (i.e.,
"requiresConnection?"), processing continues at decision block 238 (i.e.,
requiresComponent?”). If it is determined that it is a requiresComponent
constraint at decision block 238 (i.e., "requiresComponent?"), processing
continues at processing block 234 (i.e., "satisfyComponentConstraint") to
satisfy the requiresComponent constraint, and processing continues at

decision block 240 (i.e., "constraint satisfied?"). At decision block 240 (i.e.,

WO 96/28784 PCT/US96/03406

"constraint satisfied?"), if the constraint was satisfied, processing continues at
decision block 224 (i.e., "any constraints to be processed?"”). If the constraint
was not satisfied, processing continues at decision block 218 (i.e., "do any

other alternatives exist to satisfy the request?").

The fact that resources are offered by individual component instances,
and are not represented as global system entities, assists in the exploration of
alternatives. Figure 7 illustrates the SatisfyResourceRequest process flow. At
processing block 250, the next component that offers the required resource is

10 found. If, at decision block 252 (i.e., "any component instances found?"), it is
determined that no component offers the resource, processing continues at

processing block 262.

If a component is found, processing continues at decision block 254
15 (i.e., "has this resource been consumed?"). If the resource has been
consumed processing continues at processing block 250 (i.e., "Find next
component that offers the required resource"). If the resource has not been
consumed, a check is made to determine whether class requirements and
optional requirements are valid at decision block 256. If all of the checks are
20 valid, the current resource instance is chosen at processing block 258, and
processing continues at processing block 264. If one of the checks is invalid,
processing continues at decision block 260 (i.e., "have all resource instances
been checked?"). If all of the resource instances have not be checked,
processing continues at block 250 where the next component offering the

25 resource is found.

WO 96/28784 PCT/US96/03406

10

15

20

35

If all of the components offering this resource have been checked, or it
is determined (at decision block 252) that no existing component offers this
resource, processing continues at block 262, and a new component instance
that offers the resource is created, the configuration modification is posted to
the Modifications List, and processing continues at block 264. At block 264, an
instance of the requested component type is assigned to the requesting
component's returned instance variable. Processing continues at decision
block 266 (i.e., "does the current instance satisfy query and test conditions?")
to determine if all query and test functions are satisfied. If not, processing

continues to processing block 250. If they are, processing ends at block 268.

MODEL LANGUAGE

The model language provides the ability to define a model (e.g., model
elements, model constraints, and model structure). Using the syntax of the
model language, statements may be entered to define the model base, or
Product Base. The Product Base contains all of the information about a
model. The Product Base contains the information used to configure a

system.

The Product Base may also contain Hierarchical Product Lines.
Product Lines allow a Product Base to be subdivided into groups. An
example of such a grouping is marketing divisions, such as DesktopSystems.
A DesktopSystem might contain all of the components that are commonly
sold as parts of a desktop computer system such as operating system software,
modem cards, microprocessor chips, etc. Only components that are part of

the same product line can be configured together. However, each component

WO 96/28784 PCT/US96/03406

10

15

20

type can be part of several product lines. Product Lines hierarchies may also
be declared. A child in a product line hierarchy inherits from the parent, and
every component in the parent is inherited by the child. The format of a
product line declaration is as follows (Note: reserved words are bold, double-
underscores indicate repetitive portions, and portions contained in "<<>>"

are required):

productLine <<ProductLineName>>;
Or, to declare product line hierarchies:

groductLine <<ProductLineNamel>>: <<ProductLineName2>>;

System models are stored in files, called parse files. Collectively, the
parse files are known as the Product Base. Parse files contain information
about a general category within a system model. Data representations of
individual system parts are known as objects. Cabinets, storage devices and
peripheral cards are examples of objects in a Product Base used to configure
computer systems. A property provides attributes of an object. For example,
in a computer systems' Product Base, capacity, power requirements, and
connection interface are properties of a storage device object. Further, a
property categorizes an object. That is, objects with similar properties are
called a class of objects. Objects can inherit properties from other objects.
That is, one class of objects acts as the parent of another class, and the child

class exhibits all of the properties of the parent class in addition to others.

Attributes define the aspects of a component that must be considered
to successfully configure a component. Examples of attributes of a power

supply are the cabinet space required for the supply and the remaining power

WO 96/28784 PCT/US96/03406

10

15

20

37

available after power-consuming components are added to the configuration.
Attributes can be assigned at the class level, and descendants of that class
inherit the class attributes. In addition, attributes can be associated with
particular component types. There is no limit to the number of attributes

that can be assigned to a component or class.

Attribute values may be of type floating point, boolean, string,
datatype, component, and resource. Attributes may be multivalued. That is,
multivalued attributes can have more than one value. For example, with a
component that can use either a full height internal bay or a front accessible
bay, the attribute "attribute_Bay_type_required" can retain both values. An

attribute is declared by the statement (Note: "|" indicates a choice):

Attributenge <<Attribute Name>>g I
Multivalued AttributeT!Be <<Attn'buteName>>-E

An example of attribute declarations are:

Float Position

Float throughput_available
Float load_consumed
resource space_type_required

A resource is a system commodity that is associated with component
types. A resource may be assigned to multiple component types. Multiple
resources may be assigned to a component. When a component is
instantiated, the resource assigned to this component type is made available

to the configuration. When a component's resource is consumed, only the

WO 96/28784 PCT/US96/03406
38

resource supplied by its associated component becomes unavailable. The
availability of a resource of the same type that is offered by a second
component is unaffected by the consumption of the first component's
resource. Therefore, if the same resource type is available from a second
5 component, the consumption of the first component's resource does not

consume all of this resource type in the modeled system.

Before a resource type can be assigned to a component type or used by a
component instance, the resource type must be declared. A resource

10 declaration has the following format:

resource <<ResourceName>>;

An example of a resource declaration is as follows:

15
resource static_ RAM_resource;

Datatype declarations define the types of interfaces and data transfer
protocols available to connections in a modeled system. SCSI and IDE are

20 examples of datatypes. A datatype is declared as follows:

WO 96/28784 PCT/US96/03406

10

15

20

30

39

dataType <<DataTypeName>>;

A derived class is defined by the following statement (Note: the

portion with the ";" symbol is optional):

Class <<ClassName>>: <<BaseClassName | SuperClassName>>
{

displayStatus: <<HIDDEN | LISTED | DRAWN>>

;attributes:

<<AttributeName = AttributeValue;>>;

(dimensions [Xsize, Ysizel;;

;connectionOrigin <<TRUE | FALSE>>;;

}

The display status includes the values Hidden, Listed, and Drawn.
Drawn allows the class member to be displayed in the graphical rendering of
the configuration. Listed allows the class members to be listed on the
additional components list. Hidden is used for members that are Hidden
(i.e., not drawn), but have children that are Drawn. An attribute value may
be assigned at the time of declaration, but this is not necessary. Connection
origin identifies whether or not instances of this class are to be used as
starting points for cabling report generation. An example of a derived class

declaration is as follows:

class Bay: Container
{
displayStatus: DRAWN;
attributes:
front_accessible;
height;
half_height_compatible;
position;

5

10

15

20

25

30

WO 96/28784 40 PCT/US96/03406

In this example a derived class, bay, is created. It is a member of the
Container base class. Therefore, it may contain other elements. Its attributes
define its height, half_height compatibility, front_accessibility (i.e., is a
component installed in this bay accessible from the front of a system cabinet),
height, and position. These attributes will be inherited by each descendant of

this derived class.

System components, or component types, are defined by the following

declaration:

component <<ComponentTypeName>>: <<DerivedClassName>>

{

(productLines: <<ProductLineName;>>;

(label: <<"LabelName";>>;

¢description: <<"DescriptionString";>>;

(resource: <<ResourceName ;, IntegerValue ;>>;

(dataType: <<DataTypeName;>>;

(partNum: <<"PartNumString";>>;

¢subComponents: <<SubcomponentName;>>V
<<SubcomponentName{Integer};>>;

(transfers: <<SubcomponentName[0] <->SubcomponentName[1}>>;

;dimensions: [<<Xsize, Ysize>>];;

(values: <<AttributeName = AttributeValue;>>V

<<AttributeName = {AttributeValue, . . . };>>;
(fillDirection: [<<TB | BT | LR | RL>>];;

}

The label field defines the label given to the graphical representation of
this component. The description field defines the description that is
displayed or reported. The dataType field is used if the component type is
descended from a port, and defines the type of data that may be transferred
from this component type. The subComponents field defines the structural

children of a Composite component type. The transfers field defines the

WO 96/28784 PCT/US96/03406

10

15

20

30

41

paths that data can travel through a Composite component. Transfers are a
mechanism for expressing an internal data path within a Composite
component. For example, a cable is represented as a component with two
ports, and the cable is used to transfer data from one port to another. The
values field provides the ability to establish a component's attributes, or
properties. The fillDirection describes the order in which multiple

components in a single container are drawn.

The following is an example of a component definition:

Component Cabinet1 : Cabinet

{
partNum: "001-001";

Children: Slotl_1;
Slotl_2;
Slotl_3;

Slot1_9;
Slotl_10;
CabinetBay {4};
Values:
position = 1;
resources_provided = {10_Slot_Resource, CPU_Slot_Resource,
MCU_Slot_Resource, Mem_Slot_Resource, Bay_Resource};

This example defines a component type, Cabinet1, within Cabinet and
Composite classes. Figure 4 is the structural hierarchy for a model used to
configure computer systems. Cabinetl 108 is descended from Cabinet 110
which is a descendant of Composite 112. Therefore, Cabinetl 108 is a
composite component type. It has subcomponents, or children, Slotl_1
through Slot1_10 and CabinentBay(4}). The integer "4" indicates that there

are four CabinetBay component types within Cabinetl.

WO 96/28784 PCT/US96/03406

10

15

20

30

The following is an example of a Composite component type that descends

from a connector:

Component SCSIChainCable: Cable

{
description: "SCSI Chain Cable";
partNum: "003-002";
subComponents:
SCSICablePort_3;
SCSICablePort_4;
values:
length = 2;
transfers:
SCSICablePort_3 <-> SCSICablePort_4;
}

The following is an example of a component type definition that

provides a resource:

Component 16mbMemCard : Card

{
description: "16mb Memory Card";
partNum: "004-016";
resource: Memory_Resource, 16;
values:
slot_resource_required = Mem_Slot_Resource;
}

Constraints provide conflict resolution information used to determine
whether components may be added to the configured system. Constraints
can control such things as space allocation, space occlusion, and additional
component requirements. Constraints are expressed as component qualifiers

and component dependencies. Constraints test the attributes and lineage of

10

15

20

25

30

WO 96/28784 43 PCT/US96/03406

components and identify the components that are required for the successful

instantiation of components.

constraint <<ConstraintName>> on <<ClassName>>

{

<<requiresComponent | requiresContainer>>

(<<ClassName, ResourceName | ClassName | ComponentName>>,
<<?ReturnedInstance>> ; , ?ReturnedInstance.AttributeName;

¢» Consumed; ;, Existing; ;, New;);

} _

constraint <<ConstraintName>> on <<ClassName>>

{

<<requiresConnection (;StartingComponentName,;

<<ClassName, ResourceName | ClassName | ComponentName>>,

<<DataType>>, <<?ReturnedInstance>>, <<%Path>>

irIReturnedinstance.AttributeName;

¢» Connector (<<ClassName>>, <<?ConnectorInstance>>,
<<?ConnectorInstance.AttributeName>>);

¢» Longest; ;, Consumed; ;, Existing; ;, New; ;, Conversions;);

}

The Constraint Name and the Class upon which the constraint may be
applied are identified in the first line of the declaration. The
requiresComponent, requiresContainer and requiresConnection expression
identifies additional items (i.e., components, container, or connections) that
are required to configure the constrained component. The additional items
needed may be identified by a derived class name and resource combination,
a derived class name, or the name of the component type. When a request is
satisfied during configuration, the configuration engine returns the instance
of the requested component type found. The ?ReturnedInstance variable
identifies the variable that is associated to the instance of the requested
component type found by the configuration engine. A request may further
ask that the configuration engine make a choice based on attribute

maximization. That is, make a choice that will maximize a given attribute.

WO 96/28784 PCT/US96/03406

10

15

20

Therefore, a ?ReturnedInstance.AttributeName declaration will return the
requested item with the greatest amount of AttributeName. The attribute
maximization option can also be an expression that refers to other returned
instances created by previous component requests with the current constraint
and perform operations with them. A component instance is said to be
consumed when it is unavailable to satisfy a constraint requirement. The
Consumed keyword can be used to mark an instance returned by a request as
unavailable. Once an instance is consumed, the configuration engine will
exclude this instance in subsequent searches to satisfy another request. The
Existing keyword limits the search to existing instances. The New keyword

requests that a new instance be created to satisfy a constraint requirement.

The requiresConnection constraint requirement has additional
arguments that describe the requirements for an entire connection path that
can contain several different components. The requiresConnection
constraint requirement has one requirement that is additional to and
different from the requiresComponent and requiresContainer constraints.
Like the other two constraint requirements, the requiresConnection requires
that the request be satisfied. In addition, the requiresConnection constraint
requirement, reduires that the constrained instance be connected to the

satisfying instance.

The StartingComponentName field, or variable, refers to the starting
component in the connection (i.e., where the connection will begin). If this
variable is not set, the starting component is assumed to be the constrained
instance. The next line (i.e., "<<ClassName, ResourceName | ClassName |

ComponentName>>") identifies the connection component.

WO 96/28784 PCT/US96/03406

10

15

20

45

The type of data that the connection will carry is specified by the
DataType field. The dataType field specifies the data type requirements of a
port of the requested instance. Further, the dataType field specifies the data
type requirements of a port of the constrained instance. Because the dataType
field only requires that the constrained instance's port and the requested
instance's port be of data type dataType, a connection constraint can be
satisfied by a multiple stage connection. For example, it is possible to connect

a SCSI device to a SCSI card through intervening components.

Figure 5 illustrates component interconnections with multiple
intervening components and data types. ConstrainedInstance 161 has port
160 and port 162. Port 162 is connected to Connector 179 at Port 163. Port 164
of Connector Block 179 is connected to Port 165 of
FirstInterveningComponent 166. Port 167 of FirstInterveningComponent is
connected to Port 168 of Connector 180. MultipleInterveningComponents
183 represents some number of intervening components that may be placed
between FirstinterveningComponent 166 and NthinterveningComponent
173. Connector 180 and Connector 181 are positioned on either end of the
MultipleInterveningComponents 183. Port 171 of Connector 181 is connected
Port 172 of NthInterveningComponent 173. Port 174 is connected to Port 175
of Connector 182. Port 176 of Connector 182 is connected to Port 177 of
DiskDriveController 178. Chain 184 represents the chained communication
or connection path between ConstrainedInstance 161 and

DiskDriveController 178.

WO 96/28784 PCT/US96/03406

10

15

20

The ?ReturnedInstance and ?ReturnedInstance.AttributeName fields
have the same functionality as in the requiresComponent and
requiresContainer constraint expression. The %Path variable is bound to all
of the instances used to make the connection. That is, all of the instances

involved in a connection are referred to as the connection path.

With respect to the ?ReturnedInstance.AttributeName and the
?ReturnedInstance instance variables, the maximization option is the same
as for the requiresComponent and requiresContainer constraints. There are
two maximization options for the path instance variable. The first option is
the connector the option. The ClassName field specifies the desired class of
connector instances used to build the path. The ?ConnectorInstance field is
bound to the returned connector instance, and the AttributeName is the
connector instance attribute to be maximized. The request for
?ConnectorInstance is maximized in the same way as the returned instances

for requiresComponent and requiresContainer.

The second maximization option provided by requiresConnection is
the path length option. This option provides the ability to prioritize choices
among paths from the requested component to the requesting component.
The length of a path is defined as the number of component instances in the
path, including instances of class Connector. The longest path may be
specified by using the "Longest” keyword in the constraint declaration. If the
longest path option is not chosen, the configuration engine selects the

shortest path.

WO 96/28784 PCT/US96/03406
47

The Consumed, Existing and New specifications of the
requiredConnection constraint have the same functionality as in the
requiresComponent and requiresContainer constraint declarations. The
Conversions option provides the ability to specify that the requested instance

5 can have a datatype that is dissimilar to the constrained instance. That is, if
this option is chosen, the requested-side port is no longer required to carry
data of type DataType. The only requirement is that the datatype specified by
the dataType variable be available at the requester-side port. This option
expands the alternatives that the configuration engine is allowed to consider

10 in satisfying the connection request, since it does not have to choose the
terminal component with the same datatype as the requester instance.
Therefore, if a connection constraint allows conversions, satisfaction of a

request for a SCSI connection need only deliver SCSI data to the requesting

instance.
15
The following is an example of a constraint definition:
constraint Storage_device_constraint on StorageDevice
{
20 requiresConnection (SCSICard, SCSIDatatype, ?card, %path,
Connector (Cable, ?c, -?c.length, Longest));
requiresContainer (Bay, Bay_Resource, ?bay.Consumed);
»
*
25 *

The requiresContainer constraint indicates that the StorageDevice
component type requires a container (i.e., a bay). In addition, this constraint

30 definition imposes a constraint on the StorageDevice class of the model

WO 96/28784 PCT/US96/03406

10

15

20

30

hierarchy and all of its descendants. It requires the longest cable component
type connection to a SCSICard component type. The type of data that will be
carried by this connection is of datatype SCSIDatatype. A port of the
constrained instance must also be of this datatype. The datatype constraints
may be fulfilled with a multiple stage connection. Thus, the SCSI
StorageDevice may be connected to the SCSICard through intervening
components. The variable ?card identifies the SCSICard instance used. The
%path variable contains information regarding the instances used to make

the connection.

The model language provides the ability to perform further tests and
queries to ensure that the configuration engine returns usable instances or
instance sets. If a constraint contains a component request, these queries and
tests are placed after that request. If the queries and tests are not satisfied, the
configuration engine continues to search for another alternative to satisfy the

request. The following are examples of the tests provided in the model

language:

mathematical operators:

+ (addition)

- (subtraction)

* (multiplication)
/ (division)

ABS (absolute value)
SQRT (square root)
relational operators:

> (greater than)

< (less than)

== (equality)

>= (greater than or equal to)
<= (less than or equal to)

I= (not equal)
boolean operators:

WO 96/28784 PCT/US96/03406

10

15

20

30

49

OR (logical inclusive or)

AND (logical conjunction)

NOT (logical negation)
assignment operator:

= (becomes; takes the value of)

For example, in configuring a computer system, a test may be
performed when configuring a floppy disk drive for the computer system. A
floppy disk drive requires a bay or slot within the system cabinet. Such a
constraint would be expressed as a requiresContainer component request.
This request would cause the configuration engine to search for a candidate
instance to satisfy this request. Once the engine returns the candidate
instance (i.e., ?bay), further testing can be done to determine whether the
drive will fit in the returned instanc2. This can be tested by comparing the
height attribute values of the candidate instance (i.e., ?bay) and the

constrained instance (i.e., ?this) as follows:

?bay.height >= ?this.height

Intrinsic functions provide additional capability to perform tests and
queries. Intrinsic functions can be grouped into query functions and

predicate functions. The following are examples of query functions:

ceil Queries an attribute of type float, or any
expression that evaluates to a floating point
value, for the smallest integer value greater
than or equal to the floating point value.
Returns an integer.
Syntax: ceil (<<Expression>>)

ClassName Queries a set variable for all instances in the set
that belong to the specified class.
Syntax: ClassName (<<%InstanceSet>>)

WO 96/28784 PCT/US96/03406
50

ComponentName Queries a set variable for all instances in the set
that belong to the specified component type (i.e.,
leaf class).
Syntax: ComponentName
5 (<<%ReturnedInstance>>)

Component Queries a set variable for all instances that are not
descended from class Connector.
Syntax: Component (<<%InstanceSet>>)
10
component Queries an instance for the component type (i.e.,
class hierarchy leaf class) from which it is
descended. Returns the parent component type.
Syntax: component (<<%ReturnedInstance>>)
15
COUNT Queries a set variable for all instances in the set
that belong to the specified class.
Syntax: COUNT (<<ClassName |
ComponentTypeName>> <<(%InstanceSet)>>)

20
The following is an example of a constraint definition using query and

predicate functionality:

constraint Storage_device_constraint on Storage_Device
25 {
requiresConnection (SCSICard, SCSIDatatype, ?card, %path,
Connector (Cable, ?c, -?c.length, Longest);
requiresContainer (Bay, Bay_Resource, ?bay, Consumed);
ancestor (?bay, Cabinet) == ancestor (?card, Cabinet);
30 FORALL (?inst1, Storage_Device (CONNECTS(FIRST(%path))));
ancestor (?inst1, Cabinet) == ancestor (?this, Cabinet));
}

In this example, Storage_Device requires a connection to a component
35 of type SCSICard. The connection must be of datatype SCSIDatatype. The
component instance of type SCSICard is bound to the instance variable ?card,

and the components in the connection path are bound (as a set) to the set

WO 96/28784 PCT/US96/03406

10

15

20

51

variable %path. The connector component used to complete the connection
must be of type Cable, and is bound to the instance variable ?¢c. Candidate
cables are ordered from shortest to longest, and if alternative paths from the
SCSICard instance exist, the longest path (in terms of number of

components) is preferred.

This example further indicates that Storage_Device must be placed in
a container component of type Bay. This instance of type Bay must supply
Bay_Resource. The instance of Bay is bound to instance variable ?bay, and
the instance is marked as comsumed (i.e., unavailable in subsequent requests

for compoents of type Bay).

In the example, the phrase "ancestor (?bay, Cabinet) == ancestor (?card,
Cabinet" requires that the structural ancestor (of type Cabinet) of the instance
identified by ?bay must be the same instance as the structural ancestor (of
type Cabinet) of the instance indentified by ?card. In other words, the card

and the bay must be in the same cabinet.

The "Forall" phrase used in the previous example indicates that all
component instances of type Storage_Device connected to the first cable in
%path must be in the same cabinet as the constrained instance of

Storage_Device.

Constraint relationships may be established either at the component
level or at the class level. At the component level, constraint relationships
specify which component types are constrained by what constraints. The

component designated in the constraint relationship may be any of the

10

15

20

25

WO 96/28784 52 PCT/US96/03406

component types that have been defined by a Component Type declaration.
The constraint may be a constraint declared by a Constraint declaration. The

following is the syntax for specifying a component level constraint:

<<ComponentTypeName>> constrainedBy <<ConstraintNamel>>
¢{<<OR | AND>> <<ConstraintName2>>;
. <<OR | AND>> <<ConstraintNameN>>;:

Constraints may also be expressed at the class level. A class-level
constraint is evaluated as a conjunct in component-level constraint
expressions for all component types derived from the constrained class.
When a component-level constraint expression is evaluated, class-level
constraints are appended to the beginning of the constraint expression and
end with that constraint’s request and predicate function expressions. If a
component inherits class level constraints from several levels in the Class
Hierarchy, the constraints are ordered from the most primitive class (i.e., the
root class Component) to the most system-specific class(i.e., the user-defined
component type). The syntax for a class-level constraint relationship

declaration is as follows:

constrain class <<ClassName>> with <<ConstraintName>>

The present invention provides the ability to represent within a
structural hierarchy how components of a particular system exist spatially
and physically using three type of substructures: composite hierarchies,
container hierarchies, and connection relationships. Composite hierarchies
identify components as part of other components. Container hierarchies

identify components as being contained in other components. Connection

WO 96/28784 PCT/US96/03406

10

15

20

53

relationships identify components that connect to other components. The
relationships between generations within the structural hierarchy are
expressed by the keywords "childOf," "containedBy," and "connectsWith."

Structural relationships are declared as follows:

<<ClassName>> childOf <<ClassName>>
<<ClassName>> containedBy <<ClassName>>
<<ClassName>> connectsWith <<ClassName>>

MODEL MAINTENANCE

A model can be defined by providing statements that syntactically
conform to the model language described above. In addition, an interactive
facility, the Model Maintenance Subsystem, provides the ability to define, and
maintain a model, using a graphical user interface. The Model Maintenance
Subsystem provides the ability to interactively define the Product Base using
a graphical user interface. The semantic representations, class hierarchies,
and structural hierarchies of the model may be viewed (i.e., browsed) and
modified (i.e., edited) interactively using a graphical user interface. Further,
constraint input is verified. Testing and debugging capabilities are provided
to identify problems in the model, and to test and optimize the performance
of the modified model. For example, model definition syntax is parsed and
verified, and sample requests may be executed. Diagnostics functions may be
invoked to monitor the performance of the configuration requests with the

modified model.

The browsing capability of the maintenance system provides the ability

to view graphic representations of the class and substructural components of

WO 96/28784 54 PCT/US96/03406

10

15

20

25

the model hierarchy. A Class Tree is used to represent objects descending
from base classes within the model hierarchy (i.e., an object class hierarchy).
The object class hierarchy is represented by five separate trees, one for each

base class. Each branch may have multiple descendants.

A Component Tree is used to depict the Composite, Connector and
Container Component substructural interrelationships. Composite Trees are

listed first followed by Connector and Container Trees.

A hierarchy member may be selected for modification by double-
clicking on the box that contains the hierarchy member. An editor window
for the selected hierarchy member is displayed. A List menu may also be
used to select the member to be edited. In the preferred embodiment, the List
menus are a series of pulldown menus that may be selected from a menu bar
of the Maintenance window. The initial menu bar contains a selection for
each general element of the ProductBase model (i.e., classes, component
types, constraints, etc.). Once a general element is chosen, a new window is
displayed that lists the model members of the general type selection. A
model member may be chosen along with an operation (i.e., Comment,
View, New, or Edit). A Comment operation provides the ability to add a
comment to the ProductBase after the selected member. A View operation
provides the ability to view the settings for the selected model element. The

model member may be modified by choosing either a New or Edit operation.

For example, to modify an attribute of a model member in the
preferred embodiment, the attribute type is chosen from the List Menu. Once

the attributes are displayed, a New or Edit operation may be chosen to add a

WO 96/28784 PCT/US96/03406

10

15

20

55

new attribute, or modify an existing attribute, respectively. An attribute
selection must also be made, if the Edit operation is chosen. After these
selections have been made, the Attribute Editor window is displayed. The
fields of the window (e.g., name, attribute type, and multivalued) are
initialized to either blank or the default settings for a New operation, or
initialized to the current attribute settings for an Edit operation. The attribute
name field may be selected and modified. The type field may be modified by
selecting from a list of valid attribute types. The multivalued field may be
toggled on or off. After making modifications, the modifications may be

saved or cancelled.

Resources and Datatypes may be added or modified in a manner that is
similar to the method for adding or modifying an attribute. Model elements
that require relational definitions require additional designations. Examples
of these are derived classes, product lines (i.e., parent Product Line),

constraints (i.e., constrained class), and component types.

In the preferred embodiment, adding a derived class requires an
additional initial step to define the location of the new derived class within
the model hierarchy. At this point, the New and Edit operations have the
same operational characteristics, including the ability to save or cancel. That
is, the derived class field values (existing, default, or blank) are displayed in
an Editor window. In addition, attributes may be added to all members of the
derived classes and their component types; constraints may be specified at the
class level for the derived class; structural hierarchy relationships may be
defined for the derived class; the System Window display status may be

defined; the derived class may be selected as a connection origin (i.e., a

10

15

20

25

WO 96/28784 56 PCT/US96/03406

starting point of a cabling report); and the component distance (i.e., the
average distance from members of the derived class to other objects that are a
part of the same composite, and the distance from the member of the derived
class to an external port on the composite) may be defined for children of

composite objects that are involved in connections.

To add a new component to the model, the class from which the new
class is descended must be chosen. The subcomponent field provides the
ability to specify the structural hierarchy (i.e., structural children) of a
composite component. The New or Edit operations further provide the
ability to specify connectivity fields such as transfers (i.e., paths that data can
travel through a Composite component), datatype, connection origin. In
addition, the following field information may be specified: component type
name, associated attributes, products lines (i.e., product lines that contain this
component), leaf-level constraints, resources, description, label, part number,

fill direction, and display status.

The Maintenance system further provides the capability to test a
modified model. The Write integrity option determines whether a ParseFile
(i.e.,) can be parsed, and a modified ParseFile written. The ProductBase
Integrity option determines whether a ParseFile (i.e.,) can be parsed, and a
modified ParseFile written. If not, syntax error messages are displayed. The
Debugger (i.e., Configure) option reads component requests from a request
file and attempts to configure those components using selected constraints in
the current ParseFile. The Debugger provides a tracer capability to provide

constraint tracing. A deep trace generates trace output for a traced constraint

WO 96/28784 PCT/US96/03406

10

15

20

57

and all the constraints it spawns. A shallow trace generates a trace output for

traced constraints.

NEEDS ANALYSIS

The process of translating customer requirements into specific
components and configurations is called "Needs Analysis." The model
language provides the ability to express a model in terms of customer needs

and requirements.

With a needs analysis approach to modeling, a configuration may also
be expressed in terms of capacities (e.g., minimum required response time) or
throughput. The needs analysis configuration may be illustrated by a voice
messaging system model. A configured voice messaging system may be
required to record some specific number of hours of voice data, and provide a
response time of less than five seconds for accessing stored messages. To
further illustrate, a telecommunications configuration may be specified in
terms of traffic load supported and some maximum acceptable failure rte
(e.g., dropped calls), or a computer system configuration may be required to
support certain processing loads, data storage requirements, and response

times.

The model language provides the capability to express a needs analysis
model in the configuration modeling language by: (1) interpreting customer
requirement quantities (e.g., voice message storage capacity), and (2)
identifying associated quantities of configuration components and resources.

This provides the ability to make modeling requests in terms of needs in

WO 96/28784 PCT/US96/03406

10

15

20

58

addition to component requests. Components can be identified as satisfying
requirements or needs. That is, components may be identified as supplying
some quantity of a resource (e.g., megabytes of storage capacity). When a user
expresses a system, or some portion of a system, in terms of needs or
requirements, one or more components that satisfy the needs may be selected

from the ProductBase.

INPUT FORMS

Input forms provide the capability to accept component requests from
the user. Input forms allow the user to specify the types and quantities of
components in the system to be configured. Input forms consist of standard
windowing formats such as listboxes and pushbuttons. A third type of input
form provides the ability to specify a quantity of a given component. The user
selections on the input forms are called component requests. Input forms
provide the ability to associate a default priority for component requests.
Default priorities may be overridden by a requestPriority. These priorities
provide the ability to designate the order in which component requests are

satisfied by the configuration engine.

PRODUCT-COMPONENT MAPPING

Product_component mapping defines discrete and composite
components as parts and products in a sales inventory, and then maps those
parts and products (i.e., bundles) onto a set of all component instances in a
configured system. The product-component map contains representations

that define each part and product in terms of its required and optional

WO 96/28784 PCT/US96/03406

10

15

20

59

constituent components. These representations further specify how the
products are displayed by the Quoter. A representation is comprised of a the
following sections: a Product Header, an Optional Equipment List, and an

Option Restriction List.

The Product Header section provides the product name as it appears in
the ProductBase. This allows the Bundler to match components in a
configured system to products and identify a set cover. This section also
includes the following additional information: a Product Description String
that describes the product for use by other portions of this invention (e.g., the
Quoter); a Product Number String; the Price (i.e., the price of the product);
Product Lines String identifies the product lines of which the product is a
member, and is used to narrow the set covering search; and a Required
Components List that identifies components (i.e., by part number) or

products (i.e., by product number) that are required by this product.

The Optional Equipment List is a list of additional product packages
that can be included in the base package (i.e., the product described in the
Product Header). An Optional Equipment List entry contains: an Option
Unique ID to uniquely identify the entry; an Option Description that describes
the entry; an Additional Cost to identify an additional cost associated with the
inclusion of this entry; and a Constituent Product Number List identifies

those products or components, by number, that comprise the entry.

The Option Restriction List is a list of groups of options that are
interdependent or that must be chosen according to special criteria. Each

entry in the Option Restriction List contains the following: a Group Unique

WO 96/28784 PCT/US96/03406

10

15

20

30

60

ID to uniquely identify the entry, a Quantity Specifier, and an Option Unique
ID List. The Quantity Specifier field specifies the number of members of an
option group that may or must be chosen. The Quantifier Specifier field may
consist of bounds or the atLeastOne, atMostOne, or exactlyOne keywords.

The bounds are two integers (enclosed in parentheses and separated by a
comma) that express the lower and upper bound. The atLeastOne keyword
indicates that one member of the option group must be chosen. The
atMostOne keyword indicates that only one member of the option group may
be chosen, and that it is not required that any member be chosen. The
exactlyOne keyword indicates that at least one member of the option group
must be chosen, but no more than one. The Option Unique ID List is a space-

separated list of Option Unique ID's.

An example of an entry in a product-component map for a model

configuring computer systems is as follows:

product base_system
{
description: "Base System";
productNumber: "001-001";
cost: 10000;
values:
categoryl = "System";
category2 = "XXX";
productLines: Tower;
required: ("001-001" reference) "002-001" "002-002";
options:
COM1 "Comm Option 1" 1 "002-005";
COM2 "Comm Option 2" 1 "002-006";
optionGroups:
g1 atMostOne Com1 Comz2;
)

WO 96/28784 61 PCT/US96/03406

10

15

20

25

BUNDLER

The Bundler bundles components into product (i.e., marketing)
packages. The Bundler uses the product-component map to establish a set
cover for a configured system. A set cover is a set of many-to-one mappings
of component instances in a configured system to product packages in which

each component instance is mapped to one product package.

Set covering is the process of covering a set of objects (e.g., component
instances in a configuration) with a set of covers (e.g., products). This process
is used to associate components created for the current configuration with
some grouping or cover (e.g., products). A common problem associated with
the set covering process is that as the number of objects and set cover
alternatives increase, the number of set covering alternatives explodes
exponentially. To limit the set covering alternatives, heuristics may be used
to identify the minimum set of covers. The Lowest Cost Cover is an
example, of a heuristic. Using this heuristic, covering is maximized and cost
is minimized. That is, the products providing the most cover for the least

amount of cost are selected.

Another heuristic‘is based on the structural context of the alternatives.
That is, in some instances, a product will have structure, and that structure
will define a physical unit or grouping of components. This may occur, for
instance, when a reduction in manufacturing cost is incurred when
components are produced as a unit. This savings may be passed on to the
purchaser of a system where the reduced-cost unit is actually being

purchased. Therefore, it is necessary to examine the configured components

WO 96/28784 PCT/US96/03406

10

15

20

62

to determine their structure context, and then match these attributes with the
structure context of the products. An example of this is a disk array in a
computer configuration model. The disk array is physically configured, or
manufactured, with a chassis, power supply, controller and five disk drives.
Therefore, it is necessary to examine the structure context of any disk drive
component requests. The process of selecting instances as "covered" by the
disk array product must include a determination that the "covered" instances

were configured to be inside the chassis, or as a disk array unit.

Figure 10 illustrates the EstablishSetCover process flow. At processing
block 450, the products that can cover some or all of the component instances
in the current configuration are identified. At decision block 452 (i.e., "any
products identified?"), if no products have been identified, processing ends at
block 454. If products were identified, the products are prioritized based on
the number of instances that can be covered by the product at processing
block 456. At decision block 458 (i.e., "any instances not covered?"), if all of
the instances have been mapped to the current prioritized product list, a new
product list is created that covers products in the current configuration at
block 474, and processing continues at decision block 452 (i.e., "any products

identified?").

If not, the next product is selected from the list at block 460. At
decision block 462 (i.e., "do all required elements exist?"), if all of the
elements of the product do not exist in the configured system, processing
continues at processing block 460. If they do exist, the instances that have not
been previously mapped and that can be covered by the current product are

identified at processing block 464. At decision block 466 (i.e., "any instances

10

15

20

25

WO 96/28784

PCT/US96/03406
63

identified?"), if no instances can be covered by the product processing

continues at decision block 458 (i.e., "any instances not covered?").

If some instances were identified, it is determined whether any
product option restrictions can not be met at decision block 468 (i.e., "any
product option restrictions that are not met?"). If there are, processing
continues at decision block 458 (i.e., "any instances not covered?"). If not,
processing continues at decision block 470 (i.e., "all structural contexts
satisfied?"). If they are not, processing continues at block 460 and the next
product is obtained. If they are, the mapped component instances are marked
as covered by the current product at block 472 and processing continues at

decision block 458 (i.e., "any instances not covered?").

REPRESENTATION OF MODELED SYSTEM

Once a system has been configured based on the requests made,
various reporting tools are employed to provide information regarding the
configured system. In the preferred embodiment, these tools include a
graphical depiction of the general layout of the system, a list of materials, a
list of spare parts, and a list of any component requests that could not be

satisfied.

The present invention provides the ability to express a model in
structural terms. That is, components are defined in terms of their structural
parents (i.e., containers), interconnections, and compositions. Therefore, the
present invention has the ability to graphically display the configured system
along with its structural characteristics.

WO 96/28784 PCT/US96/03406

10

15

20

The graphical depiction of the configured system and its structural
characteristics, called the system window, provides a depiction of the general
layout of the configured system. In the preferred embodiment, the system
window for a model that configures computer systems shows the interior
and front of all cabinets used in the system, and shows the placement of
cards, power supplies, and storage devices. Figure 11 illustrates a system
window for a desktop computer system configuration. System Window 540
illustrates the configured system's components and their relative locations
within the system. Chassis 550 contains System Board 552, DriveCage 554 and
Power Supply 556. Main Board 552A is a detailed depiction of System Board
552.

Main Board 552A illustrates the physical placement of other
components on the system board and their relative positions. For example,
EVGA Video Board 558 is located below CPU Board 560. Further, the
placement of Network Card 562 and FAST SCSI 564 in slots relative to CPU
Board 560 can be determined from System Window 540. Free slots 566 can be
viewed as being open and the closest slots to CPU Board 560. Memory
Expansion Board 568A is a detailed depiction of Memory Expansion Card 568.
1M Simm chips 570 are located on Memory Expansion Board 568A. Eight
memory banks 572 remain unused. Drive Cage (Side View) 554A is a detailed
depiction of the Drive Cage 554. 535 MB Hard Drive (SCSI) 574, 3.5" 1.44MB
FD 576, and a 525MB Tape Backup (SCSI) 578 are contained within the Drive
Cage 554. Front 580 indicates the location of the front side of Drive Cage (Side
View) 554A. Therefore, 3.5" 1.44MB FD 576 and 525MB Tape Backup 578

have been configured to be front-accessible components. Bay 582 is a front-

WO 96/28784 PCT/US96/03406

10

15

20

65

accessible bay that does not contain any device. Bay 584 is a free bay located in
the back of the Drive Cage 554.

T:he system window further provides the ability to interactively edit
the graphically rendered structures. The present invention provides the
ability to modify the structural aspects of the configured system by adding,
deleting or replacing components within a configured structure. The present
invention further provides the ability to modify the configured structure by

modifying the structural interconnections and compositions.

This capability to graphically display and edit can be used on a newly
configured system, or an existing configuration, or system. That s, any
upgrades to an existing, configured system may be performed graphically. A
“freeze and fill" capability allows the user to freeze some portion of the
existing system, and fill, or modify the unfrozen portion. This "freeze and
fill" capability further provides the ability to generate a quote for the new
configuration that represents only those components added to the original
configuration, and that incorporate any credit for the deleted or replaced

components.

In the preferred embodiment, the list of materials, called the Bill of
Materials (BOM) provides a list of all of the configured components and spare
parts that are used in the system since the last request to configure the system.
The part number and description is provided for each component and spare

part.

WO 96/28784 PCT/US96/03406

10

15

20

In the preferred embodiment, the parts list provides information
regarding additional components (i.e., spare parts), resource totals, failed
requests, and failed optional requests. Resource totals provides a total of all
components and resources requested directly from the user. Failed Requests
and Failed Optional Requests are those component requests that could not be

satisfied because of a lack of space, connector availability, etc.

UOTER

The Quoter calculates the cost of the individual product packages and
determines the cost of all product packages required to complete the system.
The Quoter provides the ability to display the quote in various ways. For
example, the quote may be displayed by nroduct with the capability to expand
or collapse the product information to show pricing for individual product
parts or for the entire package, respectively. The way in which products are

presented or prices are calculated may be customized.

THE FLASH CONFIGURATION CACHE

An embodiment of the present invention includes method and
apparatus for expediting configuration of a variety of “end products.”
Examples of the end products are computers, electronic systems such as voice
mail systems, PBX systems, central office switches, and handheld
communication devices. The present invention’s flash configuration is also
used to configure end products such as airplanes where a variety of power
system options, landing system options, and interior system options need be

configured in an efficient and thorough manner. Other end products

WO 96/28784 PCT/US96/03406

10

15

20

67

configured by the flash configuration cache of the invention are trucks, test
equipment, and chemical processes. The flash configuration cache is also
used to configure vacation packages where each package involves a number

of transportation options, lodging options, and recreational options.

In order to provide a specific example, the application of the flash
configuration cache of the invention in configuring user computers is
explained below. However, it is understood that the flash configuration
cache applies as well to configure end products other than computers,
examples of which end products were given above. Thus, in one
implementation, the flash configuration cache of the invention is used for
expediting configuration of a customer computer (also referred to as the user
computer) in response to “new” customer requests. According to this
embodiment, certain “old” customer requests for configuring the user
computer are structured in the form of a tree (also called a “search tree”) and
saved in a “flash configuration cache” by the computer processing the
requests (also called the host computer). A “branch” of the search tree is
defined as a number of customer requests that originates from the root node
of the tree and ends in a terminal node. For example, referring to Figure 14,
customer requests R1, R2, R3, R4, R5, and Ré6 constitute a tree branch which
originates from the root node and ends with a terminal node (i.e., the last
customer request R6). A “path” of the search tree is defined as a number of
customer requests that originates from a root node, but that does not end in a
terminal node. In the example, customer requests R1, R2, and R3 constitute a
tree path which originates from a root node and ends with a non-terminal
node (i.e., the non-terminal node of customer request R3). From the above

definition it is apparent that each branch consists of a number of paths. In

WO 96/28784 PCT/US96/03406

10

15

20

the example, the branch R1, R2, R3, R4, R5, and Ré6 consists of five paths,
which are (1) R1; (2) R1 and R2; (3) R1, R2, and R3; (4) R1, R2, R3, and R4; and
finally (5) R1, R2, R3, R4, and R5.

Each branch or path of the tree represents an “old configuration.” Each
old configuration represents a number of old customer requests. As each set
of new customer requests is obtained, the flash configuration cache is
searched to match the new requests with an old configuration stored in the
flash configuration cache, namely, a path or branch of old customer requests
stored in the search tree. The longest path or branch of old requests,
representing the maximum extent of matching requests, is then found and
selected. The old configuration represented by the matching path or branch is
then recalled from the cache. In this manner, new customer requests can be
quickly configured if they at least partially match against previously
configured requests. In other words, instead of generating a computationally
intensive new configuration, a preconfigured system corresponding to an old
of set of requests is recalled from the cache. This results in a speed advantage.
A partially matched configuration is then partially configured and hence can
be configured from that point on.

In this embodiment, a request is either a component request or a
resource request. Each component or resource request is associated with a
number of constraints that are specified in the productbase. As each new
request is compared to an old request, the constraints associated with the new
request are identified in order to match them against the constraints
associated with the old request. However, it is understood that if the

productbase has not changed, the constraints associated with the old and new

WO 96/28784 PCT/US96/03406

10

15

20

69

requests automatically match. Accordingly, if the productbase has not
changed, the matching of the constraints is unnecessary. For matching the
old and new component requests, the component name, quantity, priority,
and attribute values should match. In matching old and new resource
requests, component class names, quantity, priority, and allocation types

should match.

According to the flash configuration cache embodiment of the
invention, the cache is initially void of requests and the corresponding
configurations. However, as customer requests are obtained, certain ones of
the requests and their corresponding configurations are saved in the cache.
The requests that do get stored are called “old” requests, and their

corresponding configurations are called “old” configurations.

The host computer makes a decision as to which ones of the requests
should be stored in the cache. The requests that are stored in the cache are
those for which generating a new configuration is more time consuming
than recalling the preconfigured requests from the cache. Accordingly, the
host computer keeps track of the time that it takes to generate each
configuration in response to a given set of requests. The host computer then
compares the time consumed in generating a configuration to a
predetermined time. If the generation time is greater than the predetermined
time, the configuration is stored in the cache. Otherwise, the configuration is
not saved. The predetermined time is typically an estimate of the time that it
takes to recall a given configuration from the cache. By way of example,
suppose that in response to customer requests for a monitor, a floppy drive,

an IDE hard drive, a power supply cabinet, an IDE hard drive controller, a 486

WO 96/28784 PCT/US96/03406

10

15

20

70

CPU, and a memory board, the host computer generates a new user computer
configuration. In this example, the generation of the configuration takes five
minutes of the host computer time. The host computer compares this time
(namely, the five minutes) with a predetermined time, for example one
second, that it takes to recall a new configuration from the cache. Since the
generation of the configuration is more time consuming than recalling the
configuration from the cache, this configuration gets stored in the cache as a
configuration representing the specific customer requests that resulted in the
configuration. This configuration is stored in the cache and represented by
the “old” set of requests that resulted in that configuration. The old set of
requests is stored as one path or branch of the search tree. When a set of new
customer requests is input to the host computer, the host computer
methodically searches the tree to find a path or branch of old customer
requests that matches the new customer requests. If a matching set of old
customer requests is found, the host computer recalls from the cache the old
configuration associated with the set of old customer requests. This is
because the host computer has already determined that the time required to
generate a new configuration for the new customer requests is longer than
the time required for recalling the matching old configuration from the flash

configuration cache. -

Thus, the configurations that are saved in the cache are those that
require a shorter time to be recalled from the cache than be regenerated. The
sets of stored requests (namely, “old” requests) are organized in a “tree”
structure and methodically searched so that a new set of requests can be
matched against an old set of requests. Each set of old requests is stored as a

path or branch, and a number of branches constitute the search tree. The

WO 96/28784 PCT/US96/03406

10

15

20

71

algorithm and related flow diagrams to construct and to search the tree are
explained below. For simplicity in the following discussion, the assumption
is made that all of the request sets take longer to configure than they take for

recall from the cache.

As stated above, the cache does not initially have any requests stored
therein. As each set of customer requests for user computer (or other end
product) configuration is obtained, the search tree is expanded. Thus, the
cache size increases as time goes by. Accordingly, the chances that new
customer requests have already been stored in the cache increases as time
goes by. Figures 13A-13C illustrate the algorithm used for building the search
tree and adding requests to the cache. The algorithm for searching the request
tree begins in step 101. Since a new request list is to be configured, the
algorithm searches for the root of the search tree (step 103). The algorithm
then proceeds to search for the first request of those stored sets of requests
that diverge directly from the root node of the tree (step 105). Then the host
computer determines whether any of these stored first requests matches the
first request in the new request list (step 107). If none of the stored first
requests diverging from the root node matches the first request in the new
request list, the entire' new request list is added to the tree (step 109). The new
request list is added such that the entire request list diverges from the root
node of the tree. The reason that the new request list is added as diverging
from the root node is that the root node is the only common node between
the new request list and the stored request lists. The host computer then
generates a new configuration and stores it in the cache. The new
configuration is represented by the set of requests that was just added to the

search tree (step 110). After adding the new set of requests to the flash

WO 96/28784 PCT/US96/03406

10

15

20

configuration cache, the algorithm for searching the request tree ends (step
113). Thereafter, the request list just added is considered as a list of “old”
requests constituting one of the branches of the search tree stored in the flash

configuration cache.

If, however, there is a match between the first request and one of the
stored first requests directly diverging from the root node, the algorithm
proceeds to determine whether the next request in the request list matches an
old request diverging from the first stored request diverging from the root
node (step 111). In other words, the algorithm proceeds to match the next
request in the new request list against a stored request diverging from the
first matching stored request. In step 115, the algorithm determines whether
a stored request diverging from the first matching request matches the next
request in the new request list. If no mach is found, the new request list is
added to the search tree (step 117). This is performed by adding the new
request list in a manner such that the first matching request is shared with
another branch of the search tree. As such, the new request list diverges from
the first matching request of that other branch. In step 118, the new
configuration represented by the new request list is generated and added to
the cache. After adding the list of new requests to the flash configuration
cache, the algorithm for searching the request tree ends (step 121).

Thereafter, the request list just added is considered as a list of “old” requests
constituting one of the branches of the search tree stored in the flash

configuration cache.

If, however, there is match between the stored request diverging from

the first matching request and the next request in the new request list, the

WO 96/28784 PCT/US96/03406
73

algorithm proceeds to determine whether the next request in the new request
list matches an old request diverging from the next stored request diverging
from the root node (step 119). In other words, the algorithm proceeds to
match the next request in the new request list against a stored request
5 diverging from the second matching stored request. In step 123, the

algorithm determines whether a stored request diverging from the second
matching request matches the next request in the new request list. If no
mach is found, the new request list is added to the search tree (step 124). This
is performed by adding the new request list in a manner such that the second

10 matching request is shared with another branch of the search tree. As such,
the new request list diverges from the second matching request of that other
branch. In step 125, the new configuration represented by the new request list
is generated and added to the cache. After adding the list of new requests to
the flash configuration cache, the algorithm for searching the request tree

15 ends (step 126). Thereafter, the request list just added is considered as a list of
“old” requests constituting one of the branches of the search tree stored in the
flash configuration cache. The algorithm continues in this manner until all
of the requests are processed (step 127). When all of the requests in the list of
new requests are processed the algorithm ends (step 129). The following

20 example illustrates the operation of the algorithm.

Referring to Figure 14, suppose that the first request list to be processed
is that consisting of R1, R2, R3, R4, R5, and Ré. Following the algorithm of
Figures 13A-13C and since there are no preexisting requests stored in the

25 cache, the host computer finds no matches between the first request (namely
R1) and the contents of the cache. Accordingly, the entire request list
consisting of R1, R2, R3, R4, R5, and Ré is added to the cache as shown in

WO 96/28784 PCT/US96/03406

10

15

20

74

Figure 14. The host computer then generates a new configuration

represented by this request list and adds the new configuration to the cache.

Suppose that the next request list consists of R1, R2, R3, R4, R7, and R8.
In this case, the algorithm first finds a match for the first request (R1) which
is already stored in the cache as a part of the stored request branch consisting
of R1, R2, R3, R4, R5, and R6. The algorithm continues by searching for the
next matching request that diverges from R1. In other words, the algorithm
searches all of the second requests of the stored branches that had R1 as their
first request. The only branch is the R1, R2, R3, R4, R5, and R6 branch which
is stored in the cache. Since there is an R2 diverging from R1 in this branch,
the algorithm finds a match between the first and second requests (R1 and
R2) of the new request list and the stored branch consisting of R1, R2, R3, R4,
R5, and R6. The algorithm continues in this manner and finds that the first
four requests in the stored branch consisting of R1, R2, R3, R4, R5, and R6
match the first four requests of the new request list consisting of R1, R2, R3,
R4, R7, and R8. The algorithm then finds that no matching request for R7
has been stored in the cache. Accordingly, as shown in Figure 14, the
remainder of the new request list, namely R7 and R8 are added to the cache as
branching off from the first four requests of the request list already stored in
the cache. Finally, the algorithm generates a new configuration represented
by the new request list, i.e. R1, R2, R3, R4, R7, and RS, and stores the new

configuration in the flash configuration cache.

The next request list is R1, R9, R10, R11, R12, and R13. The algorithm
finds a match only for the first request in the list of new requests, namely R1.

The remaining requests, R9, R10, R11, R12, and R13, are added to the cache as

WO 96/28784 PCT/US96/03406

10

15

20

75

a new branch diverging from R1 of the stored request list as shown in Figure
14. Then the algorithm generates a new configuration réepresented by the
new request list, i.e. R1, R9, R10, R11, R12, and R13, and stores the new \
configuration in the cache. The next request list is R14, R15, and R16. For this
request list no matches are found. Thus, the algorithm saves the entire
request list as branching off from the root node as shown in Figure 14.
Thereafter, the algorithm generates a new configuration represented by the
new request list, i.e. R14, R15, and R16, and stores the configuration in the

flash configuration cache.

The assumption implicit in explaining the algorithm and in discussing
the above example was that all of the request lists discussed take longer to
configure than they take for recall from the cache. In actual operation, before
storing any of the request lists, the host computer makes an initial
determination whether the configuration time exceeds a predetermined
time. The requests are stored only when the configuration time exceeds the
predetermined time. The predetermined time is typically the time that it

takes to recall a configuration from the cache.

Thus far the procedure for building and organizing the contents of the
flash configuration cache was discussed. Now the operation for recalling a
stored configuration from the cache is discussed. To this end, the host
computer must, partially or completely, match a new request list with an old
request list stored in the cache and then recall the configuration represented
by the old request list. The matching operation is similar to the operation for
storing the requests. As shown in Figures 15A-15C, the algorithm begins by
searching for the root of the tree (steps 201 and 203). Then, a search is

WO 96/28784 PCT/US96/03406

10

15

20

76

performed on all stored paths for their first stored requests diverging from
the root of the tree (step 205). The algorithm then determines whether any
of the stored paths has a first request that matches the first request of the new
request list (step 207). If there is no match, the host computer proceeds to
generate a new configuration for the user computer (or other end product)
(step 209) and the operation ends (step 213). If there is a match, the algorithm
checks the next new request diverging from the first request of the new
request list. This is done by performing a search on all stored paths that had a
successful match on their first requests. These paths are searched for their
second stored request diverging from their respective first requests (step 211).
The algorithm then determines whether any of the stored paths has a second
request that matches the second request of the new request list (step 215). If
there is no match, the host computer recalls the configuration for the
matching requests (step 216). At this point only the first request is matching.
Thus, the configuration corresponding to the first request is recalled from the
flash configuration cache. The host computer proceeds to generate a
configuration corresponding to the remaining (unmatched) requests in the
new request list (step 217). Thus, the corfiguration of the end product now
consists of the combination of an old configuration and a newly generated
configuration. After completion of the configuration process, the operation

ends (step 221).

If there is a match, i.e. if one of the stored paths has a second request
that matches the second request of the new request list, the algorithm
considers the next new request diverging from the second request of the new
request list. This is done by performing a search on all stored paths that had

successful matches on their first and second requests. These paths are

WO 96/28784 PCT/US96/03406

10

15

20

searched for their third stored request diverging from their respective second
requests (step 219). The algorithm then determines whether any of the stored
paths has a third request that matches the third request of the new request list
(step 223). If there is no match, the host computer recalls the configuration
for the matching requests (step 224). At this point only the first and second
requests are matching. Thus, the configuration corresponding to the first and
second requests is recalled from the flash configuration cache. The host
computer proceeds to generate a configuration corresponding to the
remaining (unmatched) requests in the new request list (step 225). Thus, the
configuration of the end product now consists of the combination of an old
configuration and a newly generated configuration. After completion of the
configuration process, the operation ends (step 226). This process continues
until all requests in the new request list are processed in the manner
described above. The algorithm ends when all of requests in the set of new

requests have been processed (steps 227and 229).

From the above description, it is apparent that there may in fact be a set
of new requests for which there is a “partial match.” This can happen in two
ways. A first way is when the matching branch is “too short” for the new
request list. By way of example and referring to Figure 14, suppose that the
set of new requests consists of requests R14, R15, R16, and R17. The matching
set of requests is the branch consisting of R14, R15, and R16 as shown in
Figure 14. Thus, following the algorithm described above, the invention
recalls the configuration corresponding to the matching branch R14, R15, and
R16 which is only a “partial configuration” relative to the set of new requests
consisting of R14, R15, R16, and R17. This “partial configuration” is

combined with a configuration that the host computer generates for the

WO 96/28784 PCT/US96/03406

10

15

20

78

unmatched new request, namely R17. The combination of the partial
configuration corresponding to R14, R15, and R16 and the new configuration
corresponding to R17 is a complete configuration corresponding to the set of
new requests R14, R15, R16, and R17.

In this manner, the necessity to generate an entirely new configuration for
the new request list is obviated and the process of configuring the user
computer (or other end product) in response to the new set of requests is

expedited.

A second way in which a “partial match” occurs is when there is a
matching path, as opposed to a matching branch, which is “too short” for the
new request list. Referring to Figure 14 and by way of another example,
suppose that the set of new requests consists of R1, R2, R3, R18, and R19.
Following the above algorithm, the invention finds the matching path
consisting of R1, R2, and R3 belonging tc the branch R1, R2, R3, R4, R5, and
R6 in Figure 14. The host computer then recalls the configuration
corresponding to the path R1, R2, and R3. This configuration is a “partial
configuration” for the set of new requests R1, R2, R3, R18, and R19. The host
computer then generates a new configuration for the remaining (unmatched)
requests, namely R18 and R19. The newly generated configuration is then
combined with the old “partial configuration.” The combination of the
newly generated configuration and the old partial configuration makes up a

complete configuration for the set of new requests R1, R2, R3, R18, and R19.

WO 96/28784 PCT/US96/03406

10

15

20

79

THE BUNDLING CACHE

Another embodiment of the invention includes a bundling cache.
The bundling cache is used to speed up the process of converting a
configuration generated by the host computer into actual available
commercial products. As with the flash configuration cache, the application
of the bundling cache is not limited to user computers. However, in order to
provide a specific example, application of the invention’s bundling cache to
user computers is discussed below. It is nevertheless understood that the
bundling cache of the invention is also used to expedite the process of
converting the configurations generated by the host computer into actual
commercial products for end products other than user computers. Examples
of such end products were given above and include voice mail systems, PBX
systems, central office switches, handheld communication devices, airplanes,

trucks, test equipment, chemical processes, and vacation packages.

Thus, the invention’s bundling cache is used to expedite the process of
converting, for example, user computer configurations into actual
commercial products. In generating a configuration of the user computer,
the host computer requires a number of computer components. The
computer components then must be converted into available commercial
products. For example, suppose that as a part of the configuration of the user
computer, the host computer requires a series of components such as certain
types of r.onitors, floppy drives, IDE hard drives, power supply cabinets, and
IDE hard drive controllers, 486 CPU’s, and memory boards. Often, many
components such as the ones mentioned above are available as a group in a

single commercial product. In other words, each commercial product is

WO 96/28784 PCT/US96/03406

10

15

20

80

comprised of a number of components. For example, a single commercial
product may contain a monitor, a floppy drive, an IDE hard drive, a power
supply cabinet, an IDE hard drive controller, a 486 CPU, and a memory board.
By way of a specific example, a commercial product called 486-100 contains a
Tower Powerhouse 486/33, a 4MB system memory, a 3.5” 1.44 MB floppy
drive, a 100 MB IDE disk drive, an IDE controller card, and a VGA monitor.

The host computer may, in addition to requiring a number of
components for the user computer configuration, require certain options.
For example, the host computer may require memory upgrade options of
4MB, 8MB, and 12MB. A commercial product that consists of the
components required by the host computer may or may not offer the required
options. For example, the commercial product 486-100 offers three different
memory upgrade options of 4MB, 8MB, and 12MB. Each memory upgrade
option offers a respective additional amount of memory of 4MB, 8MB, or
12MB beyond the 4MB system memory that is provided by the 486-100

commercial product.

The bundling cache is utilized to speed up the process of finding
products that match the required components. In the absence of the bundling
cache, the host computer searches for products that offer the required
components in various large data bases. This is a slow process. According to
the bundling cache embodiment of the invention, a cache of products and

their required part numbers is maintained.

The various products that offer the required components of the

configuration generated by the host computer are obtained from various data

WO 96/28784 PCT/US96/03406

10

15

20

81

bases accessible to the host computer. Each of these products offers certain
options as shown in Figure 16. For example, product P1 requires options O1,
02, 03 and O5. Product P2 requires options 02, O3, 04, and O5, and product P3
requires only option O5. A first hash table in the host computer correlates

each product to the required (i.e. necessary) options offered by that product.

A second hash table is built which correlates all the available options
to their respective products in which they are required (i.e. necessary). As
shown in Figure 17, option Ol is correlated to product P1 only. Option O2 is
correlated to products P1 and P2, option O3 to products P1 and P2, option O4
to product P2, and option O5 to products P1, P2, and P3. The products that do
not offer the required options are not of interest to the host computer for
building the bundling cache. Thus, the bundling cache is utilized to store
information related to those products that have been identified as offering
the options required by the host computer. For example, if the host computer
requires options O1 and O2 in generating a configuration for the user
computer, using the second hash table the host computer determines that
only P1 offers both these options. Thus, every time that a set of requests
results in a configuration requiring options O1 and O2, product P1 is recalled
from the bundling cache and is utilized in implementing the configuration
of the user computer. Products such as P1 that are stored in the bundling
cache are compiled in a product data base that is used in implementing the

configurations generated by the host computer.

WO 96/28784 PCT/US96/03406
82

CLAIMS

1. A method using a host computer for configuring an end product in
response to a plurality of new requests, said method comprising the steps of:
5 arranging a plurality of old requests into a plurality of paths and
branches constituting a tree, each path or branch representing a unique old
configuration of said end product stored in said host computer;
inputting said plurality of new requests;
searching a cache of said host computer for finding a matching path or
10 branch, said matching path or branch having a plurality of old requests
matching said plurality of new requests; and
recalling from said cache one of said plurality of old configurations
represented by said matching path or branch.

15 2. The method of claim 1 wherein said end product is a user computer.

3. The method of claim 1 or 2 wherein said plurality of old requests

and said plurality of new requests are component requests.

20 4. The method of claim 1 or 2 wherein said plurality of old requests

and said plurality of new requests are need requests.

5. The method of claim 1 or Z wherein said plurality of old requests

and said plurality of new requests are resource requests.

WO 96/28784 PCT/US96/03406

10

15

20

83

6. The method of claim 2 wherein said plurality of old requests and
said plurality of new requests comprise container, connection and

component constraints.

7. A method using a host computer for configuring a user computer in
response to a plurality of new requests, said method comprising the steps of:

defining in said host computer a plurality of old configurations of said
user computer comprising a plurality of old requests;

arranging said plurality of old requests into a plurality of branches
constituting a tree, each branch representing one of said plurality of old
configurations;

inputting said plurality of new requests;

searching a cache of said host computer for finding a matching branch,
said matching branch having a plurality of old requests matching said
plurality of new requests; and

recalling from said cache one of said plurality of old configurations

represented by said matching branch.

8. The method of claim 7 wherein said plurality of old requests and

said plurality of new requests are component requests.

9. The method of claim 7 wherein said plurality of old requests and

said plurality of new requests are need requests.

10. The method of claim 7 wherein said plurality of old requests and

said plurality of new requests are resource requests.

WO 96/28784 PCT/US96/03406

10

15

20

11. The method of claim 7 wherein said plurality of old requests and
said plurality of new requests comprise container, connection and

component constraints.

12. A method using a host computer for configuring a user computer
in response to a plurality of new requests, said method comprising the steps
of:

(a) defining in said host computer an old configuration of said user
computer comprising a plurality of old requests;

(b) arranging said plurality of old requests into a branch, said branch
representing said old configuration;

(c) determining a total time by adding a first time period for execution
of the defining step to a second time period for execution of said arranging
step;

(d) storing said branch and said old configuration in a cache of said
host computer if said total time is greater than a predetermined time;

(e) repeating steps (a)-(d) to store in said cache a plurality of branches
and a respective plurality of old configurations;

(f) inputting said plurality of new requests;

(g) searching a tree comprised of said plurality of said branches for
finding a matching branch, said matching branch having a plurality of old
requests matching said plurality of new requests; and

(h) recalling from said cache one of said plurality of said old

configurations represented by said matching branch.

13. The method of claim 12 wherein said plurality of old requests and

said plurality of new requests are component requests.

WO 96/28784 PCT/US96/03406
85

14. The method of claim 12 wherein said plurality of old requests and

said plurality of new requests are need requests.

5 15. The method of claim 12 wherein said plurality of old requests and

said plurality of new requests are resource requests.

16. The method of claim 12 wherein said plurality of old requests and
said plurality of new requests comprise container, connection and

10 component constraints.

17. A method using a host computer for configuring an end product,
said method comprising the steps of:

(a) generating a configuration of said end product in response to a

15 request list, said configuration comprising a plurality of components;

(b) searching a product catalog to find a plurality of matching products,
each of said plurality of matching products correlating to one of said plurality
of components;

(c) inputting a respective list of required options for each of said

20 components; and
(d) storing in a cache each of said plurality of matching products which

offers said respective list of required options for a corresponding component.

18. The method of claim 17 wherein said end product is a user

25 computer.

WO 96/28784 PCT/US96/03406

19. The method of claim 17 or 18 further comprising the steps of
storing in said cache said respective list of required options for a

corresponding one of said plurality of matching products.

5 20. The method of claim 17 or 18 wherein said list of required options

is comprised of one or more options.

21. The method of claim 17 or 18 further comprising the step of storing
in said cache each of said plurality of matching products when no options are

10 required for a respective one of said plurality of correlating components.

WO 96/28784 87 PCT/US96/03406

10

15

20

22. A method using a host computer for configuring a user computer,
said method comprising the steps of:

(a) generating a configuration of said user computer in response to a
request list, said configuration comprising a plurality of components;

(b) constructing a product catalog comprising the steps of:

(i) inputting a plurality of required options for each of said
plurality of components;

(ii) generating a first hash table correlating each of said plurality
of matching products to its plurality of required options;

(iii) identifying said plurality of required options among said
plurality of required options;

(iv) generating a second hash table correlating each of said
plurality of required options to respective ones of said plurality of matching
products, thereby identifying a target group of said plurality of matching
products;

(iv) storing said target group of said plurality of matching
products as said product catalog in a cache of said host computer; and

(c) searching said product catalog to find a plurality of matching
products, each of said plurality of matching products correlating to one of said

plurality of components.

WO 96/28784 PCT/US96/03406

1/33
10
c’
CONFIGURATION SYSTEM
12 14 16
c ’ c
CONFIGURATION
MODEL GENERATION BUNDLING /
MAINTENANCE AND QUOTATION
SUBSYSTEM REPORTING SUBSYSTEM
SUBSYSTEM
18
U COMMUNICATIONS BUS
CENTRAL
INPUT / MASS
OUTPUT MEMORY PROCESSING STORAGE
UNIT
20 22 24 26

FIG. 1

PCT/US96/03406

WO 96/28784

2/33

85—~ L5
TWNYILXT TYNYALNI

£5~ ¢ 9Ol

YTTIOHINOD s
39130 aMvod
FOVHOLS ANOWIN

aivod aivoq 0w9dn - diHI

S5~ 7S~
101S 101S
ayvod ayvod
: NOISNALXT HFHION
99
W3S 1TTTvYd S~ = £~ cr—~
05 V6

IS~
H0SSFI08d
IINHLINY

Ir— or—
3S0d4Nd FS0déNd

b 8 s gp NOSNILG YJHIOW — AOWIM —AYOWIH — TWiN3D TMOFdS

YA NHG INHG ~ ~ .
vl O¥H Addo1s 1404 1015

N N als

| Bhde 8¢ 25~ 98— N PE— £0

1

| donaus YOLOINNOI ayvo8 390 AYOWIN Y0SSF008d

|

1

|||||||w.m..|.u. |||||||||||||||||||

ININOdWOI FYYMASVH

PCT/US96/03406

3/33

WO 96/28784

S3dAL ININOIWOI

|
Jon3a JNIYA m
dMiove aYvH i
v 7 !
|

FINF0 | 99

E L F9VI0LS —

....................... &7 | a T SIS0 aanIa
..]
HOLIINNOI !
$9 7 “
|
|
|
F1ISOdN0I "

\\\\\\\\\\\\\\ < 7 ol o
|
]
]
09~ w3moano? | SISSVI) 35V |

PCT/US96/03406

WO 96/28784

4/33

140d

YINIVINOD

PCT/US96/03406

WO 96/28784

5/33

YINIVINOD

ININOdNOI
“~—90!

22! 80!
718%) 0l 71Gv9 I I b
NIVHD 1S9S 0D 1598 g 1 LNgY) 107S

N /

JOPIIY2 JOPIIY2

ayvo WiN MV
gn 91 1SS
F7Gv0 \Q L~ 0
| WILSAS LINIGVD M\N&Q waa

\ ayvo

40Py

YO0LIINNOI WALSAS JOVYOLS

N~ 944

(1)t Ol

2UISOIN0I
N~2zi1

PCT/US96/03406

WO 96/28784

6/33

N C wwv L N0 150d | 140d | 140d NI 140d

INHA ASIO J18v0 S35 JNYA 1SOS A HSla

444 NJ 1N0 30A30 a4V ayvo NI F0A30
IV 6Z80 FIwWI{ §280 I S280 VW 6280
100 3930 £ 140d

JIWW 6280 F18v0 1SOS / vel

¢ 140d ¥ 140d
/ F78v0 1S3S F18V0 1S0S —Voct
)M SIOUU0I AvH AT
13INIGVD JIVOLS
/
1n0 39A3a ‘ Aq
JIWW34 6280 Nt PauIDu0I
/ JIWW34 60
92! Avd
ez~ T~

140d

PCT/US96/03406

7/33

T T e 1
“ “
| |
m SININOJHOI m
| ININIAYIINY |
| FTdL 1N |
" 8l 18] 6/ | 09/
-/ ;o R
WOLOINNOD || nanoamoo | HOLOINNOD YOLOINNOO || anoamon | |HOLOTNNOD |

YITIOHINOD MNNTIEIN M o JONVISNI
WA X510 _ . I GINIVBLLSNOD

WO 96/28784

AN Y)Y () () (D

|
9/ V2474 B N 74 B VA /4 B VA R A Y] 69! 891 /91 99| r9L £91 19

o o e e e e e

WO 96/28784 PCT/US96/03406

8/33

FIG. 6(1)

G‘ONHGUM TION ENG/Na

i

CREATE PRIORITIZED LIST OF
REQUESTS

204

ALL REQUESTS
PROCESSED
.

208
i

GET NEXT REQUEST

212
N COMPONENT RESOURCE 214

N

INSTANTIATE COMPONENT
AND POST MODIFICATION TO
MODIFICATIONS LIST

SatisfyResoucerRequest

216

INSTANTIATION OR
ALLOCATION SUCCESSFUL
?

NO
218

00 ANY OTHER
ALTERNATIVES EXIST TO

242 SATISFY THg REQUEST

N
MARK REQUEST AS FAILED

220

N
é REMOVE THE FAILED
ALTERNATIVE'S MODIFICATIONS

WO 96/28784

244
N

9/33 PCT/US96/03406

222
N

POST NEXT ALTERNATIVE TO
MODIFICATIONS LIST

224

ANY CONSTRAINTS 10
BE PROCESSED
?

COMMIT

MODIFICATIONS
TO CONFIGURATION 296

NO

6

236

240

N
GET NEXT CONSTRAINT

230
N
REQUIRES SATISFY CONTAINER
CONTAINER CONSTRAINT
?
232
N
REQUIRES SATISFY CONNECTION
CONNECTION CONSTRAINT
?
234
N
REQUIRES SATISFY COMPONENT
COMPONENT | CONSTRAINT
?

CONSTRAINT YES

SATISFIED
?

FIG.

6(2)

WO 96/28784 PCT/US96/03406

10/33

(SA TISFY RESOURCE REQUES T)

FIG. 7(1)

250
N 1

FIND NEXT COMPONENT
THAT OFFERS THE
REQUIRED RESOURCE

252

ANY COMPONENT
INSTANCES FOUND
?

254

HAS THIS

RESOURCE BEEN

CONSUMED
?

YES

258
N
ARE ALL CHECKS AGAINST CLASS CHOOSE THIS RESOURCE
REQUIREMENTS AND OPTIONAL INSTANCE

REQUIREMENTS VALID
?

WO 96/28784

11/33

260

HAVE ALL RESOURCE
INSTANCES BEEN
CHECKED
?

262 :

N

YES

INSTANTIATE A NEW COMPONENT
INSTANCE OF THE REQUIRED
RESOURCE AND POST MODIFICATION
TO MODIFICATIONS LIST

PCT/US96/03406

264
2

ASSIGN INSTANCE OF REQUESTED

COMPONENT TYPE TO REQUESTING

COMPONENT'S RETURNED INSTANCE
VARIABLE

266

DOES THE CURRENT

INSTANCE SATISFY QUERY

AND TEST CONDITIONS
?

NO

268

FIG.

7(b)

WO 96/28784 PCT/US96/03406

12/33

SatisfyContainerConstraint
SatisfyComponentConstraint

FIG. 8(1)

500

REQUIRED INSTANCE

ALREADY AVAILABLE IN

CONFIGURATION
?

YES

502
N

INSTANTATE REQUIRED INSTANCE
AND POST MODIFICATION TO
MODIFICATIONS LIST

503
N

ALLOCATE REQUESTED RESOURCES

504] 506
' N
ANY CONSTRAINTS NO
CONSTRAINT SATISFIED

T0 BE PROCESSED
?

508
\

GET NEXT CONSTRAINT

WO 96/28784

524

13/33

REQUIRES
CONTAINER
?

514

REQUIRES
CONNECTION
?

REQUIRES
COMPONENT
?

NO

PCT/US96/03406

512
\

| SATISFY CONTAINER
CONSTRAINT

516
N

SATISFY CONNECTION
CONSTRAINT

520
N

SATISFY COMPONENT
CONSTRAINT

CONSTRAINT
SATISFIED
?

NO

N

CONSTRAINT CAN NOT BE SATISFIED;

REMOVE NEW INSTANCE FROM
MODIFICATIONS LIST

526

|RHMW'

FIG. 8(2)

WO 96/28784 PCT/US96/03406

14/33

(Saf/'sfyConnecf/'onCons{rainj F / G . QA (7)

280
N ‘

SELECT A TARGET
COMPONENT AND CREATE
A LIST OF /TS PORTS

282
N

ALLOCATE REQUESTED RESOURCES

284
N 1

CandidatePorts(portList)

IDENTIFY UNCONNECTED PORTS THAT ARE
ACCESSIBLE FROM THE TARGET COMPONENT

286
N

IDENTIFY CANDIDATE LOCAL PORTS (L.E.

THOSE PORTS THAT ARE UNCONNECTED
AND HAVE THE APPROPRIATE DATATYPE)

288
N \

IDENTIFY CANDIDATE
CONNECTORS

292
2

REQUEST FAILED

290

HAVE ALL CONNECTORS
BEEN TESTED
?

WO 96/28784 PCT/US96/03406

15/33

{

SELECT NEXT CONNECTOR
294 " CANDIDATE

296

CAN PHYSICAL TYPE OF CONNECTOR'S

PORT! CONNECT WITH PHYSICAL TYPE

OF TARGET PORT
?

298

CAN PHYSICAL TYPE OF CONNECTOR'S

PORTZ CONNECT WITH PHYSICAL TYPE

OF LOCAL PORT
?

DOES A TRANSFER PATH

EXIST BETWEEN PORT!

AND PORTZ
?

YES

302
N
ALLOCATE REQUESTED
RESOURCE
304
N

CONNECT TARGET PORT TO PORT OF
CONNECTOR AND CONNECT LOCAL PORT
T0 PORT OF CONNECTOR

o5 7o) FIG. 9A(2)

WO 96/28784

(CandidatePorts(lis()J

PCT/US96/03406

16/33

thePort = NEXT IN PORT LIST

312

IS THE PORT
CONNECTED
?

newPort = PORT TO WHICH
thePort IS CONNECTED

320
1 N

CREATE newL/ST FOR ALL PORTS
TO WHICH newPort TRANSFERS

J22

DOES newlList
CONTAIN A PORT
OF THE REQUESTING
COMPONENT
2

J24
N
Lw CandidatePorts(list)

thePort THE RIGHT
DATATYPE OR ARE CONVERSIONS

ALLOWED
2

NO

s J18

\

ADD thePort TO THE
candidatePortList

326
N

CONNECTION ALREADY EXISTS

J28

l RETURN '

FIG. 9B

WO 96/28784

FIG. 10(1) >

PCT/US96/03406

17733

[ES TABLISH_SET_ COVEI Ra

450

IDENTIFY PRODUCTS THAT CAN
COVER SOME SUBSET OF
COMPONENT INSTANCES IN THE
CURRENT CONFIGURATION

474
N

ANY PRODUCTS
IDENTIFIED
?

456

CREATE PRIORITY OF THESE
PRODUCTS BASED ON THE NUMBER
OF INSTANCES THAT CAN BE
COVERED BY MAPPING THE
PRODUCTS ONTO THE SYSTEM

IDENTIFY PRODUCTS
THAT CAN
COVER PRODUCTS
IN THE CURRENT
CONFIGURATION

458

ANY INSTANCES NOT
COVERED
-7

YES

460
r N

GET PRODUCT FROM
PRIORITIZED PRODUCT LIST

WO 96/28784

PCT/US96/03406

18/33

462

DO ALL REQUIRED
ELEMENTS EXIST
?

464

IDENTIFY ALL OF THE
REMAINING INSTANCES THAT
CAN BE COVERED BY THE

CURRENT PRODUCT

ANY INSTANCES
IDENTIFIED
?

468
ANY PRODUCT OPTION

RESTRICTIONS THAT
ARE NOT MET
?

470

ALL STRUCTURAL

CONTENTS IDENTIFIED
?

472

FIG. 10(2)

MARK THE COVERED
INSTANCES AS COVERED

PCT/US96/03406

WO 96/28784

Ll

19/33

Ol

085 ~

D T R T e] =
U oesIN __ 77 cels
- >\ 1
| 985—[(1s0s) dnxova
g IVl gN-525
& y =L (150) IS] HHIS A
PP M A £ xsi0 awh-gn-ses HAIS i WIS Wi
g8 ¢ (31 _3a15) 39v0 ¥ 04V08 NOISNYJXT AHONIH =075

- 9/§ 249
V995 855
: W 095
: 04v08 0301 VAT \
A %5 gg 4G z6¢ [qyv08 Ndo 99/2Xa9sk _
1\l J _ B
_ 95 296
(1] VD NHOMIIN | soc
& 1505 1SV4
| ANIS AL | WS Wi
895
ATddNS (W30 33S) (130 335) O LS nl L_mws i |
HIMOd V0 INHA | | _a¥vY08 WILSAS [(w130 335) a4 NOISNVIXT AYOWIA |
5 SISSYHD 05v08_NIvi
smopulff suondpy waysAS yp3 9

WO 96/28784 PCT/US96/03406

20/33

FIG. 12(1)

602

USE MODEL
MAINTENANCE

604 SUBSYSTEM
?

N

ENTER MODEL DEFINITION
USING MODEL [ANGUAGE

606

LMODEL MAINTENANCE J
UBSYSTEM

END .

608
N

DISPLAY GRAPHIC
REPRESENTATION OF EMPTY
OR EXISTING MODEL

610
N

EDIT MODEL ELEMENTS,
CONSTRAINTS, AND/OR
STRUCTURE

WO 96/28784

21/33

PCT/US96/03406

CONFIGURATION
OVERVIEW 10
600

N 1

READ MODEL DEFINITION F / G’ 72 (‘3)

CONFIGURATION GENERATION
14 AND REPORTING SUBSYSTEM

632
N

634
N

EXISTING SYSTEM
?

UPGRADING

CREATE NEW INSTANCE

AT "SYSTEM”

636
N

DISPLAY INPUT TERMS
FOR COMPONENT AND/OR
RESOURCE REQUESTS

REQUESTS
COMPLETED
?

- EXISTING "SYSTEM™ AND

SET SYSTEM INSTANCE 10
FREEZE ITS ELEMENTS

WO 96/28784

PCT/US96/03406

22/33

FIG. 12(5)

16

BUNDLING/QUOTING
SUBSYSTEM

660
3

BUNDLER
(La_EstablishSetCovers)

662
N

QUOTER

664

DISPLAY QUOTE

CONFIGURATION
MODIFICATIONS
?

668
2

CONFIGURATION GENERATION
AND REPORTING SUBSYSTEM

WO 96/28784 PCT/US96/03406

23/33

612

Write INTEGRITY
ProductBase INTEGRITY,
OR Debugger

ProductBase

618
N

READ REQUESTS FROM
REQUEST FILE

Debugger

616 614
N w N
DETERMINE PARSE FILE DETERMINE
INTEGRITY GIVEN ProductBase INTEGRITY
MODIFICATIONS GIVEN MODIFICATIONS
620
N 1

CONFIGURATION GENERATION
AND REPORTING SUBSYSTEM

!

J%/
YES
2 < MODIFY

?

MODEL

624

N 606
GENERATE MODEL DEFINITION
STATEMENTS USING MODEL END
LANGUAGE

FIG. 12(2)

WO 96/28784

24/33

540\ *

CONFIGURATION ENGINE

PCT/US96/03406

INCLUDE ONLY THAT PORTION THAT
MAY BE FEASIBLY ADDED GIVEN
THE CURRENT CONFIGURATION

DISPLAY CONFIGURED 650
SYSTEM
/[D/SP[AY REPORTS
CONFIGURATION
MODIFICATIONS
?
REPORT
REPORTING
OR QUOTE
?
648 QUOTE
\
BUNDLING /QUOTING
SUBSYSTEM
N
IDENTIFY SUBSET OF MODEL T0 F / G 72 (4)

WO 96/28784

FIG. 13A

NO

25/33

PCT/US96/03406

101

Start searching
the Request tree

'

Find the root
node of the
tree

'

Search for the first
Request diverging
from the root node

Is the first

l

Request
matched?

Add Request List
to the tree
diverging from
the root node

YES

o]

185

187

Configure the
Request List
and add to
Cache

Search for the next
Request diverging from the
first Request

(o

WO 96/28784 PCT/US96/03406
26/33

FIG. 13B

15

NO

Does this
Request match?

r

Add the remaining
Request List to the 117
tree diverging from YES

the present node

o~

Y
Configure the 119
Request List Search for the next Z
and add to Request diverging from
Cache this Request

. NO Does this
Request match?

121 @ 123
\ 4

Add the remaining
Request List to the
tree diverging from [N\124

the present node

()

WO 96/28784 PCT/US96/03406

27/33

125

Configure the
Request List
and add to
Cache

Were all requests
processed?

R GD

FIG. 13C

WO 96/28784 PCT/US96/03406

28/33

Root

Node \\\\

R1 R14
\HIS

R2 “RY l
\ R16

R3 R‘B\

34\ R11

R5 R7 R12

R6 R8 R13

FIG. 14

2
WO 96/28784 9/33 PCT/US96/03406

Start searching 201

the Request tree

I

Find the root
node of the _—285

tree

!

Search for the first
Request diverging
from the root node

285

2087

NO Is the first
Request

matched?

'

Generate a
Configuration for the
new Request List

YES

\289

\ 4

Search for the next 211
Request diverging from the |~
first Request

213 End

FIG. 15A

WO 96/28784 PCT/US96/03406
30/33

FIG. 158

15

NO

Does this
Request match?

Recall the YES
Configuration for the /216
Matching Requests

! '
219

Search for the next

Generate a | :
Configuration for Request diverging from <
the Unmatched this Request
Requests

/

217

(o
v

Recall the
Configuration for the
Matching Requests

Does this
Request match?

NO

WO 96/28784 PCT/US96/03406

31/33

225
/

Generate a
Configuration for
the Unmatched
Requests

Were all requests
processed?

FIG. 15C

WO 96/28784 PCT/US96/03406

32/33

Pi »01
02

P2 03
04

P3 05

FIG. 16

WO 96/28784

33/33

01 P1
02
03 P2
04
05 »P3

FIG. 17

PCT/US96/03406

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US96/03406

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GOGF 15/177
US CL : 395/500

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 395/500

Documentation searched other than minimum documentation to the extent that such documents are included in the ficlds searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US, A, 4,704,676 (FLANAGAN ET AL) 03 November 1987, | 1-22
See the entire Document.
A US, A, 4, 367,473 (CHU ET AL) 22 NOVEMBER 1994, See| 1-22
the Entire Document.
A US, A, 5,367,635 (BAUER ET AL) November 22, 1994, See| 1-22

the Entire Document.

Further documents are listed in the continuation of Box C.

D Sec patent family annex.

i Special categorics of cited documents: T later document published after the mnoulmm(dmmptwmy
ers N e ducnndnotmconﬂnawnhlheupplnmblncmdmuﬂm
A 1 state of the art which is not considered principle or theory underlying the invention
lobep.nofpamcuhrnkvnoe
— . : . X document of particular r ; the claimed & cannot be
E earlier document published on or afler the international filing date considered novel or cannot be eomnduedlomvolvemnvumveﬂq
L document which may throw doubts oa priority claim(s) or wlnch i when the document is taken slone
cited to blish the date of r other e o £ particul . . the claimed i 10 cannot be
special reason ified t of
(08 spec) considered to involve an mvawve step when the documml]
‘0 document referring to an oral disclosure, use, exhibition or other combined with one or more other such d such
means being obvious to a person skilled in the ant
°P* d blished prior to the & I filing date but later than g document membes of the same patent family
lhcpmntyd.nechmed °

Date of the actual com:pletion of the international search

29 MAY 1996

Date of mailing of the international search report

09 JUL 1996

Name and mailing address of the ISA/US
Commuuoner of Patents and Trademarks

Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230 Telephone No. (703) 305-9694

Form PCT/ISA/210 (second sheet)(July 1992)x

INTERNATIONAL SEARCH REPORT International application No.
PCT/US96/03406

B FIELDS SEARCHED
Electronic data bases consulted (Name of data base and where practicable terms used):

APS
11 = host(10a)configur####, 12 =configur####(10a)(pc or computer); 13 =request###; 14 =cache#; L5 =(path# or
bus##)(30a)(branch### or treck); 16=match###(10a)(path# or bus#¥); 1

Form PCT/ISA/210 (extra sheet)(July 1992)«

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

