(12) PATENTTIJULKAISU
PATENTSKRIFT

(10) FI 113425 B

(45) Patentti myönnetty - Patent beviljats 15.04.2004

(51) Kv.lk.7 - Int.kl.7

H04B 1/707, G01S 5/14

(21) Patentihakemus - Patenttansökning 20020927

(22) Hakemispäivä - Ansökningsdag 16.05.2002

(24) Alkupaivä - Löpdag 16.05.2002

(41) Tullut julkiseksi - Blivit offentlig 17.11.2003

SUOMI – FINLAND
(FI)

PATENTTI- JA REKISTERIHALLITUS
PATENT- OCH REGISTERSTYRELSEN

(73) Haltija - Innehavare

1 -Nokia Corporation, Helsinki, Keilalahdentie 4, 02150 Espoo, SUOMI - FINLAND, (FI)

(72) Keksiä - Uppfinnare

1 -Kontola,Ilkka, Vanha Vaasantie 33, 39160 Jukkurin, SUOMI - FINLAND, (FI)
2 -Pietilä,Samuli, Väinöläntie 2 A 26, 33100 Tampere, SUOMI - FINLAND, (FI)
3 -Vallo,Harri, Vattulantie 17, 34240 Kämenniemi, SUOMI - FINLAND, (FI)

(74) Asiakset - Ombud: Tampereen Patenttoimisto Oy
Henrikkatu 12 B, 33720 Tampere

(54) Keksinön nimitys - Uppfinningens benämning

Menetelmä vastaanottimen taidistamiseksi, järjestelmä ja elektroniikkalaite
Förarande för synkronisering av en mottagare, system och elektronikanordning

(56) Viitejulkaisut - Anförda publikationer

EP 1107018 A, WO 0223213 A

(57) Tiivistelmä - Sammandrag

Diagramma:

Diagramma on järjestelyä vastaava, mutta teksti kertoo teknisistä tiedoista ja asiantuntevista.
Uppfinningen avser ett förfarande för synkronisering av en mottagare (1) med en sänd kodmodulerad bandspridningssignal. I förfarandet används åtminstone en referenskod (r(x)), som motsvarar någon vid moduleringen använd kod, och utredas frekvensskjutningen av den sända signalen och kodfasen av den vid moduleringen använda koden. I förfarandet utförs ett korrelationssteg för att bilda en korrelationsfunktionsmatriss på basen av den mottagna signalen och sagda referenskod. Av sagda korrelationsfunktionsmatris bildas en inkoherent sökmatri. I förfarandet omarbetas element av sagda inkoherent sökmatri på basen av åtminstone en statistisk egenskap av element i sagda inkoherent sökmatri, och/eller utförs högpassfilttering före bildningen av sagda korrelationsfunktionsmatris. Uppfinningen avser även ett system och en elektronikanordning, i vilka förfarandet tillämpas.
Menetelmä vastaanottimen tahdistamiseksi, järjestelmä ja elektroniikkakalaite

Nyt esillä oleva keksintö kohdistuu menetelmään vastaanottimen tahdistamiseksi lähetettyyn koodimoduloituun hajaspektrisignaaliin, jossa menetelmässä käytetään ainakin yhtä vertailukoodia, joka vastaa jota-kin moduloinnissa käytettyä koodia, selvitetään lähetetyn signaalin taajuussiirtymä ja moduloinnissa käytetyn koodin koodivaihe, suoritetaan korrelointiväilehe korrelaatiofunktioniomatriisin muodostamiseksi vastaanotetun signaalin ja mainitun vertailukoodin perusteella, ja mainitusta korrelaatiofunktioniomatriisista muodostetaan epäkoherentti etsintämatriisi. Keksintö kohdistuu lisäksi järjestelmään, joka käsittää vastaanottimen, jossa on tahdistusvälineet lähettetyn koodimoduloituun hajaspektrisignaaliin tahdistumiseksi, välineet ainakin yhdet moduloinnissa käytetyn koodin koodivaiheen selvittämiseksi, korrelointivälineet korrelaatiofunktioniomatriisin muodostamiseksi vastaanotetun signaalin ja mainitun vertailukoodin perusteella, ja välineet epäkoherentin etsintämatriisin muodostamiseksi mainitusta korrelaatiofunktioniomatriisista. Keksintö kohdistuu vielä elektronikkakalaitteeseen, joka käsittää vastaanottimen, jossa on tahdistusvälineet lähettetyn koodimoduloituun hajaspektrisignaaliin tahdistumiseksi, välineet ainakin ydnet moduloinnissa käytettyä koodia vastaavan vertailukoodin muodostamiseksi, välineet lähettyn signaalin taajuussiirtymän ja moduloinnissa käytetyn koodin koodivaiheen selvittämiseksi, korrelointivälineet korrelaatiofunktioniomatriisin muodostamiseksi vastaanotetun signaalin ja mainitun vertailukoodin perusteella, ja välineet epäkoherentin etsintämatriisin muodostamiseksi mainitusta korrelaatiofunktioniomatriisista.

Erityisesti satelliittisignaalien vastaanottamisessa merkittävänä ongelmana on se, että signaalivoimakkuus vastaanottimessa on pieni. Tällöin kohina ja muut häiriöt voivat haitata merkittävästi signaalien vastaanottamista ja joissakin tilanteissa signaalien vastaanottaminen voi olla jopa mahdotonta. Kohinan lisäksi häiriöitä voivat aiheuttaa toiset signaalit, joiden kantoaaltotaajuus on sama tai lähes sama kuin

Eräs tunnettu CDMA-teknikkaa käyttävää järjestelmä on GPS-paikan­nusjärjestelmä (Global Positioning System), jossa on useita maata kiertäviä satelliitteja. Jokainen GPS-järjestelmän toimiva satelliitti

Vastaanottimen on suoritettava tahdistus mm. silloin, kun vastaanotin kytketään päälle ja myös tilanteessa, jossa vastaanotin ei ole pitkään aikaaan pystynyt vastaanottamaan minkään satelliitin signaalia. Mm. kannettavissa laitteissa tällainen tilanne voi syntyä helposti, koska laite liikkuu ja laitteen antenni ei aina ole optimaalisessa asennossa satelliitteihin nähden, mikä heikentää vastaanottimeen tulevan signaalin voimakkuutta. Myös kaupunkialueilla rakennukset vaikuttavat vastaanotettavaan signaaliin ja lisäksi voi syntyä ns. monitie-etenemistä, jossa lähetetty signaali saapuu vastaanottimeen eri kulkureittejä, esim.
suoraan satelliitista (line-of-sight) ja lisäksi rakennuksista heijastuneena. Tämä monitie-eteneminen aiheuttaa sen, että sama signaali vastaanotetaan useina eri vaiheisina signaaleina.

Nyt esillä olevan keksinnön eräänä tarkoituksena on aikaansaada menetelmä tahdistumisen nopeuttamiseksi ja vastaanotin, jossa tahdistus lähetettyyn signaaliin voidaan suorittaa merkittävässä määrin nopeammin kuin tunnetun teknikan mukaisissa vastaanottimissa myös heikoilla ja häiriöisillä signaaleilla. Keksinö soveltuu erityisesti sijainninmääritysvastaanottimissa käytettäväksi, mutta myös muihin vastaanottimiin, edullisesti CDMA-vastaanottimiin, joissa vastaanottimen on tahdistuttava hajaspektrisignaaliin. Keksinö perustuu siihen ajatukseen, että korrelaatiofunktioni ja muodostettua epäkoherenttilta etsintämatriisia käsitellään tilastollisin menetelmän. Lisäksi voidaan suorittaa ylipäästösuoatus lasketuille korrelaatiofunktion arvoille ulostulosignaaleille. Tässämällisemmin ilmaistuna nyt esillä olevan keksinnön mukaiselle menetelmälle on pääasiassa tunnusomaista se, että menetelmässä suoritetaan ainakin yksi seuraavista:
mainitun epäkoherentin etsintämatriisin alkioita muokataan
mainitun epäkoherentin etsintämatriisin alkioiden ainakin yhden
tilastollisen ominaisuuuden perusteella,
ennen mainitun korrelaatiofunktioni matriisin muodostusta suorite-
vaalit ylipäästä suodatus.

Nyt esillä olevan keksinnön mukaiselle järjestelmälle on pääasiassa
tunnusomaista se, että järjestelmä käsittelee lisäksi ainakin yhden
seuraavista välineistä:

välineet mainitun epäkoherentin etsintämatriisin alkioiden muok-
kaamiseksi mainitun epäkoherentin etsintämatriisin alkioiden
ainakin yhden tilastollisen ominaisuuuden perusteella,
välineet ylipäästä suodatukseksi ennen mainitun korrelaatiofunktioni matriisin muodostusta.

Nyt esillä olevan keksinnön mukaiselle elektriikkalaitteelle on vielä
pääasiassa tunnusomaista se, että elektriikkalaite käsittelee lisäksi
ainakin yhden seuraavista välineistä:

välineet mainitun epäkoherentin etsintämatriisin alkioiden muok-
kaamiseksi mainitun epäkoherentin etsintämatriisin alkioiden
ainakin yhden tilastollisen ominaisuuuden perusteella,
välineet ylipäästä suodatukseksi ennen mainitun korrelaatiofunktioni matriisin muodostusta.

Nyt esillä olevalla keksinnöllä saavutetaan merkittäviä etuja tunnetun
tekniikan mukaisiin menetelmiin, järjestelmiin ja elektriikkalaitteisiin
verrattuna. Keksinnön mukaisella menetelmällä saadaan DC-siirtymä-
häiriöitä ja vastaanotettavalla taajuudella tai sitä lähellä olevan voimak-
kaan häiriölähteen vaikutusta merkittävässä määrin vaimennettua, jol-
loin tällaisten häiriöiden vaikutus vastaanottoon pienenee. Tällöin on
mahdollista vastaanottaa heikomiapiakin signaleita kuin tunnetun tekni-
ikan mukaisilla vastaanottimilla.

Nyt esillä olevaa keksintöä selostetaan seuraavassa tarkemmin viitaten
samalla oheisiin piirustuksiin, joissa
kuva 1 esittää pelkistettynä lohkokaavionä vastaanotinta, jossa keksinnön mukaista menetelmää voidaan soveltaa,

kuva 2 esittää keksinnön erään edullisen suoritusmuodon mukaisen menetelmän korrelointivaihetta pelkistettynä kaavionä,

kuva 3 esittää keksinnön erään edullisen suoritusmuodon mukaisen menetelmän analyysivaihetta pelkistettynä kaavionä,

kuva 4 esittää keksinnön erään edullisen suoritusmuodon mukaisen menetelmän summausvaihetta pelkistetyistä,

kuva 5 esittää keksinnön erään edullisen suoritusmuodon mukaisen menetelmän päättelyvaihetta pelkistetyistä, ja

kuva 6 esittää keksinnön erään edullisen suoritusmuodon mukaisesta elektriiliikkalaitetta pelkistettynä lohkokaavionä.

Seuraavassa keksinnön erään edullisen suoritusmuodon mukaisen menetelmän kuvaauksessa käytetään esimerkkinä kuvan 1 mukaista vastaanotinta, joka on tarkoitettu käytettäväksi GPS-satelliittien lähettämien signaalien vastaanottimena sijainninmääritystä varten. On kuitenkin selvä, että keksintöä ei ole rajoitettu ainoastaan tällaisiin vastaanottimiin, vaan vastaanottimena voidaan käyttää muutakin koodivaihdenmoduloidun signaalin vastaanottamiseen tarkoitettua vastaanotinta. Myös vastaanottimen yksityiskohdat voivat poiketa kuassa 1 esitetystä vastaanottimesta.

Kuvan 1 vastaanottimessa 1 vastaanotettava signaali muunnetaan sopivimmäksi välitaajuudelle muunninlohkossa 2. Tässä vaiheessa signaali käsittää sinänsä tunnetusti kaksi komponenttia: L- ja Q-komponentit, joiden välilä on 90° vaihe-ero. Nämä välitaajuudelle muunnutut analogiset signaalikomponentit digitoidaan digitointilohkossa 3 ja johdetaan kertojaloikoon 4. Kertojaloikoossa 4 digitoidun signaalin L- ja Q-komponentit kerrotaan numeerisesti ohjatun oskillaattorin 5 (NCO, Numerically Controlled Oscillator) muodostamalla signaalilla. Tämä numeerisesti

Käyttöjännitteiden kytkemisen jälkeen tai tilanteessa, jossa vastaanotin 1 ei ole pystynyt vastaanottamaan GPS-satelliittien signaalia pitkään aikaan, suoritetaan vastaanottimessa 1 kaksidimensioinen etsintävaihe kulkein satelliitille, joiden signaalia vastaanotetaan. Tässä kaksidimensioisessa etsintävaiheessa tarkoitukseena on selvittää kunkin satelliitin kantoaaltotajuus sekä koodivaihe. Tähän kantoaaltotajuuteen vai kuttaa siis satelliitin liikkumisesta johtuva Doppler-siirrymä sekä vastaanottimen paikallisoskillaattorin epätarkkuudet. Taajuusempärmuus voi olla varsin suuri, jopa ±6 kHz, jolloin vastaanottimen 1 on suoritet tava etsintä n. 12 kHz:n taajuusalueelta varsinaisen lähetystaajuuden (L1 = 1575,42 MHz) suhteen. Vastaanotin 1 ei myöskään tiedä tarkkaa koodivaihetta, jolloin vastaanottimen on suoritettava myös koodivaiheen selvitys 1023 mahdollisesta koodivaiheesta. Tällöin saadaan kaksidimensioinen etsintäprosessi, jossa yksi dimensio on taajuuspoikkeama 12 kHz:n alueella ja toinen dimensio on koodivaihe 1023:sta erilaisesta koodivaiheesta. Keksinnön erään edullisen suoritusmuodon mukaisessa menetelmässä voidaan kerrallaan tutkia n. 500 Hz:n taajuusalue, jolloin menetelmää toistetaan tarvittaessa 24 kertaa koko tutkittavan 12 kHz:n taajuusalueen kattamiseksi. On selvää, että tässä selityk-
sessä käytettävät esimerkkiarvot ovat vain keksintöä selventävinä, mutta eivät rajoittavina esimerkkeinä. Keksintöä voidaan soveltaa muissakin kuin GPS-järjestelmissä, jolloin mm. mainitut taajuusarvot, koodivaliheet sekä koodien lukumäärä voi vaihdella. Etsintäprosessin ei välttämättä tarvitse olla kaksidimensioinen, vaan se voi joissakin sovelluksissa olla myös joko yksi- tai useampi kuin kaksidimensioinen. Tällöin yksivaiheisessa etsintäprosessissa pyritään selvittämään esimerkiksi koodivaihe.

Selostetaan seuraavaksi tahdistustoimintaa kaksidimensioisen etsintä-matriisin muodostamiseksi kuvan 1 mukaisessa vastaanottimessa 1. Tahdistuksen käynnistämiseksi skannauslohko 8 asettaa numeerisesti ohjatun oskillaattorin 5 taajuuden siten, että vastaanottimella 1 vastaanotetaan edullisesti taajuusalueen pienimmäät taajuukset, tässä esimerkissä 1575,414 MHz—1575,4145 MHz. Vastaanotin voi määrittää aloitustaaajungen myöskään siten, että vastaanotin käyttää hyväksyi esim. ai-kaisemmin selvitettyä sijaintitietoa ja/tai almanakatietoa, jolloin tahdistusta voidaan vielä nopeuttaa. Vastaanotettavasta signaalista tallennetaan näytteitä näytevektoroiden muodostuslohhossa 12 edullisesti kompleksisiksi näytevektororeiksi $p_k(1), p_k(2)...p_k(N)$, joissa kussakin on 1023 näytettä tässä edullisessä suoritusmuodossa. Näytevektoroiden muodostuslohkon 12 näytteiden tallennustaaajus tässä edullisessa suoritusmuodossa on olennaisesti sama tai suurempi kuin alibittien kello-tusnopeus, eli n. 1.023 MHz - 10.23 MHz. Näytevektorit ovat jatkuvia siten, että seuraava näytevektori jatkuu ajallisesti edellisen näytevektoriin jälkeen, eli näytevektorin viimeisen näytteen ja seuraavan näytevektorin ensimmäisen näytteen aikaero on olennaisesti sama kuin näytevektorin perääkäisten näytteiden välinen aikaero. Nämä 1023 näytettä vastaavat siis n. 1 ms:n mitatta signalia, jolloin aika-taajuus

30 muunnoksessa taajuusalue on n. 1 kHz, josta osa voidaan hyödyntää. Näytevektoreiden muodostusvaihetta on esitettä viitteellä 101 oheisessa kuvassa 2.

Näytevektoreita on edullisesti N kappaletta, missä N on sopivimman kahden potenssi. Lisäksi näytevektoreiden muodostus toistetaan keksinnön edullisessa suoritusmuodossa K kertaa, kuten myöhemmin
tässä selityksessä esitetään. Alaindeksillä k ilmaistaan seuraavissa merkinnöissä eri toistokertoja. Näytevektoreiden $p_k(1), p_k(2)\ldots p_k(N)$ lukumäärän N arvoa määritetäässä tulee huomioida GPS-järjestelmässä se, että signaaliin on moduloitu informaatiota bittinopeudella 50 bittiä/s binäärisenä vaihemoduulaationa. Toinen tätä näytevektoreiden $p_k(1), p_k(2)\ldots p_k(N)$ lukumäärää N rajoittava tekijä on vastaanottimen paikallisoskillaattorin taajuustabiilius.

Näytevektoreiden muodostusvaiheen lisäksi keksinnön mukaisessa tahdistusmenetelmässä suoritetaan korrelointivaihe korrelaatiofunktionmatriisin muodostamiseksi. Tämä korrelointivaihe voidaan suorittaa osittain jo näytteenoton aikana, tai sen jälkeen kun N kappaletta näytevektoreita $p_k(1), p_k(2)\ldots p_k(N)$ on muodostettu. Jos korrelointivaihe suoritetaan esim. siten, että kunkin näytevektorin tallennuksen jälkeen lasketaan sille aika-taajuusmuunnos, kuten nopea Fourier-muunnos (FFT), voidaan samaa aika-taajuusmuunnintaa käyttää kaikissa N kappaleessa näytevektoreita $p_k(1), p_k(2)\ldots p_k(N)$. Jos sen sijaan korrelointivaihe suoritetaan N näytevektorin tallennuksen jälkeen, on käytettävää joko kullekin näytevektorille omaa aika-taajuusmuunnintaa, tai aika-taajuusmuunnoksset suoritetaan eri näytevektoreille peräkkäin samassa aika-taajuusmuuntimessa. Kuvassa 2 on esitetty menetelmän korrelointivaihetta, jossa näytevektoreista $p_k(1), p_k(2)\ldots p_k(N)$ muodostetaan korrelaatiofunktionmatriisi $C_{x,k}$. Vaikka jatkossa tässä selityksessä pääasiassa käytetään esimerkkinä aika-taajuusmuunnoksesta Fourier-muunnosta ja käänteisestä muunnoksesta, eli taajuus-aikamuunnoksesta käänteistä Fourier-muunnosta, on selvää, että nyt esillä olevaa keksintöä ei ole rajoitettu ainoastaan näihin esimerkkeihin.

Kullekin näytevektorille $p_k(1), p_k(2)\ldots p_k(N)$ suoritetaan diskreetti Fourier-muunnos 102, sopivimmin nopea Fourier-muunnos, eli FFT-muunnos:

$$P_k(i) = \text{FFT}(p_k(i)), \text{ missä } i = 1, \ldots, N$$ (1)

Tätä esittävät lohkot FFT1, FFT2, ..., FFTN kuvassa 2. Käytännön las-kutoimituksissa käytetään edullisesti 1024:ää arvoa, koska tällöin dis-

Vastaanottimessa on tallennettuna sopivimmin kaikkien niiden lähetetteiden koodit, joiden vastaanottamiseen vastaanotin 1 on tarkoitettu. Tällöin GPS-järjestelmän yhteydessä vastaanottimeen 1 on tallennettu GPS-järjestelmän satelliittien (ei esitettä) C/A-koodia vastaavat vertailukooodit \(r(x) \), missä \(x \) viittaa satelliitin tunukseen, esim. \(x \) on välillä 1—36. Vertailukoodeja ei välttämättä tarvitse tallentaa, vaan ne voidaan myös generoida vastaanottimessa. Korrelaatiovaiheessa valitaan tai generoidaan kulloinkin sen satelliitin vertailukoodi, jonka lähettämään signaalii vastaanotin tähdistetaan. Vertailukoodi on käänetty ajallisesti takaperin. Tälle takaperoiselle vertailukoodille, jota kuvassa 2 on merkitty viitteellä \(\bar{r}(x) \), suoritetaan diskreetti Fourier-muunnos 103, sopivimmin nopea Fourier-muunnos, eli FFT-muunnos:

\[
\bar{R}(x) = \text{FFT}(\bar{r}(x))
\] (2)

Takaperoinen vertailukoodi \(\bar{r}(x) \) ja/tai sen FFT-muunnos on voitu tallentaa jo etukäteen vastaanottimen muistivälineisiin, tai se muodostetaan vertailukoodista \(r(x) \) tahdistuksen yhteydessä.

Seuraavaksi korrelaatiovaiheessa suoritetaan kunkin näytevektorin \(p_k(i) \) Fourier-muunnostuloksen \(P_k(i) \) ja takaperoisien vertailukoodin \(\bar{r}(x) \) Fourier-muunnoksen \(\bar{R}(x) \) välillen kertolasku 104:

\[
M_{x,k}(i) = \bar{R}(x) \cdot P_k(i)
\] (3)

Näille kertolaskujen tuloksille suoritetaan vielä käänteinen Fourier-muunnos 105, jolloin tuloksena saadaan vertailukoodin \(r(x) \) ja vastaanotetun signaalin ristikorrelaatio kaikilla mahdollisilla kokonaislukuviipeillä (1023 kpl).
\[m_{x,k}(i) = \text{iFFT}(M_{x,k}(i)) \] (4)

Tämä perustuu siihen, että aikataso signaalien konvoluution Fleetunu muunnos vastaa Fourier-muunnoksen, eli taajuustasoon muunnettujen aikataso signaalien, kertolaskua. Kun lisäksi käytetään takaperioista vertailukoodia, voidaan Fourier-muunnoksella suorittaa nopea diskreettialkainen korrelaatio. Riskikorrelaatiotulos käsittää tässä edullisessa esimerkissä tällöin 1023 alkiota. Näistä eri näytevektoreista \(p_k(i) \) muodostuu riskikorrelaatiotuloksista \(m_{x,k}(i) \) muodostetaan korrelaatiomatriisi \(C_{x,k} \), jossa rivien määrä on näytevektoreiden lukumäärä \(N \).

On selvää, että vertailukoodin ajallisena kääntämisen sisällä voidaan näytevektoreista \(p_k(i) \) muodostaa takaperioisia näytevektoreita \(\tilde{p}_k(i) \), jolloin edellä esitettyissä laskutoimituksissa käytetään vertailukoodia \(r(x) \) suoraan ja takaperioisia näytevektoreita.

On syytä vielä mainita, että kokonaisuudessaan tämän keksinnön soveltamisen kannalta ei sinänsä ole merkitystä sillä, mitä menetelmää käytetään riskikorrelaatiotuloksen aikaansaamiseksi.

Korrelaatiovaiheessa muodostetun korrelaatiomatriisiin \(C_{x,k} \) rivit esittävät vastaanotetun signaalin ja vertailukoodin riskikorrelaatiota eri vaiheeroilla yhden millisekunnin välein otettuna. Kaavaa korrelaatiomatriisi voidaan tällöin esittää seuraavasti:

\[
C_{x,k} = \begin{bmatrix}
m_{x,k}(1) \\
m_{x,k}(2) \\
\vdots \\
m_{x,k}(N)
\end{bmatrix}
\] (5)

Seuraavassa vaiheessa eli analyysivaiheessa käytetään korrelaatiomatriisiin \(C_{x,k} \) transpoosia 106, jossa rivit esittävät aikatasossa signaalin näytteitä. Kukin rivi vastaa tiettyä koodivaihe-eroa vastaanotetun signaalin ja vertailukoodin välillä. Tämän korrelaatiomatri-
riisin \(C_{x,k} \) transpoosin kullekin riville suoritetaan Fourier-muunninos 107 koherentin etsintämatriisin \(A_{x,k} \) muodostamiseksi. Tätä esittää oheinen kuva 3.

\[
A_{x,k} = \text{FFT}\left(C_{x,k}^T\right)
\]

(6)

Käytännön sovelluksissa ei korrelaatiofunktiomatriisiista tarvitse erikseen muodostaa transponoitua matriisia, vaan tallennetun korrelaatiofunktiomatriisin \(C_{x,k} \) alkiot luetaan muistista 16 (kuva 6) eri suunnassa, edullisesti sarakeittain.

Korrelaatiofunktiomatriisi \(C_{x,k} \) voidaan muodostaa myös esim. sinänsä tunnetusti sovitettuja suodattimia (matched filter) käyttämällä. Tällöin sovitetun suodattimen ulostulosignaalille suoritetaan edullisesti näytteenotto, jossa muodostetaan jatkokäsittelyvaiheille, kuten Fourier-muunnokselle 107, sopiva näytesignaali. Näytteenottotaujuutena tässä vaiheessa on n. 1 kHz, kun kyseessä on GPS-satelliittien signaaleja vastaanottamaan tarkoitettu vastaanotin.

Tahdistuslohkossa 6 suoritetaan vielä epäkoherentti summausvaihe, jossa signaalikohinasuhdetta parannetaan. Epäkoherentin summausvaiheen toteuttamiseksi toistetaan 108 edellä esitettyjä näytevektoreiden muodostusvaihetta, korrelointivaihetta ja analyysivaihetta kertaa (kuva 4). Tämä toistojen lukumäärä K valitaan edullisesti siten, että signaali-kohinasuhdetta saadaan riittävästi parannettua, kuitenkin kohtuullisessa ajassa. Kullakin analysivaiheen suorituskerralla muodostetaan yksi koherentti etsintämatriisi \(A_{x,k} \), jolle suoritetaan epäkoherentti summaus epäkoherentin etsintämatriisin \(S_x \) muodostamiseksi. Epäkoherentti etsintämatriisi \(S_x \) muodostetaan edullisesti seuraavasti. Kunkin koherentin etsintämatriisin \(A_{x,k} \) kompleksisista alkioista \(a_{x,k}(i,j) \) lasketaan edullisesti suuruus (itseisarvo) tai muu lukuarvo, kuten alkion suuruusarvon toiseen potenssiin korotus. Kunkin epäkoherentin etsintämatriisin vastinalkioista lasketut lukuarvot summataan 109, eli suoritetaan matriisien yhteenlasku, joka voidaan esittää kaavalla:
\[S_x = \sum_{k=1}^{13} \begin{bmatrix} |a_{x,y}(1,1)| & \ldots & |a_{x,y}(1,N)| \\ \vdots & \ddots & \vdots \\ |a_{x,y}(1023,1)| & \ldots & |a_{x,y}(1023,N)| \end{bmatrix} \] (7)

Sen jälkeen, kun tarvittavat toistokerrat on suoritettu, selvitys vaiheessa muokataan tämän epäkoherentin etsintämatriisin \(S_x \) alkioiden \(s_x(i,j) \) arvoja tahdistusnopeuden ja -tarkkuuden parantamiseksi. Keksinnön erään edullisen suoritusmuodon yhteydessä tämä toteutetaan seuraavasti. Epäkoherentista etsintämatriisista muodostetaan edullisesti kaksi suodatusmatriisia, joiden perusteella tahdistus suoritetaan. Suodatusmatriisien laskemiseksi lasketaan kutakin taajuutta vastaavien eri koodivaheiden alkioista edullisesti ensimmäinen ja toinen skaalaustekijä sopivia tilastollista menetelmää käyttäen. Tämä laskenta suoritetaan siis sarakkeittain siinä tapauksessa, että kukin etsintämatriisin rivi vastaa tiettyä koodivahe-eroa vastaanotetun signaalin ja vertailukoodin välillä. Ensimmäinen skaalaustekijä lasketaan esimerkiksi kaikkien yhtä taajuutta vastaavien eri koodivaheiden arvojen keskiarvona. Tämä ensimmäinen skaalaustekijä vähennetään tämän jälkeen tämän sarakkeen kaikista arvoista ja näistä tuloksista muodostetaan ensimmäisen suodatusmatriisin yksi sarake. Toinen skaalaustekijä voidaan laskea...
edullisesti keskiahjonnan avulla. Tällöin kunkin sarakeen arvoista lasketaan keskiahjonta, joka voidaan skaalata kertomalla sopivalla luvulla, esimerkiksi seitsemällä. Tämän jälkeen sarakearvoista vähennetään tämä toinen skaalaustekijä ja tallennetaan muodostetut arvot toisen suodatusmatriisin sarakearvoiksi. Jos jokin arvo on edellä mainittujen vähennysten jälkeen negatiivinen, asetetaan se edullisesti nollaksi.

Kuvan 5 esimerkissä on esitetty eräs tilanne, jossa häiriöitä on vaimennettu ja selvästi muita arvoja suurempi arvo on löytynyt. Jos sen sijaan
epäkoherentista etsintämatriisiista \(S_x \) ei löydy tällaista arvoa, eli tutkitul-
la taajuusalueella ei todennäköisesti vastaanottetu haettavan satelliitin
lähetämää signaalia, muutetaan tutkittavaa taajuuskaistaa ja suorite-
taan edellä esitettyt vaiheet epäkoherentin etsintämatriisin muodostami-
seksi. Tällä menetelmällä saadaan koko tutkittava 12 kHz:n alue käytyä
läpi toistamalla edellä esitettyt vaiheet tarvittavan monta kertaa.

Tarvittaessa voidaan edellä esitettyt vaiheet toistaa koko tutkittavalle
taajuuskaistalle ja tallentaa eri toistokerroilla muodostetut suodatusmat-
riisit tai vain mahdolliset huippukohdat, ennen kuin etsitään suurinta
korrelaatiohuippua. Tällöin voidaan pienentää virhetulkintojen mahdollis-
suutta mm. sellaisessa tilanteessa, jossa kynynsarvo on asetettu liian
pienteksi ja vielä suodattumaton häiriösignaali voi aiheuttaa virhetulkin-
nan.

Keksintöä voidaan luonnollisesti soveltaa myös siten, että muodoste-
taan ensin yksi suodatusmatriisi, esim. ensimmäinen suodatusmatriisi.
Mikäli tästä suodatusmatriisista ei löydy yhtä selkeästi muita arvoja
suurempaa arvoa, muodostetaan myös toinen suodatusmatriisi ja suo-
ritetaan etsintä sen arvojen perusteella. On myös mahdollista muodos-
taa ensin yksi suodatusmatriisi, esim. ensimmäinen suodatusmatriisi, ja
mikäli tästä suodatusmatriisista ei löydy olennaisesti muita arvoja suu-
rempaar arvoa, voidaan tästä ensimmäisestä suodatusmatriisista muo-
dostaa toinen suodatusmatriisi ja suorittaa etsintä sen arvojen perus-
teella.

Tämän keksinnön erään toisen edullisen suoritusmuodon mukaisessa
menetelmässä suoritetaan ylipäästösuodatus 110 (kuva 2) ennen et-
sintämatriisin muodostusta. Sopivimmin tämä ylipäästösuodatus suo-
ritetaan korrelaatiofunktion laskemisen jälkeen, ennen korrelaatiofun-
tiomatriisin \(C_{x,k} \) muodostusta. Tällöin ylipäästösuodatus suoritetaan
näytevektoreista \(p_x(i) \) muodostetuille ristikorrelaatiotuloksille \(m_{x,k}(i) \) ja
ylipäästösuodatetuista arvoista muodostetaan korrelaatiofunktioni-
omiariisi \(C_{x,k} \).
Tarkastellaan ylipäästösuodatuksen vaikutusta signaaliin. Analogia-digitaalimuutimen 3 lähdössä oleva DC-siirtymä muuttuu pienitaajuiseksi sinisignalaiksi sekoittimessa 4. Tämän muodostuvan siniaallon taajuus on olennaisesti sama kuin numeerisesti ohjatun oskillaattorin 5 taajuus. Jos oletetaan, että taajuussiirtymä kantataajuudella on rajotettu pienemmäksi kuin 100 kHz, on siniaallon taajuus aina pienempi kuin 100 kHz. Haluttu signaali korrelaatiofunktion laskentaalimen lähdössä on olennaisesti yhden hajotuskoodisymbolin (chip) pituinen, mikä GPS-järjestelmässä merkitsee siis 0,98 us impulssia (=1/1023000 s).

Tämä impulssi sisältää huomattavasti korkeampia taajuuksia kuin DC-siirtymästä generoituneet siniaallot. Tällöin ylipäästösuodatus ei vaimenna haluttua signaalia haitallisessa määrin.

Mainittakoon tässä yhteydessä, että kaikki pienitaajuiset häiriöt käyttäytyvät mainitun DC-siirtymän tavoin. Tällöin ylipäästösuodattimella saadaan kaikkien ylipäästösuodattimien rajataajuutta pienempi-taajuisten häiriöiden vaikutus eliminoitua. Ylipäästösuodattimen mainittu sijoituspaaikka korrelaatiofunktion laskemisen jälkeen on edullinen, koska siinä näyteiden resoluutio on yleensä vähintään kymmenen bittiä, mikä on riittävä estämään ylipäästösuodatinta huonontamaan varsinaisen signaalin laatua. Analogia-digitaalimuutimen 3 resoluutio sen sijaan on mm. tehonkulutussyyistä ja tarvittavan laitteiston monimutkaisuuden rajoittamiseksi tavallisesti vain kahdesta neljään bittiä, mikä yleensä ei riitä tarpeeksi laadukkaan ylipäästösuodatuksen suorittami-seen.

Ylipäästösuodatuksen lisäksi etsintämatriisiista voidaan haluttaessa edullisesti muodostaa yksi suodatusmatriisi, jossa tilastollisena funktiona käytetään edullisesti standardipoikkeamaa, kuten edellä on esitetty. Tällöin voidaan saada sekä DC-siirtymähäiriöt että ristikorrelaatiohäiriöt vaiemennettua merkittävästi tehokkaammin kuin tunnetun teknikan mukaisissa vastaanottimissa.

Sen jälkeen kun oikea taajuuspoikkeama ja koodivaihe on selvitetty, voidaan vastaanotin asettaa seurantatilaan (tracking). Heikoimmissa signaaleilla ei datavastaanotto onnistu, vaan on sinänsä tunnetusti tur-
vauduttava esim. matkaviestinverkon kautta saatuun dataan. Etäisyysmitaus on edelleen mahdollista alentuneella tarkkuudella. Seurantatila asetetaan vahtamallalla kytkimet (kuva 1) toiseen asentoon, jolloin vastaanotettu informaatio johdetaan seurantalohkoon 11, jossa muodos-
tetaan myös takaisinkytkentä numeerisesti ohjatun oskillaattorin 5 taa-
juuden hienosäättöä varten.

Sijainnin laskemiseksi vastaanotin suorittaa signaalin vastaanoton so-
pivimmin vähintään neljästä satelliitista vastaanotetun signaalin perus-
teella. Tällöin edellä esitettä tahdistus toistetaan tarvittaessa kunkin
satelliitin signaalia varten, jolloin vertailusekvenssiksi r(x) valitaan kul-
loinkin sen satelliitin koodi, johon tahdistus suoritetaan.

Selostetaan vielä laskustumisen vaikutusta keksinnön mukaisessa
vastaanottimesa 1. Laskustumisilmä muodostuu analogia-digitaali-
muunnoksessa, jos siihen johdetaan signaaleja, joiden taajuus on suu-
rempi kuin puolet näytteenotonposeudesta. Kuten edellä on mainittu,
analogia-digitaalimuuntimen 3 ulostulossa oleva DC-siirtymä muutto
pientaajuuseksi sinisignaaliksi taajuuskonversiossa sekoittimesa 4.
Tämän sinisignaalin taajuus on olennaisesti sama kuin numeerisesti
ohjatun oskillaattorin 5 taajuuden negatio. Jos esimerkiksi taajuussiir-
tymä on +20 kHz ja etsintää ollaan suorittamassa taajuusalueella, jonka
keskitaajuus on -1300 Hz, on numeerisesti ohjatun oskillaattorin 5 taa-
juus asetettu arvoon +20000 + -1300 Hz = +18700 Hz. Taajuuskonver-
sio muuntaa vastaanotettavan satelliittisignaalin taajuuden n. 0 Hz:in,
jolloin DC-siirtymästä aiheutuvan siniaallon taajuus siirtyy alaspäin n.
-18700 Hz:in. Taajuuskonversion ja desimoinnin jälkeen signaalista
lasketaan korrelaatiofunktio. Korrelaatiofunktio laskenta vaimentaa eri
taajuisia signaaleja eri tavalla, jolloin DC-siirtymähärön vaikutus on
riippuvainen taajuussiirroksen määrästä.

Korrelaatiofunktio laskemisen jälkeen signaali näytteistetään uudel-
leen esim. 1 kHz:n näytteenottomaajuudella. Tässä vaiheessa kaikki
signaalit, joiden taajuus on +/- 500 Hz:n ulkopuolella, laskustuvat välille
-500 Hz ... +500 Hz. Myös DC-siirtymästä muodostunut signaali las-
kstuu tälle välille. Tämän laskustuneen DC-siirtymästä muodostuneen
signaalin taajuus voidaan lasketa vähentämällä tai lisäämällä sopiva määrä kokonaisia kilohertsejä sinisignaalin taajuuteen. Esimerkiksi -18700 sinisignaalin taajuus laskustumisen jälkeen on 300 Hz, koska \(-18700 + 19000 = +300\). Tämä voidaan esittää kaavalla \(f_{\text{lask}} = f_{\text{alkup}} - 1000^*[f_{\text{alkup}}/1000]\), missä merkintä \(\lfloor\) tarkoittaa pyöristystä lähimpään kokonaislukuun, \(f_{\text{alkup}} = -f_{\text{NCO}}\), ja \(f_{\text{NCO}}\) on numeerisesti ohjatun oskillaattorin 5 taajuus taajuuskonversiossa. Tämän kaavan avulla on mahdollista laskea DC-siirtymän aiheuttaman häiriön taajuus, jolloin voidaan välttää käytännössä epäkoherentin etsintämatriisin tätä taajuutta vastaavaa saraketta.

Myös ristikorrelaation vaikutusta voidaan analysoida vastaavasti laskustumisilmiön avulla. Taajuuskonversio aikaansaa myös ristikorrelaatiohäiriön taajuuden siirtymisen ja laskustumisen. Jos esimerkiksi taajuusviirymän arvona on +20 kHz, ristikorrelaatiotai aiheuttavan satelliitin Doppler-taajuus on +2400 Hz, ja tutkittavana olevan taajuusalueen keskitäajuus on -1300 Hz, on numeerisesti ohjatun oskillaattorin 5 taajuus asetettu arvoon 18700 Hz. Tällöin ristikorrelaatiosignaalin taajuus muuttuu +3700 Hz:ksi.

Gold-koodien ominaisuuksista johtuen korrelaatiofunktion laskeminen vahvistaa päitsi haluttua signaalia myös ristikorrelaatiosignaalia. Tyypillisesti ristikorrelaatiosignaalien vahvistuminen on kuitenkin n. 20—25 dB pienempi kuin halutun signaalin vahvistuminen. Tällöin ristikorrelaatio aiheuttaa ongelmia läähinnä silloin kun häiritsevän satelliitin signaalinvoimakkuus on yli 20 dB suurempi kuin halutun signaalin voimakkuus.

Laskustumisen vaikututta myös ristikorrelaatioon. Suoritettaessa uudelleennäytteistys 1 kHz:n taajuudella, ristikorrelaatiosignaali laskustuvat välille -500 Hz ... +500 Hz. Myös tässä tapauksessa pätee edellä esitetty kaava laskustumistaajuuden laskemiseksi. Kaavassa alkuperäistä signaalia \(f_{\text{alkup}}\) vastaa nyt ristikorrelaatiosignaalin taajuus taajuuskonversiossa jälkeen.

Nyt esillä olevaa keksintöä ei ole rajoitettu ainoastaan edellä esitetyihin suoritusmuotoihin, vaan sitä voidaan muunnella oheisten patentttivaatimusten puitteissa.
Patenttivaatimukset:

1. Menetelmä vastaanottimen (1) tahdistamiseksi lähetettyyn koodimodu liu tun hajaspektrisignaaliin, jossa menetelmässä käytetään ainakin yhtä vertailukoodia \((r(x))\), joka vastaa jotakin moduloinnissa käytettyä koodia, selvitetään lähetetyn signaalin taajuussiirtymä ja moduloinnissa käytetyn koodin koodivaihe, suoritetaan korrelointivaihe korrelaatio-funktioni matriisin muodostamiseksi vastaanotetun signaalin ja mainitun vertailukoodin perusteella, ja mainitusta korrelaatiofunktioni matriisista muodostetaan epäkoherentti etsintämatriisi,

 tunnettu

 siitä, että menetelmässä suoritetaan ainakin yksi seuraavista:

 - mainitun epäkoherentin etsintämatriisin alkioita muokataan mainitun epäkoherentin etsintämatriisin alkioiden ainakin yhden tilastollisen ominaisuuden perusteella,

 - ennen mainitun korrelaatiofunktioni matriisin muodostusta suoritetaan ylipäästösuodatus.

2. Patenttivaatimuksen 1 mukainen menetelmä,

 tunnettu

 siitä, että mainittu epäkoherentti etsintämatriisi on kaksidimensioinen, jossa yksi dimensio on taajuus ja toinen dimensio on vertailukoodin koodivaihe.

3. Patenttivaatimuksen 2 mukainen menetelmä,

 tunnettu

 siitä, että alkioiden muokkauskseessa suoritetaan epäkoherentin etsintämatriisin kunkin taajuusarvon eri koodivaiheiden arvojen signaalien hajontaa kuvaavan tunnusluvun laskeminen, ja kustakin kyseisen taajuusarvon koodivaiheen arvosta vähennetään mainittu laskettu signaalien hajonta tuuvaava tunnusluvu kerrottuna skaalaustekijällä.

4. Patenttivaatimuksen 2 tai 3 mukainen menetelmä,

 tunnettu

 siitä, että alkioiden muokkauskseessa suoritetaan epäkoherentin etsintämatriisiin kunkin taajuusarvon eri koodivaiheiden arvojen keskiarvon laskeminen, ja kustakin kyseisen taajuusarvon koodivaiheen arvosta vähennetään mainittu laskettu keskiarvo.

5. Jonkin patenttivaatimuksen 1-4 mukainen menetelmä,

 tunnettu

 siitä, että muodostetaan mainittu korrelaatiofunktioni matriisi, että maini-
tun korrelaatiofunktioniomainisen muodostamisen jälkeen signaalista ote-
taan näytteitä ennalta määrittelevänä näytteenottotaaajuudella, ja että mää-
ritetään ainakin yhden häiriön taajuus mainitun näytteenoton jälkei-
seä signaalissa häiriön vaikutuksen vähentämiseksi, joka häiriö on
ainakin yksi seuraavista:
- vastaanotettavan signaalin taajuutta lähestä oleva häiriölähete,
- DC-siirtymähäiriö.

6. Patenttivaatimuksen 5 mukainen menetelmä, **tunnettu** siitä, että
vastaanotetulle signaaliille suoritetaan taajuuskonversio sekoittamalla
vastaanotettuun signaaliin paikallisoskillaattorisignaali, ja että mainittu
ainakin yhden häiriön taajuuden määrittämien suoritetaan mainitun
paikallisoskillaattorisignaalin taajuuden perusteella.

7. Järjestelmä, joka käsittää vastaanottimen (1), jossa on tahdistusväli-
neet (6) lähettetyn koodimoduloituun hajaspektrisignaaliin tahdistumi-
seksi, välineet (16) ainakin yhden moduloinnissa käytettyä koodia vas-
taan vertailukoodin \((r(x))\) muodostamiseksi, välineet (15) lähettetyn
signaalin taajuussiirtymän ja moduloinnissa käytetyn koodin koodival-
heen selvittämiseksi, korrelointivälineet (102—105) korrelaatio-
funktioniomainisen muodostamiseksi vastaanotetun signaalin ja mainitun
vertailukoodin perusteella, ja välineet (107—109) epäkoherentin etsin-
tämäntoiminunuksen muodostamiseksi mainitusta korrelaatiofunktioni-
mainistatunnettu** siitä, että järjestelmä käsittää lisäksi ainakin yhden seuraavista
välineistä:
- välineet (15) mainitun epäkoherentin etsintämäntoiminun alkioihin
muokkaamiseksi mainitun epäkoherentin etsintämäntoiminun alkioi-
iden ainakin yhden tilastollisen ominaisuuden perusteella,
- välineet ylipäästösuodattuksen suorittamiseksi ennen mainitun
korrelaatiofunktioniomainisen muodostusta.

8. Elektroniikkalaite, joka käsittää vastaanottimen (1), jossa on tahdis-
tusvälineet (6) lähettetyn koodimoduloituun hajaspektrisignaaliin tah-
distumiseksi, välineet (16) ainakin yhden moduloinnissa käytettyä koo-
dia vastaan vertailukoodin \((r(x))\) muodostamiseksi, välineet (15)
lähettetyn signaalin taajuussiirtymän ja moduloinnissa käytetyn koodin
kooskoodin selvittämiseksi, korrelointivälineet (102—105) korrelaatiointi-
matimatriisin muodostamiseksi vastaanotetun signaalin ja mainitun
vertailukoodin perusteella, ja välineet (107—109) epäkoherentin etsin-
tämatriisin muodostamiseksi mainitusta korrelaatiofunktioni-
matiisista, tunneta siitä, että elektroniikkalaite (24) käsittelee lisäksi ainakin yhden
seuraavista välineistä:

- välineet (15) mainitun epäkoherentin etsintämatriisin alkioiden
muokkaamiseksi mainitun epäkoherentin etsintämatriisin alkioiden
ainakin yhden tilastollisen ominaisuuden perusteella,

- välineet ylipäästösuodatuksen suorittamiseksi ennen mainitun
korrelaatiofunktioni-matriisin muodostusta.

9. Patenttivaatimuksen 8 mukainen elektroniikkalaite (24), tunneta
siitä, että mainittu epäkoherentti etsintämatriisi on kaksidimensioinen,
jossa yksi dimensio on taajuus ja toinen dimensio on vertailukoodin
kooskoodia.

10. Patenttivaatimuksen 9 mukainen elektroniikkalaite (24), tunneta
siitä, että välineet mainitun epäkoherentin etsintämatriisin alkioiden
muokkaamiseksi käsittelevät välineet epäkoherentin etsintämatriisin kun-
kin taajuusarvon eri kooskoodaineen arvojen keskihajonnan laske-
miseksi, ja välineet mainitun lasketun keskihajonnan kerrottuna ska-
laustekijällä vähentämiseksi kustakin kyseisen taajuusarvon kooskooda-
heen arvosta.

11. Patenttivaatimuksen 9 tai 10 mukainen elektroniikkalaite (24),
tunneta siitä, että välineet mainitun epäkoherentin etsintämatriisin al-
kioiden muokkaamiseksi käsittelevät välineet epäkoherentin etsintämatri-
riisin kunkin taajuusarvon eri kooskoodaineen arvojen keskiarvon laske-
miseksi, ja välineet mainitun lasketun keskiarvon vähentämiseksi kus-
takin kyseisen taajuusarvon kooskoodain arvosta.

12. Patenttivaatimuksen 9 tai 10 mukainen elektroniikkalaite (24),
tunneta siitä, että se käsittelee välineet näytteiden ottamiseksi signaa-
lista mainitun korrelaatiofunktioni-matriisin muodostamisen jälkeen.
13. Jonkin patenttivaatimuksen 8—12 mukainen elektroniikkalaite (24),
tunnettu siitä, että se käsittää välineet matkaviestintoimintojen suorit-
tamiseksi.

14. Jonkin patenttivaatimuksen 8—13 mukainen elektroniikkalaite (24),
tunnettu siitä, että vastaanotin (1) on satelliittipaikannusvastaanotin.

15. Jonkin patenttivaatimuksen 8—14 mukainen elektroniikkalaite (24),
tunnettu siitä, että korrelointivälineet (102—105) käsittävät sovitetun
suodattimen.
Patentkrav:

1. Förfarande för synkronisering av en mottagare (1) med en sänd kodmodulerad bandspridningssignal, i vilket förfarande används åtminstone en referenskod \((r(x)) \), som motsvarar någon vid moduleringen använd kod, utredas frekvensskjutningen av den sända signalen och kodfasen av den vid moduleringen använda koden, utförs ett korrelationssteg för att bilda en korrelationsfunktionsmatris på basen av den mottagna signalen och sagda referenskod, och av sagda korrelationsfunktionsmatris bildas en inkoherent sökmatris, **kännetecknat** av att i förfarandet utförs åtminstone ett av följande steg:

- element av sagda inkoherent sökmatris omarbetas på basen av åtminstone en statistisk egenskap av elementen i sagda inkoherent sökmatris,

- före bildningen av sagda korrelationsfunktionsmatris utförs högpassfiltrering.

2. Förfarande enligt patentkrav 1, **kännetecknat** av att sagda inkoherent sökmatris är tvådimensionell, varvid den ena dimensionen är frekvens och den andra dimensionen är kodfasen av referenskoden.

3. Förfarande enligt patentkrav 2, **kännetecknat** av att vid omarbetning av elementen utförs kalkylering av ett nyckeltal som betecknar spridningen av signaler i värden av de olika kodfaserna för varje frekvensvärde i den inkoherent sökmatrisen, och från varje värde av sagda kodfas för frekvensvärdet subtraheras sagda kalkylerade nyckeltal som betecknar spridningen av signaler, multiplifierad med en skalningsfaktor.

4. Förfarande enligt patentkraven 2 eller 3, **kännetecknat** av att vid omarbetning av elementen utförs kalkylering av medeltalet från värden av de olika kodfaserna för varje frekvensvärde, och från varje värde av kodfasen för sagda frekvensvärde subtraheras sagda kalkylerade medelta.

5. Förfarande enligt något av patentkraven 1–4, **kännetecknat** av att man bildar sagda korrelationsfunktionmatris, att efter bildningen av
sagda korrelationsfunktionmatris man tar prov av signalen på en förut-
bestämd provtagningsfrekvens, och att man bestämmer frekvensen av
åtminstone en störning i signalen efter sagda provtagnings för att minska
inverkan av sagda störning, vilken störning är åtminstone en av de
följande:
- en stofsignal nära frekvensen av signalen som skall mottas,
- en DC-övergångsstörning.

6. Förfarande enligt patentkrav 5, kännetecknat av att för den mottagna signalen utförs en frekvenskonversion genom att mixa en lokal-
oscillatorsignal i den mottagna signalen, och att sagda bestämning av
frekvensen av åtminstone en störning utförs på basen av frekvensen av
sagda lokaloscillatorsignal.

7. System, som omfattar en mottagare (1) med synkroniseringsmedel
(6) för synkronisering med en sänd kodmodulerad bandspridnings-
signal, medel (16) för att bilda åtminstone en referenskod \(r(x) \) som
motsvarar den vid moduleringen använda koden, medel (15) för att
utreda frekvensskjutningen av den sända signalen och kodfasen av den
vid moduleringen använda koden, korrelationsmedel (102–105) för att
bilda en korrelationsfunktionmatris på basen av den mottagna signalen
och sagda referenskod, och medel (107–109) för att bilda en
inkohänt sökmatris från sagda korrelationsfunktionmatris, känneteck-
nat av att systemet omfattar vidare åtminstone ett av följande medel:
- medel (15) för att omarbeta element av sagda inkoherenta sök-
matris på basen av åtminstone en statistisk egenskap av ele-
menten i sagda inkoherenta sökmatris,
- medel för att utföra högpassfilttering före bildningen av sagda
korrelationsfunktionmatris.

8. Elektronikanordning, som omfattar en mottagare (1) med synkroni-
seringsmedel (6) för synkronisering med en sänd kodmodulerad band-
spredningssignal, medel (16) för att bilda åtminstone en referenskod
\(r(x) \) som motsvarar den vid moduleringen använda koden, medel (15)
för att utreda frekvensskjutningen av den sända signalen och kodfasen
av den vid moduleringen använda koden, korrelationsmedel (102–105)
för att bilda en korrelationsfunktionmatris på basen av den mottagna
signalen och sagda referenskod, och medel (107–109) för att bilda en inkoherent sökmatris från sagda korrelationsfunktionsmatris, kännetecknad av att elektronikanordningen (24) omfattar vidare åtminstone ett av följande medel:

- medel (15) för att omarbeta element av sagda inkoherenta sökmatris på basen av åtminstone en statistisk egenskap av elementen i sagda inkoherenta sökmatris,
- medel för att utföra högpassfiltrering före bildningen av sagda korrelationsfunktionsmatris.

9. Elektronikanordning (24) enligt patentkrav 8, kännetecknad av att sagda inkoherenta sökmatris är tvådimensionell, varvid den ena dimensionen är frekvens och den andra dimensionen är kodfasen av referenskoden.

10. Elektronikanordning (24) enligt patentkrav 9, kännetecknad av att medlen för omarbetning av element i sagda inkoherenta sökmatris omfattar medel för att kalkylera standardavvikelsen från värden av de olika kodfaserna för varje frekvensvärde, och medel för att subtrahera sagda kalkylerade standardavvikelse, multiplicerad med en skalningsfaktor, från varje värde av kodfasen i sagda frekvensvärde.

11. Elektronikanordning (24) enligt patentkrav 9 eller 10, kännetecknad av att medlen för omarbetning av element i sagda inkoherenta sökmatris omfattar medel för att kalkylera medeltalet från värden av de olika kodfaserna för varje frekvensvärde, och medel för att subtrahera sagda kalkylerade medeltalet från varje värde av kodfasen i sagda frekvensvärde.

12. Elektronikanordning (24) enligt patentkrav 9 eller 10, kännetecknad av att den omfattar medel för att ta prov av signalen efter bildningen av sagda korrelationsfunktionmatris.

13. Elektronikanordning (24) enligt något av patentkraven 8–12, kännetecknad av att den omfattar medel för att utföra funktioner av en mobil station.
14. Elektronikanordning (24) enligt något av patentkraven 8–13, kännetecknad av att mottagaren (1) är en mottagare för satellitradio-lokalisering.

15. Elektronikanordning (24) enligt något av patentkraven 8–14, kännetecknad av att korrelationsmedlen (102–105) omfattar ett anpassat filter.
Fig. 5