

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
27 March 2003 (27.03.2003)

PCT

(10) International Publication Number
WO 03/025208 A1

(51) International Patent Classification⁷: C12Q 1/04, 1/00

(74) Agent: SKELTON, Stephen, Richard; D/IPR Formalities Section, Poplar 2, MOD Abbey Wood #2218, Bristol BS34 8JH (GB).

(21) International Application Number: PCT/GB02/03990

(22) International Filing Date:
2 September 2002 (02.09.2002)

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(30) Priority Data:
0122790.9 21 September 2001 (21.09.2001) GB

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (for all designated States except US): THE SECRETARY OF STATE FOR DEFENCE [GB/GB]; DSTL, Porton Down, Salisbury, Wiltshire SP4 0JQ (GB).

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(72) Inventors; and

(75) Inventors/Applicants (for US only): SQUIRRELL, David, James [GB/GB]; DSTL, Porton Down, Salisbury, Wiltshire SP4 0JQ (GB). LESLIE, Rachel, Louise [GB/GB]; DSTL, Porton Down, Salisbury, Wiltshire SP4 0JQ (GB). BOWN, Kevin, J. [GB/GB]; DSTL, Porton Down, Salisbury, Wiltshire SP4 0JQ (GB).

WO 03/025208 A1

(54) Title: METHOD FOR DETERMINING THE PRESENCE OF BACTERIA RESISTANT TO CELL LYSING ANTIBIOTICS

(57) Abstract: A method is provided for determining the presence of a target bacteria based on its resistance to a cell lysing antibiotic. Said antibiotic is used to lyse cells of non-target bacteria in a sample and hence facilitate isolation of the target prior to detection by known means.

METHOD FOR DETERMINING THE PRESENCE OF BACTERIA RESISTANT TO CELL LYSING ANTIBIOTICS

The present invention is directed to a method for determining the presence of one or more target bacteria in a sample, which target bacteria are resistant to a cell-lysing antibiotic or antibiotics. The invention is particularly, although not exclusively, directed to a method for determining the presence of one or more methicillin-resistant bacteria in a clinical sample.

The emergence of bacteria having resistance to commonly used antibiotics is an increasingly prevalent problem with serious implications for the treatment of infected individuals. Indeed, these so-called superbugs, such as *Staphylococcus aureus*, are often resistant to all but the most powerful antibiotics. The problem has become particularly acute in the hospital environment where nosocomial infection of individuals with weakened immune systems by bacteria resistant to antibiotics can lead to severe complications and even death. Consequently, there is a need to minimise the risk of infection in such an environment. One way of minimising the risk relies on the early determination of the presence of such bacteria so as to enable individuals and an environment to be carefully monitored and, if necessary, treated at an early stage.

Present methods for the determination of the presence of bacteria resistant to antibiotics are, however, time consuming and require that the bacteria first be cultured in pure form and then exposed to a set of antibiotics to see whether their growth is inhibited. The whole process can take at least two days and can result in an often, critical delay before an optimum treatment regimen can be administered to an infected individual. Of course, such delays are not only deleterious to the health of individuals but also result in longer stays in the hospital environment.

Consequently, there is a need for a method for the rapid determination of the presence of bacteria which are resistant to certain antibiotics in a patient or environment.

WO 99/37799, Applicant's co-pending application, teaches a rapid method for determining 5 whether a particular bacterium, known to be present in a culture, is susceptible or resistant to a particular antibiotic. The method is, however, limited in that it preferably requires that the bacterium is present as a pure culture or is a pure isolate. The method, however, can be adapted for determining the antibiotic resistance or susceptibility of a particular bacterium in a mixed culture. In that case the method generally relies on a preliminary separation step 10 prior to treatment with the particular antibiotic or other action specific for the particular bacterium.

Alternatively, and provided the mode of action of the antibiotic is known, the method can reveal the antibiotic resistance or susceptibility of a particular bacterium known to be present 15 in a mixed culture through a comparative analysis of the intracellular adenylate kinase content of four aliquots derived from the mixed culture and cultured in the presence of i) no antibiotic ii) antibiotic, iii) a bacteriophage specific to the bacterium and iv) a mixture of both the antibiotic and the bacteriophage. A bacterium susceptible to a cell-lysing antibiotic, for example, may be deduced on the basis that intracellular adenylate kinase is reduced in the 20 sample cultured with the antibiotic and bacteriophage when compared with the sample cultured with the bacteriophage alone.

Although it might be supposed that the methods disclosed in WO 99/37799 might simply indicate the presence of bacterium in a mixed culture having resistance to a particular

antibiotic, in practice such a result cannot be unambiguously and reliably obtained especially where concentrations of resistant bacteria are low.

Even, if it could, it will be apparent that the determination of that presence still requires the 5 performance of a number of repetitive steps involving the culture, treatment and assay of at least four different aliquots from the mixed culture. Such repetitions are inelegant and increase the possibility of error. Further, the method comprises an inherent delay in that the treatment of an aliquot of the mixed culture with a bacteriophage requires time to ensure that the bacteria are established in the log phase of their growth.

10

Consequently, there remains a need for a simple, rapid method for determining the presence of bacteria having antibiotic resistance in a sample. In particular, there remains a need for a simple, and rapid method for determining the presence of bacteria having antibiotic resistance in a clinical sample.

15

The present invention therefore seeks to provide a simple and rapid method, involving a minimum of necessary steps, for determining whether antibiotic resistant bacteria are present in a sample, especially a clinical sample, taken, for example, by swabbing infected individuals.

20

The present invention starts from the realisation that a wide range of bacteria are generally susceptible to cell lysing antibiotics and that, in consequence, the intracellular material of susceptible bacteria in a mixed culture can be advantageously discarded in the first instance.

Accordingly, the present invention provides a method for determining the presence of target bacteria in a sample, which target bacteria are resistant to a cell lysing antibiotic, comprising the sequential steps of:

i) incubating the sample in an incubating medium including the cell lysing

5 antibiotic,

ii) capturing unlysed cells of the target bacteria on a solid support comprising

a capture agent,

iii) exposing the unlysed cells of the target bacteria to an agent capable of

causing cell lysis thereof,

10 iv) determining the presence of intracellular material from the lysed cells of

the target bacteria.

In one embodiment of the present invention the method further comprises a washing step and/or a filtration step preceding step iii), so as to remove intracellular and material derived 15 from cells susceptible to the cell lysing antibiotic.

It will be understood that throughout this application the phrase "cell lysing antibiotic" describes an agent which disrupts bacterial cell wall synthesis during cell replication. Thus, any of the β -lactam antibiotics are suitable for the performance of the method of the present 20 invention. In a preferred embodiment of the present invention the cell lysing antibiotic is a penicillin such as ampicillin or methicillin.

In one embodiment of the present invention the capture agent may be specific only to a particular species of bacteria. In other embodiments the capture agent may be specific to a

25 particular strain of bacteria. In a preferred embodiment the capture agent is fibrinogen

which binds to *Staphylococcus aureus*. Alternatively the capture agent is an antibody specific to *Staphylococcus aureus*.

It will of course be realised that the method of the present invention may include an 5 additional intervening step or steps so as to enable the presence of more than one target bacteria to be determined. Typically, these steps may comprise capturing unlysed cells of the target bacteria on a solid support comprising one or more capture agents.

Advantageously, the culture medium for performing the present invention comprises a liquid 10 broth. In this embodiment the solid support may comprise magnetic beads coated with a suitable antibody or other capture agent. Alternatively, the solid support may comprise a spatula, paddle or filter at least in part coated with a suitable antibody or other capture agent.

In a further embodiment of the present invention the agent capable of causing cell lysis is 15 selective towards the target bacteria. Preferably the agent is selective to *Staphylococcus aureus*. Still more preferably the agent capable of causing cell lysis is lysostaphin.

In another embodiment of the present invention, the agent capable of causing cell lysis is a bacteriophage selective to the target bacteria or a lysin derived therefrom. In a further 20 embodiment the agent capable of causing cell lysis is a colicin.

Of course it will also be realised that the method of the present invention may include a number of such steps so that the presence of other target bacteria may be also determined.

The determination of intracellular material derived from lysed cells of the target bacteria may comprise any appropriate assay as is known to the art. Preferably, the assay comprises a bioluminescence assay. Still more preferably, the bioluminescence assay is based on adenylate kinase (AK) as is described, for example, in Applicant's co-pending applications 5 WO 94/17202 and WO 96/02665. However, the assay may alternatively comprise a colourimetric or fluorimetric assay based on intracellular enzyme markers – for example, phosphatase or peroxidase.

One aspect of the present invention provides for test kits for performing the method of the 10 invention. Preferably, the test kit is a disposable test kit. The test kit may comprise suitable components so as to allow the chosen assay to be carried out. Preferably, the test kit comprises a suitable culture medium containing a chosen cell lysing antibiotic. Still more preferably, the test kit comprises a solid support including a capture agent specific to the 15 target bacteria, a wash solution and an agent capable of causing cell lysis of the target bacteria.

In one embodiment of the present invention, the test kit comprises a liquid broth comprising methicillin. Preferably, the liquid broth containing methicillin is supplied in a freeze-dried form.

20

Advantageously, the test kit may be supplied in the form of a multi-well container such as that described in Applicant's co-pending patent application GB 0110476.9.

One advantage of the method of the present invention provides a rapid (about 3 hours) 25 determination for the presence of bacteria resistant to a cell lysing antibiotic involving a

single assay for intracellular material. In addition, the method avoids the need for multiple, comparative assays and further confers the advantage that the results may be interpreted in an unambiguous, independently qualitative way, rather than in a comparative or quantitative way.

5

The present invention will now be described by reference to non-limitative embodiments and the following drawings in which

Figure 1 is a schematic illustration of the essential steps of the method of the present invention;

10 Figure 2 is a graph highlighting the difference between negative and positive tests;

Figure 3 is a graph showing test results on methicillin-resistant and methicillin-sensitive strains of *Staphylococcus aureus* after an 3.5 h incubation with 50 µg/ml of ampicillin or 4 µg/ml methicillin; and

Figure 4 is a section view of a test kit according to the present invention.

15

Referring now to Figure 1, a sample taken in the form of a swab, for example from a patient, and comprising a mixture of bacteria containing, generally methicillin resistant, bacteria 11 and, generally susceptible bacteria 12, is cultured at 37°C in a liquid broth of about 1 ml volume containing about 4 µg of the antibiotic.

20

Bacteria resistant to methicillin 11 survive and may multiply. Bacteria susceptible to methicillin 12, however, after an initial growth phase, develop weakened cell walls 13 and lyse, releasing their intracellular material 14 to the liquid broth.

After a period of 2 to 4 hours the liquid broth therefore comprises a mixture of methicillin-resistant, non-lysed bacteria and methicillin-susceptible lysed bacteria.

5 The presence of the particular bacteria, *Staphylococcus aureus* for example, is then determined by the addition to the liquid broth of paramagnetic beads 15 coated with fibrinogen. Fibrinogen is a specific binding agent for *Staphylococcus aureus*. After a period of 2 to 10 minutes the beads are magnetically removed from the broth and washed prior to an analysis step.

10 15 The beads 15 and the attached target bacteria 11 are then treated in a separate vessel with a detergent capable of lysing the cells. The intracellular material thus obtained is analysed for adenylate kinase using a luciferin-luciferase bioluminescence protocol. The presence of methicillin resistant *Staphylococcus aureus* is revealed by a signal 16. The signal 16 may, for the purposes of certainty, be compared to a suitable control signal so as to exclude anomalies arising from background concentrations of adenylate kinase.

It will be apparent that only those cells which remain impervious to methicillin and are immobilised on the magnetic beads provide a significant signal in response to the adenylate kinase assay.

20

Of course, the presence of other methicillin resistant target species may be investigated by an alternative or additional step or steps comprising the addition of beads comprising other coatings or beads including one or more capture agents in their coatings.

Alternatively or additionally specificity can be introduced into the method by targeting a particular variety of the bacterial species in the final cell lysis step. For example, a bacteriophage or a detergent combination which is specific to *Staphylococcus aureus* may be used.

5

Figure 2 shows the bioluminescence results obtained for the determination of the presence of *Staphylococcus aureus* in a series of clinical samples. As may be seen a positive test result (sample numbers M421000M and M421148L) is readily distinguished from a negative test result (sample numbers M421117S and M421131P).

10

Figure 3 shows the bioluminescence results obtained for different strains of *Staphylococcus aureus* cultured in the presence of ampicillin as well as methicillin. In each case the method distinguishes the presence of antibiotic resistant strains from antibiotic susceptible strains.

15 Referring now to Figure 4, a test kit for use in the method of the present invention comprises a solid, injection moulded polypropylene housing, generally designated 17, comprising a number of wells 18, 19, 20, 21, 22 which act as storage chambers and/or reaction chambers for various suitable tools or reagents (as are described below).

20 Chamber 18 stores a liquid broth 22 containing a cell lysing antibiotic which is suitable for incubating a swab sample obtained from an infected individual. The chamber 18 is provided with a solid rod 23 carrying a swab 24 for obtaining this sample. Rod 23 carries a transverse portion 25 which acts as a handle for rod 18 and conveniently provides a lid 26 sealing the liquid broth 22 containing the cell lysing antibiotic in chamber 18.

25

Adjacent chambers 19, 20 respectively store an aqueous solution containing a suspension of magnetic beads 27 and an aqueous, phosphate buffered, saline, wash solution 28. Suitable magnetic beads are those obtained from Dynal under the name Dynabeads TM. As mentioned previously the beads are coated with an agent capable of capturing the target bacteria.

5

Chamber 21, which acts as the reaction chamber of the kit, is provided with an aqueous, buffer solution 29 suitable for performance of a bioluminescence assay based on adenylate kinase. The chamber is also provided with foil sealed capsules 30, 31 above the buffer solution 29 containing respectively a luciferin/luciferase based bioluminescent reagent and 10 an aqueous solution of adenosine diphosphate containing a detergent or agent capable of lysing cells of the target bacteria. A source of magnesium, such as magnesium acetate, which acts as a promoter for bioluminescence assay, is provided in the space 32 dividing the foil sealed capsules

15 Chamber 22 is provided with a hollow wand 33 which carries a sharp conical tip 34 suitable for piercing the foil sealed capsules 30, 31. Wand 33 is provided with a transverse portion 35 carrying engagement means (eg. slots – not shown) for engaging a mechanism suitable for moving the wand 33 in vertical and horizontal directions under the control of control hardware or software (not shown). Transverse portion 35 is also provided with an aperture 20 (not shown) allowing the wand 33 to receive a retractable cylindrical magnet (not shown).

Chambers 19, 20, 21, 22 are provided with laminate sealing means in the form a metal foil 36. In contrast to the sealing means provided to chamber 18, the laminate sealing means is not intended to be re-usable after it has been broken.

In use, the solid rod 23 carrying swab 24 is manually removed from chamber 18 by the handle 25 and used to obtain a sample from an infected individual. The rod 23 is immediately returned to the chamber so that the swab 24 is immersed in the liquid broth 22 and the seal between the lid 26 and the chamber 18 is reformed.

5

The test kit is held under suitable conditions for a period of about 3h so as to incubate the patient sample. At the end of this period rod 23 is removed from chamber 18 and the metal foil sealing chambers 19, 20, 21, 22 removed.

10 The hollow wand 33 (containing the retractable magnet) is engaged with the moving mechanism. Under the control of the hardware or software control wand 33 is moved to chamber 19 where it collects the magnetic beads from suspension 27 and thence to chamber 18 where retraction of the magnet by, for example worm drive means, causes the beads to be deposited in the broth.

15

After a suitable period, and if appropriate stirring, the magnet is returned to the wand 33 so that it collects the beads. Wand 33 is then removed to chamber 20 where the beads are deposited in the wash solution 28 and after a further suitable period retrieved as previously described.

20

Wand 33 carrying the washed beads is subsequently removed to the reaction chamber 21 so that the sharp, conical tip 34 is caused to release the contents of foil sealed capsules 30, 31 to the buffer solution 29. The beads are then released to the solution 29 by retraction of the magnet from wand 33 and the wand returned to chamber 22.

25

A photomultiplier (not shown) placed beneath the chamber 21 of polypropylene housing 17 detects the emitted light from the bioluminescence reaction that follows. (A detailed description of the reaction is given in Applicant's co-pending applications WO 94/17202 and WO 96/02665).

5

10

15

20

25

CLAIMS

1. A method for determining the presence of target bacteria in a sample, which target bacteria are resistant to a cell lysing antibiotic, comprising the sequential steps

5 of:

i) incubating the sample in an incubating medium including the cell lysing antibiotic,

ii) capturing unlysed cells of the target bacteria on a solid support comprising a capture agent,

10 iii) exposing the unlysed cells of the target bacteria to an agent capable of causing cell lysis thereof,

iv) determining the presence of intracellular material from the lysed cells of the target bacteria.

15 2. A method according to Claim 1, in which step iii) is preceded by a washing and/or a filtration step.

3. A method according to Claim 1 or Claim 2, in which the capture agent is an antibody specific to *Staphylococcus aureus*.

20

4. A method according to Claim 1 or Claim 2, in which the capture agent is fibrinogen.

25 5. A method according to Claim 4, in which the agent capable of causing cell lysis is selective towards *Staphylococcus aureus*.

6. A method according to Claim 5, in which the agent capable of causing cell lysis is lysostaphin.

5 7. A method according to any of Claims 1 to 4, in which the agent capable of causing cell lysis is a bacteriophage.

8. A method according to any preceding Claim, in which the culture medium is a liquid broth.

10 9. A method according to any preceding Claim, in which the solid support comprises magnetic beads.

10. A method according to any of Claims 2 to 9, in which step iv) comprises a bioluminescence assay.

15

11. A method according to Claim 10, in which the bioluminescence assay is based on adenylate kinase.

20

12. A method according to any of Claims 2 to 9, in which step iv) comprises a colourimetric or fluorimetric assay based on an intracellular enzyme marker.

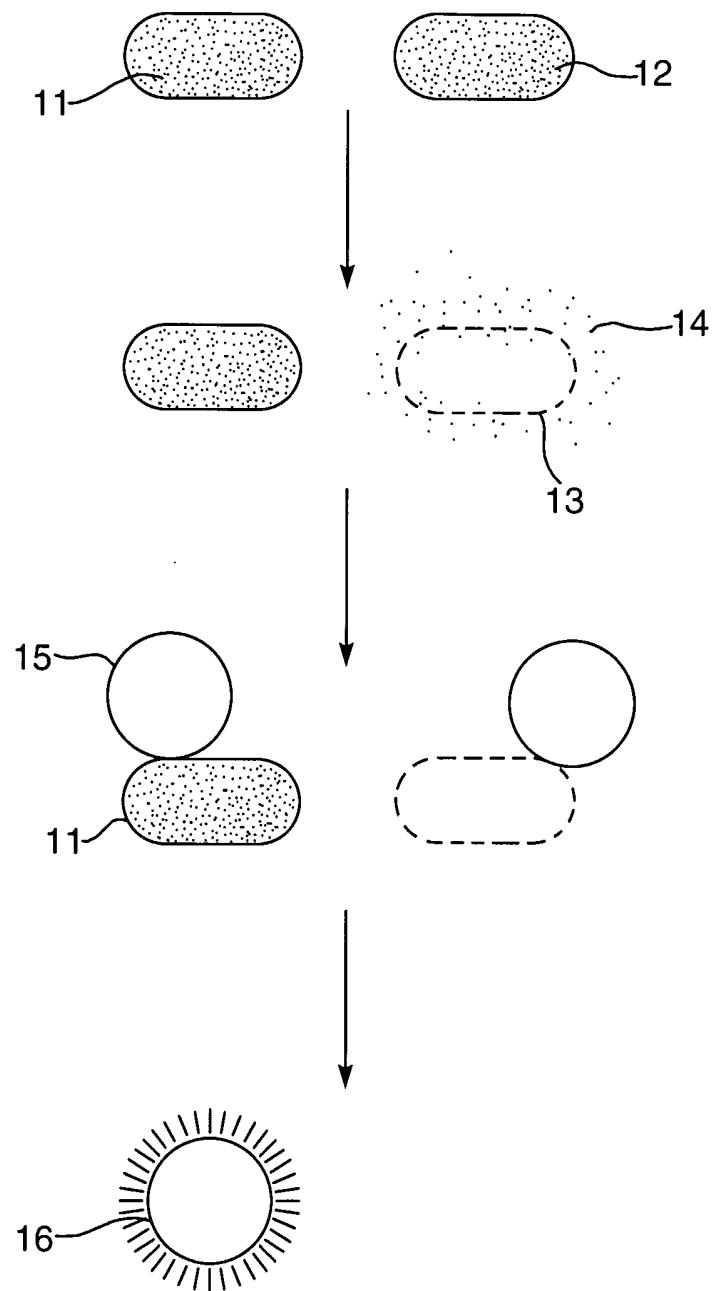
13. A method according to any preceding Claim, in which the cell lysing antibiotic is methicillin.

14. A test kit, for determining the presence of a target bacteria, comprising a culture medium containing a cell lysing antibiotic, one or more solid supports comprising a capture agent specific for the target bacteria, one or more agents capable of causing cell lysis of the target bacteria and reagents for determining the presence of intracellular material from lysed cells of the target bacteria.

5

15. A test kit according to Claim 14, in which the cell lysing antibiotic is methicillin.

10


16. A test kit according to Claim 14 or Claim 15, in which the one or more capture agents include a capture agent specific to *Staphylococcus aureus*.

15

17. A test kit according to any of Claims 14 to 16, in which the reagents for determining the presence of intracellular material from the lysed cells of the target bacteria are suitable for effecting a bioluminescence, colourimetric or fluorimetric assay for intracellular enzyme marker.

1/3

Fig.1.

2/3

Fig.2.

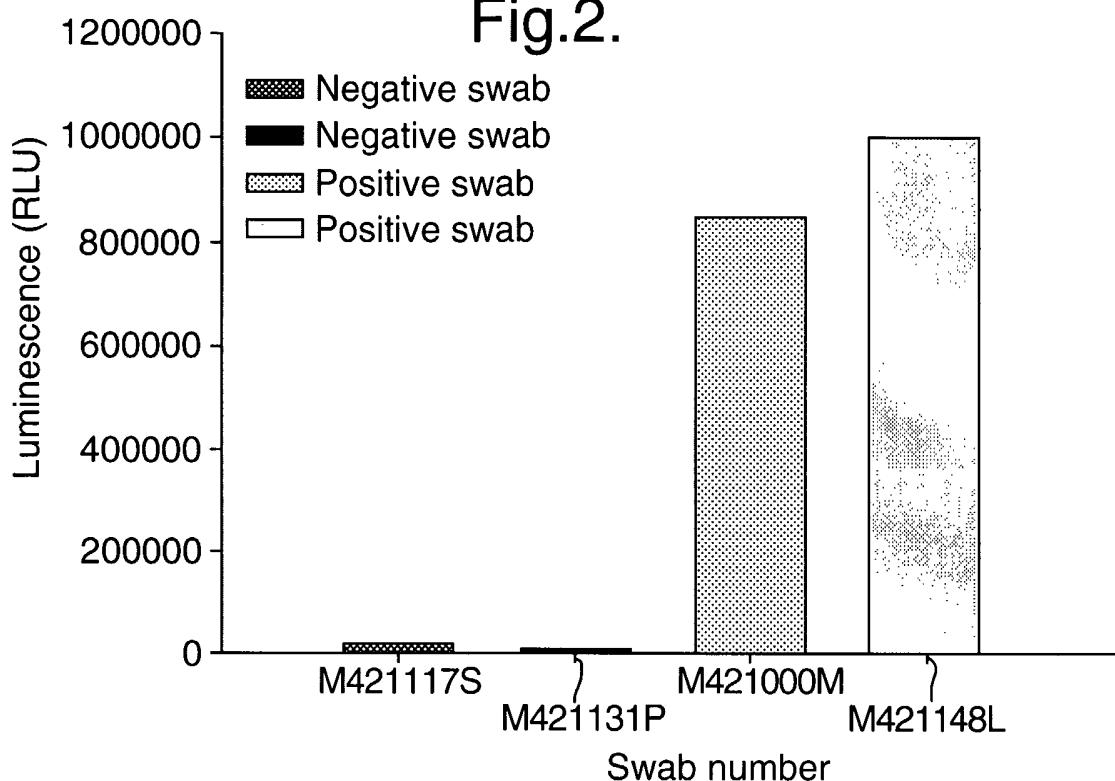


Fig.3.

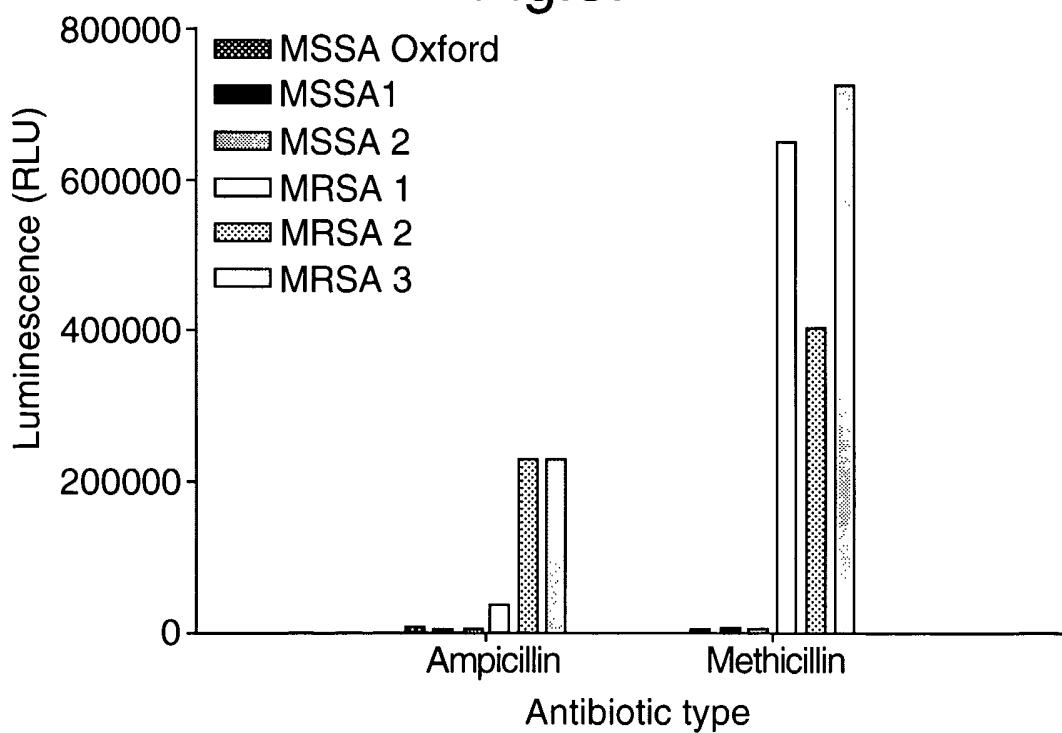
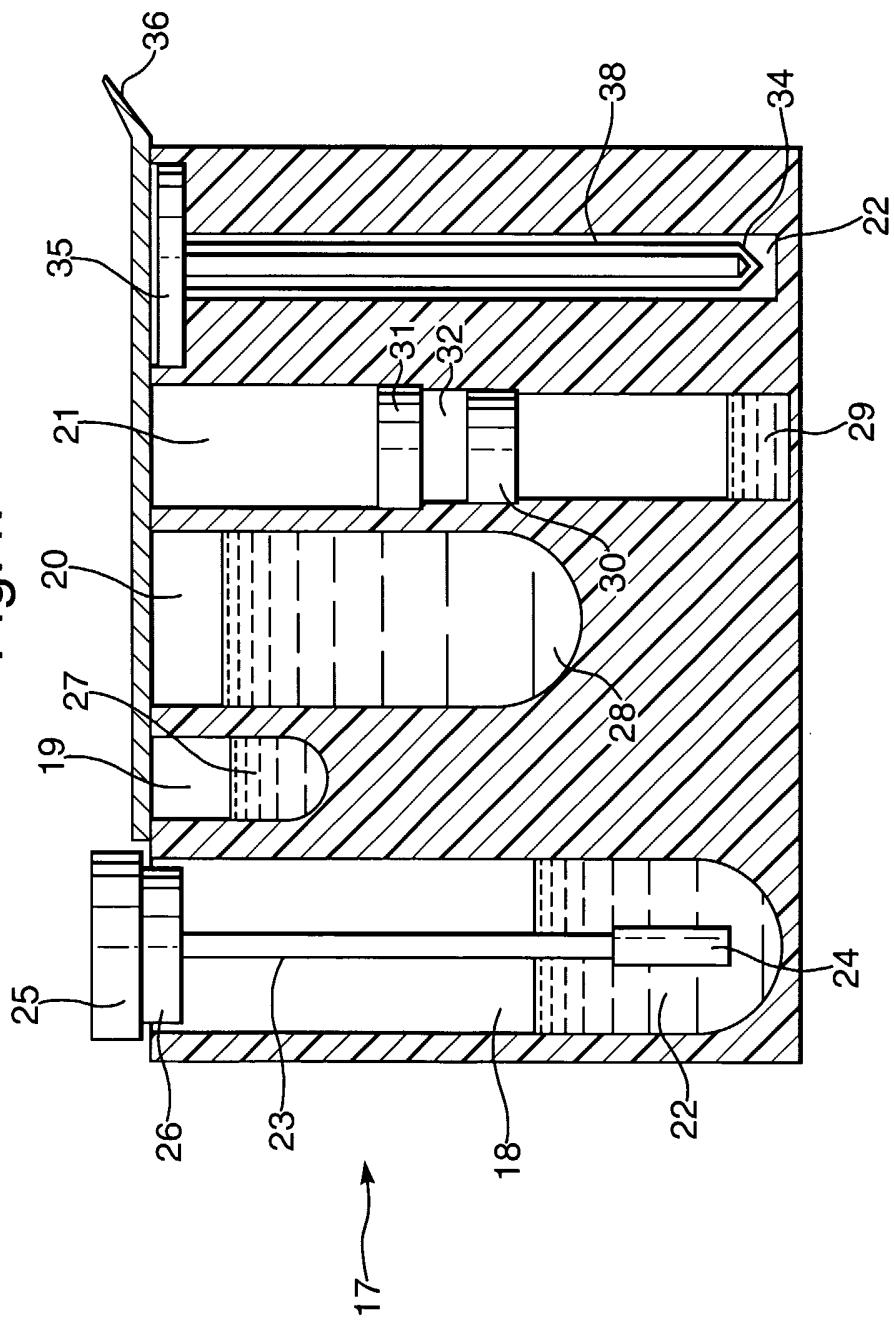



Fig.4.

INTERNATIONAL SEARCH REPORT

International Application No	
F 01/GB 02/03990	

A. CLASSIFICATION OF SUBJECT MATTER		
IPC 7	C12Q1/04	C12Q1/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C12Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

WPI Data, PAJ, EMBASE, MEDLINE, BIOSIS, EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 99 37799 A (MURPHY MELANIE JANE; PRICE RACHEL LOUISE (GB); SQUIRRELL DAVID JAM) 29 July 1999 (1999-07-29) cited in the application page 6, line 17 -page 7, line 28 page 3, line 20 -page 4, line 25; claims 1-24; figure 4; examples 1-6	14, 15, 17
Y	US 5 695 946 A (BENJAMIN THOMAS L ET AL) 9 December 1997 (1997-12-09) column 4, line 1 -column 8, line 60; claims 1-8; example 1	16
A	----- ----- ----- -----	1-13
A	----- -----	16
	----- -----	1-15, 17
	----- -----	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

4 December 2002

Date of mailing of the international search report

18/12/2002

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Stachowiak, 0

INTERNATIONAL SEARCH REPORT

International Application No
GB/GB 02/03990

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 441 469 A (PROMEGA CORP) 14 August 1991 (1991-08-14) abstract; claims 1-26; figures 1-4; examples 1,2 ---	1-17
A	US 5 798 214 A (SQUIRRELL DAVID JAMES) 25 August 1998 (1998-08-25) page 9, column 2 ---	1-17
A	US 4 647 536 A (MOSBACH KLAUS ET AL) 3 March 1987 (1987-03-03) column 1-2; claims 1-6; example 7 ---	4-6
A	STRANDEN ANNE M ET AL: "Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in the femAB null mutant of methicillin-resistant Staphylococcus aureus." JOURNAL OF BACTERIOLOGY, vol. 179, no. 1, 1997, pages 9-16, XP002222628 ISSN: 0021-9193 page 9, column 2 ---	6
A	WO 99 50441 A (UREN JACK R; HAYDOCK PAUL V (US); SAIGENE CORP (US)) 7 October 1999 (1999-10-07) abstract; claims 1-14 ---	1-17
A	WO 95 16039 A (LENCASTRE HERMINIA DE; TOMASZ ALEXANDER (US); UNIV ROCKEFELLER (US) 15 June 1995 (1995-06-15) abstract; claims 13,14 ---	1-17
A	WO 95 14105 A (ROBERTS MICHAEL STEPHEN; AQUACULTURE DIAGNOSTICS LIMITE (GB)) 26 May 1995 (1995-05-26) claims 1-11 -----	1-17

INTERNATIONAL SEARCH REPORT

International Application No
PCT/GB 02/03990

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 9937799	A	29-07-1999	AU	751388 B2	15-08-2002
			AU	2065399 A	09-08-1999
			BR	9907161 A	24-10-2000
			CA	2318367 A1	29-07-1999
			CN	1294634 T	09-05-2001
			EP	1049798 A1	08-11-2000
			GB	2348702 A	11-10-2000
			WO	9937799 A1	29-07-1999
			HU	0101276 A2	28-08-2001
			JP	2002500892 T	15-01-2002
			NO	20003708 A	21-09-2000
			NZ	505847 A	27-09-2002
US 5695946	A	09-12-1997	US	5491068 A	13-02-1996
			CA	2112603 A1	01-07-1994
			EP	0605003 A2	06-07-1994
			JP	7067693 A	14-03-1995
			AT	189310 T	15-02-2000
			CA	2042726 A1	15-08-1992
			DE	69131939 D1	02-03-2000
			EP	0498920 A2	19-08-1992
			JP	2986961 B2	06-12-1999
			JP	6324039 A	25-11-1994
EP 0441469	A	14-08-1991	AU	6847890 A	25-07-1991
			EP	0441469 A1	14-08-1991
US 5798214	A	25-08-1998	AT	184054 T	15-09-1999
			AU	691940 B2	28-05-1998
			AU	2931995 A	16-02-1996
			BR	9508392 A	26-05-1998
			CA	2194458 A1	01-02-1996
			CN	1157638 A , B	20-08-1997
			DE	69511876 D1	07-10-1999
			DE	69511876 T2	31-05-2000
			DK	774011 T3	20-03-2000
			EP	0774011 A1	21-05-1997
			ES	2136866 T3	01-12-1999
			WO	9602666 A1	01-02-1996
			GB	2304892 A , B	26-03-1997
			GR	3031877 T3	29-02-2000
			HU	76447 A2	29-09-1997
			JP	10502815 T	17-03-1998
			NO	970106 A	13-03-1997
			NZ	289464 A	28-07-1998
			ZA	9505846 A	19-02-1996
US 4647536	A	03-03-1987	SE	441009 B	02-09-1985
			AT	32348 T	15-02-1988
			DE	3375581 D1	10-03-1988
			DK	509483 A	07-11-1983
			EP	0102985 A1	03-02-1988
			JP	59500350 T	08-03-1984
			SE	8201401 A	09-09-1983
			WO	8303102 A1	15-09-1983
WO 9950441	A	07-10-1999	AU	3206199 A	18-10-1999
			CA	2325851 A1	07-10-1999

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB 02/03990

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9950441	A	EP	1064396 A1	03-01-2001
		JP	2002509731 T	02-04-2002
		WO	9950441 A1	07-10-1999
-----	-----	-----	-----	-----
WO 9516039	A	15-06-1995	AU 1398295 A WO 9516039 A1 US 6063613 A US 6251647 B1	27-06-1995 15-06-1995 16-05-2000 26-06-2001
-----	-----	-----	-----	-----
WO 9514105	A	26-05-1995	WO 9514105 A2	26-05-1995
-----	-----	-----	-----	-----