

Office de la Propriété

Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2972265 A1 2016/06/30

(21) **2 972 265**

(12) **DEMANDE DE BREVET CANADIEN**
CANADIAN PATENT APPLICATION

(13) **A1**

(86) Date de dépôt PCT/PCT Filing Date: 2015/12/28
(87) Date publication PCT/PCT Publication Date: 2016/06/30
(85) Entrée phase nationale/National Entry: 2017/06/23
(86) N° demande PCT/PCT Application No.: US 2015/067561
(87) N° publication PCT/PCT Publication No.: 2016/106406
(30) Priorités/Priorities: 2014/12/26 (JP2014-266198);
2015/06/24 (US62/184,239); 2015/12/13 (US62/266,664)

(51) Cl.Int./Int.Cl. *A61K 31/7088* (2006.01),
A61K 31/713 (2006.01), *A61K 48/00* (2006.01),
C12N 15/113 (2010.01)

(71) Demandeur/Applicant:
NITTO DENKO CORPORATION, JP

(72) Inventeurs/Inventors:
YING, WENBIN, US;
MINOMI, KENJIROU, JP;
HARBORTH, JENS, US;
TAKAHASHI, HIROKAZU, JP;
TERADA, ERIKA, JP;
ZHANG, JUN, US;
AHMADIAN, MOHAMMAD, US

(74) Agent: BORDEN LADNER GERVAIS LLP

(54) Titre : AGENTS A BASE D'ARN UTILISABLES EN VUE DE LA MODULATION DU GENE GST-PI
(54) Title: RNA AGENTS FOR GST-PI GENE MODULATION

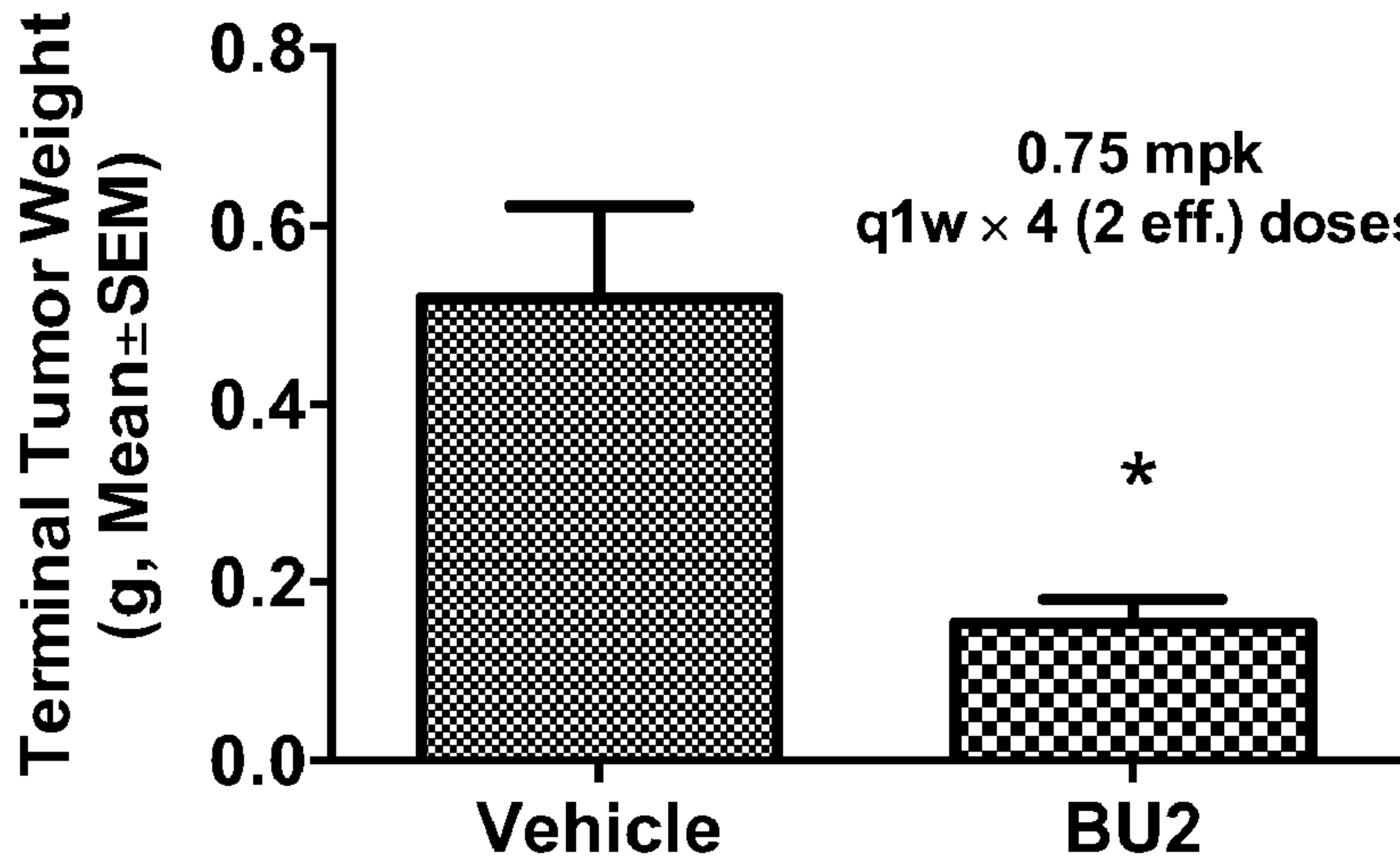


FIG. 4

(57) Abrégé/Abstract:

This invention provides compounds, compositions and methods for modulating the expression of human GST-π using RNA interference. The RNA interference molecules can be used in methods for preventing or treating diseases such as malignant

(57) Abrégé(suite)/Abstract(continued):

tumor. A nucleic acid molecule can have a) a polynucleotide sense strand and a polynucleotide antisense strand; b) each strand of the molecule being from 15 to 30 nucleotides in length; c) a contiguous region of from 15 to 30 nucleotides of the antisense strand being complementary to a sequence of an mRNA encoding GST- π ; and d) at least a portion of the sense strand can be complementary to at least a portion of the antisense strand, and the molecule has a duplex region of from 15 to 30 nucleotides in length.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2016/106406 A3

(43) International Publication Date
30 June 2016 (30.06.2016)(51) International Patent Classification:
A61K 31/7088 (2006.01) *A61K 48/00* (2006.01)
A61K 31/713 (2006.01) *C12N 15/113* (2010.01)(21) International Application Number:
PCT/US2015/067561(22) International Filing Date:
28 December 2015 (28.12.2015)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
2014-266198 26 December 2014 (26.12.2014) JP
62/184,239 24 June 2015 (24.06.2015) US
62/266,664 13 December 2015 (13.12.2015) US(71) Applicant: NITTO DENKO CORPORATION [JP/JP];
1-1-2 Shimohozumi, Osaka, Ibaraki 5678680 (JP).

(72) Inventor; and

(71) Applicant (for US only): YING, Wenbin [US/US]; 501
Via Del Monte, Oceanside, California 92058 (US).(72) Inventors: MINOMI, Kenjirou; Nitto Denko Corporation,
1-1-2 Shimohozumi, Osaka, Ibaraki 5678680 (JP).
HARBORTH, Jens; 2432 Lapis Road, Carlsbad, California
92009 (US). TAKAHASHI, Hirokazu; Nitto Denko Corporation,
1-1-2 Shimohozumi, Oasaka, Ibaraki5678680 (JP). TERADA, Erika; Nitto Denko Corporation,
1-1-2- Shimohozumi, Osaka, Ibaraki 5678680 (JP).
ZHANG, Jun; 12166 Darkwood Rd, San Diego, California
92129 (US). AHMADIAN, Mohammad; 3230 Rancho
Quartilo, Carlsbad, California 92009 (US).(74) Agent: ECKMAN, Richard R.; 2225 East Bayshore
Road, Suite 200, Palo Alto, California 94303 (US).(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

[Continued on next page]

(54) Title: RNA AGENTS FOR GST-PI GENE MODULATION

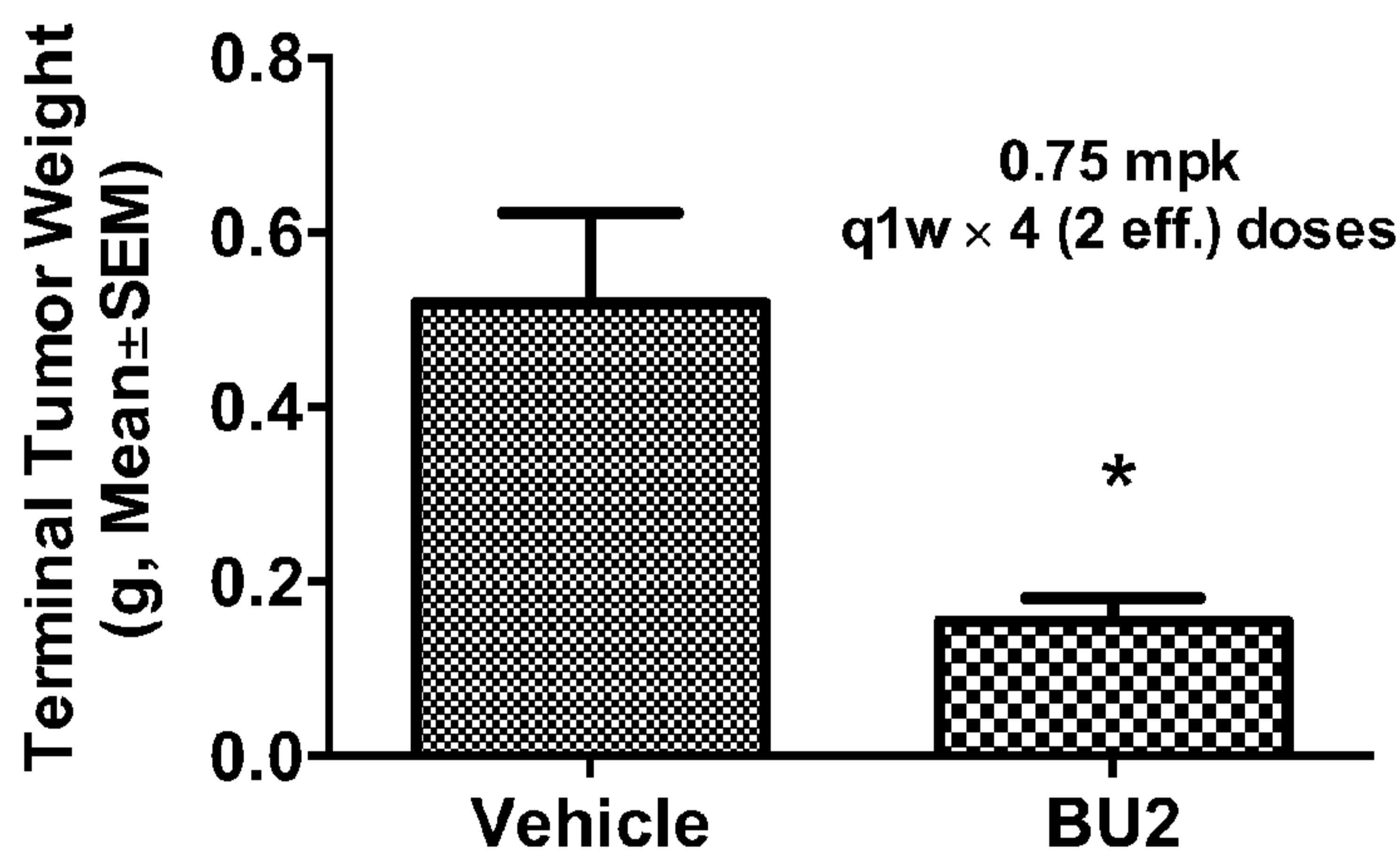


FIG. 4

WO 2016/106406 A3

(57) Abstract: This invention provides compounds, compositions and methods for modulating the expression of human GST- π using RNA interference. The RNA interference molecules can be used in methods for preventing or treating diseases such as malignant tumor. A nucleic acid molecule can have a) a polynucleotide sense strand and a polynucleotide antisense strand; b) each strand of the molecule being from 15 to 30 nucleotides in length; c) a contiguous region of from 15 to 30 nucleotides of the antisense strand being complementary to a sequence of an mRNA encoding GST- π ; and d) at least a portion of the sense strand can be complementary to at least a portion of the antisense strand, and the molecule has a duplex region of from 15 to 30 nucleotides in length.

WO 2016/106406 A3

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

- with international search report (Art. 21(3))
- with sequence listing part of description (Rule 5.2(a))

(88) Date of publication of the international search report: 3 November 2016

RNA AGENTS FOR GST-PI GENE MODULATION

TECHNICAL FIELD OF THE INVENTION

[0001] This invention relates to the fields of biopharmaceuticals and therapeutics composed of nucleic acid based molecules. More particularly, this invention relates to compounds and compositions utilizing RNA interference (RNAi) for modulating the expression of human GST- π .

SEQUENCE LISTING

[0002] This application includes a Sequence Listing submitted electronically as an ASCII file created on December 23, 2015, named ND5123202WO_SL.txt, which is 442,955 bytes in size, and is hereby incorporated by reference in its entirety.

BACKGROUND OF THE INVENTION

[0003] Various human cancer tissues have been found to correlate with the appearance of mutated KRAS gene. In some cases, the tissues also present an elevated level of Glutathione S-Transferase Pi (GST- π) expression. (Miyanishi et al., Gastroenterology, 2001, Vol. 121:865-874, Abstract) For example, elevated serum GST- π levels were observed in patients with various gastrointestinal malignancies. (Niitsu et al., Cancer, 1989, Vol.63, No. 2, pp. 317-323, Abstract)

[0004] GST- π is a member of a GST family of enzymes that play a role in detoxification by catalyzing the conjugation of hydrophobic and electrophilic compounds with reduced glutathione. GST- π expression can be reduced in vitro with a siRNA. (Niitsu et al., US 2014/0315975 A1)

[0005] Therapeutics for inhibition of GST- π expression will require highly potent siRNA sequences and structures.

[0006] What is needed are siRNA sequences, compounds and structures for inhibition of GST- π expression.

BRIEF SUMMARY

[0007] This invention relates to compounds, compositions and methods for modulating the expression of human GST- π using RNA interference.

[0008] In some embodiments, this invention provides molecules for RNA interference gene silencing of GST- π .

[0009] In further embodiments, the structures, molecules and compositions of this invention can be used in methods for preventing or treating diseases, or ameliorating symptoms of conditions or disorders associated with GST- π , including malignant tumor.

[0010] Embodiments of this invention include the following:

[0011] A nucleic acid molecule, wherein:

- a) the molecule has a polynucleotide sense strand and a polynucleotide antisense strand;
- b) each strand of the molecule is from 15 to 30 nucleotides in length;
- c) a contiguous region of from 15 to 30 nucleotides of the antisense strand is complementary to a sequence of an mRNA encoding GST- π ;
- d) at least a portion of the sense strand is complementary to at least a portion of the antisense strand, and the molecule has a duplex region of from 15 to 30 nucleotides in length.

[0012] In some embodiments, the nucleic acid molecule can have contiguous region of from 15 to 30 nucleotides of the antisense strand that is complementary to a sequence of an mRNA encoding GST- π is located in the duplex region of the molecule.

[0013] In additional embodiments, the nucleic acid molecule can have a contiguous region of from 15 to 30 nucleotides of the antisense strand that is complementary to a sequence of an mRNA encoding GST- π .

[0014] Compounds of this invention can have a sequence of an mRNA encoding GST- π that is selected from the group consisting of 5'UTR positions 1 to 249 of SEQ ID NO:1, CDS positions 250 to 882 of SEQ ID NO:1, and 3'UTR positions 883 to 986 of SEQ ID NO:1.

[0015] In certain embodiments, each strand of the nucleic acid molecule can be from 18 to 22 nucleotides in length. The duplex region of the nucleic acid molecule can be 19 nucleotides in length.

[0016] In alternative forms, the nucleic acid molecule can have a polynucleotide sense strand and a polynucleotide antisense strand that are connected as a single strand, and form a duplex region connected at one end by a loop.

[0017] Some embodiments of a nucleic acid molecule of this disclosure can have a blunt end. In certain embodiments, a nucleic acid molecule can have one or more 3' overhangs.

[0018] This invention provides a range of nucleic acid molecules that are RNAi molecules active for gene silencing. The inventive nucleic acid molecules can be a dsRNA, a siRNA, a micro-RNA, or a shRNA active for gene silencing, as well as a DNA-directed RNA (ddRNA), Piwi-interacting RNA (piRNA), or a repeat associated siRNA (rasiRNA). The nucleic acid molecules can be active for inhibiting expression of GST- π .

[0019] Embodiments of this invention further provide nucleic acid molecules having an IC50 for knockdown of GST- π of less than 100 pM.

[0020] This invention further contemplates compositions containing one or more of the inventive nucleic acid molecules, along with a pharmaceutically acceptable carrier. In certain embodiments, the carrier can be a lipid molecule or liposome.

[0021] The compounds and compositions of this invention are useful in methods for preventing or treating a GST- π associated disease, by administering a compound or composition to a subject in need.

[0022] The methods of this invention can utilize the inventive compounds for preventing or treating malignant tumor. The malignant tumor can be presented in various diseases, for example, cancers associated with GST- π expression, cancers caused by cells expressing mutated KRAS, sarcomas, fibrosarcoma, malignant fibrous histiocytoma, liposarcoma, rhabdomyosarcoma, leiomyosarcoma, angiosarcoma, Kaposi's sarcoma, lymphangiosarcoma, synovial sarcoma, chondrosarcoma, osteosarcoma, carcinomas,

brain tumor, head and neck cancer, breast cancer, lung cancer, esophageal cancer, stomach cancer, duodenal cancer, appendix cancer, colorectal cancer, rectal cancer, liver cancer, pancreatic cancer, gallbladder cancer, bile duct cancer, anus cancer, kidney cancer, urethral cancer, urinary bladder cancer, prostate cancer, testicular cancer, uterine cancer, ovary cancer, skin cancer, leukemia, malignant lymphoma, epithelial malignant tumors, and non-epithelial malignant tumors.

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] FIG. 1: Fig. 1 shows SEQ ID NO: 1, which is the nucleic acid sequence of target human glutathione S -transferase pi (human GST- π) mRNA, disclosed in GenBank accession number NM_000852.3 (hGSTP1), which is 986 nucleotides in length.

[0024] FIG. 2: Fig. 2 shows in vivo knockdown efficacy for GST- π siRNA. Dose dependent knockdown of GST- π mRNA was observed in vivo with siRNA targeted to GST- π , as shown in Fig. 2.

[0025] FIG. 3: Fig. 3 shows inhibition of proliferation by GST- π siRNA. Dose-dependent inhibition of proliferation was observed in an A549 cell line in vitro with siRNA targeted to GST- π , as shown in Fig. 3.

[0026] FIG. 4: Fig. 4 shows tumor inhibition efficacy for GST- π siRNA. A pancreatic cancer xenograft model was utilized with a relatively low dose at 0.75 mg/kg of siRNA targeted to GST- π . The GST- π siRNA demonstrated significant tumor inhibition efficacy.

DETAILED DESCRIPTION OF THE INVENTION

[0027] This invention relates to compounds, compositions and methods for nucleic acid based therapeutics for modulating expression of GST- π .

[0028] In some embodiments, this invention provides molecules active in RNA interference, as well as structures and compositions that can silence expression of GST- π .

[0029] The structures and compositions of this disclosure can be used in preventing or treating various diseases such as malignant tumor.

[0030] In further embodiments, this invention provides compositions for delivery and uptake of one or more therapeutic RNAi molecules of this invention, as well as methods of use thereof. The RNA-based compositions of this invention can be used in methods for preventing or treating malignant tumors, such as cancers.

[0031] Therapeutic compositions of this invention include nucleic acid molecules that are active in RNA interference. The therapeutic nucleic acid molecules can be targeted to GSTP1 (GST- π) for gene silencing.

[0032] In various embodiments, this invention provides a range of molecules that can be active as a small interfering RNA (siRNA), and can regulate or silence GST- π gene expression.

[0033] The siRNAs of this invention can be used for preventing or treating malignant tumors.

[0034] Embodiments of this invention further provide a vehicle, formulation, or lipid nanoparticle formulation for delivery of the inventive siRNAs to subjects in need of preventing or treating a malignant tumor. This invention further contemplates methods for administering siRNAs as therapeutics to mammals.

[0035] The therapeutic molecules and compositions of this invention can be used for RNA interference directed to preventing or treating a GST- π associated disease, by administering a compound or composition to a subject in need.

[0036] The methods of this invention can utilize the inventive compounds for preventing or treating malignant tumor. The malignant tumor can be presented in various diseases, for example, cancers that highly expressing GST- π , cancers caused by cells expressing mutated KRAS, sarcomas, fibrosarcoma, malignant fibrous histiocytoma, liposarcoma, rhabdomyosarcoma, leiomyosarcoma, angiosarcoma, Kaposi's sarcoma, lymphangiosarcoma, synovial sarcoma, chondrosarcoma, osteosarcoma, carcinomas, brain tumor, head and neck cancer, breast cancer, lung cancer, esophageal cancer, stomach cancer, duodenal cancer, colorectal cancer, liver cancer, pancreatic cancer, gallbladder cancer, bile duct cancer, kidney cancer, urethral cancer, bladder cancer,

prostate cancer, testicular cancer, uterine cancer, ovary cancer, skin cancer, leukemia, malignant lymphoma, epithelial malignant tumors, and non-epithelial malignant tumors.

[0037] In certain embodiments, a combination of therapeutic molecules of this invention can be used for silencing or inhibiting GST- π gene expression.

[0038] This invention provides a range of RNAi molecules, where each molecule has a polynucleotide sense strand and a polynucleotide antisense strand; each strand of the molecule is from 15 to 30 nucleotides in length; a contiguous region of from 15 to 30 nucleotides of the antisense strand is complementary to a sequence of an mRNA encoding GST- π ; and at least a portion of the sense strand is complementary to at least a portion of the antisense strand, and the molecule has a duplex region of from 15 to 30 nucleotides in length.

[0039] A RNAi molecule of this invention can have a contiguous region of from 15 to 30 nucleotides of the antisense strand that is complementary to a sequence of an mRNA encoding GST- π , which is located in the duplex region of the molecule.

[0040] In some embodiments, a RNAi molecule can have a contiguous region of from 15 to 30 nucleotides of the antisense strand that is complementary to a sequence of an mRNA encoding GST- π .

[0041] Embodiments of this invention may further provide methods for preventing, treating or ameliorating one or more symptoms of malignant tumor, or reducing the risk of developing malignant tumor, or delaying the onset of malignant tumor in a mammal in need thereof.

[0042] GST- π and RNAi molecules

[0043] Fig. 1 shows the nucleic acid sequence of an example target human glutathione S-transferase pi (human GST- π) mRNA, which is disclosed in GenBank accession number NM_000852.3 (hGSTP1), and is 986 nucleotides in length (SEQ ID NO: 1).

[0044] One of ordinary skill in the art would understand that a reported sequence may change over time and to incorporate any changes needed in the nucleic acid molecules herein accordingly.

[0045] Embodiments of this invention can provide compositions and methods for gene silencing of GST- π expression using small nucleic acid molecules. Examples of nucleic acid molecules include molecules active in RNA interference (RNAi molecules), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules, as well as DNA-directed RNAs (ddRNA), Piwi-interacting RNAs (piRNA), and repeat associated siRNAs (rasiRNA). Such molecules are capable of mediating RNA interference against GST- π gene expression.

[0046] The composition and methods disclosed herein can also be used in treating various kinds of malignant tumors in a subject.

[0047] The nucleic acid molecules and methods of this invention may be used to down regulate the expression of genes that encode GST- π .

[0048] The compositions and methods of this invention can include one or more nucleic acid molecules, which, independently or in combination, can modulate or regulate the expression of GST- π protein and/or genes encoding GST- π proteins, proteins and/or genes encoding GST- π associated with the maintenance and/or development of diseases, conditions or disorders associated with GST- π , such as malignant tumor.

[0049] The compositions and methods of this invention are described with reference to exemplary sequences of GST- π . A person of ordinary skill in the art would understand that various aspects and embodiments of the invention are directed to any related GST- π genes, sequences, or variants, such as homolog genes and transcript variants, and polymorphisms, including single nucleotide polymorphism (SNP) associated with any GST- π genes.

[0050] In some embodiments, the compositions and methods of this invention can provide a double-stranded short interfering nucleic acid (siRNA) molecule that downregulates the expression of a GST- π gene, for example human GST- π .

[0051] A RNAi molecule of this invention can be targeted to GST- π and any homologous sequences, for example, using complementary sequences or by incorporating non-canonical base pairs, for example, mismatches and/or wobble base pairs, that can provide additional target sequences.

[0052] In instances where mismatches are identified, non-canonical base pairs, for example, mismatches and/or wobble bases can be used to generate nucleic acid molecules that target more than one gene sequence.

[0053] For example, non-canonical base pairs such as UU and CC base pairs can be used to generate nucleic acid molecules that are capable of targeting sequences for differing GST- π targets that share sequence homology. Thus, a RNAi molecule can be targeted to a nucleotide sequence that is conserved between homologous genes, and a single RNAi molecule can be used to inhibit expression of more than one gene.

[0054] In some aspects, the compositions and methods of this invention include RNAi molecules that are active against GST- π mRNA, where the RNAi molecule includes a sequence complementary to any mRNA encoding a GST- π sequence.

[0055] In some embodiments, a RNAi molecule of this disclosure can have activity against GST- π RNA, where the RNAi molecule includes a sequence complementary to an RNA having a variant GST- π encoding sequence, for example, a mutant GST- π gene known in the art to be associated with malignant tumor.

[0056] In further embodiments, a RNAi molecule of this invention can include a nucleotide sequence that can interact with a nucleotide sequence of a GST- π gene and mediate silencing of GST- π gene expression.

[0057] Examples of RNAi molecules of this invention targeted to GST- π mRNA are shown in Tables 1 and 2.

Table 1: RNAi molecule sequences for GST- π

Ref Pos	SEQ ID NO	SENSE STRAND (5'-->3') SEQ ID NOS:2 to 608	SEQ ID NO	ANTISENSE STRAND (5'-->3') SEQ ID NOS:609 to 1215
232	2	GCCGCAGUCUUCGCCACCAtt	609	UGGUGGGCGAAGACUGCGGCgg
233	3	CCGCAGUCUUCGCCACCAUtt	610	AUGGUGGGCGAAGACUGCGGcg
234	4	CGCAGUCUUCGCCACCAUGtt	611	CAUGGUGGGCGAAGACUGCGgc
235	5	GCAGUCUUCGCCACCAUGCtt	612	GCAUGGUGGGCGAAGACUGCgg
236	6	CAGUCUUCGCCACCAUGCtt	613	GGCAUGGUGGGCGAAGACUGcg

Ref Pos	SEQ ID NO	SENSE STRAND (5'-->3') SEQ ID NOS:2 to 608	SEQ ID NO	ANTISENSE STRAND (5'-->3') SEQ ID NOS:609 to 1215
237	7	AGUCUUCGCCACCAUGCCGtt	614	CGGCAUGGUGGCGAAGACUgc
238	8	GUCUUCGCCACCAUGCCGCTt	615	GCGGCAUGGUGGCGAAGACtg
239	9	UCUUCGCCACCAUGCCGCCtt	616	GGCGGCAUGGUGGCGAAGAct
240	10	CUUCGCCACCAUGCCGCCtt	617	GGGCGGCAUGGUGGCGAAGAc
241	11	UUCGCCACCAUGCCGCCUtt	618	AGGGCGGCAUGGUGGCGAAGa
242	12	UCGCCACCAUGCCGCCUAtt	619	UAGGGCGGCAUGGUGGCGAag
243	13	CGCCACCAUGCCGCCUACtt	620	GUAGGGCGGCAUGGUGGCGaa
244	14	GCCACCAUGCCGCCUACAtt	621	UGUAGGGCGGCAUGGUGGCga
245	15	CCACCAUGCCGCCUACACtt	622	GUGUAGGGCGGCAUGGUGGcg
246	16	CACCAUGCCGCCUACACCCtt	623	GGUGUAGGGCGGCAUGGUGgc
247	17	ACCAUGCCGCCUACACCGtt	624	CGGUGUAGGGCGGCAUGGUGgg
248	18	CCAUGCCGCCUACACCGUtt	625	ACGGUGUAGGGCGGCAUGGtg
249	19	CAUGCCGCCUACACCGUGtt	626	CACGGUGUAGGGCGGCAUGgt
250	20	AUGCCGCCUACACCGUGGtt	627	CCACGGUGUAGGGCGGCAUgg
251	21	UGCCGCCUACACCGUGGUtt	628	ACCACGGUGUAGGGCGGCAtg
252	22	GCCGCCUACACCGUGGUtt	629	GACCACGGUGUAGGGCGGCat
253	23	CCGCCUACACCGUGGUtt	630	AGACCACGGUGUAGGGCGGca
254	24	CGCCCUACACCGUGGUtt	631	UAGACCACGGUGUAGGGCGgc
255	25	GCCCUACACCGUGGUtt	632	AUAGACCACGGUGUAGGGCgg
256	26	CCCUACACCGUGGUtt	633	AAUAGACCACGGUGUAGGGcg
257	27	CCUACACCGUGGUtt	634	AAAAGACCACGGUGUAGGgc
258	28	CUACACCGUGGUtt	635	GAAAAGACCACGGUGUAGGgg
259	29	UACACCGUGGUtt	636	GGAAAAGACCACGGUGUAgg
260	30	ACACCGUGGUtt	637	GGGAAAAGACCACGGUGUag
261	31	CACCGUGGUtt	638	UGGGAAAAGACCACGGUGta
262	32	ACCGUGGUtt	639	CUGGGAAAAGACCACGGUgt
263	33	CCGUGGUtt	640	ACUGGGAAAAGACCACGGtg
264	34	CGUGGUtt	641	AACUGGGAAAAGACCACGgt
265	35	GUGGUtt	642	GAACUGGGAAAAGACCACGgg

Ref Pos	SEQ ID NO	SENSE STRAND (5'-->3') SEQ ID NOS:2 to 608	SEQ ID NO	ANTISENSE STRAND (5'-->3') SEQ ID NOS:609 to 1215
266	36	UGGUCUAUUUCCAGUUCGtt	643	CGAACUGGGAAAUAGACCACg
267	37	GGUCUAUUUCCAGUUCGAtt	644	UCGAACUGGGAAAUAGACCac
268	38	GUCUAUUUCCAGUUCGAGGtt	645	CUCGAACUGGGAAAUAGACca
269	39	UCUAUUUCCAGUUCGAGGtt	646	CCUCGAACUGGGAAAUAGAcc
270	40	CUAUUCCAGUUCGAGGCTt	647	GCCUCGAACUGGGAAAUAGac
271	41	UAUUUCCAGUUCGAGGCCtt	648	GGCCUCGAACUGGGAAAUAg
272	42	AUUUCCAGUUCGAGGCCGtt	649	CGGCCUCGAACUGGGAAAUag
273	43	UUUCCAGUUCGAGGCCGtt	650	GCGGCCUCGAACUGGGAAAta
274	44	UUCCAGUUCGAGGCCGCUtt	651	AGCGGCCUCGAACUGGGAAat
275	45	UCCCAGUUCGAGGCCGCUtt	652	CAGCGGCCUCGAACUGGGAaa
276	46	CCCAGUUCGAGGCCGCUtt	653	GCAGCGGCCUCGAACUGGGaa
277	47	CCAGUUCGAGGCCGCUtt	654	CGCAGCGGCCUCGAACUGGga
278	48	CAGUUCGAGGCCGCUtt	655	GCGCAGCGGCCUCGAACUGgg
279	49	AGUUCGAGGCCGCUtt	656	CGCGCAGCGGCCUCGAACUgg
280	50	GUUCGAGGCCGCUtt	657	CCGCGCAGCGGCCUCGAACt
281	51	UUCGAGGCCGCUtt	658	GCCGCGCAGCGGCCUCGAAct
282	52	UCGAGGCCGCUtt	659	GGCCGCGCAGCGGCCUCGAac
283	53	CGAGGCCGCUtt	660	GGGCCGCGCAGCGGCCUCGaa
284	54	GAGGCCGCUtt	661	AGGGCCGCGCAGCGGCCUCga
285	55	AGGCCGCUtt	662	CAGGGCCGCGCAGCGGCCUCg
286	56	GGCCGCUtt	663	GCAGGGCCGCGCAGCGGCCtc
287	57	GCCGCUtt	664	CGCAGGGCCGCGCAGCGGCct
288	58	CCGCUGCGCCUtt	665	GCGCAGGGCCGCGCAGCGGcc
289	59	CGCUGCGCCUtt	666	UGCGCAGGGCCGCGCAGCGGc
290	60	GCUGCGCCUtt	667	AUGCGCAGGGCCGCGCAGCGgg
291	61	CUGCGCCUtt	668	CAUGCGCAGGGCCGCGCAGCG
292	62	UGCGCCUtt	669	GCAUGCGCAGGGCCGCGCAGCG
293	63	GCGCCUtt	670	AGCAUGCGCAGGGCCGCGCAG
294	64	CGCGCCUtt	671	CAGCAUGCGCAGGGCCGCGca

Ref Pos	SEQ ID NO	SENSE STRAND (5'-->3') SEQ ID NOS:2 to 608	SEQ ID NO	ANTISENSE STRAND (5'-->3') SEQ ID NOS:609 to 1215
295	65	GCAGCCCCUGCGCAUGCUGCtt	672	GCAGCAUGCGCAGGGCCGcgc
296	66	CGGCCUUGCGCAUGCUGCUTt	673	AGCAGCAUGCGCAGGGCCGcg
297	67	GGCCCUGCGCAUGCUGCUGGtt	674	CAGCAGCAUGCGCAGGGCCgc
298	68	GCCCUGCGCAUGCUGCUGGtt	675	CCAGCAGCAUGCGCAGGGCcg
299	69	CCCUGCGCAUGCUGCUGGtt	676	GCCAGCAGCAUGCGCAGGGcc
300	70	CCUGCGCAUGCUGCUGGCAtt	677	UGCCAGCAGCAUGCGCAGGgc
301	71	CUGCGCAUGCUGCUGGCAAGtt	678	CUGCCAGCAGCAUGCGCAGgg
302	72	UGCGCAUGCUGCUGGCAAGAtt	679	UCUGCCAGCAGCAUGCGCAgg
303	73	GCGCAUGCUGCUGGCAAGAUtt	680	AUCUGCCAGCAGCAUGCGCag
304	74	CGCAUGCUGCUGGCAAGAUtt	681	GAUCUGCCAGCAGCAUGCGca
305	75	GCAUGCUGCUGGCAAGAUCAtt	682	UGAUCUGCCAGCAGCAUGCgc
306	76	CAUGCUGCUGGCAAGAUCAAGtt	683	CUGAUCUGCCAGCAGCAUGCg
307	77	AUGCUGCUGGCAAGAUCAAGGtt	684	CCUGAUCUGCCAGCAGCAUgc
308	78	UGCUGCUGGCAAGAUCAAGGtt	685	CCCUGAUCUGCCAGCAGCAtg
309	79	GCUGCUGGCAAGAUCAAGGtt	686	GCCCUGAUCUGCCAGCAGCAt
310	80	CUGCUGGCAAGAUCAAGGtt	687	GGCCUGAUCUGCCAGCAGca
311	81	UGCUGGCAAGAUCAAGGCAtt	688	UGGCCUGAUCUGCCAGCAGc
312	82	GCUGGCAGAUCAGGGCCAGtt	689	CUGGCCUGAUCUGCCAGCag
313	83	CUGGCAGAUCAGGGCCAGAtt	690	UCUGGCCUGAUCUGCCAGca
314	84	UGGCAGAUCAGGGCCAGAGtt	691	CUCUGGCCUGAUCUGCCAgc
315	85	GGCAGAUCAGGGCCAGAGCtt	692	GCUCUGGCCUGAUCUGCCag
316	86	GCAGAUCAGGGCCAGAGCUTt	693	AGCUCUGGCCUGAUCUGCca
317	87	CAGAUCAGGGCCAGAGCUGGtt	694	CAGCUCUGGCCUGAUCUGGcc
318	88	AGAUCAGGGCCAGAGCUGGtt	695	CCAGCUCUGGCCUGAUCUGc
319	89	GAUCAGGGCCAGAGCUGGAtt	696	UCCAGCUCUGGCCUGAUCtgc
320	90	AUCAGGGCCAGAGCUGGAAtt	697	UUCCAGCUCUGGCCUGAUct
321	91	UCAGGGCCAGAGCUGGAAGGtt	698	CUUCCAGCUCUGGCCUGAtc
322	92	CAGGGCCAGAGCUGGAAGGtt	699	CCUUCCAGCUCUGGCCUGAt
323	93	AGGGCCAGAGCUGGAAGGAtt	700	UCCUUCCAGCUCUGGCCUGa

Ref Pos	SEQ ID NO	SENSE STRAND (5'-->3') SEQ ID NOS:2 to 608	SEQ ID NO	ANTISENSE STRAND (5'-->3') SEQ ID NOS:609 to 1215
324	94	GGGCCAGAGCUGGAAGGAGTt	701	CUCCUCCAGCUCUGGCCtgc
325	95	GGCCAGAGCUGGAAGGAGGAGTt	702	CCUCCUCCAGCUCUGGCCct
326	96	GCCAGAGCUGGAAGGAGGAGTt	703	UCCUCCUCCAGCUCUGGCCcc
327	97	CCAGAGCUGGAAGGAGGAGGAGTt	704	CUCCUCCUCCAGCUCUGGCC
328	98	CAGAGCUGGAAGGAGGAGGAGTt	705	CCUCCUCCUCCAGCUCUGGgc
329	99	AGAGCUGGAAGGAGGAGGAGGUTt	706	ACCUCCUCCUCCAGCUCUGgg
330	100	GAGCUGGAAGGAGGAGGAGGAGTt	707	CACCUCCUCCUCCAGCUCtgc
330	101	GAGCUGGAAGGAGGAGGAGGUAtt	708	UACCUCCUCCUCCAGCUCtgc
331	102	AGCUGGAAGGAGGAGGAGGUGGt	709	CCACCUCCUCCUCCAGCUCt
332	103	GCUGGAAGGAGGAGGAGGUGGt	710	ACCACCUCCUCCUCCAGCtc
333	104	CUGGAAGGAGGAGGAGGUGGUGt	711	CACCAACCUCUCCUCCAGct
334	105	UGGAAGGAGGAGGAGGUGGUGAtt	712	UCACCACCUCCUCCUCCAgc
335	106	GGAAGGAGGAGGAGGUGGUGACt	713	GUCACCACCUCCUCCUCCAg
336	107	GAAGGAGGAGGAGGUGGUGACt	714	GGUCACCACCUCCUCCUCCa
337	108	AAGGAGGAGGAGGUGGUGACCGt	715	CGGUCACCACCUCCUCCUCC
338	109	AGGAGGAGGAGGUGGUGACCGU	716	ACGGUCACCACCUCCUCCUtc
339	110	GGAGGAGGAGGUGGUGACCGUG	717	CACGGUCACCACCUCCUCCtt
340	111	GAGGAGGAGGAGGUGGUGACCG	718	CCACGGUCACCACCUCCUCCt
341	112	AGGAGGAGGAGGUGGUGACCGU	719	UCCACGGUCACCACCUCCUcc
342	113	GGAGGAGGAGGUGGUGACCGUG	720	CUCCACGGUCACCACCUCCt
343	114	GAGGAGGAGGUGGUGACCGUGG	721	UCUCCACGGUCACCACCUt
344	115	AGGUGGUGACCGUGGAGACG	722	GUCUCCACGGUCACCACCUcc
345	116	GGUGGUGACCGUGGAGACGAG	723	CGUCUCCACGGUCACCACt
346	117	GUGGUGACCGUGGAGACGAG	724	ACGUCUCCACGGUCACCACt
347	118	UGGUGACCGUGGAGACGUGG	725	CACGUCUCCACGGUCACCAcc
348	119	GGUGACCGUGGAGACGUGG	726	CCACGUCUCCACGGUCACCac
349	120	GUGACCGUGGAGACGUGG	727	GCCACGUCUCCACGGUCACca
350	121	UGACCGUGGAGACGUGG	728	UGCCACGUCUCCACGGUCACc
351	122	GACCGUGGAGACGUGG	729	CUGCCACGUCUCCACGGUCac

Ref Pos	SEQ ID NO	SENSE STRAND (5'-->3') SEQ ID NOS:2 to 608	SEQ ID NO	ANTISENSE STRAND (5'-->3') SEQ ID NOS:609 to 1215
352	123	ACCGUGGAGACGUGGCAGGtt	730	CCUGCCACGUCUCCACGGUca
353	124	CCGUGGAGACGUGGCAGGAtt	731	UCCUGCCACGUCUCCACGGtc
354	125	CGUGGAGACGUGGCAGGAGGtt	732	CUCCUGCCACGUCUCCACGgt
355	126	GUGGAGACGUGGCAGGAGGtt	733	CCUCCUGCCACGUCUCCACgg
356	127	UGGAGACGUGGCAGGAGGGtt	734	CCCUCCUGCCACGUCUCCAcg
357	128	GGAGACGUGGCAGGAGGGCtt	735	GCCCUCUCCUGCCACGUCUCCac
358	129	GAGACGUGGCAGGAGGGCutt	736	AGCCCUCUCCUGCCACGUCUCCa
359	130	AGACGUGGCAGGAGGGCUtt	737	GAGCCCUCUCCUGCCACGUCUcc
360	131	GACGUGGCAGGAGGGCUCAtt	738	UGAGCCCUCUCCUGCCACGUtc
361	132	ACGUGGCAGGAGGGCUCACtt	739	GUGAGCCCUCUCCUGCCACGUct
362	133	CGUGGCAGGAGGGCUCACUtt	740	AGUGAGCCCUCUCCUGCCACGtc
363	134	GUGGCAGGAGGGCUCACUCtt	741	GAGUGAGCCCUCUCCUGCCACgt
364	135	UGGCAGGAGGGCUCACUCAtt	742	UGAGUGAGCCCUCUCCUGCCAcg
365	136	GGCAGGAGGGCUCACUCAAtt	743	UUGAGUGAGCCCUCUCCUGCCac
366	137	GCAGGAGGGCUCACUCAAAtt	744	UUUGAGUGAGCCCUCUCCUGCc
367	138	CAGGAGGGCUCACUCAAAGtt	745	CUUUGAGUGAGCCCUCUCCUGcc
368	139	AGGAGGGCUCACUCAAAGCtt	746	GCUUUGAGUGAGCCCUCUCCUgc
369	140	GGAGGGCUCACUCAAAGCCtt	747	GGCUUUGAGUGAGCCCUCUCCtg
370	141	GAGGGCUCACUCAAAGCCUtt	748	AGGCUUUGAGUGAGCCCUCUct
371	142	AGGGCUCACUCAAAGCCUtt	749	GAGGCUUUUGAGUGAGCCCUC
372	143	GGGCUCACUCAAAGCCUCCtt	750	GGAGGCUUUUGAGUGAGCCCtc
373	144	GGCUCACUCAAAGCCUCCUtt	751	AGGAGGCUUUUGAGUGAGCCct
374	145	GCUCACUCAAAGCCUCCUGtt	752	CAGGAGGCUUUUGAGUGAGCcc
375	146	CUCACUCAAAGCCUCCUGCtt	753	GCAGGAGGCUUUUGAGUGAGCc
376	147	UCACUCAAAGCCUCCUGCCtt	754	GGCAGGAGGCUUUUGAGUGAGc
377	148	CACUCAAAGCCUCCUGCCUtt	755	AGGCAGGAGGCUUUUGAGUGAg
378	149	ACUCAAAGCCUCCUGCCUAtt	756	UAGGCAGGAGGCUUUUGAGUGa
379	150	CUCAAAGCCUCCUGCCUAUtt	757	AUAGGCAGGAGGCUUUUGAGtg
380	151	UCAAAGCCUCCUGCCUAUAtt	758	UAUAGGCAGGAGGCUUUUGAgt

Ref Pos	SEQ ID NO	SENSE STRAND (5'-->3') SEQ ID NOS:2 to 608	SEQ ID NO	ANTISENSE STRAND (5'-->3') SEQ ID NOS:609 to 1215
381	152	CAAAGCCUCCUGCCUAUACTt	759	GUAUAGGCAGGAGGCUUUGag
382	153	AAAGCCUCCUGCCUAUACGtt	760	CGUAUAGGCAGGAGGCUUUga
383	154	AAGCCUCCUGCCUAUACGGtt	761	CCGUAUAGGCAGGAGGCUUtg
384	155	AGCCUCCUGCCUAUACGGGtt	762	CCCGUAUAGGCAGGAGGCutt
385	156	GCCUCCUGCCUAUACGGGtt	763	GCCCGUAUAGGCAGGAGGCtt
386	157	CCUCCUGCCUAUACGGGCAtt	764	UGCCCGUAUAGGCAGGAGGct
387	158	CUCCUGCCUAUACGGGCAGtt	765	CUGCCCGUAUAGGCAGGAGgc
388	159	UCCUGCCUAUACGGGCAGCtt	766	GCUGCCCGUAUAGGCAGGAgg
389	160	CCUGCCUAUACGGGCAGCutt	767	AGCUGCCCGUAUAGGCAGGAg
390	161	CUGCCUAUACGGGCAGCUtt	768	GAGCUGCCCGUAUAGGCAGga
391	162	UGCCUAUACGGGCAGCUCtt	769	GGAGCUGCCCGUAUAGGCAGg
392	163	GCCUAUACGGGCAGCUCCtt	770	GGGAGCUGCCCGUAUAGGCag
409	164	CCCAAGUUCCAGGACGGAGtt	771	CUCCGUCCUGGAACUUGGGga
410	165	CCAAGUUCCAGGACGGAGAtt	772	UCUCCGUCCUGGAACUUGGgg
411	166	CAAGUUCCAGGACGGAGACtt	773	GUCUCCGUCCUGGAACUUGgg
412	167	AAGUUCCAGGACGGAGACtt	774	GGUCUCCGUCCUGGAACUugg
413	168	AGUUCCAGGACGGAGACCtt	775	AGGUCUCCGUCCUGGAACUtg
414	169	GUUCCAGGACGGAGACCUCtt	776	GAGGUCUCCGUCCUGGAACtt
415	170	UUCCAGGACGGAGACCUCAtt	777	UGAGGUCUCCGUCCUGGAAct
416	171	UCCAGGACGGAGACCUCACtt	778	GUGAGGUCUCCGUCCUGGAac
417	172	CCAGGACGGAGACCUCACtt	779	GGUGAGGUCUCCGUCCUGGaa
418	173	CAGGACGGAGACCUCACCCtt	780	GGGUGAGGUCUCCGUCCUGga
419	174	AGGACGGAGACCUCACCCtt	781	AGGGUGAGGUCUCCGUCCUgg
420	175	GGACGGAGACCUCACCCUGtt	782	CAGGGUGAGGUCUCCGUCCtg
421	176	GACGGAGACCUCACCCUGtt	783	ACAGGGUGAGGUCUCCGUCCct
422	177	ACGGAGACCUCACCCUGUAtt	784	UACAGGGUGAGGUCUCCGUCC
423	178	CGGAGACCUCACCCUGUACtt	785	GUACAGGGUGAGGUCUCCGtc
424	179	GGAGACCUCACCCUGUACtt	786	GGUACAGGGUGAGGUCUCCgt
425	180	GAGACCUCACCCUGUACCAtt	787	UGGUACAGGGUGAGGUCUCCcg

Ref Pos	SEQ ID NO	SENSE STRAND (5'-->3') SEQ ID NOS:2 to 608	SEQ ID NO	ANTISENSE STRAND (5'-->3') SEQ ID NOS:609 to 1215
426	181	AGACCUCACCCUGUACCAGAtt	788	CUGGUACAGGGUGAGGUCC
427	182	GACCUCACCCUGUACCAGAUGt	789	ACUGGUACAGGGUGAGGUtc
428	183	ACCUCACCCUGUACCAGUCAtt	790	GACUGGUACAGGGUGAGGUct
429	184	CCUCACCCUGUACCAGUCCtt	791	GGACUGGUACAGGGUGAGGtc
430	185	CUCACCCUGUACCAGUCCAtt	792	UGGACUGGUACAGGGUGAGgt
431	186	UCACCCUGUACCAGUCCAAtt	793	UUGGACUGGUACAGGGUGAgg
432	187	CACCCUGUACCAGUCCAAUtt	794	AUUGGACUGGUACAGGGUGag
433	188	ACCCUGUACCAGUCCAAUAtt	795	UAUUGGACUGGUACAGGGUga
434	189	CCCUGUACCAGUCCAAUACtt	796	GUAUUGGACUGGUACAGGGtg
435	190	CCUGUACCAGUCCAAUACtt	797	GGUAUUGGACUGGUACAGGgt
436	191	CUGUACCAGUCCAAUACCAtt	798	UGGUAUUGGACUGGUACAGGgg
437	192	UGUACCAGUCCAAUACCAUtt	799	AUGGUAUUGGACUGGUACAgg
438	193	GUACCAGUCCAAUACCAUCtt	800	GAUGGUAUUGGACUGGUACag
439	194	UACCAGUCCAAUACCAUCtt	801	GGAUGGUAUUGGACUGGUaca
440	195	ACCAGUCCAAUACCAUCCUtt	802	AGGAUGGUAUUGGACUGGUac
441	196	CCAGUCCAAUACCAUCCUGtt	803	CAGGAUGGUAUUGGACUGGta
442	197	CAGUCCAAUACCAUCCUGCtt	804	GCAGGAUGGUAUUGGACUGGgt
443	198	AGUCCAAUACCAUCCUGCGtt	805	CGCAGGAUGGUAUUGGACUgg
444	199	GUCCAAUACCAUCCUGCGUtt	806	ACGCAGGAUGGUAUUGGACTg
445	200	UCCAAUACCAUCCUGCGUCAtt	807	GACGCAGGAUGGUAUUGGAct
446	201	CCAAUACCAUCCUGCGUCAtt	808	UGACGCAGGAUGGUAUUGGac
447	202	CAAUACCAUCCUGCGUCACtt	809	GUGACGCAGGAUGGUAUUGga
448	203	AAUACCAUCCUGCGUCACtt	810	GGUGACGCAGGAUGGUAUUgg
449	204	AUACCAUCCUGCGUCACCUtt	811	AGGUGACGCAGGAUGGUAutg
450	205	UACCAUCCUGCGUCACCUtt	812	CAGGUGACGCAGGAUGGUAtt
451	206	ACCAUCCUGCGUCACCUtt	813	CCAGGUGACGCAGGAUGGUat
452	207	CCAUCCUGCGUCACCUtt	814	CCCAGGUGACGCAGGAUGGta
453	208	CAUCCUGCGUCACCUtt	815	GCCCAGGUGACGCAGGAUGgt
454	209	AUCCUGCGUCACCUtt	816	GGCCCAGGUGACGCAGGAUgg

Ref Pos	SEQ ID NO	SENSE STRAND (5'-->3') SEQ ID NOS:2 to 608	SEQ ID NO	ANTISENSE STRAND (5'-->3') SEQ ID NOS:609 to 1215
455	210	UCCUGCGUCACCUGGGCCGtt	817	CGGCCAGGUGACGCAGGAtg
456	211	CCUGCGUCACCUGGGCCGCTt	818	GCGGCCAGGUGACGCAGGAt
457	212	CUGCGUCACCUGGGCCGCAtt	819	UGCAGGCCAGGUGACGCAGGa
458	213	UGCGUCACCUGGGCCGCACTt	820	GUGCGGCCAGGUGACGCAGg
459	214	GCGUCACCUGGGCCGACCCtt	821	GGUGCGGCCAGGUGACGCag
460	215	CGUCACCUGGGCCGACCCtt	822	GGGUGCGGCCAGGUGACGca
461	216	GUCACCUGGGCCGACCCUtt	823	AGGGUGCGGCCAGGUGACgc
462	217	UCACCUGGGCCGACCCUUt	824	AAGGGUGCGGCCAGGUGAcg
463	218	CACCUGGGCCGACCCUUGGtt	825	CAAGGGUGCGGCCAGGUGac
464	219	ACCUGGGCCGACCCUUGGtt	826	CCAAGGGUGCGGCCAGGuga
465	220	CCUGGGCCGACCCUUGGGtt	827	CCAAGGGUGCGGCCAGGtg
466	221	CUGGGCCGACCCUUGGGCtt	828	GCCAAGGGUGCGGCCAGgt
467	222	UGGGCCGACCCUUGGGCutt	829	AGCCAAGGGUGCGGCCAgg
468	223	GGGCCGACCCUUGGGCUCtt	830	GAGCCAAGGGUGCGGCCag
469	224	GGCCGCACCCUUGGGCUCUtt	831	AGAGCCAAGGGUGCGGCCca
470	225	GCCGCACCCUUGGGCUCUAtt	832	UAGAGCCAAGGGUGCGGCC
471	226	CCGCACCCUUGGGCUCUAUtt	833	AUAGAGCCAAGGGUGCGGCC
472	227	CGCACCCUUGGGCUCUAUGtt	834	CAUAGAGCCAAGGGUGCGGgc
473	228	GCACCCUUGGGCUCUAUGGtt	835	CCAUAGAGCCAAGGGUGCgg
474	229	CACCCUUGGGCUCUAUGGGtt	836	CCAUAGAGCCAAGGGUGCg
475	230	ACCCUUGGGCUCUAUGGGAtt	837	UCCCAUAGAGCCAAGGGUgc
476	231	CCCUUGGGCUCUAUGGGAAtt	838	UUCCCAUAGAGCCAAGGGtg
477	232	CCUUGGGCUCUAUGGGAAGGtt	839	CUUCCCAUAGAGCCAAGGgt
478	233	CUUGGGCUCUAUGGGAAGGtt	840	CCUUCCCAUAGAGCCAAGgg
479	234	UUGGGCUCUAUGGGAAGGAtt	841	UCCUUCCCAUAGAGCCAAGg
480	235	UGGGCUCUAUGGGAAGGACtt	842	GUCCUUCCCAUAGAGCCAag
481	236	GGGCUCUAUGGGAAGGACtt	843	GGUCCUUCCCAUAGAGCCaa
482	237	GGCUCUAUGGGAAGGACCAtt	844	UGGUCCUUCCCAUAGAGCCca
483	238	GCUCUAUGGGAAGGACCAGtt	845	CUGGUCCUUCCCAUAGAGCCC

Ref Pos	SEQ ID NO	SENSE STRAND (5'-->3') SEQ ID NOS:2 to 608	SEQ ID NO	ANTISENSE STRAND (5'-->3') SEQ ID NOS:609 to 1215
484	239	CUCUAUGGGAAGGACCAGCtt	846	GCUGGUCCUUCCAUAGAGcc
485	240	UCUAUGGGAAGGACCAGCAtt	847	UGCUGGUCCUUCCAUAGAgc
486	241	CUAUGGGAAGGACCAGCAGCtt	848	CUGCUGGUCCUUCCAUAGag
487	242	UAUGGGAAGGACCAGCAGGtt	849	CCUGCUGGUCCUUCCAUAgA
488	243	AUGGGAAGGACCAGCAGGAtt	850	UCCUGCUGGUCCUUCCAUag
489	244	UGGGAAGGACCAGCAGGAGGtt	851	CUCCUGCUGGUCCUUCCAta
490	245	GGGAAGGACCAGCAGGAGGtt	852	CCUCCUGCUGGUCCUUCCCat
491	246	GGAAGGACCAGCAGGAGGtt	853	GCCUCCUGCUGGUCCUUCCca
492	247	GAAGGACCAGCAGGAGGCAtt	854	UGCCUCCUGCUGGUCCUUCC
493	248	AAGGACCAGCAGGAGGCAtt	855	CUGCCUCCUGCUGGUCCUUcc
494	249	AGGACCAGCAGGAGGCAtt	856	GCUGCCUCCUGCUGGUCCUtc
495	250	GGACCAGCAGGAGGCAGCtt	857	GGCUGCCUCCUGCUGGUCCtt
496	251	GACCAGCAGGAGGCAGCCtt	858	GGCUGCCUCCUGCUGGUCCt
497	252	ACCAGCAGGAGGCAGCCUtt	859	AGGGCUGCCUCCUGCUGGUcc
498	253	CCAGCAGGAGGCAGCCUtt	860	CAGGGCUGCCUCCUGCUGGtc
499	254	CAGCAGGAGGCAGCCUtt	861	CCAGGGCUGCCUCCUGCUGgt
500	255	AGCAGGAGGCAGCCUtt	862	ACCAGGGCUGCCUCCUGCugg
501	256	GCAGGAGGCAGCCUtt	863	CACCAGGGCUGCCUCCUGCtg
502	257	CAGGAGGCAGCCUtt	864	CCACCAGGGCUGCCUCCUGct
503	258	AGGAGGCAGCCUtt	865	UCCACCAGGGCUGCCUCCUgc
504	259	GGAGGCAGCCUtt	866	GUCCACCAGGGCUGCCUCCtg
505	260	GAGGCAGCCUtt	867	UGUCCACCAGGGCUGCCUCCt
506	261	AGGCAGCCUtt	868	AUGUCCACCAGGGCUGCCUcc
507	262	GGCAGCCUtt	869	CAUGUCCACCAGGGCUGCCt
508	263	GCAGCCUtt	870	CCAUGUCCACCAGGGCUGCt
509	264	CAGCCUtt	871	ACCAUGUCCACCAGGGCUGcc
510	265	AGCCCUGGACAUtt	872	CACCAUGUCCACCAGGGCUGc
511	266	GCCCUGGACAUtt	873	UCACCAUGUCCACCAGGGCtg
512	267	CCCUGGACAUtt	874	UUCACCAUGUCCACCAGGGct

Ref Pos	SEQ ID NO	SENSE STRAND (5'-->3') SEQ ID NOS:2 to 608	SEQ ID NO	ANTISENSE STRAND (5'-->3') SEQ ID NOS:609 to 1215
513	268	CCUGGUGGACAUGGUGAAUtt	875	AUUCACCAUGUCCACCAGGgc
514	269	CUGGUGGACAUGGUGAAUGtt	876	CAUUCACCAUGUCCACCAGgg
515	270	UGGUGGACAUGGUGAAUGAtt	877	UCAUUCACCAUGUCCACCAGg
516	271	GGUGGACAUGGUGAAUGACTt	878	GUCAUUCACCAUGUCCACCag
517	272	GUGGACAUGGUGAAUGACGtt	879	CGUCAUUCACCAUGUCCACca
518	273	UGGACAUGGUGAAUGACGGtt	880	CCGUCAUUCACCAUGUCCAcc
519	274	GGACAUGGUGAAUGACGGCtt	881	GCCGUCAUUCACCAUGUCCac
520	275	GACAUGGUGAAUGACGGCGtt	882	CGCCGUCAUUCACCAUGUCCa
521	276	ACAUGGUGAAUGACGGCGUtt	883	ACGCCGUCAUUCACCAUGUCC
522	277	CAUGGUGAAUGACGGCGUGtt	884	CACGCCGUCAUUCACCAUGtc
523	278	AUGGUGAAUGACGGCGUGGtt	885	CCACGCCGUCAUUCACCAUgt
524	279	UGGUGAAUGACGGCGUGGAtt	886	UCCACGCCGUCAUUCACCAtg
525	280	GGUGAAUGACGGCGUGGAGGtt	887	CUCCACGCCGUCAUUCACCat
526	281	GUGAAUGACGGCGUGGAGGtt	888	CCUCCACGCCGUCAUUCACca
527	282	UGAAUGACGGCGUGGAGGAGAtt	889	UCCUCCACGCCGUCAUUCAcc
528	283	GAAUGACGGCGUGGAGGACtt	890	GUCCUCCACGCCGUCAUUCac
529	284	AAUGACGGCGUGGAGGACCCtt	891	GGUCCUCCACGCCGUCAUUca
530	285	AUGACGGCGUGGAGGACCUtt	892	AGGUCCUCCACGCCGUCAUtc
531	286	UGACGGCGUGGAGGACCUt	893	GAGGUCCUCCACGCCGUCAtt
532	287	GACGGCGUGGAGGACCUCCtt	894	GGAGGUCCUCCACGCCGUCat
533	288	ACGGCGUGGAGGACCUCCGtt	895	CGGAGGUCCUCCACGCCGUca
534	289	CGGCGUGGAGGACCUCCGtt	896	GC GGAGGUCCUCCACGCCGtc
535	290	GGCGUGGAGGACCUCCGtt	897	AGCGGAGGUCCUCCACGCCgt
536	291	GCGUGGAGGACCUCCGUGtt	898	CAGCGGAGGUCCUCCACGCCcg
537	292	CGUGGAGGACCUCCGUGCtt	899	GCAGCGGAGGUCCUCCACGCC
538	293	GUGGAGGACCUCCGUGCAAtt	900	UGCAGCGGAGGUCCUCCACGc
539	294	UGGAGGACCUCCGUGCAAAtt	901	UUGCAGCGGAGGUCCUCCAcg
540	295	GGAGGACCUCCGUGCAAAtt	902	UUUGCAGCGGAGGUCCUCCac
541	296	GAGGACCUCCGUGCAAUtt	903	AUUUGCAGCGGAGGUCCUCCa

Ref Pos	SEQ ID NO	SENSE STRAND (5'-->3') SEQ ID NOS:2 to 608	SEQ ID NO	ANTISENSE STRAND (5'-->3') SEQ ID NOS:609 to 1215
542	297	AGGACCUCCGCUGCAAAUAtt	904	UAUUUGCAGCGGAGGUCCUcc
543	298	GGACCUCCGCUGCAAAUACtt	905	GUAUUUGCAGCGGAGGUCCtc
544	299	GACCUCCGCUGCAAAUACAtt	906	UGUAUUUGCAGCGGAGGUcct
545	300	ACCUCCGCUGCAAAUACAUtt	907	AUGUAUUUGCAGCGGAGGUcc
546	301	CCUCCGCUGCAAAUACAUUtt	908	GAUGUAUUUGCAGCGGAGGtc
547	302	CUCCGCUGCAAAUACAUUtt	909	AGAUGUAUUUGCAGCGGAGgt
548	303	UCCGCUGCAAAUACAUUtt	910	GAGAUGUAUUUGCAGCGGAgg
549	304	CCGCUGCAAAUACAUUtt	911	GGAGAUGUAUUUGCAGCGGag
550	305	CGCUGCAAAUACAUUtt	912	GGGAGAUGUAUUUGCAGCGga
551	306	GCUGCAAAUACAUUtt	913	AGGGAGAUGUAUUUGCAGCgg
552	307	CUGCAAAUACAUUtt	914	GAGGGAGAUGUAUUUGCAGcg
553	308	UGCAAAUACAUUtt	915	UGAGGGAGAUGUAUUUGCAGc
554	309	GCAAAUACAUUtt	916	AUGAGGGAGAUGUAUUUGCag
555	310	CAAAUACAUUtt	917	GAUGAGGGAGAUGUAUUUGca
556	311	AAAUACAUUtt	918	AGAUGAGGGAGAUGUAUUUgc
557	312	AAUACAUUtt	919	UAGAUGAGGGAGAUGUAUUUtg
558	313	AUACAUUtt	920	GUAGAUGAGGGAGAUGUAUtt
559	314	UACAUUtt	921	UGUAGAUGAGGGAGAUGUAUtt
560	315	ACAUCUCCUCAUCUACACtt	922	GUGUAGAUGAGGGAGAUGUat
561	316	CAUCUCCUCAUCUACACtt	923	GGUGUAGAUGAGGGAGAUGta
562	317	AUCUCCUCAUCUACACCAtt	924	UGGUGUAGAUGAGGGAGAUGt
563	318	UCUCCUCAUCUACACCAAtt	925	UUGGUGUAGAUGAGGGAGAtg
563	319	GCUCUCCUCAUCUACACCAAtt	926	UUGGUGUAGAUGAGGGAGCtg
564	320	CUCCUCAUCUACACCAACtt	927	GUUGGUGUAGAUGAGGGAGAt
565	321	UCCCUCAUCUACACCAACUtt	928	AGUUGGUGUAGAUGAGGGAGa
565	322	CUCCUCAUCUACACCAAAAtt	929	UUUGGUGUAGAUGAGGGAGAt
566	323	CCCUCAUCUACACCAACUAtt	930	UAGUUGGUGUAGAUGAGGGAG
567	324	CCUCAUCUACACCAACUAtt	931	AUAGUUGGUGUAGAUGAGGGAG
567	325	CCUCAUCUACACCAACUAAtt	932	UUAGUUGGUGUAGAUGAGGGAG

Ref Pos	SEQ ID NO	SENSE STRAND (5'-->3') SEQ ID NOS:2 to 608	SEQ ID NO	ANTISENSE STRAND (5'-->3') SEQ ID NOS:609 to 1215
568	326	CUCAUCUACACCAACUAUGtt	933	CAUAGUUGGUGUAGAUGAGgg
569	327	UCAUCUACACCAACUAUGAtt	934	UCAUAGUUGGUGUAGAUGAgg
570	328	CAUCUACACCAACUAUGAGGtt	935	CUCAUAGUUGGUGUAGAUGag
571	329	AUCUACACCAACUAUGAGGtt	936	CCUCAUAGUUGGUGUAGAuga
572	330	UCUACACCAACUAUGAGGCGtt	937	GCCUCAUAGUUGGUGUAGAtg
573	331	CUACACCAACUAUGAGGCGGtt	938	CGCCUCAUAGUUGGUGUAGat
574	332	UACACCAACUAUGAGGCGGtt	939	CCGCCUCAUAGUUGGUGUAg
575	333	ACACCAACUAUGAGGCGGGtt	940	CCCGCCUCAUAGUUGGUGUag
576	334	CACCAACUAUGAGGCGGGCtt	941	GCCCGCCUCAUAGUUGGUGta
577	335	ACCAACUAUGAGGCGGGCAAtt	942	UGCCCGCCUCAUAGUUGGUGt
578	336	CCAACUAUGAGGCGGGCAAtt	943	UUGCCCGCCUCAUAGUUGGtg
579	337	CAACUAUGAGGCGGGCAAGGtt	944	CUUGCCCGCCUCAUAGUUGgt
580	338	AACUAUGAGGCGGGCAAGGtt	945	CCUUGCCCGCCUCAUAGUugg
581	339	ACUAUGAGGCGGGCAAGGAtt	946	UCCUUGCCCGCCUCAUAGUtg
582	340	CUAUGAGGCGGGCAAGGAUtt	947	AUCCUUGCCCGCCUCAUAGtt
583	341	UAUGAGGCGGGCAAGGAUGtt	948	CAUCCUUGCCCGCCUCAUAg
584	342	AUGAGGCGGGCAAGGAUGAtt	949	UCAUCCUUGCCCGCCUCAUag
585	343	UGAGGCGGGCAAGGAUGACtt	950	GUCAUCCUUGCCCGCCUCAata
586	344	GAGGCGGGCAAGGAUGACUtt	951	AGUCAUCCUUGCCCGCCUCAat
587	345	AGGCGGGCAAGGAUGACUAtt	952	UAGUCAUCCUUGCCCGCCUca
588	346	GGCGGGCAAGGAUGACUAUtt	953	AUAGUCAUCCUUGCCCGCtc
589	347	GCAGGGCAAGGAUGACUAUGtt	954	CAUAGUCAUCCUUGCCCGCct
590	348	CGGGCAAGGAUGACUAUGUtt	955	ACAUAGUCAUCCUUGCCCGcc
591	349	GGGCAAGGAUGACUAUGUGtt	956	CACAUAGUCAUCCUUGCCCgc
592	350	GGCAAGGAUGACUAUGUGAtt	957	UCACAUAGUCAUCCUUGCCcg
593	351	GCAAGGAUGACUAUGUGAAtt	958	UUCACAUAGUCAUCCUUGCcc
594	352	CAAGGAUGACUAUGUGAAGGtt	959	CUUCACAUAGUCAUCCUUGGcc
595	353	AAGGAUGACUAUGUGAAGGtt	960	CCUUCACAUAGUCAUCCUUGgc
596	354	AGGAUGACUAUGUGAAGGCGtt	961	GCCUUCACAUAGUCAUCCUtg

Ref Pos	SEQ ID NO	SENSE STRAND (5'-->3') SEQ ID NOS:2 to 608	SEQ ID NO	ANTISENSE STRAND (5'-->3') SEQ ID NOS:609 to 1215
597	355	GGAUGACUAUGUGAAGGCAtt	962	UGCCUUCACAUAGUCAUCCtt
598	356	GAUGACUAUGUGAAGGCACtt	963	GUGCCUUCACAUAGUCAUCct
599	357	AUGACUAUGUGAAGGCACUtt	964	AGUGCCUUCACAUAGUCAUCC
600	358	UGACUAUGUGAAGGCACUGtt	965	CAGUGCCUUCACAUAGUCAtc
601	359	GACUAUGUGAAGGCACUGCtt	966	GCAGUGCCUUCACAUAGUCat
602	360	ACUAUGUGAAGGCACUGCCtt	967	GGCAGUGCCUUCACAUAGUca
603	361	CUAUGUGAAGGCACUGCCtt	968	GGGCAGUGCCUUCACAUAGtc
604	362	UAUGUGAAGGCACUGCCCGtt	969	CGGGCAGUGCCUUCACAUAg
605	363	AUGUGAAGGCACUGCCGGGtt	970	CCGGGCAGUGCCUUCACAUag
606	364	UGUGAAGGCACUGCCGGGtt	971	CCCAGGGCAGUGCCUUCACAta
607	365	GUGAAGGCACUGCCGGGtt	972	GCCCGGGCAGUGCCUUCACat
608	366	UGAAGGCACUGCCGGGCAAtt	973	UGCCCGGGCAGUGCCUUCaca
609	367	GAAGGCACUGCCGGGCAAtt	974	UUGCCCGGGCAGUGCCUUCac
610	368	AAGGCACUGCCGGGCAACtt	975	GUUGCCCGGGCAGUGCCUUca
611	369	AGGCACUGCCGGGCAACUtt	976	AGUUGCCCGGGCAGUGCCUtc
612	370	GGCACUGCCGGGCAACUGtt	977	CAGUUGCCCGGGCAGUGCCtt
613	371	GCACUGCCGGGCAACUGAtt	978	UCAGUUGCCCGGGCAGUGCct
614	372	CACUGCCGGGCAACUGAAtt	979	UUCAGUUGCCCGGGCAGUGcc
615	373	ACUGCCCGGGCAACUGAAGtt	980	CUUCAGUUGCCCGGGCAGUGc
616	374	CUGCCCGGGCAACUGAAGCtt	981	GCUUCAGUUGCCCGGGCAGtg
617	375	UGCCCGGGCAACUGAAGCCtt	982	GGCUUCAGUUGCCCGGGCAgt
618	376	GCCCGGGCAACUGAAGCCtt	983	AGGCUUCAGUUGCCCGGGCag
619	377	CCCAGGGCAACUGAAGCCtt	984	AAGGCUUCAGUUGCCCGGGca
620	378	CCGGGCAACUGAAGCCUUUtt	985	AAAGGCUUCAGUUGCCCGGgc
621	379	CGGGCAACUGAAGCCUUUtt	986	AAAAGGCUUCAGUUGCCCGGgg
622	380	GGGCAACUGAAGCCUUUUGtt	987	AAAAGGCUUCAGUUGCCCGgg
623	381	GGCAACUGAAGCCUUUUGAtt	988	UCAAAAGGCUUCAGUUGCCcg
624	382	GCAACUGAAGCCUUUUGAGtt	989	CUCAAAAGGCUUCAGUUGCCC
625	383	CAACUGAAGCCUUUUGAGAtt	990	UCUCAAAAGGCUUCAGUUGCC

Ref Pos	SEQ ID NO	SENSE STRAND (5'-->3') SEQ ID NOS:2 to 608	SEQ ID NO	ANTISENSE STRAND (5'-->3') SEQ ID NOS:609 to 1215
626	384	AACUGAAGCCUUUUGAGACTt	991	GUCUAAAAGGCUUCAGUUgc
627	385	ACUGAAGCCUUUUGAGACCTt	992	GGUCUAAAAGGCUUCAGUtg
627	386	ACUGAAGCCUUUUGAGACAtt	993	UGUCUAAAAGGCUUCAGUtg
628	387	CUGAAGCCUUUUGAGACCt	994	GGGUCUAAAAGGCUUCAGtt
629	388	UGAAGCCUUUUGAGACCCUtt	995	AGGGUCUAAAAGGCUUCAg
630	389	GAAGCCUUUUGAGACCCUGt	996	CAGGGUCUAAAAGGCUUCag
631	390	AAGCCUUUUGAGACCCUGCt	997	GCAGGGUCUAAAAGGCUUca
631	391	GAAGCCUUUUGAGACCCUAtt	998	UAGGGUCUAAAAGGCUUCag
632	392	AGCCUUUUGAGACCCUGCUtt	999	AGCAGGGUCUAAAAGGCUTc
632	393	CGCCUUUUGAGACCCUGCA	1000	UGCAGGGUCUAAAAGGCGtc
632	394	AGCCUUUUGAGACCCUGCA	1001	UGCAGGGUCUAAAAGGCUTc
633	395	GCCUUUUGAGACCCUGCUGt	1002	CAGCAGGGUCUAAAAGGct
634	396	CCUUUUGAGACCCUGCUGU	1003	ACAGCAGGGUCUAAAAGGct
634	397	CCUUUUGAGACCCUGCUGA	1004	UCAGCAGGGUCUAAAAGGct
635	398	CUUUUGAGACCCUGCUGU	1005	GACAGCAGGGUCUAAAAGgc
635	399	CUUUUGAGACCCUGCUGU	1006	UACAGCAGGGUCUAAAAGgc
636	400	UUUUGAGACCCUGCUGUCC	1007	GGACAGCAGGGUCUAAAAGgg
637	401	UUUGAGACCCUGCUGUCC	1008	GGGACAGCAGGGUCUAAAag
638	402	UUGAGACCCUGCUGUCC	1009	UGGGACAGCAGGGUCUCAAaa
639	403	UGAGACCCUGCUGUCC	1010	CUGGGACAGCAGGGUCUCAAaa
640	404	GAGACCCUGCUGUCC	1011	UCUGGGACAGCAGGGUCUcaa
641	405	AGACCCUGCUGUCC	1012	UUCUGGGACAGCAGGGUCUca
642	406	GACCCUGCUGUCC	1013	GUUCUGGGACAGCAGGGUtc
643	407	ACCCUGCUGUCC	1014	GGUUCUGGGACAGCAGGGUct
643	408	ACCCUGCUGUCC	1015	UGUUCUGGGACAGCAGGGUct
644	409	CCCUGCUGUCC	1016	UGGUUCUGGGACAGCAGGGtc
645	410	CCUGCUGUCC	1017	CUGGUUCUGGGACAGCAGGgt
646	411	CUGCUGUCC	1018	CCUGGUUCUGGGACAGCAGGgg
647	412	UGCUGUCC	1019	CCCUGGUUCUGGGACAGCAgg

Ref Pos	SEQ ID NO	SENSE STRAND (5'-->3') SEQ ID NOS:2 to 608	SEQ ID NO	ANTISENSE STRAND (5'-->3') SEQ ID NOS:609 to 1215
648	413	UGCUGUCCCAGAACCAACCAGGAtt	1020	UCCUGGUUCUGGGACAGCAgg
648	414	GCUGUCCCAGAACCAACCAGGGAtt	1021	UCCCUGGUUCUGGGACAGCag
649	415	CUGUCCCAGAACCAACCAGGGAGGtt	1022	CUCCCUGGUUCUGGGACAGca
650	416	UGUCCCAGAACCAACCAGGGAGGtt	1023	CCUCCCUGGUUCUGGGACAgc
651	417	GUCCCAGAACCAACCAGGGAGGCTt	1024	GCCUCCCUGGUUCUGGGACag
652	418	UCCCAGAACCAACCAGGGAGGCAtt	1025	UGCCUCCCUGGUUCUGGGAca
653	419	CCCAGAACCAACCAGGGAGGCAAtt	1026	UUGCCUCCCUGGUUCUGGGGac
654	420	CCAGAACCAACCAGGGAGGCAAGtt	1027	CUUGCUCUCCCUGGUUCUGGga
655	421	CAGAACCAACCAGGGAGGCAAGAAGAtt	1028	UCUUGCCUCCCUGGUUCUGGgg
656	422	AGAACCAACCAGGGAGGCAAGACtt	1029	GUCUUGCCUCCCUGGUUCUGgg
657	423	GAACCAGGGAGGCAAGACCTt	1030	GGUCUUGCCUCCCUGGUU Ct g
658	424	AACCAGGGAGGCAAGACCUTt	1031	AGGUCUUGCCUCCCUGGUU ct
659	425	ACCAGGGAGGCAAGACCUTt	1032	AAGGUCUUGCCUCCCUGGUt c
660	426	CCAGGGAGGCAAGACCUCU Ctt	1033	GAAGGUCUUGCCUCCCUGGtt
661	427	CAGGGAGGCAAGACCUCUCAtt	1034	UGAAGGUCUUGCCUCCCUGgt
662	428	AGGGAGGCAAGACCUCUCAUtt	1035	AUGAAGGUCUUGCCUCCCUGg
663	429	GGGAGGCAAGACCUCUCAU Utt	1036	AAUGAAGGUCUUGCCUCCCt g
664	430	GGAGGCAAGACCUCUCAUUGtt	1037	CAAUGAAGGUCUUGCCUCCct
665	431	GAGGCAAGACCUCUCAUUGUtt	1038	ACAAUGAAGGUCUUGCCUCcc
666	432	AGGCAAGACCUCUCAUUGUGtt	1039	CACAAUGAAGGUCUUGCCUCC
667	433	GGCAAGACCUCUCAUUGUGGtt	1040	CCACAAUGAAGGUCUUGCCt c
668	434	GCAAGACCUCUCAUUGUGGGtt	1041	CCCACAAUGAAGGUCUUGCct
669	435	CAAGACCUCUCAUUGUGGGAtt	1042	UCCCACAAUGAAGGUCUUGcc
670	436	AAGACCUCUCAUUGUGGGAGGtt	1043	CUCCCACAAUGAAGGUCUUGc
671	437	AGACCUCUCAUUGUGGGAGAtt	1044	UCUCCCACAAUGAAGGUCU t g
672	438	GACCUUCAUUGUGGGAGACtt	1045	GUCUCCCACAAUGAAGGUCtt
673	439	ACCUUCAUUGUGGGAGACtt	1046	GGUCUCCCACAAUGAAGGUct
674	440	CCUUCAUUGUGGGAGACCAtt	1047	UGGUCUCCCACAAUGAAGGt c
675	441	CUUCAUUGUGGGAGACCAGtt	1048	CUGGUCUCCCACAAUGAAGgt

Ref Pos	SEQ ID NO	SENSE STRAND (5'-->3') SEQ ID NOS:2 to 608	SEQ ID NO	ANTISENSE STRAND (5'-->3') SEQ ID NOS:609 to 1215
676	442	UUCAUUGUGGGAGACCAGAtt	1049	UCUGGUCUCCCACAAUGAAGg
677	443	UCAUUGUGGGAGACCAGAUtt	1050	AUCUGGUCUCCCACAAUGAag
678	444	CAUUGUGGGAGACCAGAUt	1051	GAUCUGGUCUCCCACAAUGaa
679	445	AUUGUGGGAGACCAGAUCUtt	1052	AGAUCUGGUCUCCCACAAUga
680	446	UUGUGGGAGACCAGAUCU	1053	GAGAUCUGGUCUCCCACAAAtg
681	447	UGUGGGAGACCAGAUCUC	1054	GGAGAUCUGGUCUCCCACAAat
682	448	GUGGGAGACCAGAUCUCC	1055	AGGAGAUCUGGUCUCCCACaa
683	449	UGGGAGACCAGAUCUCCU	1056	AAGGAGAUCUGGUCUCCCaca
684	450	GGGAGACCAGAUCUCCUU	1057	GAAGGAGAUCUGGUCUCCcac
685	451	GGAGACCAGAUCUCCUUC	1058	CGAAGGAGAUCUGGUCUCCca
686	452	GAGACCAGAUCUCCUUCG	1059	GCGAAGGAGAUCUGGUCUCC
687	453	AGACCAGAUCUCCUUCG	1060	AGCGAAGGAGAUCUGGUCUCC
688	454	GACCAGAUCUCCUUCGCU	1061	CAGCGAAGGAGAUCUGGU
689	455	ACCAGAUCUCCUUCGCU	1062	UCAGCGAAGGAGAUCUGGU
690	456	CCAGAUCUCCUUCGCU	1063	GUCAGCGAAGGAGAUCUGG
691	457	CAGAUCUCCUUCGCU	1064	AGUCAGCGAAGGAGAUCUG
692	458	AGAUCUCCUUCGCU	1065	UAGUCAGCGAAGGAGAUCU
693	459	GAUCUCCUUCGCU	1066	GUAGUCAGCGAAGGAGAUC
694	460	AUCUCCUUCGCU	1067	UGUAGUCAGCGAAGGAGAU
695	461	UCUCCUUCGCU	1068	UUGUAGUCAGCGAAGGAGA
696	462	CUCCUUCGCU	1069	GUUGUAGUCAGCGAAGGAGA
697	463	UCCUUCGCU	1070	GGUUGUAGUCAGCGAAGGAg
698	464	CCUUCGCU	1071	AGGUUGUAGUCAGCGAAGGAg
699	465	CUUCGCU	1072	CAGGUUGUAGUCAGCGAAGGAg
700	466	UUCGCU	1073	GCAGGUUGUAGUCAGCGAAGg
701	467	UCGCUGACU	1074	AGCAGGUUGUAGUCAGCGAag
702	468	CGCUGACU	1075	CAGCAGGUUGUAGUCAGCGaa
703	469	GCUGACU	1076	CCAGCAGGUUGUAGUCAGCga
704	470	CUGACU	1077	UCCAGCAGGUUGUAGUCAGCg

Ref Pos	SEQ ID NO	SENSE STRAND (5'-->3') SEQ ID NOS:2 to 608	SEQ ID NO	ANTISENSE STRAND (5'-->3') SEQ ID NOS:609 to 1215
705	471	UGACUACAACCUGCUGGACTt	1078	GUCCAGCAGGUUGUAGUCAgc
706	472	GACUACAACCUGCUGGACUtt	1079	AGUCCAGCAGGUUGUAGUCag
707	473	ACUACAACCUGCUGGACUUt	1080	AAGUCCAGCAGGUUGUAGUca
708	474	CUACAACCUGCUGGACUUGt	1081	CAAGUCCAGCAGGUUGUAGtc
709	475	UACAACCUGCUGGACUUGCt	1082	GCAAGUCCAGCAGGUUGUAgt
710	476	ACAACCUGCUGGACUUGCt	1083	AGCAAGUCCAGCAGGUUGUag
711	477	CAACCUGCUGGACUUGCUGt	1084	CAGCAAGUCCAGCAGGUUGta
712	478	AACCUGCUGGACUUGCUGCt	1085	GCAGCAAGUCCAGCAGGUUgt
713	479	ACCUGCUGGACUUGCUGCt	1086	AGCAGCAAGUCCAGCAGGUtg
714	480	CCUGCUGGACUUGCUGCUGt	1087	CAGCAGCAAGUCCAGCAGGt
715	481	CUGCUGGACUUGCUGCUGAt	1088	UCAGCAGCAAGUCCAGCAGgt
716	482	UGCUGGACUUGCUGCUGAUt	1089	AUCAGCAGCAAGUCCAGCagg
717	483	GCUGGACUUGCUGCUGAUt	1090	GAUCAGCAGCAAGUCCAGCag
718	484	CUGGACUUGCUGCUGAUCCt	1091	GGAUCAGCAGCAAGUCCAGca
719	485	UGGACUUGCUGCUGAUCCAt	1092	UGGAUCAGCAGCAAGUCCAgc
720	486	GGACUUGCUGCUGAUCCAUt	1093	AUGGAUCAGCAGCAAGUCCag
721	487	GACUUGCUGCUGAUCCAUGt	1094	CAUGGAUCAGCAGCAAGUCca
722	488	ACUUGCUGCUGAUCCAUGAt	1095	UCAUGGAUCAGCAGCAAGUcc
723	489	CUUGCUGCUGAUCCAUGAGt	1096	CUCAUGGAUCAGCAGCAAGtc
724	490	UUGCUGCUGAUCCAUGAGGt	1097	CCUCAUGGAUCAGCAGCAAgt
725	491	UGCUGCUGAUCCAUGAGGUt	1098	ACCUCAUGGAUCAGCAGCAag
726	492	GCUGCUGAUCCAUGAGGUt	1099	GACCUCAUGGAUCAGCAGCaa
727	493	CUGCUGAUCCAUGAGGUCCt	1100	GGACCUCAUGGAUCAGCAGca
728	494	UGCUGAUCCAUGAGGUCCU	1101	AGGACCUCAUGGAUCAGCAAgc
729	495	GCUGAUCCAUGAGGUCCUAt	1102	UAGGACCUCAUGGAUCAGCag
730	496	CUGAUCCAUGAGGUCCUAGt	1103	CUAGGACCUCAUGGAUCAGca
731	497	UGAUCCAUGAGGUCCUAGCt	1104	GCUAGGACCUCAUGGAUCAGc
732	498	GAUCCAUGAGGUCCUAGCCt	1105	GGCUAGGACCUCAUGGAUCag
733	499	AUCCAUGAGGUCCUAGCCt	1106	GGGCUAGGACCUCAUGGAUca

Ref Pos	SEQ ID NO	SENSE STRAND (5'-->3') SEQ ID NOS:2 to 608	SEQ ID NO	ANTISENSE STRAND (5'-->3') SEQ ID NOS:609 to 1215
750	500	CCCUGGCUGCCUGGAUGCGtt	1107	CGCAUCCAGGCAGCCAGGGgc
751	501	CCUGGCUGCCUGGAUGCGUtt	1108	ACGCAUCCAGGCAGCCAGGgg
752	502	CUGGCUGCCUGGAUGCGUtt	1109	AACGCAUCCAGGCAGCCAGGgg
753	503	UGGCUGCCUGGAUGCGUUCtt	1110	GAACGCAUCCAGGCAGCCAgg
754	504	GGCUGCCUGGAUGCGUUCtt	1111	GGAACGCAUCCAGGCAGCCag
755	505	GCUGCCUGGAUGCGUUCtt	1112	GGGAACGCAUCCAGGCAGCca
773	506	CCCUGCUCUCAGCAUAUGUtt	1113	ACAUUAUGCUGAGAGCAGGGgg
774	507	CCUGCUCUCAGCAUAUGUGtt	1114	CACAUUAUGCUGAGAGCAGGgg
775	508	CUGCUCUCAGCAUAUGUGGtt	1115	CCACAUUAUGCUGAGAGCAGgg
776	509	UGCUCUCAGCAUAUGUGGtt	1116	CCCACAUUAUGCUGAGAGCAGg
793	510	GGGCGCCUCAGUGCCCGGtt	1117	GCCGGGCACUGAGGCAGCCca
794	511	GGCGCCUCAGUGCCCGGtt	1118	GGCCGGGCACUGAGGCAGCCcc
795	512	GCGCCUCAGUGCCCGGtt	1119	GGGCCGGGCACUGAGGCAGCcc
796	513	CGCCUCAGUGCCCGGtt	1120	UGGGCCGGGCACUGAGGCAGcc
797	514	GCCUCAGUGCCCGGtt	1121	UUGGGCCGGGCACUGAGGCgc
798	515	CCUCAGUGCCCGGtt	1122	CUUGGGCCGGGCACUGAGGcg
799	516	CUCAGUGCCCGGtt	1123	GCUUGGGCCGGGCACUGAGGgc
800	517	UCAGUGCCCGGtt	1124	AGCUUGGGCCGGGCACUGAGGgg
801	518	CAGUGCCCGGtt	1125	GAGCUUGGGCCGGGCACUGAg
802	519	AGUGCCCGGtt	1126	UGAGCUUGGGCCGGGCACUGa
803	520	GUGCCCGGtt	1127	UUGAGCUUGGGCCGGGCACtg
804	521	UGCCCGGtt	1128	CUUGAGCUUGGGCCGGGCAct
805	522	GCCCGGtt	1129	CCUUGAGCUUGGGCCGGGCac
806	523	CCCGGtt	1130	GCCUUGAGCUUGGGCCGGGca
807	524	CCGGtt	1131	GGCUUGAGCUUGGGCCGGGgc
808	525	CGGCCAAGCUAAGGCCtt	1132	AGGCCUUGAGCUUGGGCCGgg
809	526	GGCCAAGCUAAGGCCtt	1133	AAGGCCUUGAGCUUGGGCCgg
810	527	GCCCAAGCUAAGGCCtt	1134	GAAGGCCUUGAGCUUGGGCCcg
811	528	CCCAAGCUAAGGCCtt	1135	GGAAGGCCUUGAGCUUGGGcc

Ref Pos	SEQ ID NO	SENSE STRAND (5'-->3') SEQ ID NOS:2 to 608	SEQ ID NO	ANTISENSE STRAND (5'-->3') SEQ ID NOS:609 to 1215
812	529	CCAAGCUAAGGCCUUCCUtt	1136	AGGAAGGCCUUGAGCUUGGgc
813	530	CAAGCUAAGGCCUUCCUGt	1137	CAGGAAGGCCUUGAGCUUGgg
814	531	AAGCUAAGGCCUUCCUGGtt	1138	CCAGGAAGGCCUUGAGCUUgg
815	532	AGCUAAGGCCUUCCUGGCTt	1139	GCCAGGAAGGCCUUGAGCUTg
816	533	GCUAAGGCCUUCCUGGCCtt	1140	GGCCAGGAAGGCCUUGAGCtt
817	534	CUCAGGCCUUCCUGGCCUtt	1141	AGGCCAGGAAGGCCUUGAGCt
818	535	UCAAGGCCUUCCUGGCCUtt	1142	GAGGCCAGGAAGGCCUUGAGc
819	536	CAAGGCCUUCCUGGCCUCCtt	1143	GGAGGCCAGGAAGGCCUUGag
820	537	AAGGCCUUCCUGGCCUCCtt	1144	GGGAGGCCAGGAAGGCCUuga
837	538	CCCUGAGUACGUGAACCUUtt	1145	GAGGUUCACGUACUCAGGGga
838	539	CCUGAGUACGUGAACCUUtt	1146	GGAGGUUCACGUACUCAGGgg
839	540	CUGAGUACGUGAACCUUCCtt	1147	GGGAGGUUCACGUACUCAGgg
856	541	CCCAUCAAUGGCAACGGGAtt	1148	UCCCGUUGCCAUUGAUGGGga
857	542	CCAUCAAUGGCAACGGGAAtt	1149	UUCCCGUUGCCAUUGAUGGgg
858	543	CAUCAAUGGCAACGGGAAAtt	1150	UUUCCCGUUGCCAUUGAUGgg
859	544	AUCAAUGGCAACGGGAAACtt	1151	GUUUCCCGUUGCCAUUGAugg
860	545	UCAAUGGCAACGGGAAACAtt	1152	UGUUUCCCGUUGCCAUUGAt
861	546	CAAUGGCAACGGGAAACAGtt	1153	CUGUUUCCCGUUGCCAUUGat
862	547	AAUGGCAACGGGAAACAGUtt	1154	ACUGUUUCCCGUUGCCAUUga
863	548	AUGGCAACGGGAAACAGUGt	1155	CACUGUUUCCCGUUGCCAUtg
864	549	UGGCAACGGGAAACAGUGAtt	1156	UCACUGUUUCCCGUUGCCAtt
865	550	GGCAACGGGAAACAGUGAGtt	1157	CUCACUGUUUCCCGUUGCCat
866	551	GCAACGGGAAACAGUGAGGtt	1158	CCUCACUGUUUCCCGUUGCc
867	552	CAACGGGAAACAGUGAGGGtt	1159	CCCUCACUGUUUCCCGUUGcc
868	553	AACGGGAAACAGUGAGGGUtt	1160	ACCCUCACUGUUUCCCGUUGc
869	554	ACGGGAAACAGUGAGGGUtt	1161	AACCCUCACUGUUUCCCGUtg
870	555	CGGGAAACAGUGAGGGUUGt	1162	CAACCCUCACUGUUUCCCGtt
871	556	GGGAAACAGUGAGGGUUGGtt	1163	CCAACCCUCACUGUUUCCGt
872	557	GGAAACAGUGAGGGUUGGtt	1164	CCCAACCCUCACUGUUUCCcg

Ref Pos	SEQ ID NO	SENSE STRAND (5'-->3') SEQ ID NOS:2 to 608	SEQ ID NO	ANTISENSE STRAND (5'-->3') SEQ ID NOS:609 to 1215
891	558	GGGACUCUGAGCGGGAGGCTt	1165	GCCUCCCGCUCAGAGUCCCcc
892	559	GGACUCUGAGCGGGAGGCAtt	1166	UGCCUCCCGCUCAGAGUCCcc
894	560	ACUCUGAGCGGGAGGCAGAGAtt	1167	UCUGCCUCCCGCUCAGAGUcc
896	561	UCUGAGCGGGAGGCAGAGUtt	1168	ACUCUGCCUCCCGCUCAGAgt
897	562	CUGAGCGGGAGGCAGAGUUtt	1169	AACUCUGCCUCCCGCUCAGag
898	563	UGAGCGGGAGGCAGAGUUUtt	1170	AAACUCUGCCUCCCGCUCAgA
899	564	GAGCGGGAGGCAGAGUUUGtt	1171	CAAACUCUGCCUCCCGCUCag
900	565	AGCGGGAGGCAGAGUUUGCtt	1172	GCAAACUCUGCCUCCCGCUca
901	566	GCAGGGAGGCAGAGUUUGCCtt	1173	GGCAAACUCUGCCUCCCGCtc
902	567	CGGGAGGCAGAGUUUGCCUtt	1174	AGGCAAACUCUGCCUCCCGct
903	568	GGGAGGCAGAGUUUGCCUtt	1175	AAGGCAAACUCUGCCUCCCgc
904	569	GGAGGCAGAGUUUGCCUUCtt	1176	GAAGGCAAACUCUGCCUCCcg
905	570	GAGGCAGAGUUUGCCUUCtt	1177	GGAAGGCAAACUCUGCCUCC
906	571	AGGCAGAGUUUGCCUUCUtt	1178	AGGAAGGCAAACUCUGCCUcc
907	572	GGCAGAGUUUGCCUUCUtt	1179	AAGGAAGGCAAACUCUGCCt
908	573	GCAGAGUUUGCCUUCUtt	1180	AAAGGAAGGCAAACUCUGCt
909	574	CAGAGUUUGCCUUCUtt	1181	GAAAGGAAGGCAAACUCUGcc
910	575	AGAGUUUGCCUUCUtt	1182	AGAAAGGAAGGCAAACUCUgc
911	576	GAGUUUGCCUUCUtt	1183	GAGAAAGGAAGGCAAACUCUtg
912	577	AGUUUGCCUUCUtt	1184	GGAGAAAGGAAGGCAAACUct
913	578	GUUUGCCUUCUtt	1185	UGGAGAAAGGAAGGCAAAct
914	579	UUUGCCUUCUtt	1186	CUGGAGAAAGGAAGGCAAAct
915	580	UUGCCUUCUtt	1187	CCUGGAGAAAGGAAGGCAAac
916	581	UGCCUUCUtt	1188	UCCUGGAGAAAGGAAGGCAaa
917	582	GCCUUCUtt	1189	GUCCUGGAGAAAGGAAGGcaa
918	583	CCUUCUtt	1190	GGUCCUGGAGAAAGGAAGGca
919	584	CUUUCUtt	1191	UGGUCCUGGAGAAAGGAAGgc
920	585	UUCCUUUCUtt	1192	UUGGUCCUGGAGAAAGGAAGg
921	586	UCCUUUCUtt	1193	AUUGGUCCUGGAGAAAGGAag

Ref Pos	SEQ ID NO	SENSE STRAND (5'-->3') SEQ ID NOS:2 to 608	SEQ ID NO	ANTISENSE STRAND (5'-->3') SEQ ID NOS:609 to 1215
922	587	CCUUUCUCCAGGACCAAUAtt	1194	UAUUGGUCCUGGAGAAAGGaa
923	588	CUUUCUCCAGGACCAAUUAAtt	1195	UUAUUGGUCCUGGAGAAAGga
924	589	UUUCUCCAGGACCAAUAAAAtt	1196	UUUAUUGGUCCUGGAGAAAg
925	590	UUCUCCAGGACCAAUAAAAtt	1197	UUUUAUUGGUCCUGGAGAAag
926	591	UCUCCAGGACCAAUAAAAUtt	1198	AUUUUAUUGGUCCUGGAGAaa
927	592	CUCCAGGACCAAUAAAAAUUtt	1199	AAUUUUAUUGGUCCUGGAGaa
928	593	UCCAGGACCAAUAAAAUUUtt	1200	AAAUUUUAUUGGUCCUGGAg
929	594	CCAGGACCAAUAAAAUUUUCtt	1201	GAAAUUUUAUUGGUCCUGGag
930	595	CAGGACCAAUAAAAUUUCUtt	1202	AGAAAUUUUAUUGGUCCUGga
931	596	AGGACCAAUAAAAUUUCUAtt	1203	UAGAAAUUUUAUUGGUCCUgg
932	597	GGACCAAUAAAAUUUCUAAtt	1204	UUAGAAAUUUUAUUGGUCCtg
933	598	GACCAAUAAAAUUUCUAAGtt	1205	CUUAGAAAUUUUAUUGGUCCct
934	599	ACCAAUAAAAUUUCUAAGAtt	1206	UCUUAGAAAUUUUAUUGGUCC
935	600	CCAAUAAAAUUUCUAAGAGtt	1207	CUCUUAGAAAUUUUAUUGGtc
936	601	CAAUAAAAUUUCUAAGAGAtt	1208	UCUCUUAGAAAUUUUAUUGgt
937	602	AAUAAAAUUUCUAAGAGAGtt	1209	CUCUCUUAGAAAUUUUAUUGg
938	603	AUAAAAUUUCUAAGAGAGCtt	1210	GCUCUCUUAGAAAUUUUAUtg
939	604	UAAAAUUUCUAAGAGAGCUtt	1211	AGCUCUCUUAGAAAUUUAtt
940	605	AAAAUUUCUAAGAGAGCUAtt	1212	UAGCUCUCUUAGAAAUUUat
941	606	AAAUUUCUAAGAGAGCUAAtt	1213	UUAGCUCUCUUAGAAAUUUta
942	607	AAUUUCUAAGAGAGCUAAAtt	1214	UUUAGCUCUCUUAGAAAUUtt
943	608	AUUUCUAAGAGAGCUAAAAtt	1215	UUUUAGCUCUCUUAGAAAUtt

[0058] Key for Table 1: Upper case A, G, C and U referred to for ribo-A, ribo-G, ribo-C and ribo-U respectively. The lower case letters a, g, c, t represent 2'-deoxy-A, 2'-deoxy-G, 2'-deoxy-C and thymidine respectively.

Table 2: RNAi molecule sequences for GST- π

ID	Ref Pos	SEQ ID NO	SENSE STRAND (5'-->3') SEQ ID NOS:1216 to 1280	SEQ ID NO	ANTISENSE STRAND (5'-->3') SEQ ID NOS:1281 to 1345
A1	652	1216	UCCCAGAACCAAGGGAGGCAtt	1281	UGCCUCCCUGGUUCUGGGAca
A10	635	1217	CUUUUGAGACCCUGCUGU Ct t	1282	GACAGCAGGGUCUAAAAGgc
A11	649	1218	CUGUCCCAGAACCAAGGGAGGtt	1283	CUCCCUGGUUCUGGGACAGca
A12	650	1219	UGUCCCAGAACCAAGGGAGGtt	1284	CCUCCCUGGUUCUGGGACAGc
A13	631	1220	AAGCCUUUUGAGACCCUGCt t	1285	GCAGGGUCUAAAAGGCUUca
A14	638	1221	UUGAGACCCUGCUGUCCAtt	1286	UGGGACAGCAGGGUCUCAAaa
A15	636	1222	UUUUGAGACCCUGCUGUCCt t	1287	GGACAGCAGGGUCUAAAAGg
A16	640	1223	GAGACCCUGCUGUCCAGAtt	1288	UCUGGGACAGCAGGGUCUcaa
A17	332	1224	GCUGGAAGGAGGAGGUGGtt	1289	ACCACCUCCUCCUCCAGCtc
A18	333	1225	CUGGAAGGAGGAGGUGGUGt t	1290	CACCACCUCCUCCUCCAGct
A19	321	1226	UCAGGGCCAGAGCUGGAAGGtt	1291	CUUCCAGCUCUGGCCUGAtc
A2	639	1227	UGAGACCCUGCUGUCCAGt t	1292	CUGGGACAGCAGGGUCUCAAaa
A20	323	1228	AGGGCCAGAGCUGGAAGGAtt	1293	UCCUCCAGCUCUGGCCUga
A21	331	1229	AGCUGGAAGGAGGAGGUGGtt	1294	CCACCUCCUCCUCCAGCUct
A22	641	1230	AGACCCUGCUGUCCAGAAtt	1295	UUCUGGGACAGCAGGGUCUca
A23	330	1231	GAGCUGGAAGGAGGAGGUGt t	1296	CACCUCCUCCUCCAGCUtg
A25	647	1232	UGCUGUCCAGAACCAAGGGtt	1297	CCCUGGUUCUGGGACAGCAgg
A26	653	1233	CCCAGAACCAAGGGAGGCAAtt	1298	UUGCCUCCCUGGUUCUGGGac
A3	654	1234	CCAGAACCAAGGGAGGCAAGtt	1299	CUUGCCUCCUCCUGGUUCUGGga
A4	637	1235	UUUGAGACCCUGCUGUCCt t	1300	GGGACAGCAGGGUCUCAAAGag
A5	642	1236	GACCCUGCUGUCCAGAACt t	1301	GUUCUGGGACAGCAGGGUctc
A6	319	1237	GAUCAGGGCCAGAGCUGGAtt	1302	UCCAGCUCUGGCCUGAUctg
A7	632	1238	AGCCUUUUGAGACCCUGCt t	1303	AGCAGGGUCUAAAAGGCUtc
A8	633	1239	GCCUUUUGAGACCCUGCUGt t	1304	CAGCAGGGUCUAAAAGGctt
A9	634	1240	CCUUUUGAGACCCUGCUGUtt	1305	ACAGCAGGGUCUAAAAGGct
AG7	632	1241	CGCCUUUUGAGACCCUGCAtt	1306	UGCAGGGUCUAAAAGGCGtc

ID	Ref Pos	SEQ ID NO	SENSE STRAND (5'-->3') SEQ ID NOS:1216 to 1280	SEQ ID NO	ANTISENSE STRAND (5'-->3') SEQ ID NOS:1281 to 1345
AK1	257	1242	CCUACACCGUGGUCUAUUUtt	1307	AAAUAGACCACGGUGUAGGgc
AK10	681	1243	UGUGGGAGACCAGAUCUCtt	1308	GGAGAUCUGGUCUCCCACAat
AK11	901	1244	GCGGGAGGCAGAGUUUGCtt	1309	GGCAAACUCUGCCUCCCGCtc
AK12	922	1245	CCUUUCUCCAGGACCAAUAtt	1310	UAUUGGUCCUGGAGAAAGGaa
AK13 /A24	643	1246	ACCCUGCUGUCCCAGAACtt	1311	GGUUCUGGGACAGCAGGGUct
AK2	267	1247	GGUCUAUUUCCAGUUCGAtt	1312	UCGAACUGGGAAAUAAGACCac
AK3	512	1248	CCCUGGUGGACAUGGUGAAtt	1313	UUCACCAUGUCCACCAGGGct
AK4	560	1249	ACAUCUCCUCAUCUACACTt	1314	GUGUAGAUGAGGGAGAUGUat
AK5	593	1250	GCAAGGAUGACUAUGUGAAtt	1315	UUCACAUAGUCAUCCUUGCcc
AK6	698	1251	CCUUCGCUGACUACAACCtt	1316	AGGUUGUAGUCAGCGAAGGag
AK7	313	1252	CUGGCAGAUCAGGGCCAGAtt	1317	UCUGGCCUGAUCUGCCAGca
AK8	421	1253	GACGGAGACCUCACCCUGUtt	1318	ACAGGGUGAGGUCUCCGUcct
AK9	590	1254	CGGGCAAGGAUGACUAUGUtt	1319	ACAUAGUCAUCCUUGCCCGcc
AU10	635	1255	CUUUUGAGACCCUGCUGUAtt	1320	UACAGCAGGGUCUCAAAAGgc
AU23	330	1256	GAGCUGGAAGGAGGGAGGUAtt	1321	UACCUCCUCCUCCAGCUUtg
AU24	643	1257	ACCCUGCUGUCCCAGAACtt	1322	UGUUCUGGGACAGCAGGGUct
AU25	648	1258	UGCUGUCCCAGAACCCAGGAtt	1323	UCCUGGUUCUGGGACAGCAgg
AU7	632	1259	AGCCUUUUGAGACCCUGCAtt	1324	UGCAGGGUCUCAAAAGGCUtc
AU9	634	1260	CCUUUUGAGACCCUGCUGAtt	1325	UCAGCAGGGUCUCAAAAGGct
B1	629	1261	UGAAGCCUUUUGAGACCCUtt	1326	AGGGUCUCAAAAGGCUUCAGt
B10	627	1262	ACUGAAGCCUUUUGAGACCTt	1327	GGUCUCAAAAGGCUUCAGUtg
B11	596	1263	AGGAUGACUAUGUGAAGGtt	1328	GCCUUCACAUAGUCAUCCUtg
B12	597	1264	GGAUGACUAUGUGAAGGCAtt	1329	UGCCUUCACAUAGUCAUCCtt
B13	598	1265	GAUGACUAUGUGAAGGCAct	1330	GUGCCUUCACAUAGUCAUCct
B14	564	1266	CUCCCUCAUCAACCAACTt	1331	GUUGGUGUAGAUGAGGGAGat
B2	630	1267	GAAGCCUUUUGAGACCCUGt	1332	CAGGGUCUCAAAAGGCUUCag
B3	563	1268	UCUCCCCUCAUCUACACCAAtt	1333	UUGGUGUAGAUGAGGGAGAtg
B4	567	1269	CCUCAUCUACACCAACUAAtt	1334	AUAGUUGGUGUAGAUGAGGGa
B5	566	1270	CCCUCAUCUACACCAACUAtt	1335	UAGUUGGUGUAGAUGAGGGag

ID	Ref Pos	SEQ ID NO	SENSE STRAND (5'-->3') SEQ ID NOS:1216 to 1280	SEQ ID NO	ANTISENSE STRAND (5'-->3') SEQ ID NOS:1281 to 1345
B6	625	1271	CAACUGAAGCCUUUUGAGAtt	1336	UCUCAAAAGGCUUCAGUUGcc
B7	626	1272	AACUGAAGCCUUUUGAGAGActt	1337	GUCUCAAAAGGCUUCAGUUgc
B8	628	1273	CUGAAGCCUUUUGAGACCt t	1338	GGGUCUCAAAAGGCUUCAGtt
B9	565	1274	UCCCUCAUCAUCACCAACUtt	1339	AGUUGGUGUAGAUGAGGGAg a
BG3	563	1275	GCUCCCUCAUCAUCACCAAtt	1340	UUGGUGUAGAUGAGGGAGCtg
BU02	631	1276	GAAGCCUUUUGAGACCUAtt	1341	UAGGGUCUCAAAAGGCUUCag
BU10	627	1277	ACUGAAGCCUUUUGAGACAtt	1342	UGUCUCAAAAGGCUUCAGUtg
BU14	565	1278	CUCCUCAUCAUCACCAAAtt	1343	UUUGGUGUAGAUGAGGGAGat
BU4	567	1279	CCUCAUCUACACCAACUAAtt	1344	UUAGUUGGUGUAGAUGAGGGga
C1-934	934	1280	ACCAAUAAAAUUUCUAAGAtt	1345	UCUUAGAAAUUUAUUGGUcc

[0059] Key for Table 2: Upper case A, G, C and U referred to for ribo-A, ribo-G, ribo-C and ribo-U respectively. The lower case letters a, g, c, t represent 2'-deoxy-A, 2'-deoxy-G, 2'-deoxy-C and thymidine respectively.

[0060] For example, a siRNA of this invention may have an antisense strand which is SEQ ID NO:1341, and a sense strand which is SEQ ID NO:1276, or chemically modified strands thereof.

[0061] For example, a siRNA of this invention may have an antisense strand which is SEQ ID NO:1305, and a sense strand which is SEQ ID NO:1240, or chemically modified strands thereof.

[0062] Chemical modifications may comprise a 2'-OMe substituent group on any nucleotide in any position in a strand, as well as other modifications known in the art.

[0063] Methods for modulating GST- π and treating malignant tumor

[0064] Embodiments of this invention can provide RNAi molecules that can be used to down regulate or inhibit the expression of GST- π and/or GST- π proteins.

[0065] In some embodiments, a RNAi molecule of this invention can be used to down regulate or inhibit the expression of GST- π and/or GST- π proteins arising from GST- π haplotype polymorphisms that may be associated with a disease or condition such as malignant tumor.

[0066] Monitoring of GST- π protein or mRNA levels can be used to characterize gene silencing, and to determine the efficacy of compounds and compositions of this invention.

[0067] The RNAi molecules of this disclosure can be used individually, or in combination with other siRNAs for modulating the expression of one or more genes.

[0068] The RNAi molecules of this disclosure can be used individually, or in combination, or in conjunction with other known drugs for preventing or treating diseases, or ameliorating symptoms of conditions or disorders associated with GST- π , including malignant tumor.

[0069] The RNAi molecules of this invention can be used to modulate or inhibit the expression of GST- π in a sequence-specific manner.

[0070] The RNAi molecules of this disclosure can include a guide strand for which a series of contiguous nucleotides are at least partially complementary to a GST- π mRNA.

[0071] In certain aspects, malignant tumor may be treated by RNA interference using a RNAi molecule of this invention.

[0072] Treatment of malignant tumor may be characterized in suitable cell-based models, as well as ex vivo or in vivo animal models.

[0073] Treatment of malignant tumor may be characterized by determining the level of GST- π mRNA or the level of GST- π protein in cells of affected tissue.

[0074] Treatment of malignant tumor may be characterized by non-invasive medical scanning of an affected organ or tissue.

[0075] Embodiments of this invention may include methods for preventing, treating, or ameliorating the symptoms of a GST- π associated disease or condition in a subject in need thereof.

[0076] In some embodiments, methods for preventing, treating, or ameliorating the symptoms of malignant tumor in a subject can include administering to the subject a RNAi molecule of this invention to modulate the expression of a GST- π gene in the subject or organism.

[0077] In some embodiments, this invention contemplates methods for down regulating the expression of a GST- π gene in a cell or organism, by contacting the cell or organism with a RNAi molecule of this invention.

[0078] RNA Interference

[0079] RNA interference (RNAi) refers to sequence-specific post-transcriptional gene silencing in animals mediated by short interfering RNAs (siRNAs). See, e.g., Zamore et al., Cell, 2000, Vol. 101, pp. 25-33; Fire et al., Nature, 1998, Vol. 391, pp. 806811; Sharp, Genes & Development, 1999, Vol. 13, pp. 139-141.

[0080] An RNAi response in cells can be triggered by a double stranded RNA (dsRNA), although the mechanism is not yet fully understood. Certain dsRNAs in cells can undergo the action of Dicer enzyme, a ribonuclease III enzyme. See, e.g., Zamore et al., Cell, 2000, Vol. 101, pp. 25-33; Hammond et al., Nature, 2000, Vol. 404, pp. 293-296. Dicer can process the dsRNA into shorter pieces of dsRNA, which are siRNAs.

[0081] In general, siRNAs can be from about 21 to about 23 nucleotides in length and include a base pair duplex region about 19 nucleotides in length.

[0082] RNAi involves an endonuclease complex known as the RNA induced silencing complex (RISC). An siRNA has an antisense or guide strand which enters the RISC complex and mediates cleavage of a single stranded RNA target having a sequence complementary to the antisense strand of the siRNA duplex. The other strand of the siRNA is the passenger strand. Cleavage of the target RNA takes place in the middle of the region complementary to the antisense strand of the siRNA duplex. See, e.g., Elbashir et al., Genes & Development, 2001, Vol. 15, pp. 188-200.

[0083] As used herein, the term “sense strand” refers to a nucleotide sequence of a siRNA molecule that is partially or fully complementary to at least a portion of a corresponding antisense strand of the siRNA molecule. The sense strand of a siRNA molecule can include a nucleic acid sequence having homology with a target nucleic acid sequence.

[0084] As used herein, the term “antisense strand” refers to a nucleotide sequence of a siRNA molecule that is partially or fully complementary to at least a portion of a target nucleic acid sequence. The antisense strand of a siRNA molecule can include a nucleic acid sequence that is complementary to at least a portion of a corresponding sense strand of the siRNA molecule.

[0085] RNAi molecules can down regulate or knock down gene expression by mediating RNA interference in a sequence-specific manner. See, e.g., Zamore et al., Cell, 2000, Vol. 101, pp. 25-33; Elbashir et al., Nature, 2001, Vol. 411, pp. 494-498; Kreutzer et al., WO2000/044895; Zernicka-Goetz et al., WO2001/36646; Fire et al., WO1999/032619; Plaetinck et al., WO2000/01846; Mello et al., WO2001/029058.

[0086] As used herein, the terms “inhibit,” “down-regulate,” or “reduce” with respect to gene expression means that the expression of the gene, or the level of mRNA molecules encoding one or more proteins, or the activity of one or more of the encoded proteins is reduced below that observed in the absence of a RNAi molecule or siRNA of this invention. For example, the level of expression, level of mRNA, or level of encoded protein activity may be reduced by at least 1%, or at least 10%, or at least 20%, or at least 50%, or at least 90%, or more from that observed in the absence of a RNAi molecule or siRNA of this invention.

[0087] RNAi molecules can also be used to knock down viral gene expression, and therefore affect viral replication.

[0088] RNAi molecules can be made from separate polynucleotide strands: a sense strand or passenger strand, and an antisense strand or guide strand. The guide and passenger strands are at least partially complementary. The guide strand and passenger strand can form a duplex region having from about 15 to about 49 base pairs.

[0089] In some embodiments, the duplex region of a siRNA can have 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, or 49 base pairs.

[0090] In certain embodiments, a RNAi molecule can be active in a RISC complex, with a length of duplex region active for RISC.

[0091] In additional embodiments, a RNAi molecule can be active as a Dicer substrate, to be converted to a RNAi molecule that can be active in a RISC complex.

[0092] In some aspects, a RNAi molecule can have complementary guide and passenger sequence portions at opposing ends of a long molecule, so that the molecule can form a duplex region with the complementary sequence portions, and the strands are linked at one end of the duplex region by either nucleotide or non-nucleotide linkers. For example, a hairpin arrangement, or a stem and loop arrangement. The linker interactions with the strands can be covalent bonds or non-covalent interactions.

[0093] A RNAi molecule of this disclosure may include a nucleotide, non-nucleotide, or mixed nucleotide/non-nucleotide linker that joins the sense region of the nucleic acid to the antisense region of the nucleic acid. A nucleotide linker can be a linker of ≥ 2 nucleotides in length, for example about 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides in length. The nucleotide linker can be a nucleic acid aptamer. By “aptamer” or “nucleic acid aptamer” as used herein refers to a nucleic acid molecule that binds specifically to a target molecule wherein the nucleic acid molecule has sequence that includes a sequence recognized by the target molecule in its natural setting. Alternately, an aptamer can be a nucleic acid molecule that binds to a target molecule, where the target molecule does not naturally bind to a nucleic acid. For example, the aptamer can be used to bind to a ligand-binding domain of a protein, thereby preventing interaction of the naturally occurring ligand with the protein. See, e.g., Gold et al., Annu Rev Biochem, 1995, Vol. 64, pp. 763-797; Brody et al., J. Biotechnol., 2000, Vol. 74, pp. 5-13; Hermann et al., Science, 2000, Vol. 287, pp. 820-825.

[0094] Examples of a non-nucleotide linker include an abasic nucleotide, polyether, polyamine, polyamide, peptide, carbohydrate, lipid, polyhydrocarbon, or other

polymeric compounds, for example polyethylene glycols such as those having from 2 to 100 ethylene glycol units. Some examples are described in Seela et al., Nucleic Acids Research, 1987, Vol. 15, pp. 3113-3129; Cload et al., J. Am. Chem. Soc., 1991, Vol. 113, pp. 6324-6326; Jaeschke et al., Tetrahedron Lett., 1993, Vol. 34, pp. 301; Arnold et al., WO1989/002439; Usman et al., WO1995/006731; Dudycz et al., WO1995/011910, and Ferentz et al., J. Am. Chem. Soc., 1991, Vol. 113, pp. 4000-4002.

[0095] A RNAi molecule can have one or more overhangs from the duplex region. The overhangs, which are non-base-paired, single strand regions, can be from one to eight nucleotides in length, or longer. An overhang can be a 3'-end overhang, wherein the 3'-end of a strand has a single strand region of from one to eight nucleotides. An overhang can be a 5'-end overhang, wherein the 5'-end of a strand has a single strand region of from one to eight nucleotides.

[0096] The overhangs of a RNAi molecule can have the same length, or can be different lengths.

[0097] A RNAi molecule can have one or more blunt ends, in which the duplex region ends with no overhang, and the strands are base paired to the end of the duplex region.

[0098] A RNAi molecule of this disclosure can have one or more blunt ends, or can have one or more overhangs, or can have a combination of a blunt end and an overhang end.

[0099] A 5'-end of a strand of a RNAi molecule may be in a blunt end, or can be in an overhang. A 3'-end of a strand of a RNAi molecule may be in a blunt end, or can be in an overhang.

[0100] A 5'-end of a strand of a RNAi molecule may be in a blunt end, while the 3'-end is in an overhang. A 3'-end of a strand of a RNAi molecule may be in a blunt end, while the 5'-end is in an overhang.

[0101] In some embodiments, both ends of a RNAi molecule are blunt ends.

[0102] In additional embodiments, both ends of a RNAi molecule have an overhang.

[00103] The overhangs at the 5'- and 3'-ends may be of different lengths.

[00104] In certain embodiments, a RNAi molecule may have a blunt end where the 5'-end of the antisense strand and the 3'-end of the sense strand do not have any overhanging nucleotides.

[00105] In further embodiments, a RNAi molecule may have a blunt end where the 3'-end of the antisense strand and the 5'-end of the sense strand do not have any overhanging nucleotides.

[00106] A RNAi molecule may have mismatches in base pairing in the duplex region.

[00107] Any nucleotide in an overhang of a RNAi molecule can be a deoxyribonucleotide, or a ribonucleotide.

[00108] One or more deoxyribonucleotides may be at the 5'-end, where the 3'-end of the other strand of the RNAi molecule may not have an overhang, or may not have a deoxyribonucleotide overhang.

[00109] One or more deoxyribonucleotides may be at the 3'-end, where the 5'-end of the other strand of the RNAi molecule may not have an overhang, or may not have a deoxyribonucleotide overhang.

[00110] In some embodiments, one or more, or all of the overhang nucleotides of a RNAi molecule may be 2'-deoxyribonucleotides.

[00111] Dicer Substrate RNAi Molecules

[00112] In some aspects, a RNAi molecule can be of a length suitable as a Dicer substrate, which can be processed to produce a RISC active RNAi molecule. See, e.g., Rossi et al., US2005/0244858.

[00113] A double stranded RNA (dsRNA) that is a Dicer substrate can be of a length sufficient such that it is processed by Dicer to produce an active RNAi molecule, and may further include one or more of the following properties: (i) the Dicer substrate dsRNA can be asymmetric, for example, having a 3' overhang on the antisense strand, and (ii) the Dicer substrate dsRNA can have a modified 3' end on the sense strand to

direct orientation of Dicer binding and processing of the dsRNA to an active RNAi molecule.

[00114] In certain embodiments, the longest strand in a Dicer substrate dsRNA may be 24-30 nucleotides in length.

[00115] A Dicer substrate dsRNA can be symmetric or asymmetric.

[00116] In some embodiments, a Dicer substrate dsRNA can have a sense strand of 22-28 nucleotides and an antisense strand of 24-30 nucleotides.

[00117] In certain embodiments, a Dicer substrate dsRNA may have an overhang on the 3' end of the antisense strand.

[00118] In further embodiments, a Dicer substrate dsRNA may have a sense strand 25 nucleotides in length, and an antisense strand 27 nucleotides in length, with a 2 base 3'-overhang. The overhang may be 1, 2 or 3 nucleotides in length. The sense strand may also have a 5' phosphate.

[00119] An asymmetric Dicer substrate dsRNA may have two deoxyribonucleotides at the 3'-end of the sense strand in place of two of the ribonucleotides.

[00120] The sense strand of a Dicer substrate dsRNA may be from about 22 to about 30, or from about 22 to about 28; or from about 24 to about 30; or from about 25 to about 30; or from about 26 to about 30; or from about 26 and 29; or from about 27 to about 28 nucleotides in length.

[00121] The sense strand of a Dicer substrate dsRNA may be 22, 23, 24, 25, 26, 27, 28, 29 or 30 nucleotides in length.

[00122] In certain embodiments, a Dicer substrate dsRNA may have sense and antisense strands that are at least about 25 nucleotides in length, and no longer than about 30 nucleotides in length.

[00123] In certain embodiments, a Dicer substrate dsRNA may have sense and antisense strands that are 26 to 29 nucleotides in length.

[00124] In certain embodiments, a Dicer substrate dsRNA may have sense and antisense strands that are 27 nucleotides in length.

[00125] The sense and antisense strands of a Dicer substrate dsRNA may be the same length as in being blunt ended, or different lengths as in having overhangs, or may have a blunt end and an overhang.

[00126] A Dicer substrate dsRNA may have a duplex region of 19, 20, 21, 22, 23, 24, 25, 26 or 27 nucleotides in length.

[00127] The antisense strand of a Dicer substrate dsRNA may have any sequence that anneals to at least a portion of the sequence of the sense strand under biological conditions, such as within the cytoplasm of a eukaryotic cell.

[00128] A Dicer substrate with a sense and an antisense strand can be linked by a third structure, such as a linker group or a linker oligonucleotide. The linker connects the two strands of the dsRNA, for example, so that a hairpin is formed upon annealing.

[00129] The sense and antisense strands of a Dicer substrate are in general complementary, but may have mismatches in base pairing.

[00130] In some embodiments, a Dicer substrate dsRNA can be asymmetric such that the sense strand has 22-28 nucleotides and the antisense strand has 24-30 nucleotides.

[00131] A region of one of the strands, particularly the antisense strand, of the Dicer substrate dsRNA may have a sequence length of at least 19 nucleotides, wherein these nucleotides are in the 21-nucleotide region adjacent to the 3' end of the antisense strand and are sufficiently complementary to a nucleotide sequence of the RNA produced from the target gene.

[00132] An antisense strand of a Dicer substrate dsRNA can have from 1 to 9 ribonucleotides on the 5'-end, to give a length of 22-28 nucleotides. When the antisense strand has a length of 21 nucleotides, then 1-7 ribonucleotides, or 2-5 ribonucleotides, or 4 ribonucleotides may be added on the 3'-end. The added ribonucleotides may have any sequence.

[00133] A sense strand of a Dicer substrate dsRNA may have 24-30 nucleotides. The sense strand may be substantially complementary with the antisense strand to anneal to the antisense strand under biological conditions.

[00134] Methods of use of RNAi molecules

[00135] The nucleic acid molecules and RNAi molecules of this invention may be delivered to a cell or tissue by direct application of the molecules, or with the molecules combined with a carrier or a diluent.

[00136] The nucleic acid molecules and RNAi molecules of this invention can be delivered or administered to a cell, tissue, organ, or subject by direct application of the molecules with a carrier or diluent, or any other delivery vehicle that acts to assist, promote or facilitate entry into a cell, for example, viral sequences, viral material, or lipid or liposome formulations.

[00137] The nucleic acid molecules and RNAi molecules of this invention can be complexed with cationic lipids, packaged within liposomes, or otherwise delivered to target cells or tissues. The nucleic acid or nucleic acid complexes can be locally administered to relevant tissues ex vivo, or in vivo through direct dermal application, transdermal application, or injection.

[00138] Delivery systems may include, for example, aqueous and nonaqueous gels, creams, emulsions, microemulsions, liposomes, ointments, aqueous and nonaqueous solutions, lotions, aerosols, hydrocarbon bases and powders, and can contain excipients such as solubilizers and permeation enhancers.

[00139] Compositions and methods of this disclosure can include an expression vector that includes a nucleic acid sequence encoding at least one RNAi molecule of this invention in a manner that allows expression of the nucleic acid molecule.

[00140] The nucleic acid molecules and RNAi molecules of this invention can be expressed from transcription units inserted into DNA or RNA vectors. Recombinant vectors can be DNA plasmids or viral vectors. Viral vectors can be used that provide for transient expression of nucleic acid molecules.

[00141] For example, the vector may contain sequences encoding both strands of a RNAi molecule of a duplex, or a single nucleic acid molecule that is self-complementary and thus forms a RNAi molecule. An expression vector may include a nucleic acid sequence encoding two or more nucleic acid molecules.

[00142] A nucleic acid molecule may be expressed within cells from eukaryotic promoters. Those skilled in the art realize that any nucleic acid can be expressed in eukaryotic cells from the appropriate DNA/RNA vector.

[00143] In some aspects, a viral construct can be used to introduce an expression construct into a cell, for transcription of a dsRNA construct encoded by the expression construct.

[00144] Lipid formulations can be administered to animals by intravenous, intramuscular, or intraperitoneal injection, or orally or by inhalation or other methods as are known in the art.

[00145] Pharmaceutically acceptable formulations for administering oligonucleotides are known and can be used.

[00146] EXAMPLES

[00147] **Example 1:** In vitro transfection was performed in an A549 cell line to determine siRNA knockdown efficacy. Dose dependent knockdown for GST- π mRNA was observed with siRNAs as shown in Table 3.

Table 3: Dose dependent knockdown for GST- π mRNA in an A549 cell line

siRNA	IC50 (pM)
A9	27, 29
B2	121
B3	235
B4	229
B13	23, 34
BU02	21, 25, 34

[00148] **Example 2:** Protocol for in vitro knockdown.

[00149] One day before the transfection, plate the cells in a 96-well plate at 2 x 10³ cells per well with 100 μ l of DMEM (HyClone Cat. # SH30243.01) containing 10% FBS and culture in a 37°C incubator containing a humidified atmosphere of 5% CO₂ in air. Before transfection, change medium to 90 μ l of Opti-MEM I Reduced Serum Medium (Life Technologies Cat. # 31985-070) containing 2% FBS. Mix 0.2 μ l of Lipofectamine RNAiMax (Life Technologies Cat. # 13778-100) with 4.8 μ l of Opti-MEM I for 5 minutes at room temperature. Mix 1 μ l of siRNA with 4 μ l of Opti-MEM I and combine with the LF2000 solution and then mix gently, without vortex. Wait for 5 minutes at room temperature. Incubate the mixture for 10 minutes at room temperature to allow the RNA-RNAiMax complexes to form. Add the 10 μ l of RNA-RNAiMax complexes to a well and shake the plate gently by hand. Incubate the cells in a 37°C incubator containing a humidified atmosphere of 5% CO₂ in air for 2 hours. Change medium to fresh -MEM I Reduced Serum Medium (Life Technologies Cat. # 31985-070) containing 2% FBS. 24 hours after transfection, wash the cells with ice-cold PBS once. Lyse the cells with 50 μ l of Cell-to-Ct Lysis Buffer (Life Technologies Cat. # 4391851 C) for 5-30 minutes at room temperature. Add 5 μ l of Stop Solution and incubate for 2 minutes at room temperature. Measure mRNA level by RT-qPCR with TAQMAN immediately. Alternatively, the samples can be frozen at -80 °C and assayed at a later time.

[00150] **Example 3:** Fig. 2 shows in vivo knockdown efficacy for GST- π siRNA. Dose dependent knockdown of GST- π mRNA was observed in vivo with BU02 siRNA targeted to GST- π , as shown in Fig. 2.

[00151] **Example 4:** Fig. 3 shows inhibition of cell proliferation by GST- π targeted siRNA. Dose-dependent inhibition of proliferation was observed in an A549 cell line in vitro with siRNA targeted to GST- π , as shown in Fig. 3.

[00152] **Example 5:** Fig. 4 shows tumor inhibition efficacy for GST- π siRNA (BU02). A pancreatic cancer xenograft model was utilized with a relatively low dose at 0.75 mg/kg of siRNA targeted to GST- π . The GST- π siRNA demonstrated significant and unexpectedly advantageous tumor inhibition efficacy at day 28.

[00153] In this experiment, A549 and PANC-1 cell lines were obtained from ATCC. The cell suspension was mixed well with ice thawed BD matrigel at 1:1 ratio for injection. Each mouse, athymic nude female mice, 6 to 8 weeks, Charles River, was inoculated subcutaneously in the right flank with 0.1 ml of an inoculum of 2×10^6 (A549) or 2.5×10^6 (PANC-1) cells using a 25 G needle and syringe (1 inoculum per mouse). Mice were anesthetized for inoculation. On the day when the established tumors reached approximately $250 - 350 \text{ mm}^3$ (A549) or $150 - 250 \text{ mm}^3$ (PANC-1) animals were subjected to bolus injection through tail vein. Animals were sacrificed by overdosed CO₂ and tumors dissected at different time points following the dosing. Tumors were first wet weighted, and then separated into three parts for measurement of GST- π knockdown, biodistribution of siRNA, and biomarker analysis. The samples were snap frozen in liquid nitrogen and stored at -80°C until ready to be processed for bioanalysis.

[00154] **Example 6: Orthotopic A549 lung cancer mouse model.** The GST- π siRNAs of this invention can exhibit profound reduction of orthotopic lung cancer tumors in vivo. In this example, a GST- π siRNA provided gene knockdown potency in vivo when administered in a liposomal formulation to the orthotopic lung cancer tumors in athymic nude mice.

[00155] In general, an orthotopic tumor model can exhibit direct clinical relevance for drug efficacy and potency, as well as improved predictive ability. In the orthotopic tumor model, tumor cells are implanted directly into the same kind of organ from which the cells originated.

[00156] The anti-tumor efficacy of the siRNA formulation against human lung cancer A549 was evaluated by comparing the final primary tumor weights measured at necropsy for the treatment group and the vehicle control group.

[00157] Orthotopic lung cancer tumor inhibition was observed in vivo for a GST- π siRNA based on structure BU2 (SEQ ID NOs:1276 and 1341). An orthotopic A549 lung cancer mouse model was utilized with a relatively low dose at 2 mg/kg of the siRNA targeted to GST- π .

[00158] The GST- π siRNA showed significant and unexpectedly advantageous lung tumor inhibition efficacy in this six-week study. After 43 days, the GST- π siRNA

showed markedly advantageous tumor inhibition efficacy, with final tumor average weights significantly reduced by 2.8-fold as compared to control.

[00159] For this study, male NCr nu/nu mice, 5-6 weeks old, were used. The experimental animals were maintained in a HEPA filtered environment during the experimental period. The siRNA formulations were stored at 4° C before use, and warmed to room temperature 10 minutes prior to injection in mouse.

[00160] For this A549 human lung cancer orthotopic model, on the day of surgical orthotopic implantation (SOI), the stock tumors were harvested from the subcutaneous site of animals bearing A549 tumor xenograft and placed in RPMI-1640 medium. Necrotic tissues were removed and viable tissues were cut into 1.5-2 mm³ pieces. The animals were anesthetized with isoflurane inhalation and the surgical area was sterilized with iodine and alcohol. A transverse incision approximately 1.5 cm long was made in the left chest wall of the mouse using a pair of surgical scissors. An intercostal incision was made between the third and the fourth rib and the left lung was exposed. One A549 tumor fragment was transplanted to the surface of the lung with an 8-0 surgical suture (nylon). The chest wall was closed with a 6-0 surgical suture (silk). The lung was re-inflated by intrathoracic puncture using a 3 cc syringe with a 25 G X 1 1/2 needle to draw out the remaining air in the chest cavity. The chest wall was closed with a 6-0 surgical silk suture. All procedures of the operation described above were performed with a 7 x magnification microscope under HEPA filtered laminar flow hoods.

[00161] Three days after tumor implantation, the model tumor-bearing mice were randomly divided into groups of ten mice per group. For the group of interest, treatment of the ten mice was initiated three days after tumor implantation.

[00162] For the group of interest, the formulation was (Ionizable lipid:cholesterol:DOPE:DOPC:DPPE-PEG-2K:DSPE-PEG-2K), a liposomal composition. The liposomes encapsulated the GST- π siRNA.

[00163] For the study endpoint, the experimental mice were sacrificed forty-two days after treatment initiation. Primary tumors were excised and weighed on an electronic balance for subsequent analysis.

[00164] For an estimation of compound toxicity, the mean body weight of the mice in the treated and control groups was maintained within the normal range during the entire experimental period. Other symptoms of toxicity were not observed in the mice.

[00165] **Example 7:** Effect of small interfering RNA (siRNA) targeting GST- π on A549 cell growth in nude mice and angiogenesis on chorioallantoic membrane (CAM) assay. Three pairs of GST- π siRNA-plasmid and non-silencing-plasmid are constructed, and transfected into A549 cells through LIPOFECTAMINE 2000, respectively. The most effective pair of GST- π siRNA-plasmid is selected by ELISA and real-time RT-PCR. A549 cells are transfected with selected GST- π siRNA- plasmid, A549 cells are transfected with non-silencing-plasmid, and A549 cells without transfection are inoculated into nude mice, respectively. Chick embryos are randomly divided into four groups and CAM is treated by different solutions for 48 h: culture media DMEM as negative control group, un-transfected A549 cell culture supernatants as positive control group, GST- π siRNA A549 cell culture supernatants as GST- π siRNA group and non-silencing siRNA A549 cell culture supernatants as non-silencing siRNA group. The CAMs were harvested on day 12 for microscopic assays.

[00166] Compared with control group, GST- π siRNA-plasmid induces reduction in GST- π secretion by A549 cells accompanied by reduction in GST- π mRNA. Compared with non-silencing siRNA group, the mean tumor volume of murine xenograft is reduced in GST- π siRNA group; time for xenografts growing to 50 mm³ is delayed. GST- π contents in xenograft are reduced. In CAM assays, GST- π content is zero in negative group, and in GST- π siRNA group is reduced by 20-70% compared to non-silencing siRNA group or positive group; vessels branch points of CAM in GST- π siRNA group or non-silencing siRNA group or positive group are increased compared with negative group; total vessel length of CAM in GST- π siRNA group is increased compared with negative group, while in non-silencing siRNA group or positive group it is increased. Compared with negative control group, the proliferation of microvessels is increased when cell culture supernatant with GST- π is added in GST- π siRNA group, significant proliferated vessels are observed in non-silencing siRNA group or positive group.

[00167] **Example 8:** Cell culture. The human non-small cell lung carcinoma cell line, A549 is cultured in F-12K medium (ATCC) supplemented with 10% FBS (FBS, Invitrogen) at 37 °C in a humidified atmosphere with 5% CO₂. The cells stably expressing control, or GST π siRNAs are generated by transducing A549TR cells with the respective lentiviral transduction particles as per manufacturer's instructions (Sigma-Aldrich). Resistant clones are selected in 2.5 μ g/mL puromycin (Invivogen) for 12 d, isolated using cloning cylinders, and subsequently expanded and maintained in puromycin-containing medium.

[00168] **Example 9:** GST- π targeted siRNA results in profound regression of tumor volume in vivo.

[00169] A lipid formulation is used to encapsulate and deliver siRNA in nanoparticles to xenografts of human A549 lung cancer cells in scid mice. The xenografts are tested to identify the presence of KRAS mutations or aberrant levels of expression compared to normal cells. When tumors became established (>100 mm³), mice are treated with either GST- π targeted siRNA or Control (non-specific) siRNA every 2 days for 2 weeks. The trial is halted when the control group has to be euthanized.

[00170] Results: Treatment with GST- π targeted siRNA prevents tumor expansion and results in dramatic tumor volume reduction.

[00171] The tumors that are recovered are sectioned and visualized by TUNEL staining. GST- π targeted siRNA-treated tumors display significantly higher levels of apoptosis. RNA is extracted from the tumors, and real-time PCR is performed to examine specific knockdown of GST- π .

[00172] Results: Treatment with GST- π targeted siRNA dramatically reduces expression of GST- π in vivo.

[00173] **Example 10:** The GST- π siRNAs of this invention exhibited increased serum stability.

[00174] A GST- π siRNA was incubated in human serum and detection of remaining siRNA at various time points was done by HPLS/LCMS. The half-life (t_{1/2}) in

serum for both the sense strand and antisense strand of the GST- π siRNA (SEQ ID Nos:1276 and 1341) was about 100 minutes.

[00175] **Example 11:** The GST- π siRNAs of this invention exhibited enhanced stability in formulation in plasma.

[00176] A GST- π siRNA was incubated in a formulation in plasma and detection of remaining siRNA was done at various time points. The half-life ($t_{1/2}$) in plasma of a formulation of GST- π siRNA (SEQ ID Nos:1276 and 1341) was significantly longer than 100 hours.

[00177] The GST- π siRNA was prepared in a liposomal formulation having the composition (Ionizing lipid: cholesterol: DOPE: DOPC: DPPE-PEG-2K) (25:30:20:20:5). The z-average size for the liposomal nanoparticles was 40.0 nm, and the siRNA was 91% encapsulated.

[00178] The formulation was incubated in 50% human serum in PBS for 40min, 1.5h, 3h, 24h, and 96h. The amount of the GST- π siRNA was determined by an ELISA-based assay.

[00179] **Example 12:** The GST- π siRNAs of this invention can exhibit profound reduction of cancer xenograft tumors in vivo. The GST- π siRNAs can provide gene knockdown potency in vivo when administered in a liposomal formulation to the cancer xenograft tumors.

[00180] Tumor inhibition efficacy was observed for a GST- π siRNA (SEQ ID NOs:1276 and 1341). Dose dependent knockdown of GST- π mRNA was observed in vivo with the siRNA targeted to GST- π . A cancer xenograft model was utilized with a siRNA targeted to GST- π .

[00181] The GST- π siRNA showed significant and unexpectedly advantageous tumor inhibition efficacy within a few days after administration. Treatment with a GST- π siRNA resulted in significant reduction of GST- π mRNA expression 4 days after injection in a lipid formulation. At the higher dose of 4mg/kg, significant reduction of about 40% was detected 24 hours after injection.

[00182] The GST- π siRNA was administered in a single injection of 10 mL/kg of a liposomal formulation having the composition (Ionizable lipid: Cholesterol: DOPE: DOPC: DPPE-PEG-2K) (25:30:20:20:5).

[00183] For the cancer xenograft model, an A549 cell line was obtained from ATCC. The cells were maintained in RPMI-1640 supplemented with 10% Fetal Bovine Serum and 100 U/ml penicillin and 100 μ g/ml streptomycin. Cells were split 48 hrs before inoculation so that cells were in log phase growth when harvested. Cells were lightly trypsinized with trypsin-EDTA and harvested from tissue culture. The number of viable cells was counted and determined in a hemocytometer in the presence of trypan blue (only viable cells are counted). The cells were resuspended to a concentration of 4×10^7 /ml in RPMI media without serum. Then the cell suspension was mixed well with ice thawed BD matrigel at 1:1 ratio for injection.

[00184] Mice were Charles River Laboratory Athymic Nude (nu/nu) Female Mice, immuno-compromised, 6-8 weeks old, 3 mice per group.

[00185] For tumor model preparation, each mouse was inoculated subcutaneously in the right flank with 0.1 ml an inoculum of 2×10^6 of A549 cells using a 25 G needle and syringe, one inoculum per mouse. Mice were not anesthetized for inoculation.

[00186] For tumor volume measurements and randomization, tumor size was measured to the nearest 0.1 mm. Tumor volumes were calculated using the formula: Tumor volume = length x width²/2. Tumor volumes were monitored twice a week. Once the established tumors reached approximately 350 - 600 mm³, the mice were assigned into groups with varied time points. On the same day, test articles were administered according to the dosing regimen.

[00187] For dosage administration, on the day when the established tumors reached approximately 350 - 600 mm³, the test articles were taken out from 4°C fridge. Before being applied to syringes, the bottle containing formulation was reverted by hand for a few times to make a homogeneous solution.

[00188] For body weight, mice were weighed to the nearest 0.1 g. Body weights were monitored and recorded twice for weeks, for the rest of weeks, including the day of study termination.

[00189] For tumors collection, animals were sacrificed by overdosed CO₂ and tumors were dissected at 0, 24, 48, 72, 96(optional), and 168 hours following the dosing. Tumors were first wet weighted, and then separated into three parts for KD, distribution and biomarker analysis. The samples were snap frozen in liquid nitrogen and stored at -80°C until ready to be processed.

[00190] The embodiments described herein are not limiting and one skilled in the art can readily appreciate that specific combinations of the modifications described herein can be tested without undue experimentation toward identifying nucleic acid molecules with improved RNAi activity.

[00191] All publications, patents and literature specifically mentioned herein are incorporated by reference in their entirety for all purposes.

[00192] It is understood that this invention is not limited to the particular methodology, protocols, materials, and reagents described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention. It will be readily apparent to one skilled in the art that varying substitutions and modifications can be made to the description disclosed herein without departing from the scope and spirit of the description, and that those embodiments are within the scope of this description and the appended claims.

[00193] It must be noted that as used herein and in the appended claims, the singular forms "a", "an", and "the" include plural reference unless the context clearly dictates otherwise. As well, the terms "a" (or "an"), "one or more" and "at least one" can be used interchangeably herein. It is also to be noted that the terms "comprises," "comprising", "containing," "including", and "having" can be used interchangeably, and shall be read expansively and without limitation.

[00194] Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. For Markush groups, those skilled in the art will recognize that this description includes the individual members, as well as subgroups of the members of the Markush group.

[00195] Without further elaboration, it is believed that one skilled in the art can, based on the above description, utilize the present invention to its fullest extent. The following specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

[00196] All of the features disclosed in this specification may be combined in any combination. Each feature disclosed in this specification may be replaced by an alternative feature serving the same, equivalent, or similar purpose.

WHAT IS CLAIMED IS:

1. A nucleic acid molecule, wherein:
 - a) the molecule has a polynucleotide sense strand and a polynucleotide antisense strand;
 - b) each strand of the molecule is from 15 to 30 nucleotides in length;
 - c) a contiguous region of from 15 to 30 nucleotides of the antisense strand is complementary to a sequence of an mRNA encoding GST- π ;
 - d) at least a portion of the sense strand is complementary to at least a portion of the antisense strand, and the molecule has a duplex region of from 15 to 30 nucleotides in length.
2. The nucleic acid molecule of claim 1, wherein the antisense strand is SEQ ID NO:1341, and the sense strand is SEQ ID NO:1276, or chemically modified strands thereof.
3. The nucleic acid molecule of claim 1, wherein the antisense strand is SEQ ID NO:1305, and the sense strand is SEQ ID NO:1240, or chemically modified strands thereof.
4. The nucleic acid molecule of claim 1, wherein the contiguous region of from 15 to 30 nucleotides of the antisense strand that is complementary to a sequence of an mRNA encoding GST- π is located in the duplex region of the molecule.
5. The nucleic acid molecule of claim 1, wherein the contiguous region of from 15 to 30 nucleotides of the antisense strand that is complementary to a sequence of an mRNA encoding GST- π is selected from a sequence of human GSTP1, wherein human GSTP1 mRNA is SEQ ID NO:1.
6. The nucleic acid molecule of claim 1, wherein the sequence of an mRNA encoding GST- π is selected from the group consisting of 5'UTR positions 1 to 249 of SEQ ID NO:1, CDS positions 250 to 882 of SEQ ID NO:1, and 3'UTR positions 883 to 986 of SEQ ID NO:1.

7. The nucleic acid molecule of claim 1, wherein the antisense strand contains a sequence selected from any one of SEQ ID NOs:609-1215.
8. The nucleic acid molecule of claim 1, wherein the antisense strand contains a sequence selected from any one of SEQ ID NOs:1281-1345.
9. The nucleic acid molecule of claim 1, wherein the molecule is composed of an antisense and sense strand pair selected from the group consisting of SEQ ID NO:1240 and 1305, SEQ ID NO:1265 and 1330, SEQ ID NO:1267 and 1332, SEQ ID NO:1269 and 1334, and SEQ ID NO:1276 and 1341.
10. The nucleic acid molecule of claim 1, wherein each strand of the molecule is from 18 to 22 nucleotides in length.
11. The nucleic acid molecule of claim 1, wherein the duplex region is 19 nucleotides in length.
12. The nucleic acid molecule of claim 1, wherein the polynucleotide sense strand and the polynucleotide antisense strand are connected as a single strand, and form a duplex region connected at one end by a loop.
13. The nucleic acid molecule of claim 1, wherein the molecule has a blunt end.
14. The nucleic acid molecule of claim 1, wherein the molecule has one or more 3' overhangs.
15. The nucleic acid molecule of claim 1, wherein the molecule is an RNAi molecule active for gene silencing.
16. The nucleic acid molecule of claim 1, wherein the molecule is a dsRNA, a siRNA, a micro-RNA, or a shRNA active for gene silencing.
17. The nucleic acid molecule of claim 1, wherein the molecule is active for inhibiting expression of GST- π .

18. The nucleic acid molecule of claim 1, wherein the molecule has an IC50 for knockdown of GST- π of less than 100 pM.
19. A composition comprising one or more nucleic acid molecules of any one of claims 1-18 and a pharmaceutically acceptable carrier.
20. The composition of claim 19, wherein the carrier is a lipid molecule or liposome.
21. A method for treating a disease associated with GST- π expression, the method comprising administering to a subject in need a composition of claim 19.
22. The method of claim 21, wherein the disease is malignant tumor.
23. The method of claim 22, wherein the malignant tumor is presented in a disease selected from the group consisting of cancers associated with GST- π expression, cancers caused by cells expressing mutated KRAS, sarcomas, fibrosarcoma, malignant fibrous histiocytoma, liposarcoma, rhabdomyosarcoma, leiomyosarcoma, angiosarcoma, Kaposi's sarcoma, lymphangiosarcoma, synovial sarcoma, chondrosarcoma, osteosarcoma, carcinomas, brain tumor, head and neck cancer, breast cancer, lung cancer, esophageal cancer, stomach cancer, duodenal cancer, colorectal cancer, colon cancer, liver cancer, pancreatic cancer, gallbladder cancer, bile duct cancer, kidney cancer, urethral cancer, bladder cancer, prostate cancer, testicular cancer, penile cancer, uterine cancer, ovarian cancer, skin cancer, bone cancer, leukemia, malignant lymphoma, epithelial malignant tumors, and non-epithelial malignant tumors.

SEQ ID NO:1

TGGGAAAGAGGGAAAGGCTCCCCGGCCAGCTGCGCGGCAGTCCGGGACTCCAGGGCGCCCTCTGCG
GCCGACGCCGGGGTGCAGCGGCCGGCTGGGGCCGGCAGTCCCGCGGACCCCTCCAGAAGAGC
GGCGCGCCGTGACTCAGCACTGGGGCGGAGCGGGGGGGACCACCCCTATAAGGCTCGGAGGCCGCGA
GGCCTCGCTGGAGTTCGCCGCCAGTCTGCCACCATGCCGCCCTACACCGTGGTCTATTCCCAG
TTCGAGGCCGCTGCGCGGCCCTGCGCATGCTGCTGGCAGATCAGGGCCAGAGCTGGAAGGAGGAGGTGGT
GACCGTGGAGACGTGGCAGGAGGGCTCACTCAAAGCCTCCTGCCTATAACGGGCAGCTCCCCAAGTTCCAG
GACGGAGACCTCACCTGTACCAGTCCAATACCATCCTGCGTCACCTGGGCCGACCCCTGGCTCTATG
GGAAGGACCAGCAGGAGGCAGCCCTGGTGGACATGGTGAATGACGGCGTGGAGGACCTCCGCTGCAAATA
CATCTCCCTCATCTACACCAACTATGAGGCAGGCAAGGATGACTATGTGAAGGCAGTGCCTGGGCAACTG
AAGCCTTTGAGACCTGCTGTCCCAGAACCAAGGGAGGCAAGACCTTCATTGTGGAGGACAGATCTCCT
TCGCTGACTACAACCTGCTGGACTTGCTGATCCATGAGGTCTAGCCCCTGGCTGCCTGGATGCGTT
CCCCCTGCTCTCAGCATATGTGGGCCCTCAGTGCCTGGGCAAGCTCAAGGCCTCCTGGCCTCCCCT
GAGTACGTGAACCTCCCCATCAATGGCAACGGAAACAGTGAGGGTTGGGGGACTCTGAGCGGGAGGCA
GAGTTGCCTTCCTTCTCCAGGACCAATAAAATTCTAAGAGAGCTAAAAAAAAAAAAAAA
AAAAAA

FIG. 1

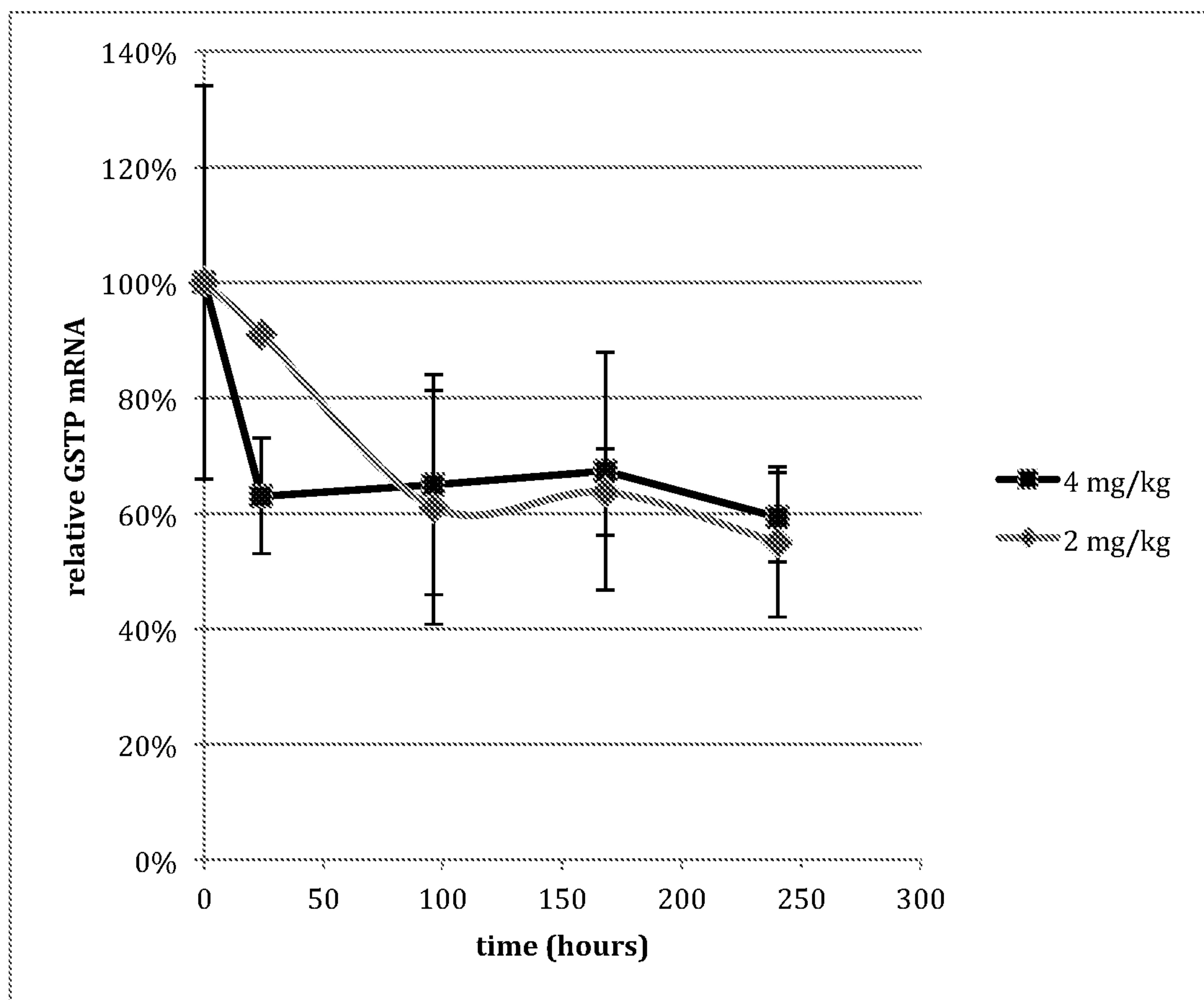


FIG. 2

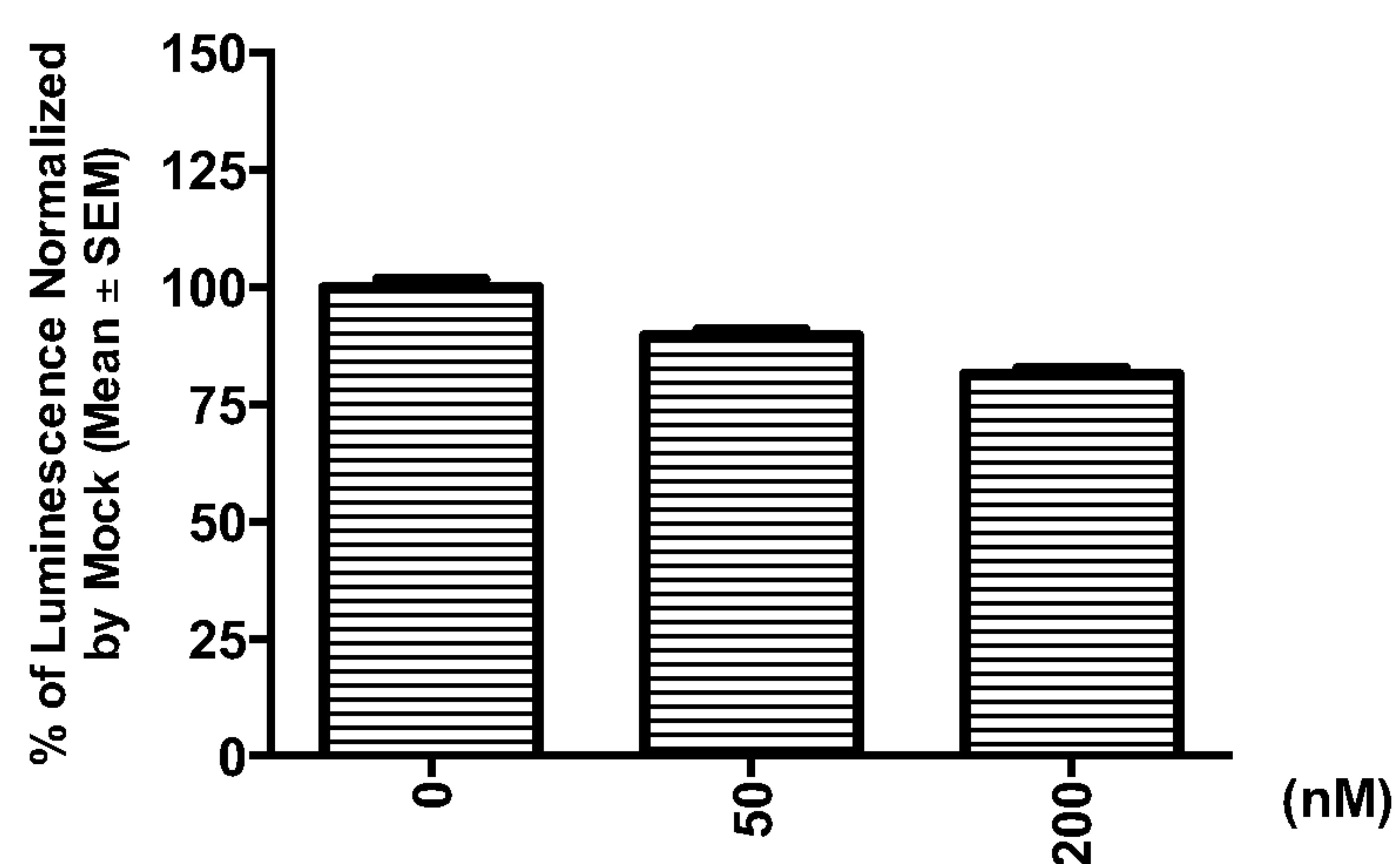


FIG. 3

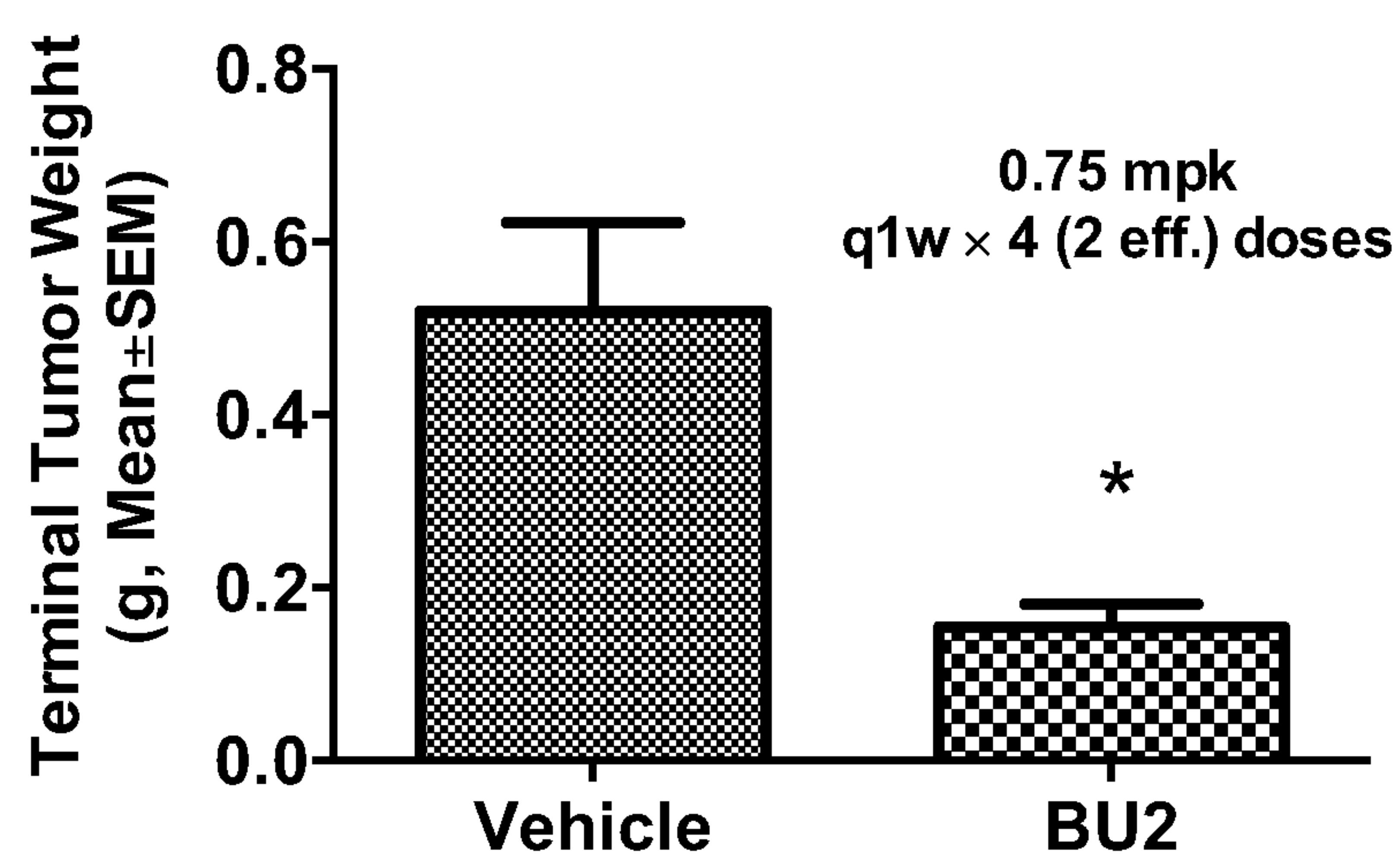


FIG. 4

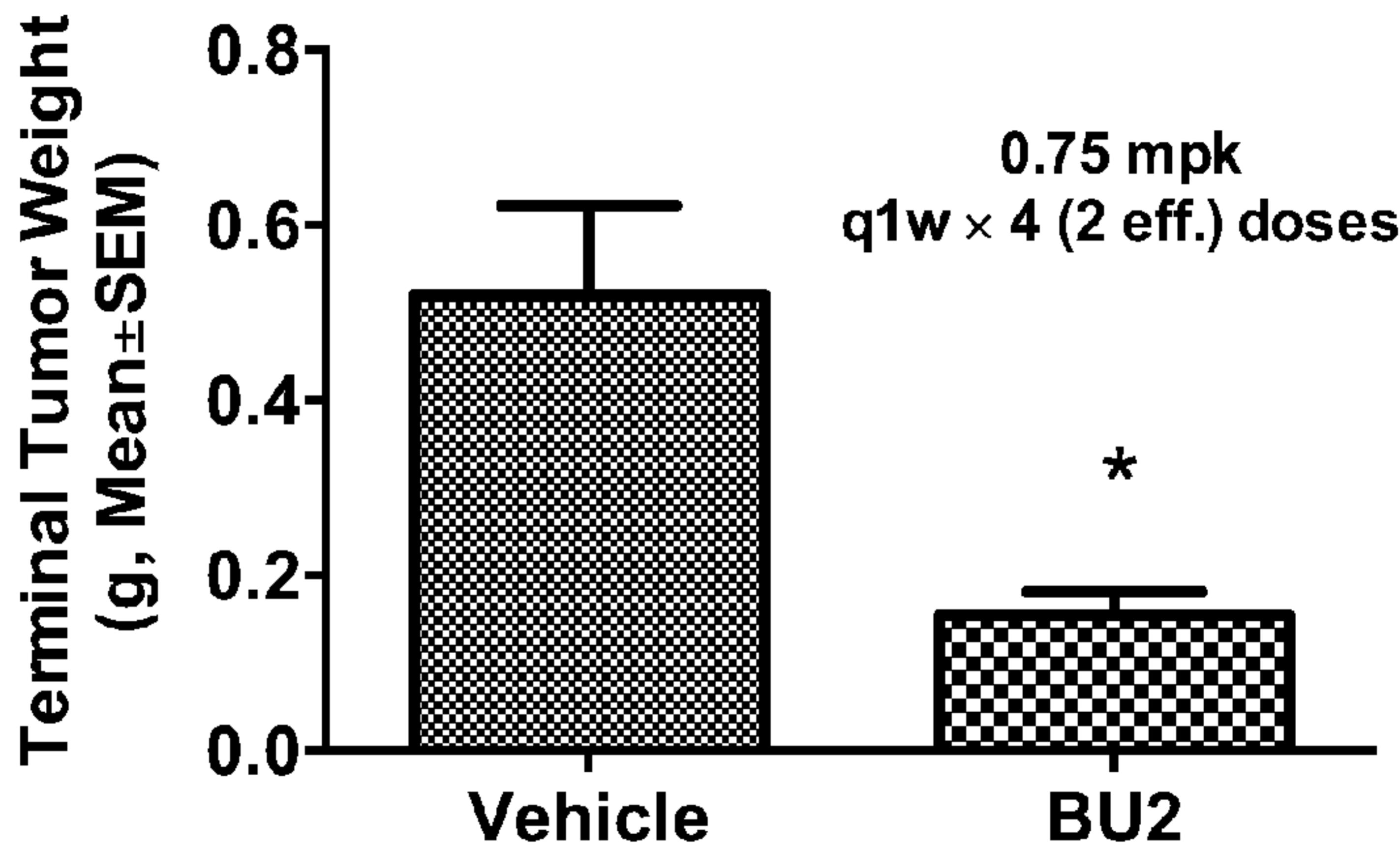


FIG. 4