

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 440 482

51 Int. Cl.:

A61K 47/48 (2006.01) A61P 35/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 20.06.2006 E 06785283 (0)
 (97) Fecha y número de publicación de la concesión europea: 02.10.2013 EP 1912677

(54) Título: Conjugados de PSMA-anticuerpo-fármaco

(30) Prioridad:

20.06.2005 US 692399 P 14.04.2006 US 792360 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 29.01.2014

(73) Titular/es:

PSMA DEVELOPMENT COMPANY, L.L.C. (100.0%) PROGENICS PHARMACEUTICALS, 777 OLD SAW MILL RIVER ROAD TARRYTOWN, NEW YORK 10591, US

(72) Inventor/es:

MA, DANGSHE; MADDON, PAUL J.; OLSON, WILLIAM C.; DORONINA, SVETLANA O.; TOKI, BRIAN E. y SENTER, PETER D.

(74) Agente/Representante:

LEHMANN NOVO, María Isabel

S 2 440 482 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Conjugados de PSMA-anticuerpo-fármaco

5 Campo de la invención

10

20

25

40

45

50

55

60

Esta invención se refiere, en general, a conjugados anticuerpo-fármaco (ADCs – siglas en inglés). En particular, la invención se refiere a ADCs que comprenden un anticuerpo o fragmento de unión a antígeno del mismo que se une a un antígeno prostático específico de membrana (PSMA – siglas en inglés) y está conjugado a monometilauristatin norefredina (MMAE – siglas en inglés) o monometilauristatin fenilalanina (MMAF – siglas en inglés). El conjugado anticuerpo-fármaco tiene una selectividad por células PC-3™ a células C4-2 o LNCaP™ de al menos 250. La invención también se refiere, en parte, a composiciones de los ADCs. Los métodos proporcionados incluyen, por ejemplo, métodos para tratar una enfermedad mediada por PSMA.

15 Antecedentes de la invención

El cáncer de próstata es el cáncer más común y la segunda causa destacada de fallecimientos por cáncer en el hombre en los Estados Unidos de América (Jemal A, et al., *CA Cancer J Clin* 2005; 55:10-30). El cáncer de próstata localizado es tratado típicamente con cirugía o radiación, y la enfermedad recurrente puede ser controlada temporalmente con la ablación de andrógenos (Klein EA, et al., *Urol Clin North Am* 2003; 30:315-30). Sin embargo, casi todos los carcinomas de próstata se convierten finalmente en hormona-refractarios y progresan entonces rápidamente (Denmeade SR, et al., *Nat Rev Cancer* 2002; 2:389-96). El cáncer de próstata hormona-refractario o andrógeno-independiente ha demostrado ser ampliamente resistente a una quimioterapia convencional. Con la excepción de un cuidado paliativo, la única quimioterapia aprobada es docetaxel en combinación con prednisona, que ofrece un beneficio de supervivencia modesto (2,4 meses) (Gulley J. et al., *Am J Ther.* 2004; 351: 1513-20; Petrylak DP, et al., *New Engl J Med* 2004; 351:1513-20). Se necesitan nuevas terapias molecularmente dirigidas.

Sumario de la invención

La invención proporcionada en esta memoria se refiere a ADCs que exhiben una selectividad particularmente elevada. En un aspecto de la invención, se proporciona un conjugado anticuerpo-fármaco que comprende un anticuerpo o fragmento de unión a antígeno del mismo que se une a PSMA y está conjugado a monometilauristatin norefredina o monometilauristatin fenilalanina, en donde el conjugado anticuerpo-fármaco tiene una selectividad por células PC-3™ a células C4-2 o LNCaP™ de al menos 250, y 3 ó 4 moléculas de monometilauristatin norefedrina o monometilauristatin fenilalanina están conjugadas al anticuerpo o fragmento de unión a antígeno del mismo. En una realización, la selectividad es al menos 500, 1000, 2500, 6000 ó 13.000. En otra realización, la selectividad es 1567, 6286 ó 13.636.

Se proporcionan en esta memoria ejemplos de anticuerpos que se pueden utilizar en las composiciones y los métodos de la invención, en algunas realizaciones. En otra realización, el anticuerpo o fragmento de unión a antígeno del mismo es un anticuerpo monoclonal o fragmento de unión a antígeno del mismo que se une específicamente a PSMA. Todavía en otra realización, el anticuerpo o fragmento de unión a antígeno del mismo es un anticuerpo monoclonal o fragmento de unión a antígeno del mismo que se une específicamente a un dominio extracelular de PSMA. En una realización adicional, el anticuerpo o fragmento de unión a antígeno del mismo es un anticuerpo monoclonal o fragmento de unión a antígeno del mismo que se une específicamente a un epítopo conformacional de PSMA.

En algunas realizaciones, el anticuerpo o fragmento de unión a antígeno del mismo (i) inhibe competitivamente la unión específica de un segundo anticuerpo a su epítopo diana en PSMA, o (ii) se une a un epítopo en PSMA definido por un anticuerpo seleccionado del grupo que consiste en PSMA 3.7, PSMA 3.8, PSMA 3.9, PSMA 3.11, PSMA 5.4, PSMA 7.1, PSMA 7.3, PSMA 10.3, PSMA 1.8.3, PSMA A3.1.3, PSMA A3.3.1, Abgenix 4.248.2, Abgenix 4.360,3, Abgenix 4.7.1, Abgenix 4.4.1, Abgenix 4.177.3, Abgenix 4.16.1, Abgenix 4.22.3, Abgenix 4.28.3, Abgenix 4.40.2, Abgenix 4.48.3, Abgenix 4.49.1, Abgenix 4.209.3, Abgenix 4.219.3, Abgenix 4.288.1, Abgenix 4.333.1, Abgenix 4.54.1, Abgenix 4.153.1, Abgenix 4.232.3, Abgenix 4.292.3, Abgenix 4.304.1, Abgenix 4.78.1 y Abgenix 4.152.1. En otras realizaciones, el anticuerpo o fragmento de unión a antígeno del mismo se une a un epítopo en PSMA definido por un anticuerpo seleccionado del grupo que consiste en anticuerpos que comprenden (a) una cadena pesada codificada por una molécula de ácido nucleico que comprende una región o regiones codificadoras de una secuencia de nucleótidos seleccionada del grupo que consiste en secuencias de nucleótidos recogidas como SEQ ID NOs: 2-7, y (b) una cadena ligera codificada por una molécula de ácido nucleico que comprende una región o regiones codificadoras de una secuencia de nucleótidos seleccionada del grupo que consiste en

secuencias de nucleotídos recogidas como SEQ ID NOs: 8-13.

10

En algunas realizaciones, el segundo anticuerpo se selecciona del grupo que consiste en PSMA 3.7, PSMA 3.8, PSMA 3.9, PSMA 3.11, PSMA 5.4, PSMA 7.1, PSMA 7.3, PSMA 10.3, PSMA 1.8.3, PSMA A3.1.3, PSMA A3.3.1, Abgenix 4.248.2, Abgenix 4.360,3, Abgenix 4.7.1, Abgenix 4.4.1, Abgenix 4.177.3, Abgenix 4.16.1, Abgenix 4.22.3, Abgenix 4.28.3, Abgenix 4.40.2, Abgenix 4.48.3, Abgenix 4.49.1, Abgenix 4.209.3, Abgenix 4.219.3, Abgenix 4.288.1, Abgenix 4.333.1, Abgenix 4.54.1, Abgenix 4.153.1, Abgenix 4.232.3, Abgenix 4.292.3, Abgenix 4.304.1, Abgenix 4.78.1 y Abgenix 4.152.1 y anticuerpos que comprenden (a) una cadena pesada codificada por una molécula de ácido nucleico que comprende una región o regiones codificadoras de una secuencia de nucleótidos seleccionada del grupo que consiste en secuencias de nucleótidos recogidas como SEQ ID NOs: 2-7, y (b) una cadena ligera codificada por una molécula de ácido nucleico que comprende una región o regiones codificadoras de una secuencia de nucleótidos seleccionada del grupo que consiste en secuencias de nucleotídos recogidas como SEQ ID NOs: 8-13.

- 15 En otras realizaciones, el segundo anticuerpo se selecciona del grupo que consiste en AB-PG1-XG1-006, AB-PG1-XG1-026 y anticuerpos que comprenden (a) una cadena pesada codificada por una molécula de ácido nucleico que comprende una región o regiones codificadoras de una secuencia de nucleótidos seleccionada del grupo que consiste en secuencias de nucleótidos recogidas como SEQ ID NOs: 2 y 3, y (b) una cadena ligera codificada por una molécula de ácido nucleico que comprende una región o regiones codificadoras de una secuencia de nucleótidos seleccionada del grupo que consiste en secuencias de nucleótidos recogidas como SEQ ID NOs: 8 y 9. 20 En una realización, el segundo anticuerpo comprende (a) una cadena pesada codificada por una molécula de ácido nucleico que comprende una región o regiones codificadoras de una secuencia de nucleótidos recogida como SEQ ID NO: 2, y (b) una cadena ligera codificada por una molécula de ácido nucleico que comprende una región o regiones codificadoras de una secuencia de nucleótidos recogida como SEQ ID NO: 8. En una realización 25 adicional, el segundo anticuerpo comprende (a) una cadena pesada codificada por una molécula de ácido nucleico que comprende una región o regiones codificadoras de una secuencia de nucleótidos recogida como SEQ ID NO: 3, y (b) una cadena ligera codificada por una molécula de ácido nucleico que comprende una región o regiones codificadoras de una secuencia de nucleótidos recogida como SEQ ID NO: 9.
- 30 En algunas realizaciones, el anticuerpo del conjugado anticuerpo-fármaco es un anticuerpo codificado por una molécula de ácido nucleico que comprende una secuencia de nucleótidos que es al menos 90% idéntica a una secuencia de nucleótidos que codifica un anticuerpo seleccionado del grupo que consiste en AB-PG1-XG1-006, AB-PG1-XG1-026 y anticuerpos que comprenden (a) una cadena pesada codificada por una molécula de ácido nucleico que comprende una región o regiones codificadoras de una secuencia de nucleótidos seleccionada del 35 grupo que consiste en secuencias de nucleótidos recogidas como SEQ ID NOs: 2 y 3, y (b) una cadena ligera codificada por una molécula de ácido nucleico que comprende una región o regiones codificadoras de una secuencia de nucleótidos seleccionada del grupo que consiste en secuencias de nucleótidos recogidas como SEQ ID NOs: 8 y 9. En una realización, el anticuerpo es codificado por una molécula de ácido nucleico que comprende una secuencia de nucleótidos que es al menos 95% idéntica. En otra realización el anticuerpo es codificado por 40 una molécula de ácido nucleico que comprende una secuencia de nucleótidos que es al menos 97% idéntica. Todavía en otra realización, el anticuerpo es codificado por una molécula de ácido nucleico que comprende una secuencia de nucleótidos que es al menos 98% idéntica. En una realización adicional, el anticuerpo es codificado por una molécula de ácido nucleico que comprende una secuencia de nucleótidos que es al menos 99% idéntica.
- En otras realizaciones, el anticuerpo o fragmento de unión a antígeno del mismo de los conjugados anticuerpo-45 fármaco proporcionados en esta memoria es AB-PG1-XG1-006, AB-PG1-XG1-026 o un fragmento de unión a antígeno del mismo. Todavía en otras realizaciones, el anticuerpo o fragmento de unión a antígeno del mismo se selecciona del grupo que consiste en anticuerpos que comprenden (a) una cadena pesada codificada por una molécula de ácido nucleico que comprende una región o regiones codificadoras de una secuencia de nucleótidos 50 seleccionada del grupo que consiste en secuencias de nucleótidos recogidas como SEQ ID NOs: 2 y 3, y (b) una cadena ligera codificada por una molécula de ácido nucleico que comprende una región o regiones codificadoras de una secuencia de nucleótidos seleccionada del grupo que consiste en secuencias de nucleótidos recogidas como SEQ ID NOs: 8 y 9, y fragmentos de unión a antígeno de los mismos. En una realización, el anticuerpo o fragmento de unión a antígeno del mismo comprende (a) una cadena pesada codificada por una molécula de ácido nucleico que comprende una región o regiones codificadoras de una secuencia de nucleótidos recogida como SEQ 55 ID NO: 2, y (b) una cadena ligera codificada por una molécula de ácido nucleico que comprende una región o regiones codificadoras de una secuencia de nucleótidos recogida como SEQ ID NO: 8, y fragmentos de unión a antígeno de los mismos. En otra realización, el anticuerpo o fragmento de unión a antígeno del mismo comprende (a) una cadena pesada codificada por una molécula de ácido nucleico que comprende una región o regiones codificadoras de una secuencia de nucleótidos recogida como SEQ ID NO: 3, y (b) una cadena ligera codificada 60

por una molécula de ácido nucleico que comprende una región o regiones codificadoras de una secuencia de nucleótidos recogida como SEQ ID NO: 9, y fragmentos de unión a antígeno de los mismos.

En algunas realizaciones, el anticuerpo o fragmento de unión a antígeno del mismo es IgG1, IgG3, IgG4, IgM, IgA1, IgA2, IgAsec, IgD, IgE o tiene un dominio constante y/o variable de inmunoglobulina de IgG1, IgG3, IgG3, IgG4, IgM, IgA1, IgA2, IgAsec, IgD o IgE.

En realizaciones adicionales, el anticuerpo es un anticuerpo monoclonal. Todavía en otras realizaciones, el anticuerpo es un anticuerpo humanizado. Todavía en otras realizaciones, el anticuerpo es un anticuerpo humano. Todavía en otras realizaciones, el anticuerpo es un anticuerpo biespecífico o multiespecífico. Todavía en otras realizaciones, el anticuerpo es un anticuerpo de cadena sencilla.

En otras realizaciones. el fragmento de unión a antígeno es un fragmento Fab, un fragmento F(ab')₂ o un fragmento Fv. Todavía en otras realizaciones, el fragmento de unión a antígeno es un fragmento que contiene CDR3.

En algunas realizaciones, la monometilauristatin norefredina (MMAE) o monometilauristatin fenilalanina (MMAF) está conjugada al anticuerpo o fragmento de unión a antígeno del mismo con un compuesto de la fórmula (**Fórmula 1**) $-A_n-Y_m-Z_m-X_n-W_n-$, en donde A es una unidad acilo carboxílica, Y es un aminoácido; Z es un aminoácido; X y W son cada uno un espaciador auto-inmolativo; n es un número entero de 0 ó 1; y m es un número entero de 0 ó 1, 2, 3, 4, 5 ó 6. En algunas realizaciones, el conjugado de la presente invención se representa por la fórmula (**Fórmula 2**): L- $\{A_n-Y_m-Z_m-X_n-W_n-D\}_p$, en donde L es un anticuerpo o fragmento de unión a antígeno del mismo que se une a PSMA, D es MMAE o MMAF y p es un número entero de 1, 2, 3, 4, 5, 6, 7 u 8. El resto de los componentes de los conjugados son como se definen inmediatamente antes.

En una realización, la unidad carboxílica "A_n" está enlazada al anticuerpo o fragmento de unión a antígeno del mismo a través de un átomo de azufre derivado del anticuerpo o fragmento de unión a antígeno del mismo:

$$L \longrightarrow \left(A_n \longrightarrow Y_m \longrightarrow Z_m \longrightarrow X_n \longrightarrow W_n \longrightarrow D\right)_p$$

En una realización, A es

5

10

20

25

30

35

en que q es 1-10. Por lo tanto, en una realización, el conjugado de Fórmula 2 es:

$$L - S = \begin{pmatrix} O \\ N - (CH_2)_q CO - Y_m - Z_m - X_n - W_n - D \end{pmatrix}_p$$

en donde L, Y, Z, X, W, D, n, m, q y p son como se definen previamente.

En otra realización, A es 4-(N-succinimidometil)ciclohexano-1-carbonilo, m-succinimidobenzoílo, 4-(p-succinimidofenil)-butirilo, 4-(2-acetamido)benzoílo, 3-tiopropionilo, 4-(1-tioetil)-benzoílo, 6-(3-tiopropionilamido)-hexanoílo o maleimida- caproílo. En una realización adicional, A es maleimida-caproilo.

En otra realización, Y es alanina, valina, leucina, isoleucina, metionina, fenilalanina, triptófano o prolina. Todavía en otra realización, Y es valina. En una realización adicional, Z es lisina, lisina protegida con acetilo o formilo, arginina, arginina protegida con tosilo o grupos nitro, histidina, ornitina, ornitina protegida con acetilo o formilo, o citrulina. Todavía en una realización adicional, Z es citrulina. En una realización, Y_m - Z_m es valina-citrulina. En otra realización, Y_m - Z_m es una secuencia de proteínas que es selectivamente escindible por una proteasa.

En una realización adicional, X es un compuesto que tiene la fórmula

en que T es O, N o S. En otra realización, X es un compuesto que tiene la fórmula -HN-R 1 -COT, en que R 1 es alquilo C $_1$ -C $_5$, T es O, N o S. En una realización adicional, X es un compuesto que tiene la fórmula

en que T es O, N o S, R^2 es H o alquilo C_1 - C_5 . En una realización, X es p-aminobencilcarbamoiloxi. En otra realización, X es alcohol p-aminobencílico. En una realización adicional, X es carbamato de p-aminobencilo. Todavía en otra realización adicional, X es p-aminobenciloxicarbonilo. En otra realización, X es ácido γ-aminobutírico, ácido α,α -dimetil-γ-aminobutírico o ácido β,β -dimetil-γ-aminobutírico.

En algunas realizaciones, W es

5

10

20

25

en que T es O, S o N.

En otras realizaciones, m y n son 0.

En una realización, el conjugado anticuerpo-fármaco es AB-PG1-XG1-006-maleimida caproil-valina-citrulina-p-aminobenciloxicarbonil-monometilauristatin norefredina. En otra realización, el conjugado anticuerpo-fármaco es AB-PG1-XG1-006-maleimida caproil-valina-citrulina-p-aminobenciloxicarbonil-monometilauristatin fenilalanina. En una realización adicional, el conjugado anticuerpo-fármaco es AB-PG1-XG1-006-maleimida-caproil-monometilauristatin fenilalanina. En otra realización, el conjugado anticuerpo-fármaco es AB-PG1-XG1-026-maleimida-caproil-valina-citrulina-p-aminobenciloxicarbonil-monometilauristatin norefedrina. Todavía en otra

realización, el conjugado anticuerpo-fármaco es AB-PG1-XG1-026-maleimida-caproil-valina-citrulina-p-aminobenciloxicarbonil-monometilauristatin fenilalanina. En una realización adicional, el conjugado anticuerpo-fármaco es AB-PG1-XG1-026-maleimida-caproil- monometilauristatin fenilalanina. En otra realización, el conjugado anticuerpo-fármaco es un anticuerpo de unión a PSMA o fragmento de unión a antígeno del mismo conjugado al compuesto tal como se muestra en **Fig. 6A**, **Fig. 6B** o **Fig. 6C**.

5

10

15

20

25

30

35

50

55

En algunas realizaciones, el conjugado anticuerpo-fármaco se une a células vivas. En una realización la célula es una célula tumoral. En otra realización, la célula tumoral es una célula de tumor de próstata. En una realización adicional, la célula tumoral es una célula de la neovasculatura de un tumor no prostático. En otras realizaciones, el conjugado anticuerpo-fármaco no requiere la lisis de las células para unirse a PSMA. Todavía en otras realizaciones, el conjugado anticuerpo-fármaco conduce a una paralización del ciclo celular. Todavía en realizaciones adicionales, el conjugado anticuerpo-fármaco inhibe el crecimiento de células que expresan PSMA. En una realización el conjugado anticuerpo-fármaco media en el exterminio de células específico de células que expresan PSMA con una Cl_{50} menor que $1X10^{-10}$ M. En otra realización, la Cl_{50} es menor que $1X10^{-11}$ M. Todavía en otra realización, la Cl_{50} es menor que $1X10^{-12}$ M. En una realización adicional, el conjugado anticuerpo-fármaco media en el exterminio de células específico de células que expresan PSMA con una Cl₅₀ de 11 a 208 X10⁻¹² M. Todavía en una realización adicional, el conjugado anticuerpo-fármaco media en el exterminio de células específico de células que expresan PSMA con una Cl₅₀ de 42 a 208 X10⁻¹² M. Todavía en una realización adicional, el conjugado anticuerpo-fármaco media en el exterminio de células específico de células que expresan PSMA con una Cl₅₀ de 60 a 208 X10⁻¹² M. En otra realización, el conjugado anticuerpo-fármaco media en el exterminio de células específico de células que expresan PSMA con una Cl₅₀ de 65 a 208 X10⁻¹² M. En una realización, el conjugado anticuerpo-fármaco media en el exterminio de células específico de células que expresan PSMA con una Cl₅₀ de 11X10⁻¹² M. En otra realización, el conjugado anticuerpo-fármaco media en el exterminio de células específico de células que expresan PSMA con una Cl₅₀ de 42X10⁻¹² M. Todavía en otra realización, el conjugado anticuerpo-fármaco media en el exterminio de células específico de células que expresan PSMA con una Cl₅₀ de 60X10⁻¹² M. En una realización adicional, el conjugado anticuerpo-fármaco media en el exterminio de células específico de células que expresan PSMA con una Cl₅₀ de 83X10⁻¹² M.

En otra realización, el conjugado anticuerpo-fármaco, cuando se administra a ratones con un régimen de q4d x 6 a una dosis de 6 mg/kg resulta en una tasa de curación de al menos 20%, 30%, 40% o 50%. En una realización, la tasa de curación es de 20%, 30%, 40%, 50%, 60%, 70%, 80% o más. En una realización, los ratones son aquellos que son un modelo de cáncer de próstata humano andrógeno-independiente. En otra realización, los ratones son ratones inmunológicamente deficientes a los que se les han injertado intramuscularmente células C4-2 en la pata trasera izquierda. En una realización adicional, los ratones son los proporcionados en los **Ejemplos**.

En algunas realizaciones, el conjugado anticuerpo-fármaco está unido a un marcador. En otras realizaciones, el marcador es un marcador fluorescente, un marcador enzimático, un marcador radiactivo, un marcador activo de resonancia magnética nuclear, un marcador luminiscente o un marcador cromóforo.

40 En algunas realizaciones, el conjugado anticuerpo-fármaco está envasado en forma liofilizada. En otras realizaciones, el conjugado anticuerpo-fármaco está envasado en un medio acuoso. En realizaciones adicionales, el conjugado anticuerpo-fármaco está en una forma estéril.

También se proporcionan en esta memoria composiciones que comprenden uno o más conjugados anticuerpofármaco. En algunas realizaciones, la composición comprende dos o más conjugados anticuerpo-fármaco diferentes. En otras realizaciones, se proporciona una composición que comprende uno o más conjugados anticuerpo-fármaco y uno o más anticuerpos anti-PSMA no conjugados.

En algunas realizaciones, la composición comprende, además, un vehículo, excipiente o estabilizador farmacéuticamente aceptable. En otras realizaciones, la composición comprende, además, un agente antitumoral, un agente inmunoestimulador, un inmunomodulador, un corticosteroide o una combinación de los mismos. En una realización, el agente antitumoral es un agente citotóxico, un agente que actúa sobre la neovasculatura del tumor o una combinación de los mismos. En otra realización el agente antitumoral es docetaxel. Todavía en otra realización, el inmunomodulador es una citoquina, quimioquina, adyuvante o una combinación de los mismos. Todavía en otra realización, el agente inmunoestimulante es interleuquina-2, α-interferón, γ-interferón, factor α de necrosis tumoral, oligonucleótidos inmunoestimuladores o una combinación de los mismos. En una realización adicional, el corticosteroide es prednisona o hidrocortisona. En todavía una realización adicional, la composición comprende prednisona y docetaxel.

60 Los conjugados anticuerpo-fármaco y composiciones de la invención se pueden utilizar en una diversidad de

métodos. En una realización, el conjugado anticuerpo-fármaco es para uso en un método para inhibir el crecimiento de una célula que expresa PSMA, que comprende poner en contacto la célula que expresa PSMA con una cantidad de un conjugado anticuerpo-fármaco eficaz para inhibir el crecimiento de la célula que expresa PSMA. En otra realización, el conjugado anticuerpo-fármaco es para uso en un método para efectuar la paralización del ciclo celular en una célula que expresa PSMA, que comprende poner en contacto la célula que expresa PSMA con una cantidad de un conjugado anticuerpo-fármaco eficaz para conducir a una paralización del ciclo celular en la célula que expresa PSMA. Todavía en otra realización, el conjugado anticuerpo-fármaco es para uso en un método para tratar una enfermedad mediada por PSMA, que comprende administrar a un sujeto que tiene una enfermedad mediada por PSMA una cantidad de un conjugado anticuerpo-fármaco eficaz para tratar la enfermedad mediada por PSMA. En una realización adicional, el conjugado anticuerpo-fármaco es para uso en un método para inhibir el crecimiento de un tumor, que comprende poner en contacto células que expresan PSMA de la neovasculatura del tumor con una cantidad de un conjugado anticuerpo-fármaco eficaz para inhibir el crecimiento del tumor.

- En una realización, la enfermedad mediada por PSMA es cáncer. En otra realización, el cáncer es un cáncer de próstata. Todavía en otra realización, el cáncer es un cáncer no prostático. En algunas realizaciones, el cáncer no prostático es cáncer de vejiga, cáncer de páncreas, cáncer de pulmón, cáncer de riñón, sarcoma, cáncer de mama, cáncer de cerebro, carcinoma neuroendocrino, cáncer de colon, cáncer testicular o melanoma.
- En algunas realizaciones, el método comprende, además, co-administrar otro agente terapéutico para tratar la 20 enfermedad mediada por PSMA. En otras realizaciones, el método comprende, además, poner en contacto células que expresan PSMA con otro agente terapéutico. En algunas realizaciones, el otro agente terapéutico se ha de administrar antes, durante o después de la administración del conjugado anticuerpo-fármaco. En una realización, el otro agente terapéutico es un agente antitumoral, un agente inmunoestimulador, un inmunomodulador, un 25 corticosteroide o una combinación de los mismos. En otra realización, el agente antitumoral es un agente citotóxico, un agente que actúa sobre la neovasculatura del tumor o una combinación de los mismos. Todavía en otra realización el agente antitumoral es docetaxel. Todavía en otra realización, el inmunomodulador es una citoquina, quimioquina, adyuvante o una combinación de los mismos. Todavía en otra realización, el agente inmunoestimulante es interleuquina-2, α-interferón, γ-interferón, factor α de necrosis tumoral, oligonucleótidos 30 inmunoestimuladores o una combinación de los mismos. En una realización adicional, el corticosteroide es prednisona o hidrocortisona. En una realización, el agente terapéutico es una vacuna. En otra realización, la vacuna inmuniza al sujeto frente a PSMA. En otra realización, el método comprende, además, administrar todavía otro agente terapéutico. En una realización, el todavía otro agente terapéutico es prednisona. Por lo tanto, en una realización se administran tanto docetaxel como predinisona.

La célula que expresa PSMA es, en algunas realizaciones, una célula de tumor prostático o una célula de la neovasculatura de un tumor no protático. En algunas realizaciones, la célula que expresa PSMA es una célula andrógeno-dependiente o una célula andrógeno-independiente.

40 Cada una de las limitaciones de la invención puede comprender diversas realizaciones de la invención. Por lo tanto, se anticipa que cada una de las limitaciones de la invención que impliquen a cualquier elemento o combinaciones de elementos puede estar incluida en cada uno de los aspectos de la invención.

Breve Descripción de las Figuras

10

35

45

50

La **Fig. 1** es una gráfica que muestra el porcentaje de internalización y la unión total de PSMA Acm marcado con ¹¹¹In en células C4-2. Células C4-2 se incubaron con Acm marcado con ¹¹¹In a 37°C, 5% de CO₂. En los instantes designados, las células se lavaron para separar el Acm no unido, y Acm unido a la superficie se separó por arrastre utilizando tampón de bajo pH. La radiactividad (recuentos por minuto (RPM)) del material eluido de bajo pH y el sedimento de las células se recontó por separado utilizando un contador gamma. El porcentaje de internalización (**Fig. 1A**) se calculó como el RPM de sedimento de células/(RPM de sedimento de células + RPM de material eluido de bajo pH) x 100. La unión total (**Fig. 1B**) representa el RPM del sedimento de células más el RPM del material eluido de bajo pH.

La **Fig. 2** es una gráfica que muestra la unión de PSMA Acm y ADC a células 3T3™-PSMA. Células 3T3™-PSMA se incubaron con concentraciones crecientes del PSMA Acm (cuadrados en negro), PSMA ADC (cuadrados en blanco) o ADC control de isotipo (triángulos abiertos). Las células se incubaron en hielo durante 1 h y se lavaron para separar el Acm o ADC no unido. Después, las células se incubaron con IgG-FITC anti-humana de cabra, se lavaron de nuevo y se examinaron mediante citometría de flujo. Las intensidades de fluorescencia media (MFIs) se representan como una función de la concentración de Acm o ADC.

La **Fig. 3** es una gráfica que muestra la citotoxicidad *in vitro* del PSMA ADC y ADC control sobre líneas de células de cáncer de próstata PSMA-positivas y PSMA-negativas. Células C4-2 PSMA-positivas (**Fig. 3A**) y células PC-3™ PSMA-negativas (**Fig. 3B**) en microplacas de 96 pocillos se expusieron a ADCs a diversas concentraciones. Al cabo de 96 horas, se sometió a ensayo la supervivencia de células en cultivos tratados y no tratados utilizando azul de Alamar.

La **Fig. 4** es una gráfica que muestra la supervivencia según Kaplan-Meier y los niveles de PSA en suero en un estudio de xenoinjerto. A ratones inmunológicamente deficientes se les implantaron por vía intramuscular células C4-2, asignadas aleatoriamente a grupos de tratamiento (6 ratones por grupo) de acuerdo con el PSA del suero el día 17 y luego se trataron q4d x 3 con PSMA ADC o vehículo. La **Fig. 4A** muestra la supervivencia de animales tratados con 0 (control vehículo, línea de trazos discontinuos), 2 mg/kg (línea continua fina) y 10 mg/kg de PSMA ADC. La **Fig. 4B** proporciona los valores de PSA medios a lo largo de 30 días en ratones tratados con 0 (columnas en negro), 2 mg/kg (columnas a rayas) y 10 mg/kg (columnas en blanco) de PSMA ADC. Los datos para el día 30 para el grupo control incluyen las evaluaciones el día 27 para dos ratones que no sobrevivieron los 30 días.

La **Fig. 5** muestra las curvas de supervivencia según Kaplan-Meier de animales tratados en otro estudio de xenoinjerto. A ratones inmunológicamente deficientes se les implantaron por vía intramuscular células C4-2, asignadas aleatoriamente a grupos de tratamiento (5 ratones por grupo) de acuerdo con el PSA del suero el día 14 y luego fueron tratados q4d x 6 con PSMA ADC y controles. Los ratones fueron tratados con 0 (control vehículo, círculos en negro), 6 mg/kg de PSMA ACM no modificado (triángulos en negro), 6 mg/kg de ADC control (triángulos en blanco), 3 mg/kg de PSMA ADC (cuadrados en blanco) y 6 mg/kg de PSMA ADC (cuadrados en negro).

La **Fig. 6** muestra las estructuras químicas de tres enlazadores de fármacos diferentes. La **Fig. 6A** proporciona la estructura de vcMMAE (maleimidocaproil-valina-citrulina-p-aminobenzoiloxicarbonil-monometilauristatina E). La **Fig. 6B** proporciona la estructura de vcMMAF (maleimidocaproil-valina-citrulina-p-aminobenzoiloxicarbonil-monometilauristatina F). La **Fig. 6C** proporciona la estructura de mcMMAF (maleimidocaproil-monometilauristatina F).

La Fig. 7 demuestra la citotoxicidad *in vitro* de PSMA ADCs (vcMMAE (Fig. 7A), vcMMAF (Fig. 7B), mcMMAF (Fig. 7C)) sobre líneas de células de cáncer de próstata PSMA-positivas (C4-2) y PSMA-negativas (PC-3™). Las células en microplacas de 96 pocillos se expusieron a ADCs a diversas concentraciones. Al cabo de 4 días, la supervivencia de células en cultivos tratados y no tratados se sometió a ensayo utilizando azul de Alamar.

La **Fig. 8** ilustra los efectos de PSMA ADC sobre el ciclo celular. En cada uno de los paneles, el pico de la izquierda corresponde a la fase G₁ y el pico de la derecha a la fase G₂/M. El porcentaje de células en G₂/M aumentó acusadamente tras el tratamiento con el PSMA ADC, consistente con una paralización en la división celular que se produce después de la síntesis de ADN. El PSMA ADC no afectaba al ciclo de células 3T3™ parentales.

La Fig. 9 muestra los resultados de una comparación de PSMA ADCs vcMMAE frente a vcMMAF.

Descripción Detallada de la Invención

La presente invención se refiere, en parte, al sorprendente descubrimiento de que ADCs que comprenden un anticuerpo de unión a PSMA o fragmento de unión a antígeno del mismo, conjugados a MMAE (a la que se alude también en esta memoria como monometilauristatina E y monometilauristatina norefedrina) o MMAF (a la que se alude también en esta memoria como monometilauristatina F y monometilauristatina fenilalanina) son particularmente útiles para exterminar células que expresan PSMA. Los ADCs tienen una selectividad por células PC-3™ a células C4-2 o LNCaP™ de al menos 250, y 3 ó 4 moléculas de monometilauristatin norefedrina o monometilauristatin fenilalanina están conjugadas al anticuerpo o fragmento de unión a antígeno del mismo. En algunas realizaciones, los ADCs exhiben determinados niveles de exterminio de células (de células que expresan PSMA), p. ej. valores Cl₅o que son o están próximos a concentraciones picomolares. En otras realizaciones, los ADCs resultan en una tasa de curación de al menos 20%, 30%, 40% o 50% en ratones tratados con el ADC, con un régimen de q4d x 6 a una dosis de 6 mg/kg. Por lo tanto, se proporcionan composiciones y métodos de utilizar estos ADCs. En algunas realizaciones, los ratones son los previstos en los **Ejemplos**. En una realización, los ratones son aquellos que son un modelo de cáncer de próstata humano andrógeno-independiente. En otra realización, los ratones son ratones inmunológicamente deficientes a los que se les han injertado intramuscularmente células C4-2 en la pata trasera izquierda.

60

5

10

15

20

25

40

45

50

Los anticuerpos o fragmentos de unión a antígenos de los mismos de los ADCs son cualquier anticuerpo o fragmento de unión a antígeno del mismo que se une a PSMA. En una realización, el anticuerpo o un fragmento de unión a antígeno del mismo se une específicamente a PSMA (p. ej., se une específicamente a un dominio extracelular de PSMA, específicamente se une a un epítopo conformacional de PSMA, etc.) y puede inhibir competitivamente la unión especifica de un segundo anticuerpo a su epítopo diana en PSMA, en donde el segundo anticuerpo se selecciona del grupo que consiste en PSMA 3.7, PSMA 3.8, PSMA 3.9, PSMA 3.11, PSMA 5.4, PSMA 7.1, PSMA 7.3, PSMA 10.3, PSMA 1.8.3, PSMA A3.1.3, PSMA A3.3.1, Abgenix 4.248.2, Abgenix 4.360,3, Abgenix 4.7.1, Abgenix 4.4.1, Abgenix 4.177.3, Abgenix 4.16.1, Abgenix 4.22.3, Abgenix 4.28.3, Abgenix 4.40.2, Abgenix 4.48.3, Abgenix 4.49.1, Abgenix 4.209.3, Abgenix 4.219.3, Abgenix 4.288.1, Abgenix 4.333.1, Abgenix 4.54.1, Abgenix 4.153.1, Abgenix 4.232.3, Abgenix 4.292.3, Abgenix 4.304.1, Abgenix 4.78.1 y Abgenix 4.152.1 y anticuerpos que comprenden (a) una cadena pesada codificada por una molécula de ácido nucleico que comprende una región o regiones codificadoras de una secuencia de nucleótidos seleccionada del grupo que consiste en secuencias de nucleótidos recogidas como SEQ ID NOs: 2-7, y (b) una cadena ligera codificada por una molécula de ácido nucleico que comprende una región o regiones codificadoras de una secuencia de nucleótidos seleccionada del grupo que consiste en secuencias de nucleotídos recogidas como SEQ ID NOs: 8-13. Por lo tanto, el segundo anticuerpo incluye cualquiera de los anticuerpos producidos por hibridomas o codificados por plásmidos mostrados a continuación en la Tabla 1. Estos hibridomas y plásmidos fueron depositados de acuerdo con y satisfaciendo los requisitos del Tratado de Budapest sobre el Reconocimiento Internacional del Depósito de Microorganismos a los Fines del Procedimiento en materia de Patentes con la American Type Culture Collection ("ATCC") como Autoridad de Depósito Internacional y a los que se les dio las Designaciones de Depósito de Patente mostradas anteriormente y en la Tabla 1.

5

10

15

Tabla 1

Anticuerpo	Hibridoma/Plásmido	Designación del Depósito de Patente	Fecha de Depósito
PSMA 3.7	PSMA 3.7	PTA-3257	5 de abril de 2001
PSMA 3.9	PSMA 3.9	PTA-3258	5 de abril de 2001
PSMA 3.11	PSMA 3.11	PTA-3269	10 de abril de 2001
PSMA 5.4	PSMA 5.4	PTA-3268	10 de abril de 2001
PSMA 7.1	PSMA 7.1	PTA-3292	18 de abril de 2001
PSMA 7.3	PSMA 7.3	PTA-3293	18 de abril de 2001
PSMA 10.3	PSMA 10.3	PTA-3347	1 de mayo de 2001
1 01/1/10:0	PSMA 10.3 HC en	PTA-4413	29 de mayo de 2002
	pcADN (SEQ ID NO: 7)		20 do mayo do 2002
	PSMA 10.3 kappa en	PTA-4414	29 de mayo de 2002
	pcADN (SEQ ID NO: 13)		
PSMA 1.8.3	PSMA 1.8.3	PTA-3906	5 diciembre de 2001
PSMA A3.1.3	PSMA A3.1.3	PTA-3904	5 diciembre de 2001
PSMA A3.3.1	PSMA A3.3.1	PTA-3905	5 diciembre de 2001
Abgenix 4.248.2	Abgenix 4.248.2	PTA-4427	4 de junio de 2002
Abgenix 4.360.3	Abgenix 4.360.3	PTA-4428	4 de junio de 2002
Abgenix 4.7.1	Abgenix 4.7.1	PTA-4429	4 de junio de 2002
Abgenix 4.4.1	Abgenix 4.4.1	PTA-4556	18 de julio de 2002
Abgenix 4.177.3	Abgenix 4.177.3	PTA-4557	18 de julio de 2002
Abgenix 4.16.1	Abgenix 4.16.1	PTA-4357	16 de mayo de 2002
Abgenix 4.22.3	Abgenix 4.22.3	PTA-4358	16 de mayo de 2002
Abgenix 4.28.3	Abgenix 4.28.3	PTA-4359	16 de mayo de 2002
Abgenix 4.40.2	Abgenix 4.40.2	PTA-4360	16 de mayo de 2002
Abgenix 4.48.3	Abgenix 4.48.3	PTA-4361	16 de mayo de 2002
Abgenix 4.49.1	Abgenix 4.49.1	PTA-4362	16 de mayo de 2002
Abgenix 4.209.3	Abgenix 4.209.3	PTA-4365	16 de mayo de 2002
Abgenix 4.219.3	Abgenix 4.219.3	PTA-4366	16 de mayo de 2002
Abgenix 4.288.1	Abgenix 4.288.1	PTA-4367	16 de mayo de 2002
Abgenix 4.333.1	Abgenix 4.333.1	PTA-4368	16 de mayo de 2002
Abgenix 4.54.1	Abgenix 4.54.1	PTA-4363	16 de mayo de 2002
Abgenix 4.153.1	Abgenix 4.153.1	PTA-4388	23 de mayo de 2002
Abgenix 4.232.3	Abgenix 4.232.3	PTA-4389	23 de mayo de 2002
Abgenix 4.292.3	Abgenix 4.292.3	PTA-4390	23 de mayo de 2002

Abgenix 4.304.1	Abgenix 4.304.1	PTA-4391	23 de mayo de 2002
AB-PG1-XG1-006	Cadena pesada de AB- PG1-XG1-006 (SEQ ID NO: 2)	PTA-4403	29 de mayo de 2002
	Cadena ligera de AB-PG1- XG1-006 (SEQ ID NO: 8)	PTA-4404	
AB-PG1-XG1-026	Cadena pesada de AB- PG1-XG1-026 (SEQ ID NO: 3)	PTA-4405	29 de mayo de 2002
	Cadena ligera de AB-PG1- XG1-026 (SEQ ID NO: 9)	PTA-4406	
AB-PG1-XG1-051	Cadena pesada de AB- PG1-XG1-051 (SEQ ID NO: 4)	PTA-4407	29 de mayo de 2002
	Cadena ligera de AB-PG1- XG1-051 (SEQ ID NO: 10)	PTA-4408	
AB-PG1-XG1-069	Cadena pesada de AB- PG1-XG1-069 (SEQ ID NO: 5)	PTA-4409	29 de mayo de 2002
	Cadena ligera de AB-PG1- XG1-069 (SEQ ID NO: 11)	PTA-4410	
AB-PG1-XG1-077	Cadena pesada de AB- PG1-XG1-077 (SEQ ID NO: 6)	PTA-4411	29 de mayo de 2002
	Cadena ligera de AB-PG1- XG1-077 (SEQ ID NO: 12)	PTA-4412	

Para determinar la inhibición competitiva, se puede emplear una diversidad de ensayos conocidos por el experto ordinario en la técnica. Por ejemplo, se pueden utilizar ensayos de competición cruzada para determinar si un anticuerpo o fragmento de unión a antígeno del mismo inhibe de forma competitiva la unión a PSMA por parte de otro anticuerpo o fragmento de unión a antígeno del mismo. Estos ensayos incluyen métodos basados en células que emplean la citometría de flujo o el análisis de unión en fase sólida. También se pueden utilizar otros ensayos que evalúan la capacidad de anticuerpos o fragmentos de unión a antígeno de los mismos para competir de forma cruzada por moléculas de PSMA que no están expresadas sobre la superficie de células, en fase sólida o en fase de disolución.

10

15

En algunas realizaciones, los anticuerpos o fragmentos de unión a antígenos de los mismos inhiben competitivamente la unión específica de un segundo anticuerpo a su epítopo diana en PSMA en al menos aproximadamente un 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% o 99%. La inhibición se puede evaluar a diversas relaciones molares o relaciones másicas; por ejemplo, se pueden realizar experimentos de unión competitiva con un exceso molar de 2 veces, 3 veces, 4 veces, 5 veces, 7 veces, 10 veces o más de un primer anticuerpo o fragmento de unión a antígeno del mismo frente a un segundo anticuerpo o fragmento de unión a antígeno del mismo.

25

30

20

En otra realización, el anticuerpo o fragmento de unión a antígeno del mismo se une específicamente a un epítopo en PSMA definido por un anticuerpo seleccionado del grupo que consiste en PSMA 3.7, PSMA 3.8, PSMA 3.9, PSMA 3.11, PSMA 5.4, PSMA 7.1, PSMA 7.3, PSMA 10.3, PSMA 1.8.3, PSMA A3.1.3, PSMA A3.3.1, 4.248.2, 4.360.3, 4.7.1, 4.4.1, 4.1773, 4.16.1, 4.22.3, 4.28.3, 4.40.2, 4.48.3, 4.49.1, 4.209.3, 4.219.3, 4.288.1, 4.333.1, 4.54.1, 4.153.1, 4.232.3, 4.292.3, 4.304.1, 4.78.1 y 4.152.1. PSMA 3.7, PSMA 3.8, PSMA 3.9, PSMA 3.11, PSMA 5.4, PSMA 7.1, PSMA 7.3, PSMA 10.3, PSMA 1.8.3, PSMA A3.1.3, PSMA A3.3.1, Abgenix 4.248.2, Abgenix 4.360,3, Abgenix 4.7.1, Abgenix 4.4.1, Abgenix 4.177.3, Abgenix 4.16.1, Abgenix 4.22.3, Abgenix 4.28.3, Abgenix 4.40.2, Abgenix 4.48.3, Abgenix 4.49.1, Abgenix 4.209.3, Abgenix 4.219.3, Abgenix 4.288.1, Abgenix 4.333.1, Abgenix 4.54.1, Abgenix 4.153.1, Abgenix 4.232.3, Abgenix 4.292.3, Abgenix 4.304.1, Abgenix 4.78.1 y Abgenix 4.152.1, y anticuerpos que comprenden (a) una cadena pesada codificada por una molécula de ácido nucleico que comprende una región o regiones codificadoras de una secuencia de nucleótidos seleccionada del grupo que consiste en secuencias de nucleótidos recogidas como SEQ ID NOs: 2-7, y (b) una cadena ligera codificada por una molécula de ácido nucleico que comprende una región o regiones codificadoras de una secuencia de nucleótidos seleccionada del grupo que consiste en secuencias de nucleótidos recogidas como SEQ ID NOs: 8-13. Los anticuerpos o fragmentos de unión a antígeno de los ADCs incluyen, por lo tanto, los que se unen

específicamente a un epítopo en PSMA definidos por los anticuerpos producidos por los hibridomas o codificados por los plásmidos proporcionados antes en la **Tabla 1**.

Para determinar el epítopo se pueden utilizar métodos de representación en mapa de epítopos convencionales conocidos en la técnica. Por ejemplo, se pueden utilizar fragmentos (péptidos) de antígeno PSMA (p. ej. péptidos sintéticos) que unen el anticuerpo para determinar si un anticuerpo candidato o fragmento de unión a antígeno del mismo se une al mismo epítopo. Para epítopos lineales se sintetizan péptidos solapantes de una longitud definida (p. ej. 8 o más aminoácidos). Los péptidos se pueden compensar en 1 aminoácido, de modo que se prepara una serie de péptidos que cubren cada 8 fragmentos de aminoácido de la secuencia de proteínas de PSMA. Se pueden preparar un menor número de péptidos utilizando mayores compensaciones, p. ej. de 2 ó 3 aminoácidos. Además, se pueden sintetizar péptidos mayores (p. ej. 9-, 10- u 11-meros). La unión de péptidos a anticuerpos o fragmentos de unión a antígeno se puede determinar utilizando metodologías convencionales que incluyen ensayos de resonancia de plasmón superficial (BIACORE) y ELISA. Para el examen de epítopos conformacionales, se pueden utilizar fragmentos de PSMA mayores. Se han descrito y se pueden utilizar otros métodos que utilizan la espectrometría de masas para definir epítopos conformacionales (véase, p. ei., Baerga-Ortiz et al, Protein Science 11:1300-1308, 2002 y referencias citadas en el mismo). Todavía otros métodos para la determinación de epítopos se proporcionan en trabajos de referencia de laboratorio convencionales tales como Unidad 6.8 ("Phage Display Selection and Analysis of B-cell Epitopes") y Unidad 9.8 ("Identification of Antigenic Determinants Using Synthetic Peptide Combinatorial Libraries") de Current Protocols in Immunology, Coligan et al., comps., John Wiley & Sons. Los epítopos se pueden confirmar introduciendo mutaciones o deleciones puntuales en un epítopo conocido, y luego sometiendo a ensayo la unión con uno o más anticuerpos o fragmentos de unión a antígeno para determinar qué mutaciones reducen la unión de los anticuerpos o fragmentos de unión a antígeno.

10

15

20

25

30

35

40

45

50

55

60

En realizaciones particulares, los anticuerpos de los ADCs o de los que se derivan los fragmentos de unión a antígeno de los ADCs son los producidos por hibridomas a los que se alude en esta memoria como PSMA 3.7, PSMA 3.8, PSMA 3.9, PSMA 3.11, PSMA 5.4, PSMA 7.1, PSMA 7.3, PSMA 10.3, PSMA 1.8.3, PSMA A3.1.3, PSMA A3.3.1, Abgenix 4.248.2, Abgenix 4.360,3, Abgenix 4.7.1, Abgenix 4.4.1, Abgenix 4.177.3, Abgenix 4.16.1, Abgenix 4.22.3, Abgenix 4.28.3, Abgenix 4.40.2, Abgenix 4.48.3, Abgenix 4.49.1, Abgenix 4.209.3, Abgenix 4.219.3, Abgenix 4.288.1, Abgenix 4.333.1, Abgenix 4.54.1, Abgenix 4.153.1, Abgenix 4.232.3, Abgenix 4.292.3, Abgenix 4.304.1, Abgenix 4.78.1 y Abgenix 4.152.1, respectivamente. En otras realizaciones, los anticuerpos son los codificados por los plásmidos mostrados en la **Tabla 1**. Todavía en otras realizaciones particulares, los anticuerpos son los que comprenden una cadena pesada codificada por una molécula de ácido nucleico que comprende la región o regiones codificadoras de una secuencia de nucleótidos seleccionada del grupo que consiste en secuencias de nucleótidos recogidas como SEQ ID NOs: 2-7, y una cadena ligera codificada por una molécula de ácido nucleico que comprende la región o regiones codificadoras de una secuencia de nucleótidos seleccionada del grupo que consiste en secuencias de nucleótidos recogidas como SEQ ID NOs: 8-13.

Tal como se utiliza en esta memoria, los nombres de los hibridomas o plásmidos depositados se pueden utilizar indistintamente con los nombres de los anticuerpos. Resultará claro para un experto ordinario en la técnica cuando el nombre pretende aludir al anticuerpo o cuando alude a los plásmidos o hibridomas que codifican o producen los anticuerpos, respectivamente. Adicionalmente, los nombres de anticuerpos pueden ser una forma abreviada del nombre mostrado en la **Tabla 1**. Por ejemplo, al anticuerpo AB-PG1-XG1-006 se le puede aludir como AB-PG1-XG1-006, PG1-XG1-006, XG1-006, 006, etc. En otro ejemplo, al nombre de anticuerpo PSMA 4.232.3 se le puede aludir como PSMA 4.232.1, 4.232.3, 4.232.1, 4.232, etc. Se pretende que todas las variaciones en el nombre del anticuerpo aludan al mismo anticuerpo y no a uno diferente.

Los anticuerpos de los ADCs o de los que se derivan los fragmentos de unión a antígeno de los ADCs incluyen los codificados por conjuntos particulares de secuencias de cadenas pesadas y ligeras. En una realización, el anticuerpo (AB-PG1-XG1-006) es codificado por una molécula de ácido nucleico que comprende una región o regiones codificadoras de las secuencias de ácidos nucleicos recogidas como SEQ ID NOs: 2 y 8. En otra realización, el anticuerpo (AB-PG1-XG1-026) es codificado por una molécula de ácido nucleico que comprende una región o regiones codificadoras de las secuencias de ácidos nucleicos recogidas como SEQ ID NOs: 3 y 9. Todavía en una realización, el anticuerpo (AB-PG1-XG1-051) es codificado por una molécula de ácido nucleico que comprende una región o regiones codificadoras de las secuencias de ácidos nucleicos recogidas como SEQ ID NOs: 4 y 10. Todavía en otra realización, el anticuerpo (AB-PG1-XG1-069) es codificado por una molécula de ácido nucleico que comprende una región o regiones codificadoras de las secuencias de ácidos nucleicos recogidas como SEQ ID NOs: 5 y 11. En otra realización, el anticuerpo (AB-PG1-XG1-077) es codificado por una molécula de ácido nucleico que comprende una región o regiones codificadoras de las secuencias de ácidos nucleicos recogidas como SEQ ID NOs: 6 y 12. Todavía en otra realización, el anticuerpo (PSMA 10.3) es codificado por una molécula de ácido nucleico que comprende una región o regiones codificadoras de las

secuencias de ácidos nucleicos recogidas como SEQ ID NOs: 7 y 13. En otras realizaciones, los anticuerpos de los ADCs o de los que se derivan los fragmentos de unión a antígeno de los ADCs incluyen una región variable de cadena pesada codificada por una molécula de ácido nucleico que comprende una región o regiones codificadoras de una secuencia de nucleótidos seleccionada del grupo que consiste en secuencias de nucleótidos recogidas como SEQ ID NOs: 14, 18, 22, 26 y 30, y una región variable de cadena ligera codificada por una molécula de ácido nucleico que comprende una región o regiones codificadoras de una secuencia de nucleótidos seleccionada del grupo que consiste en secuencias de nucleótidos recogidas como SEQ ID NOs: 16, 20, 24, 28 y 32. En una realización, el anticuerpo (AB-PG1-XG1-006) incluye una secuencia variable de inmunoglobulina codificada por moléculas de ácidos nucleicos que comprenden una región o regiones codificadoras de las secuencias de ácidos nucleicos recogidas como SEQ ID NOs: 14 y 16. De igual manera, el anticuerpo puede ser uno que incluya una secuencia variable de inmunoglobulina que comprende las secuencias de aminoácidos recogidas como SEQ ID NOs: 15 y 17. En otra realización, el anticuerpo (AB-PG1-XG1-026) incluye una secuencia variable de inmunoglobulina codificada por moléculas de ácidos nucleicos que comprenden una región o regiones codificadoras de la secuencias de nucleótidos recogidas como SEQ ID NOs: 18 y 20, o incluye una secuencia variable de inmunoglobulina que comprende las secuencias de aminoácidos recogidas como SEQ ID NOs: 19 y 21. Todavía en otra realización, el anticuerpo (AB-PG1-XG1-051) incluye una secuencia variable de inmunoglobulina codificada por las moléculas de ácidos nucleicos que comprenden una región o regiones codificadoras de secuencias de nucleótidos recogidas como SEQ ID NOs: 22 y 24, o incluye una secuencia variable de inmunoglobulina que comprende las secuencias de aminoácidos recogidas como SEQ ID NOs: 23 y 25. Todavía en otra realización, el anticuerpo (AB-PG1-XG1-069) incluye una secuencia variable de inmunoglobulina codificada por las moléculas de ácidos nucleicos que comprenden una región o regiones codificadoras de secuencias de nucleótidos recogidas como SEQ ID NOs: 26 y 28 o incluye una secuencia variable de inmunoglobulina que comprende las secuencias de aminoácidos recogidas como SEQ ID NOs: 27 y 29. En otra realización, el anticuerpo (AB-PG1-XG1-077) incluye una secuencia variable de inmunoglobulina codificada por las moléculas de ácidos nucleicos que comprenden una región o regiones codificadoras de secuencias de nucleótidos recogidas como SEQ ID NOs: 30 y 32 o incluye una secuencia variable de inmunoglobulina que comprende las secuencias de aminoácidos recogidas como SEQ ID NOs: 31 y 33. En otras realizaciones, el anticuerpo incluye una región variable de cadena pesada que comprende una secuencia de aminoácidos seleccionada del grupo que consiste en secuencias de aminoácidos recogidas como SEQ ID NOs: 15, 19, 23, 27 y 31, y una región variable de cadena ligera que comprende una secuencia de aminoácidos seleccionada del grupo que consiste en secuencias de aminoácidos recogidas como SEQ ID NOs: 17, 21, 25, 29 y 33.

10

15

20

25

30

35

40

45

50

55

60

Tal como se utiliza en esta memoria, una "región codificadora" se refiere a una región de una secuencia de nucleótidos que codifica una secuencia de polipéptidos. Su uso en esta memoria es consistente con el significado reconocido, conocido en la técnica.

En determinadas realizaciones, los anticuerpos de los ADCs o de los que se derivan los fragmentos de unión a antígeno de los ADCs, son los que son codificados por moléculas de ácidos nucleicos que son altamente homólogas a los ácidos nucleicos que anteceden. La molécula de ácido nucleico homóloga, en algunas realizaciones, puede comprender una secuencia de nucleótidos que es al menos aproximadamente 90% idéntica a la secuencia de nucleótidos proporcionada en esta memoria. En otras realizaciones, la secuencia de nucleótidos es al menos aproximadamente 95% idéntica, al menos aproximadamente 97% idéntica, al menos aproximadamente 98% idéntica o al menos aproximadamente 99% idéntica a una secuencia de nucleótidos proporcionada en esta memoria. La homología se puede calcular utilizando diversas herramientas de software, públicamente disponibles y bien conocidas para un experto ordinario en la técnica. Herramientas ilustrativas incluyen el sistema BLAST disponible de la página web del National Center for Biotechnology Information (NCBI) en el National Institutes of Health.

Un método para identificar secuencias de nucleótidos altamente homólogas es a través de la hibridación del ácido nucleico. Así, la invención incluye también anticuerpos que tienen las propiedades de unión a PSMA y otras propiedades funcionales descritas en esta memoria, que son codificados por moléculas de ácidos nucleicos que se hibridan bajo condiciones de alta rigurosidad a las moléculas de ácidos nucleicos que anteceden. La identificación de secuencias relacionadas también se puede conseguir utilizando la reacción en cadena de la polimerasa (PCR – siglas en inglés) y otras técnicas de amplificación adecuadas para clonar secuencias de ácidos nucleicos relacionadas. Cebadores de PCR se pueden seleccionar para amplificar partes de una secuencia de ácidos nucleicos de interés tal como una CDR (siglas inglesas de región determinante de la complementariedad).

La expresión "condiciones de alta rigurosidad", tal como se utiliza en esta memoria, se refiere a parámetros con los que es familiar la técnica. Parámetros de hibridación de ácidos nucleicos se pueden encontrar en referencias que recopilan métodos de este tipo, p. ej. *Molecular Cloning: A Laboratory Manual*, J. Sambrook, et al., comps.,

Segunda Edición, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, Nueva York, 1989, o *Current Protocols in Molecular Biology*, F. M. Ausubel, et al., comps., John Wiley & Sons, Inc., Nueva York. Un ejemplo de condiciones de alta rigurosidad es la hibridación a 65°C en tampón de hibridación (3,5X SSC, Ficoll al 0,02%, polivinilpirrolidona al 0,02%, albúmina de suero bovino al 0,02%, NaH₂PO₄ 2,5 mM (pH 7), SDS al 0,5%, EDTA 2 mM). SSC es cloruro de sodio 0,15 M/citrato de sodio 0,015 M, pH 7; SDS es dodecilsulfato de sodio; y EDTA es ácido etilendiaminotetraacético. Después de la hibridación, una membrana a la cual se transfiere el ácido nucleico, se lava, por ejemplo, en 2X SSC a la temperatura ambiente y luego a 0,1-0,5X SSC/0,1X SDS a temperaturas de hasta 68°C.

Tal como se utiliza en esta memoria, el término "anticuerpo" se refiere a una glicoproteína que comprende al menos dos cadenas pesadas (H) y dos cadenas ligeras (L) inter-conectadas por enlaces disulfuro. Cada una de las cadenas pesadas está constituida por una región variable de la cadena pesada (abreviada en esta memoria como HCVR o V_H) y una región constante de la cadena pesada. La región constante de la cadena pesada está constituida por tres dominios, C_H1, C_H2 y C_H3. Cada una de las cadenas ligeras está constituida por una región variable de la cadena ligera (abreviada en esta memoria como LCVR o V_L) y una región constante de la cadena ligera. La región constante de la cadena ligera está constituida por un dominio, CL. Las regiones V_H y V_L se pueden subdividir adicionalmente en regiones de hipervariabilidad, denominadas regiones determinantes de la complementariedad (CDR), intercaladas con regiones que están más conservadas, denominadas regiones marco (FR – siglas en inglés). Cada una de V_H y V_L está constituida por tres CDRs y cuatro FRs, dispuestos desde el extremo amino al extremo carboxi en el siguiente orden: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. Las regiones variables de las cadenas pesadas y ligeras contienen un dominio de unión que interactúa con un antígeno. Las regiones constantes de los anticuerpos pueden mediar en la unión de la inmunoglobulina a tejidos o factores hospedadores, incluidas diversas células del sistema inmune (p. ej., células efectoras) y el primer componente (C1q) del sistema de complemento clásico.

25

30

35

40

45

10

15

20

La expresión "fragmento de unión a antígeno" de un anticuerpo, tal como se utiliza en esta memoria, se refiere a una o más partes de un anticuerpo que conservan la capacidad de unirse específicamente a un antígeno (es decir, PSMA). Se ha demostrado que la función de unión a antígeno de un anticuerpo puede realizarse por fragmentos de un anticuerpo de longitud completa. Ejemplos de fragmentos de unión abarcados dentro de la expresión "fragmento de unión a antígeno" de un anticuerpo incluyen (i) un fragmento Fab, un fragmento monovalente que consiste en los dominios V_L, V_H, V_H, V_C, y C_H1; (ii) un fragmento F(ab')₂, un fragmento bivalente que comprende dos fragmentos Fab enlazados por un puente disulfuro en la región de bisagra; (iii) un fragmento Fd que consiste en los dominios V_H y CH1; (iv) un fragmento Fv que consiste en los dominios V_L y V_H de un solo brazo de un anticuerpo, (v) un fragmento dAb (Ward et al., (1989) Nature 341:544-546) que consiste en un dominio V_H; y (vi) una región determinante de la complementariedad (CDR) aislada. Las CDRs y, en particular, las regiones CDR3 y, más particularmente, la CDR3 de cadena pesada contribuyen en la especificidad del anticuerpo. Debido a que estas regiones CDR y, en particular, la región CDR3 confieren especificidad al antígeno en el anticuerpo, estas regiones se pueden incorporar en otros anticuerpos o fragmentos de unión a antígeno para conferir la especificidad del antígeno idéntica sobre ese anticuerpo o péptido. Además de ello, a pesar de que los dos dominios del fragmento Fv, V y V_H, son codificados por genes separados, éstos se pueden unir, utilizando métodos recombinantes, por parte de un enlazador sintético que les permite producirles como una cadena de proteínas sencilla en la que las regiones V_L y V_H se aparean para formar moléculas monovalentes (conocidas como Fv de cadena sencilla (scFv); véase, p. ej., Bird et al. (1988) Science 242:423-426; y Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883). Anticuerpos de cadena sencilla de este tipo también pretenden quedar abarcados dentro de la expresión "fragmento de unión a antígeno" de un anticuerpo. Estos fragmentos de anticuerpo se obtienen utilizando procesos convencionales tales como procesos de fragmentación proteolítica tal como se describe en J. Goding, Monoclonal Antibodies: Principles and Practice, págs. 98-118 (N.Y. Academic Press 1983), así como por otras técnicas conocidas por los expertos en la técnica. Los fragmentos son rastreados en cuanto a su utilidad de la misma manera que lo son los anticuerpos intactos.

50

55

60

Los anticuerpos, o fragmentos de unión a antígeno de los mismos de los ADCs, están en algunas realizaciones, aislados. "Aislados", tal como se utiliza en esta memoria, pretende aludir a un anticuerpo (o fragmento de unión a antígeno del mismo) que está esencialmente exento de otros anticuerpos (o fragmentos de unión a antígeno) con diferentes especificidades antigénicas (p. ej., un anticuerpo aislado que se une específicamente a PSMA está esencialmente exento de anticuerpos que se unen específicamente a antígenos que no sean PSMA). Un anticuerpo aislado que se une específicamente a un epítopo, isoforma o variante de PSMA puede, sin embargo, tener reactividad cruzada con otros antígenos relacionados, p. ej., de otras especies (p. ej., homólogos de especies de PSMA). Además de ello, un anticuerpo aislado (o fragmento de unión a antígeno del mismo) puede estar esencialmente exento de otro material celular y/o productos químicos. Tal como se utiliza en esta memoria, "unión específica" se refiere a la unión del anticuerpo a un antígeno predeterminado, en este caso PSMA. Típicamente, el

anticuerpo se une con una afinidad que es al menos dos veces mayor que su afinidad por unirse a un antígeno no específico (p. ej., BSA, caseína), que es un antígeno distinto de PSMA, una isoforma o variante de PSMA o un antígeno estrechamente relacionado.

Los anticuerpos abarcan diversos isotipos de anticuerpos tales como IgG1, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, IgAsec, IgD, IgE. Tal como se utiliza en esta memoria, "isotipo" se refiere a la clase de anticuerpos (p. ej., IgM o IgG1) que es codificada por genes de la región constante de la cadena pesada. Los anticuerpos pueden ser de longitud completa o pueden incluir sólo un fragmento de unión a antígeno tal como el dominio constante y/o variable de anticuerpo de IgG1, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, IgAsec, IgD o IgE, o podrían consistir en un fragmento Fab, un fragmento F(ab')₂ y un fragmento Fv.

Los anticuerpos de los ADCs, o de los que se derivan los fragmentos de unión a antígeno de los ADCs son, en algunas realizaciones, monoclonales. Los anticuerpos se pueden producir por una diversidad de técnicas bien conocidas en la técnica. La producción de anticuerpos monoclonales puede efectuarse mediante técnicas que son bien conocidas en la técnica. La expresión "anticuerpo monoclonal", tal como se utiliza en esta memoria, se refiere a un preparado de moléculas de anticuerpo de una composición molecular sencilla. Un anticuerpo monoclonal exhibe una especificidad de unión sencilla y una afinidad por un epítopo particular. El procedimiento de la producción de anticuerpos monoclonales implica obtener células somáticas inmunes con el potencial de producir un anticuerpo, en particular linfocitos B, que han sido previamente inmunizados con el antígeno de interés, ya sea *in vivo* o *in vitro* y que sean adecuados para la fusión con una línea de mieloma de células B.

15

20

25

30

35

40

45

50

55

60

Linfocitos de mamíferos se inmunizan típicamente mediante inmunización *in vivo* del animal (p. ej., un ratón) con la proteína o polipéptido deseado. Inmunizaciones de este tipo se repiten según sea necesario a intervalos de hasta varias semanas para obtener un título suficiente de anticuerpos. Una vez inmunizados, los animales pueden utilizarse como una fuente de linfocitos productores de anticuerpos. Después del último refuerzo con antígenos, los animales son sacrificados y se les separan células del bazo. Linfocitos de ratón proporcionan un elevado porcentaje de fusiones estables con las líneas de mieloma de ratón descritas en esta memoria. Por ejemplo, del ratón BALB/c. Sin embargo, también se pueden utilizar como hospedadores para preparar células productoras de anticuerpos otras razas de ratones, conejos, hámsteres, ovejas y ranas. Véase; Goding (en Monoclonal Antibodies: Principles and Practice, 2ª ed., págs. 60-61, Orlando, Fla., Academic Press, 1986). En particular, se pueden utilizar razas de ratones que tengan genes de inmunoglobulina humana insertados en el genoma (y que no puedan producir inmunoglobulinas de ratón). Ejemplos incluyen las razas de ratón HuMAb producidas por Medarex/GenPharm International, y las cepas XenoMouse producidas por Abgenix. Ratones de este tipo producen moléculas de inmunoglobulina totalmente humanas en respuesta a la inmunización. En algunas realizaciones, por lo tanto, los ADCs comprenden un anticuerpo monoclonal totalmente humano o un fragmento de unión a antígeno del mismo que se une a PSMA.

Preferentemente, se fusionan aquellas células productoras de anticuerpos que se encuentren en la fase de división del plasmablasto. Células somáticas se pueden obtener a partir de los nódulos linfáticos, bazos y sangre periférica de animales estimulados con antígenos, y las células linfáticas de elección dependen en gran medida de su utilidad empírica en el sistema de fusión particular. Los linfocitos secretores de anticuerpos se fusionan luego con células de mieloma de células B (de ratón) o células transformadas que son capaces de replicarse indefinidamente en cultivos celulares, produciendo con ello una línea de células inmortal, secretora de inmunoglobulina. Se cultivan las células fusionadas resultantes, o hibridomas, y las colonias resultantes se rastrean en cuanto a la producción de los anticuerpos monoclonales deseados. Colonias que producen este tipo de anticuerpos se clonan y se hacen crecer *in vivo* o *in vitro* para producir grandes cantidades de anticuerpos. Una descripción de la base teórica y de la metodología práctica de fusión de este tipo de células se recoge en Kohler y Milstein, *Nature* 256:495 (1975).

Alternativamente, células somáticas humanas capaces de producir anticuerpos, específicamente linfocitos B, son adecuadas para la fusión con líneas de células de mieloma. Aún cuando pueden utilizarse linfocitos B procedentes de bazos, amígdalas o nódulos linfáticos biopsiados de un individuo, también se pueden utilizar los linfocitos B de la sangre periférica más fácilmente accesibles. Los linfocitos pueden derivarse de pacientes con carcinomas de próstata diagnosticados u otro cáncer que exprese PSMA. Además, células B humanas pueden ser directamente inmortalizadas por el virus Epstein-Barr (Cole et al., 1995, Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., págs. 77-96). A pesar de que se pueden utilizar procesos de hibridación de células somáticas, en principio se pueden emplear otras técnicas para producir anticuerpos monoclonales tales como la transformación viral u oncogénica de linfocitos B.

Líneas de células de mieloma adecuadas para uso en procesos de fusión productores de hibridoma pueden ser no productoras de anticuerpos, tener una elevada eficacia de fusión y deficiencias enzimáticas que las hacen

incapaces de desarrollarse en determinados medios selectivos que sustentan el desarrollo de los hibridomas deseados. Ejemplos de líneas de células de mieloma de este tipo que se pueden utilizar para la producción de líneas de células fusionadas incluyen P3-X63/Ag8, X63-Ag8.653, NS1/1. Ag 4.1, Sp2/0-Ag14, FO, NSO/U, MPC-11, MPC11-X45-GTG 1.7, S194/5XX0 Bul, todas derivadas de ratones; R210.RCY3, Y3-Ag 1.2.3, IR983F y 4B210 derivadas de ratas y U-266, GM1500-GRG2, LICR-LON-HMy2, UC729-6, todas ellas derivadas de seres humanos (Goding, en Monoclonal Antibodies: Principles and Practice, 2ª ed., págs. 65-66, Orlando, Fla., Academic Press, 1986; Campbell, en Monoclonal Antibody Technology, Laboratory Techniques in Biochemistry and Molecular Biology Vol. 13, Burden y Von Knippenberg, comps. págs. 75-83, Amsterdam, Elseview, 1984).

La fusión con células de mieloma de mamíferos u otros participantes en la fusión capaces de replicarse indefinidamente en cultivos celulares se efectúa por técnicas convencionales y bien conocidas, por ejemplo utilizando polietilenglicol ("PEG") u otros agentes de fusión (véase Milstein y Kohler, *Eur. J. Immunol.* 6:511 (1976).

15

20

25

30

35

40

45

50

55

60

En otras realizaciones, los anticuerpos de los ADCs o de los que se derivan los fragmentos de unión a antígeno de los ADCs, son anticuerpos recombinantes. La expresión "anticuerpo recombinante", tal como se utiliza en esta memoria, pretende incluir anticuerpos que se preparan, expresan, crean o aíslan por medios recombinantes tales como anticuerpos aislados de un animal (p. ej. un ratón) que es transgénico para otros genes de inmunoglobulina de las especies, anticuerpos expresados utilizando un vector de expresión recombinante transfectado en una célula hospedadora, anticuerpos aislados de un banco de anticuerpos recombinantes y combinatorios, o anticuerpos preparados, expresados, creados o aislados por cualesquiera otros medios que implican el corte y empalme de secuencias de genes de inmunoglobulina a otras secuencias de ADN.

Todavía en otras realizaciones, los anticuerpos son anticuerpos quiméricos o humanizados. Tal como se utiliza en esta memoria, la expresión "anticuerpo quimérico" se refiere a un anticuerpo que combina las regiones variables o hipervariables murinas con la región constante humana o las regiones de marco constantes y variables. Tal como se utiliza en esta memoria, la expresión "anticuerpo humanizado" se refiere a un anticuerpo que conserva sólo las CDRs de unión a antígenos procedentes del anticuerpo parental en asociación con regiones de marco humanas (véase Waldmann, 1991, *Science* 252:1657). Se espera que anticuerpos quiméricos o humanizados de este tipo que conservan la especificidad de unión del anticuerpo murino tengan una inmunogenicidad reducida cuando se administran *in vivo* para aplicaciones de acuerdo con la invención.

De acuerdo con una realización alternativa, los anticuerpos monoclonales de la presente invención se pueden modificar en forma de un anticuerpo biespecífico o un anticuerpo multiespecífico. La expresión "anticuerpo biespecífico" pretende incluir cualquier agente, p. ej. una proteína, péptido o complejo de proteínas o péptidos, que tenga dos especificidades de unión diferentes que se unan a o interactúen con (a) un antígeno de la superficie de la célula y (b) un receptor Fc en la superficie de una célula efectora. La expresión "anticuerpo multiespecífico" pretende incluir cualquier agente, p. ej. una proteína, péptido o complejo de proteínas o péptidos que tenga más de dos especificidades de unión diferentes que se unan a o interactúen con (a) un antígeno de la superficie de la célula y (b) un receptor Fc en la superficie de una célula efectora y (c) al menos otro componente. Por consiguiente, los anticuerpos incluyen, pero no se limitan a anticuerpos biespecíficos, triespecíficos, tetraespecíficos y otros anticuerpos multiespecíficos que están dirigidos a PSMA y a receptores Fc en células efectoras. La expresión "anticuerpos biespecíficos" incluye además diacuerpos. Los diacuerpos son anticuerpos bivalentes, biespecíficos, en los que los dominios V_H y V_L se expresan en una cadena polipeptídica sencilla, pero utilizando un enlazador que es demasiado corto para permitir el emparejamiento entre los dos dominios en la misma cadena, forzando con ello a los dominios a emparejarse con dominios complementarios de otra cadena y creando dos sitios de unión a antígenos (véase, p. ej., Holliger, P., et al. (1993) Proc. Natl. Acad. Sci. USA 90: 6444-6448; Poijak, R.J., et al. (1994) Structure 2:1121-1123).

Un anticuerpo biespecífico se puede formar de una región de antígeno específica para PSMA y una región de unión a antígeno específica para una célula efectora que tiene una actividad tumoricida o inhibidora de tumores. Las dos regiones de unión a antígeno del anticuerpo biespecífico están químicamente enlazadas o pueden ser expresadas por una célula tratada genéticamente para producir el anticuerpo biespecífico. (Véase, en general, Fanger et al., 1995, *Drug News & Perspec.* 8(3): 133-137). Células efectoras adecuadas con actividad tumoricida incluyen, pero no se limitan a células T citotóxicas (principalmente células CD8⁺), células asesinas naturales, etc. Una cantidad eficaz de anticuerpo biespecífico de acuerdo con la invención puede administrarse a un sujeto con cáncer, y el anticuerpo biespecífico extermina y/o inhibe la proliferación de las células cancerígenas después de la localización en sitios de tumores primarios o metastásicos que portan PSMA.

En determinadas realizaciones, los anticuerpos de los ADCs o de los que se derivan los fragmentos de unión a antígenos de los ADCs son anticuerpos humanos. La expresión "anticuerpo humano", tal como se utiliza en esta

memoria, pretende incluir anticuerpos con regiones variables y constantes derivadas de secuencias de inmunoglobulina de la línea germinal humana. Los anticuerpos humanos de la invención pueden incluir residuos de aminoácidos no codificados por secuencias de inmunoglobulina de la línea germinal humana (p. ej., mutaciones introducidas por mutagénesis al azar o específica del sitio *in vitro* o mediante mutación somática *in vivo*). Sin embargo, la expresión "anticuerpo humano", tal como se utiliza en esta memoria, no pretende incluir anticuerpos en los que secuencias de CDR derivadas de la línea germinal de otra especie de mamífero, tal como un ratón, han sido injertadas en secuencias del marco humanas (a las que se alude en esta memoria como "anticuerpos humanizados"). Anticuerpos humanos dirigidos contra PSMA se pueden generar utilizando ratones transgénicos que portan partes del sistema inmune humano más que el sistema de ratón. Algunos ejemplos de los mismos se describieron anteriormente.

10

15

20

25

30

35

40

45

60

Anticuerpos monoclonales totalmente humanos también se pueden preparar inmunizando ratones transgénicos en grandes partes de loci de cadena pesada y ligera de inmunoglobulina humana. Véanse, p. ej., las patentes de EE.UU. 5.591.669, 5.598.369, 5.545.806, 5.545.807, 6.150.584, y referencias citadas en ellas. Estos animales han sido genéticamente modificados de modo que existe una deleción funcional en la producción de anticuerpos endógenos (p. ej., murinos). Los animales se modifican adicionalmente de modo que contengan la totalidad o una parte del locus del gen de inmunoglobulina de la línea germinal humana, de modo que la inmunización de estos animales resulta en la producción de anticuerpos totalmente humanos contra el antígeno de interés. Después de la inmunización de estos ratones (p. ej., XenoMouse (Abgenix), ratones HuMAb (Medarex/GenPharm)), anticuerpos monoclonales se preparan de acuerdo con la tecnología del hibridoma estándar. Estos anticuerpos monoclonales tienen secuencias de aminoácidos de inmunoglobulina humana y, por lo tanto, no provocarán respuestas de anticuerpo anti-ratón humano (HAMA) cuando se administran a seres humanos. En general, pero no se pretende que sea limitante, los ratones son de una edad de 6-16 semanas tras la primera inmunización. Por ejemplo, se utiliza un preparado purificado o enriquecido de antígeno PSMA (p. ej., PSMA recombinante o células que expresan PSMA) para inmunizar intraperitonealmente (IP) a los ratones, a pesar de que también son posibles otras vías de inmunización conocidas por un experto ordinario en la técnica. El antígeno PSMA se inyecta en combinación con un adyuvante tal como adyuvante completo de Freund y, en algunas realizaciones, la inyección inicial es seguida por inmunizaciones de refuerzo con antígeno en un adyuvante tal como adyuvante incompleto de Freund. La respuesta inmune se vigila a lo largo del transcurso del protocolo de inmunización con muestras de plasma obtenidas, por ejemplo, mediante sangrado retro-orbital. El plasma se rastrea por ELISA y, para las fusiones se utilizan ratones con títulos suficientes de inmunoglobulina humana anti-PSMA. A los ratones se les refuerza por vía intravenosa con antígeno 3 días antes de sacrificarles y de la separación del bazo.

En algunas realizaciones, el anticuerpo o fragmento de unión a antígeno del mismo de los ADCs se puede seleccionar en cuanto a la capacidad de unirse a células que expresan PSMA vivas. Con el fin de demostrar la unión a células que expresan PSMA vivas se puede utilizar la citometría de flujo. Por ejemplo, líneas de células que expresan PSMA (desarrolladas bajo condiciones de crecimiento convencionales) o células de cáncer de próstata que expresan PSMA se mezclan con diversas concentraciones de anticuerpos monoclonales en PBS que contiene Tween 80 al 0,1% y suero de ratón al 20%, y se incuban a 37°C durante 1 hora. Después del lavado, las células se hacen reaccionar con anticuerpo secundario de IgG anti-humano marcado con fluoresceína (si se utilizaron anticuerpos anti-PSMA humanos) bajo las mismas condiciones que la tinción del anticuerpo primario. Las muestras se pueden analizar mediante un instrumento clasificador de células activadas por fluorescencia (FACS), utilizando propiedades de dispersión de la luz y laterales para dirigirlas a células individuales. Se puede utilizar un ensayo alternativo que utilice microscopía de fluorescencia (además de o en lugar de) el ensayo de citometría de flujo. Las células se pueden teñir y examinar mediante microscopía de fluorescencia. Este método permite la visualización de células individuales, pero puede tener una sensibilidad disminuida dependiendo de la densidad del antígeno. Se deduce que los ADCs, en algunas realizaciones, se unen a células vivas. Por lo tanto, los ADCs, en algunas realizaciones, no requieren la lisis de la célula para unirse a PSMA.

En algunas realizaciones, los anticuerpos pueden fomentar la citolisis de células que expresan PSMA. La citolisis puede ser mediada por el complemento o puede ser mediada por células efectoras. En una realización, la citolisis se lleva a cabo en un organismo vivo tal como un mamífero, y la célula viva es una célula tumoral. Ejemplos de tumores que pueden ser fijados como objetivo por los anticuerpos o fragmentos de unión a antígeno de los mismos incluyen cualquier tumor que exprese PSMA (éste incluye tumores con PSMA que expresa la neovasculatura), tal como de próstata, vejiga, páncreas, pulmón, colon, riñón, melanomas y sarcomas. En una realización, la célula tumoral es una célula de cáncer de próstata.

El ensayo de la actividad citolítica *in vitro* por el ensayo de la liberación de cromo puede proporcionar un rastreo inicial antes del ensayo en modelos *in vivo*. Este ensayo se puede llevar a cabo utilizando ensayos de liberación de cromo convencionales. En síntesis, células polimorfonucleares (PMN) u otras células efectoras procedentes de

donantes sanos se pueden purificar mediante centrifugación en gradiente de densidad Ficoll-Hypaque, seguido de lisis de eritrocitos contaminantes. PMNs lavadas pueden suspenderse en RPMI suplementado con suero de ternero fetal inactivado por calor al 10% y pueden mezclarse con células marcadas con ⁵¹Cr que expresen PSMA, en diversas relaciones de células efectoras a células tumorales (células efectoras: células tumorales). IgGs anti-PSMA purificadas se pueden luego añadir a diversas concentraciones. IgG irrelevante se puede utilizar como un control negativo. Los ensayos se pueden llevar a cabo durante 0-120 minutos a 37°C. Las muestras se pueden someter a ensayo para la citolisis, midiendo la liberación de ⁵¹Cr en el sobrenadante del cultivo. Anticuerpos monoclonales anti-PSMA y/o ADCs también se pueden someter a ensayo en combinaciones entre sí para determinar si la citolisis es reforzada con anticuerpos monoclonales múltiples y/o ADCs. Anticuerpos que se unen a PSMA y/o ADCs también pueden someterse a ensayo en un modelo *in vivo* (p. ej., en ratones) para determinar su eficacia en mediar en la citolisis y exterminar células que expresen PSMA, p. ej., células tumorales.

Los anticuerpos de los ADCs o de los que se derivan los fragmentos de unión a antígeno de los ADCs se pueden seleccionar, por ejemplo, en base a los siguientes criterios, que no pretenden ser exclusivos:

- 1) unión a células vivas que expresan PSMA;
- 2) elevada afinidad de unión a PSMA;
- 3) unión a un epítopo único en PSMA (es decir, un epítopo no reconocido por un anticuerpo previamente producido);
- 4) opsonización de células que expresan PSMA;
- 5) mediación de la inhibición del crecimiento, fagocitosis y/o exterminio de células que expresan PSMA en presencia de células efectoras;
- 6) modulación (inhibición o potenciación) de actividades de NAALADasa, folato hidrolasa, dipetidil peptidasa IV y/o γ-glutamil-hidrolasa;
- 7) inhibición del crecimiento, paralización del ciclo celular y/o citotoxicidad en ausencia de células efectoras:
- 8) internalización de PSMA;
- 9) unión a un epítopo conformacional en PSMA;
- 10) reactividad cruzada mínima con células o tejidos que no expresan PSMA; y
- 11) unión preferente a formas diméricas de PSMA más que a formas monoméricas de PSMA.

Los anticuerpos pueden cumplir uno o más y, posiblemente, todos estos criterios.

En una realización, el anticuerpo o fragmento de unión a antígeno del mismo se une a un epítopo conformacional tal como un epítopo conformacional dentro del dominio extracelular de PSMA. Para determinar si un anticuerpo anti-PSMA o fragmento de unión a antígeno del mismo se une a epítopos conformacionales, cada uno de los anticuerpos se pueden someter testar en ensayos utilizando proteína nativa (p. ej., inmunoprecipitación no desnaturalizante, análisis por citometría de flujo de la unión a la superficie de la célula) y proteína desnaturalizada (p. ej., borrón de transferencia Western, inmunoprecipitación de proteínas desnaturalizadas). Una comparación de los resultados indicará si el anticuerpo o fragmento de unión a antígeno del mismo se une a un epítopo conformacional. Anticuerpos o fragmentos de unión a antígeno de los mismos que se unen a proteína nativa, pero no a proteína desnaturalizada son, en algunas realizaciones, aquellos que se unen a epítopos conformacionales. Se deduce que los ADCs en algunas realizaciones, se unen a epítopos conformacionales de PSMA.

En otra realización, el anticuerpo o fragmento de unión a antígeno del mismo se une a un epítopo específico de dímeros en PSMA. En general, anticuerpos o fragmentos de unión a antígeno de los mismos que se unen a un epítopo específico para dímeros se unen preferentemente al PSMA dímero más que al PSMA monómero. Para determinar si un anticuerpo o fragmento de unión a antígeno del mismo se une preferentemente (es decir., selectiva y/o específicamente) a un PSMA dímero, el anticuerpo o fragmento de unión a antígeno del mismo se puede someter a ensayos (p. ej., inmunoprecipitación seguida de transferencia Western) utilizando proteína de PSMA dimérico nativa y proteína de PSMA monomérico disociada. Una comparación de los resultados indicará si el anticuerpo o fragmento de unión a antígeno del mismo se une preferentemente al dímero. En algunas realizaciones, los anticuerpos o fragmentos de unión a antígeno de los mismos se unen al PSMA dímero, pero no a la proteína de PSMA monomérico. Se deduce que los ADCs, en algunas realizaciones, se unen a un epítopo específico para el dímero en PSMA.

Por lo tanto, la invención incluye también ADCs que se unen selectivamente a PSMA multímero. Tal como se utiliza en esta memoria, particularmente con respecto a la unión de PSMA multímero por parte de los ADCs, "se une selectivamente" significa que un anticuerpo se une preferentemente a un multímero de proteína de PSMA (p. ej., con mayor avidez, mayor afinidad de unión) que a un monómero de proteína de PSMA. En algunas realizaciones, los ADCs de la invención se unen a un multímero de proteína de PSMA con una avidez y/o afinidad

55

60

10

15

20

25

30

35

40

45

de unión que es 1,1 veces, 1,2 veces, 1,3 veces, 1,4 veces, 1,5 veces, 1,6 veces, 1,7 veces, 1,8 veces, 1,9 veces, 2 veces, 3 veces, 4 veces, 5 veces, 7 veces, 10 veces, 20 veces, 30 veces, 40 veces, 50 veces, 70 veces, 100 veces, 200 veces, 300 veces, 500 veces, 1000 veces o más que la exhibida por el ADC para un monómero de proteína de PSMA. El ADC puede, en algunas realizaciones, unirse selectivamente a un multímero de proteína de PSMA y no a un monómero de proteína de PSMA, es decir, exclusivamente se une a un multímero de proteína de PSMA. En algunas realizaciones, el ADC se une selectivamente a un dímero de proteína de PSMA.

5

10

15

20

25

30

35

50

55

60

Un multímero de proteína de PSMA, tal como se utiliza en esta memoria, es un complejo proteínico de al menos dos proteínas de PSMA o fragmentos de las mismas. Los multímeros de proteína de PSMA pueden estar constituidos por diversas combinaciones de proteínas de PSMA de longitud completa (p. ej., SEQ ID NO: 1), PSMA soluble recombinante (rsPSMA, p. ej., aminoácidos 44-750 de SEQ ID NO: 1) y fragmentos de lo que antecede que forman multímeros (es decir, que conservan el dominio de proteína requerido para formar dímeros y/o multímeros de mayor orden de PSMA). En algunas realizaciones, al menos una de las proteínas de PSMA que forman el multímero es un polipéptido de PSMA recombinante, soluble (rsPSMA). Los multímeros de proteína de PSMA pueden ser dímeros tales como los formados a partir de proteína de PSMA recombinante soluble. En una realización, el dímero es un homodímero de rsPSMA. Se piensa que los multímeros de proteína de PSMA a los que se alude en esta memoria asumen una conformación nativa y pueden tener una conformación de este tipo. Las proteínas de PSMA en determinadas realizaciones están unidas de manera no covalente juntas para formar el multímero de proteína de PSMA. Por ejemplo, se ha descubierto que la proteína de PSMA se asocia de manera no covalente para formar dímeros bajo condiciones no desnaturalizantes. Los multímeros de proteína de PSMA pueden conservar las actividades de PSMA. La actividad de PSMA puede ser una actividad enzimática, tal como una actividad de folato hidrolasa, actividad de NAALADasa, actividad de dipeptidil peptidasa IV o actividad de γglutamil hidrolasa. Métodos para someter a ensayo la actividad de PSMA de multímeros son bien conocidos en la técnica (revisada por O'Keefe et al. en: Prostate Cancer: Biology, Genetics, and the New Therapeutics, L.W.K. Chung, W.B. Isaacs y J.W. Simons (comps.) Humana Press, Totowa, NJ, 2000, págs. 307-326).

El anticuerpo o fragmento de unión a antígeno del mismo de los ADCs se puede unir a y es internalizado con PSMA expresado en células. El mecanismo mediante el cual el anticuerpo o fragmento de unión a antígeno del mismo se internaliza con PSMA no es crítico para la práctica de la presente invención. Por ejemplo, el anticuerpo o fragmento de unión a antígeno del mismo puede inducir la internalización de PSMA. Alternativamente, la internalización del anticuerpo o fragmento de unión a antígeno del mismo puede ser el resultado de una internalización rutinaria de PSMA. Se deduce que el ADC puede ser internalizado con PSMA expresado en células.

Los anticuerpos o fragmentos de unión a antígeno de los mismos y, por lo tanto, los ADCs de la invención pueden unirse específicamente a PSMA de la superficie de la célula y/o rsPSMA con afinidad sub-nanomolar. Las afinidades de unión pueden ser de aproximadamente 1 X 10⁻¹⁰ M o menores o aproximadamente 1 X 10⁻¹¹ M o menores. En una realización particular, la afinidad de unión es menor que aproximadamente 5 X 10⁻¹⁰ M.

40 Los anticuerpos o fragmentos de unión a antígenos de los mismos pueden modular, en algunas realizaciones, al menos una actividad enzimática de PSMA. La actividad se puede seleccionar del grupo que consiste en actividad de dipeptidasa de carácter ácido N-acetilada y α-enlazada (NAALADasa), folato hidrolasa, dipeptidil dipeptidasa IV, γ-glutamil hidrolasa y combinaciones de las mismas *in vitro* o *in vivo*. La modulación puede ser una potenciación o inhibición de al menos una actividad enzimática de PSMA.

Niveles en tejido de NAALADasa se pueden determinar solubilizando en detergente, tejidos homogeneizantes, sedimentando el material insoluble mediante centrifugación y midiendo la actividad de NAALADasa en el sobrenadante restante. De igual manera, la actividad de NAALADasa en fluidos corporales también se puede medir sedimentando primero el material celular mediante centrifugación y realizando un ensayo enzimático típico para la actividad de NAALADasa en el sobrenadante. Ensayos de enzimas NAALADasa han sido descritos por Frieden, 1959, *J. Biol. Chem.*, 234:2891. En este ensayo, el producto de reacción de la enzima NAALADasa es ácido glutámico. Éste se deriva de la escisión de N-acetilaspartilglutamato catalizada por enzima para proporcionar ácido N-acetilaspártico y ácido glutámico. El ácido glutámico, en una etapa que requiere NAD(P)[†], proporciona 2-oxoglutarato más NAD(P)H en una reacción catalizada por glutamato deshidrogenasa. El progreso de la reacción puede medirse de manera fácil y conveniente mediante el cambio en la absorbancia a 340 nm debido a la conversión de NAD(P)⁺ en NAD(P)H.

La actividad de folato hidrolasa de PSMA se puede medir realizando ensayos enzimáticos según se describe por Heston y otros (p. ej., *Clin Cancer Res.* 2(9):1445-51, 1996; *Urology* 49 (3A Supl):104-12, 1997). Folato hidrolasas tales como PSMA separan los glutamatos gamma-enlazados de folatos poliglutamatos. La actividad de folato

hidrolasa se puede medir utilizando sustratos tales como metotrexato tri-gamma glutamato (MTXGlu3), metotrexato di-gamma glutamato (MTXGlu2) o pteroilpentaglutamato (PteGlu5), por ejemplo utilizando electroforesis capilar (véase *Clin. Cancer Res.* 2(9):1445-51, 1996). Incubaciones cronometradas de PSMA con sustratos poliglutamados son seguidas por separación y detección de productos de la hidrólisis.

Un ADC de la invención comprende un anticuerpo o fragmento de unión a antígeno del mismo conjugado MMAE o MMAF. El anticuerpo o fragmento de unión a antígeno del mismo puede estar, en algunas realizaciones, conjugado a MMAE o MMAF con un compuesto de la siguiente fórmula (**Fórmula 1**) –A_n-Y_m-Z_m-X_n-W_n-, en donde A es una unidad acilo carboxílica; Y es un aminoácido; Z es un aminoácido; X y W son cada uno un espaciador auto-inmolativo; n es un número entero de 0 ó 1; y m es un número entero de 0 ó 1, 2, 3, 4, 5 ó 6. En algunas realizaciones, el conjugado de la presente invención se representa por la fórmula (**Fórmula 2**): L-{A_n-Y_m-Z_m-X_n-W_n-D}_p, en donde L es un anticuerpo o fragmento de unión a antígeno del mismo que se une a PSMA, D es MMAE o MMAF y p es un número entero de 1, 2, 3, 4, 5, 6, 7 u 8. Los otros componentes son como se definen antes. En una realización, la unidad carboxílica "A_n" está enlazada al anticuerpo o fragmento de unión a antígeno del mismo a través de un átomo de azufre derivado del anticuerpo o fragmento de unión a antígeno del mismo:

$$L \xrightarrow{} S \left(A_n \xrightarrow{} Y_m \xrightarrow{} Z_m \xrightarrow{} X_n \xrightarrow{} W_n \xrightarrow{} D \right)_p$$

En una realización, A es

5

10

15

20

25

30

35

en que q es 1-10. Por lo tanto, en una realización, el conjugado es:

$$L \longrightarrow S \longrightarrow N \longrightarrow (CH_2)_qCO \longrightarrow Y_m \longrightarrow Z_m \longrightarrow X_n \longrightarrow W_n \longrightarrow D$$

en donde L, Y, Z, X, W, D, n, m, q y p son como se definen previamente.

En otra realización, A es 4-(N-succinimidometil)ciclohexano-1-carbonilo, m-succinimidobenzoílo, 4-(p-succinimidofenil)-butirilo, 4-(2-acetamido)benzoílo, 3-tiopropionilo, 4-(1-tioetil)-benzoílo, 6-(3-tiopropionilamido)-hexanoílo o maleimida- caproílo. En una realización adicional, A es maleimida-caproilo. Ejemplos representativos de diversas unidades de acilo carboxílico y métodos para su síntesis y fiojación se describen en la patente de EE.UU. Nº 6.214.345, cuyo contenido completo se incorpora en esta memoria como referencia.

En otra realización, Y es alanina, valina, leucina, isoleucina, metionina, fenilalanina, triptófano o prolina. Todavía en otra realización, Y es valina. En una realización adicional, Z es lisina, lisina protegida con acetilo o formilo, arginina, arginina protegida con tosilo o grupos nitro, histidina, ornitina, ornitina protegida con acetilo o formilo, o citrulina. Todavía en una realización adicional, Z es citrulina. En una realización, Y_m - Z_m es valina-citrulina. En otra realización, Y_m - Z_m es una secuencia de proteínas que es selectivamente escindible por una proteasa.

En una realización adicional, X es un compuesto que tiene la fórmula

en que T es O, N o S. En otra realización, X es un compuesto que tiene la fórmula -HN-R¹-COT, en que R¹ es alquilo C₁-C₅, T es O, N o S. En una realización adicional, X es un compuesto que tiene la fórmula

en que T es O, N o S, R^2 es H o alquilo C_1 - C_5 . En una realización, X es p-aminobencilcarbamoiloxi. En otra realización, X es alcohol p-aminobencílico. En una realización adicional, X es carbamato de p-aminobencilo. Todavía en una realización adicional, X es p-aminobenciloxicarbonilo. En otra realización, X es ácido y-aminobutírico; ácido α , α -dimetil-y-aminobutírico o ácido β , β -dimetil-y-aminobutírico.

En algunas realizaciones, W es

15 en que T es O, S o N.

5

10

20

25

30

35

En una realización, el compuesto de **Fórmula 1** maleimidocaproilo. Maleimidocaproilo ha sido utilizado para la conjugación de dos auristatinas específicas a un Acm anti-CD30 (AC10) (Doronina, Svetlana et al. "Novel Linkers for Monoclonal Antibody-Mediated Delivery of Anticancer Agents", AACR, Anaheim, CA, Resumen Nº 1421, 16-20 de abril de 2005). Maleimidocaproilo reacciona con grupos tiol para formar un tioéter.

MMAE o MMAF se pueden conjugar a un anticuerpo o fragmento de unión a antígeno del mismo utilizando métodos conocidos por los expertos ordinarios en la técnica (p. ej., véase, Niemeyer, CM, *Bioconjugation Protocols, Strategies and Methods,* Humana Press, 2004) o según se describe en esta memoria. 3 ó 4 moléculas de MMAE o MMAF están conjugadas al anticuerpo o fragmento de unión a antígeno del mismo.

Se ha encontrado que los ADCs de la invención tienen niveles particularmente elevados de selectividad cuando exterminan a células que no expresan PSMA en comparación con el exterminio de células que expresan PSMA. Por lo tanto, los ADCs tienen una selectividad por células PC- 3^{TM} a células C4-2 o células LNCaP TM de al menos 250. En realizaciónes, la selectividad es de al menos 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2250, 2500, 2750, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 10000, 11000, 12000, 13000, 14000, 15000, 17500, 20000 o más. En algunas realizaciones, la selectividad oscila entre 250-500, 500-750, 750-1000, 1000-2000, 2000-5000, 5000-10000, 10000-15000, o 15000-20000. "Selectividad", tal como se define en esta memoria, se refiere a la relación de valores CI_{50} de un ADC en células $PC-3^{TM}$ (células que no expresan PSMA) a células C4-2 o células

LNCaP™ (células que expresan PSMA).

10

15

20

25

30

35

40

45

50

Se ha encontrado también que los ADCs de la invención median, en algunas realizaciones, en el exterminio de células específicas que expresan PSMA a concentraciones muy bajas tales como a o cerca de concentraciones picomolares. En algunas realizaciones, los ADCs exhiben CI₅₀s a concentraciones menores que aproximadamente 1 X 10⁻¹⁰ M, menores que aproximadamente 1 X 10⁻¹¹ M o menores que aproximadamente 1 X 10⁻¹² M. En una realización particular, se consigue una CI₅₀ a una concentración menor que aproximadamente 1,5 X 10⁻¹¹ M. En otra realización, los ADCs proporcionados exhiben CI₅₀s entre 10-210, 40-210, 60-210 o 65-210 pM. Todavía en otra realización, los ADCs proporcionados exhiben CI₅₀s de aproximadamente 10, 40, 60 u 80 pM. Todavía en otra realización, los ADCs proporcionados exhiben CI₅₀s entre 11, 42, 60 u 83 pM.

Se ha encontrado también que los ADCs, en algunas realizaciones, resultan en una tasa de curación en ratones de al menos 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% o 95%. En otras realizaciones, la tasa de curación en ratones es de aproximadamente 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% o 95%. Todavía en otras realizaciones, la tasa de curación es 20-40%, 40-60% o 60-80%. Tal como se utiliza en esta memoria, "tasa de curación" se refiere al número de ratones todavía vivos después de aproximadamente 500 días desde el comienzo del período de estudio, sin evidencia de un tumor y sin niveles de PSA medibles, dividido por el número de ratones al comienzo del período de estudio. Para evaluar la tasa de curación, a los ratones se les administran 6 mg/kg de ADC con un régimen de q4d x 6. En algunas realizaciones, el número de ratones al comienzo del estudio es de al menos 5, 6, 7, 8, 9, 10, 12, 15, 17, 20, 25, 30 o más ratones. Detalles adicionales en relación con un ejemplo de un estudio de este tipo se proporcionan en esta memoria más adelante en los **Ejemplos**. En una realización, los ratones son aquellos que son un modelo de cáncer de próstata humano andrógeno-independiente. En otra realización, los ratones son ratones inmunológicamente deficientes a los que se ha injertado por vía intramuscular células C4-2 en la pata trasera izquierda. Técnicas para determinar la presencia de un tumor y para medir los niveles de PSA son bien conocidas por los expertos ordinarios en la técnica.

La unión de los ADCs de la invención a células que expresan PSMA vivas puede inhibir el crecimiento de células que expresan PSMA, dando como resultado una paralización del ciclo celular (p. ej., paralización de G_2/M), puede fomentar la apoptosis de células que expresan PSMA, etc. Tal como se utiliza en esta memoria, "resultan en una paralización del ciclo celular" se refiere a un aumento en el número de células en la fase G_2/M , debido a la administración de un ADC. En algunas realizaciones, los ADCs pueden efectuar una apoptosis. En otras realizaciones, los ADCs resultan tanto en una paralización del ciclo celular como en la subsiguiente apoptosis. Los ADCs de la invención, por lo tanto, se pueden utilizar en diversos métodos *in vitro* e *in vivo* para efectuar estos posibles puntos finales. En particular, los ADCs de la invención se pueden utilizar en métodos para tratar enfermedades mediadas por PSMA.

Tal como se utiliza en esta memoria, una "enfermedad mediada por PSMA" es cualquier enfermedad en la que el PSMA es el causante o un síntoma de la enfermedad. Enfermedades mediadas por PSMA incluyen también enfermedades o trastornos en los que existe una aberración (p. ej., sobre-expresión) de PSMA. PSMA es una glicoproteína de la membrana de tipo II de 100 kD, expresada en tejidos de la próstata (Horoszewicz et al., 1987, Anticancer Res. 7:927-935; patente de EE.UU. Nº. 5.162.504). PSMA se caracterizó como una proteína de la transmembrana de tipo II con una identidad de la secuencia con el receptor transferrina (Israeli et al., 1994, Cancer Res. 54: 1807-1811) y con actividad de NAALADasa (Carter et al., 1996, Proc. Natl. Acad. Sci. USA. 93:749-753). De manera más importante, PSMA se expresa en cantidades incrementadas en cáncer de próstata, y niveles elevados de PSMA también son detectables en los sueros de estos pacientes (Horoszewicz et al., 1987; Rochon et al., 1994, Prostate 25:219-233; Murphy et al., 1995, Prostate 26: 164-168; y Murphy et al., 1995, Anticancer Res. 15:1473-1479). Por lo tanto, un trastorno mediado por PSMA es, por ejemplo, cáncer de próstata. La expresión de PSMA aumenta con el progreso de la enfermedad, volviéndose el más elevado en una enfermedad metastática hormona-refractaria para la que no existe actualmente terapia. Adicionalmente, datos sugerentes indican que el PSMA es también expresado de manera abundante en la neovasculatura de una diversidad de otros tumores importantes, incluidas células tumorales de vejiga, páncreas, sarcoma o melanoma, pulmón y riñón, pero no en la vasculatura normal. Por lo tanto, enfermedades mediadas por PSMA incluyen cánceres en los que PSMA es expresado en la células del tumor o de la neovasculatura del tumor.

Por lo tanto, se proporcionan composiciones que pueden utilizarse para tratar cualquier trastorno mediado por PSMA. Por ejemplo, se pueden utilizar ADCs para inhibir la neovascularización de un tumor. En otro ejemplo, se pueden utilizar ADCs de PSMA para exterminar células tumorales. En algunas realizaciones, dos o más ADCs diferentes se utilizan en combinación. En otra realización, uno o más anticuerpos anti-PSMA no conjugados o fragmentos de unión a antígeno de los mismos se pueden combinar con uno o más ADCs en una terapia única para conseguir un efecto terapéutico deseado. Como ilustración, un anticuerpo anti-PSMA no conjugado que media

en el exterminio altamente eficaz de células diana en presencia de células efectoras y/o que inhibe el crecimiento de células que expresan PSMA se puede utilizar con uno o más ADCs. Todavía en otra realización, los ADCs se pueden combinar con uno o más agentes terapéuticos adicionales. Agentes terapéuticos de este tipo incluyen agentes antitumorales tales como docetaxel; corticosteroides tales como prednisona o hidrocortisona; agentes inmunoestimulantes; inmunomoduladores; o alguna combinación de los mismos.

5

10

35

40

45

50

55

60

Agentes antitumorales incluyen agentes citotóxicos, agentes quimioterapéuticos y agentes que actúan sobre la neovasculatura del tumor. Agentes citotóxicos incluyen radionucleidos citotóxicos, toxinas químicas y proteínas toxinas. El radionucleido o isótopo radioterapéutico citotóxico puede ser un isótopo alfa-emisor tal como ²²⁵Ac, ²¹¹At, ²¹²Bi, ²¹³Bi, ²¹³Pb, ²²⁴Ra o ²²³Ra. Alternativamente, el radionucleido citotóxico puede ser un isótopo beta-emisor tal como ¹⁸⁶Rh, ¹⁸⁸Rh, ¹⁷⁷Lu, ⁹⁰Y, ¹³¹I, ⁶⁷Cu, ⁶⁴Cu, ¹⁵³Sm o ¹⁶⁶Ho. Además, el radionucleido citotóxico puede emitir electrones Auger y de baja energía e incluye los isótopos ¹²⁵I, ¹²³I o ⁷⁷Br.

Toxinas químicas o agentes quimioterapéuticos adecuados incluyen miembros de la familia de moléculas enedina, tales como calicheamicina y esperamicina. Toxinas químicas también pueden tomarse del grupo que consiste en metotrexato, doxorubicina, melfalan, clorambucilo, ARA-C, vindesina, mitomicina C, cis-platino, etopósido, bleomicina y 5-fluorouracilo. Otros agentes antineoplásticos incluyen dolastatinas (patentes de EE.UU. N°s. 6.034.065 y 6.239.104) y derivados de las mismas. Dolastatinas y derivados de las mismas incluyen dolastatina 10 (dolavalina-valina-dolaisoleucina-dolaproina-dolafenina) y los derivados auristatina PHE (dolavalina-valina-dolaisoleucina-dolaproina-fenilalanina-éster metílico) (Pettit, G.R. et al., *Anticancer Drug Des.* 13(4):243-277, 1998; Woyke, T. et al., *Antimicrob. Agents Chemother.* 45(12):3580-3584, 2001) y aurastatina E y similares. Las toxinas incluyen también lectinas venenosas, toxinas vegetales tales como toxinas ricina, abrina, modecina. botulina y difteria. Otros agentes terapéuticos son conocidos por los expertos en la técnica.

Agentes que actúan sobre la vasculatura del tumor incluyen agentes de unión a tubulina tales como combrestatina A4 (Griggs et al., *Lancet Oncol.* 2:82, 2001), angiostatina y endostatina (revisado en Rosen, *Oncologist* 5:20, 2000) y proteína 10 inducible por interferón (patente de EE.UU. Nº. 5.994.292). También están contemplados un cierto número de otros agentes anti-angiogénicos, e incluyen 2ME2, angiostatina, Angiozyme, RhuAcm anti-VEGF, Apra (CT-2584), Avicina, Benefin, BMS275291, carboxiamidotriazol, CC4047, CC5013, CC7085, CDC801, CGP- 41251 (PKC 412), CM101, combretastatina profármaco A-4, EMD 121974, endostatina, flavopiridol, genisteína (GCP), Extracto de té verde, IM-862, ImmTher, Interferón alfa, interleuquina-12, Iressa (ZD1839), Marimastat, Metastat (Col-3), Neovastat, Octreotida, Paclitaxel, Penicilamina, fotofrina, fotopoint, PI-88, Prinomastat (AG-3340), PTK787 (ZK22584), RO317453, Solimastat, escualamina, SU 101, SU 5416, SU-6668, Suradista (FCE 26644), Suramin (Metaret), tetratiomolibdato, talidomida, TNP- 470 y Vitaxina. Agentes

anti-angiogénicos adicionales se describen por parte de Kerbel, J. Clin. Oncol. 19 (18s): 45s- 51s, 2001.

Los ADCs se pueden administrar con uno o más agentes inmunoestimulantes para inducir o potenciar una respuesta inmune tal como IL-2 y oligonucleótidos inmunoestimulantes (p. ej., los que contienen motivos CpG). Agentes inmunoestimulantes pueden estimular, en algunas realizaciones, brazos específicos del sistema inmune tales como células asesinas naturales (NK) que median en la citotoxicidad de las células dependiente de anticuerpos (ADCC). Agentes inmunoestimulantes incluyen interleuquina-2, α -interferón, γ -interferón, factor α de necrosis tumoral (TNF α), oligonucleótidos inmunoestimulantes o una combinación de los mismos. Inmunomoduladores incluyen citoquinas, quimoquinas, adyuvantes o una combinación de los mismos. Quimioquinas útiles en el aumento de las respuestas inmunes incluyen, pero no se limitan a SLC, ELC, MIP3 α , MIP3 β , IP-10, MIG y combinaciones de las mismas.

El otro agente terapéutico también puede ser una vacuna. En algunas realizaciones, la vacuna inmuniza a un sujeto frente a PSMA. Vacunas de este tipo, en algunas realizaciones, incluyen antígenos tales como PSMA dímeros, opcionalmente con uno o más adyuvantes para inducir o potenciar una respuesta inmune. Un adyuvante es una sustancia que potencia la respuesta inmune. Adyuvantes de muchos tipos son bien conocidos en la técnica. Ejemplos específicos de adyuvantes incluyen monofosforil-lípido A (MPL, SmithKline Beecham), saponinas que incluyen QS21 (SmithKline Beecham); oligonucleótidos inmunoestimulantes (p. ej., oligonucleótidos CpG descritos por Kreig et al., *Nature* 374:546-9, 1995); adyuvante incompleto de Freund; adyuvante completo de Freund; montanida; vitamina E y diversas emulsiones de agua en aceite preparadas a partir de aceites biodegradables tales como escualeno y/o tocoferol, Quil A, Ribi Detox, CRL-1005, L-121 y combinaciones de los mismos. También se contemplan para uso como vacunas en los métodos proporcionados en esta memoria formulaciones tales como las descritas en la solicitud de EE.UU. Nº. de serie 10/976352.

En algunas realizaciones, las vacunas pueden incluir uno o más de las proteínas multiméricas de PSMA aisladas descritas en esta memoria, tal como la proteína dimérica de PSMA. En algunas realizaciones, una composición de

proteínas multiméricas de PSMA contiene al menos aproximadamente 10% de proteínas multiméricas de PSMA (de la cantidad total de proteína de PSMA en la composición). En otras realizaciones, la composición de proteínas multiméricas de PSMA contiene al menos aproximadamente 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 99% o 99,5% de proteína multimérica de PSMA. En una realización, la composición de proteínas multiméricas de PSMA contiene proteína multimérica de PSMA sustancialmente pura, sustancialmente sin proteína monomérica de PSMA. Se entiende que la lista de porcentajes específicos incluye mediante inferencia la totalidad de los porcentajes no nombrados entre los porcentajes reseñados.

También se pueden utilizar citoquinas en protocolos de vacunación como resultado de sus propiedades reguladoras de linfocitos. Muchas citoquinas útiles para este tipo de fines serán conocidas por un experto ordinario en la técnica, incluidas interleuquina-2 (IL-2); IL-4; IL-5; IL-12, que ha demostrado potenciar los efectos protectores de vacunas (*véase*, *p. ej.*, *Science* 268: 1432-1434, 1995); GM-CSF; IL-15; IL-18; combinaciones de las mismas, y similares. Así, las citoquinas se pueden administrar en unión con un antígeno, quimioquinas y/o adyuvantes para aumentar una respuesta inmune.

Los otros agentes terapéuticos que pueden estar presentes en las composiciones de la invención en forma no conjugada o en forma conjugada, tal como conjugada a un anticuerpo anti-PSMA o fragmento de unión a antígeno del mismo. El acoplamiento de una o más moléculas de toxina al anticuerpo anti-PSMA o fragmento de unión a antígeno del mismo pueden incluir muchos mecanismos químicos, por ejemplo una unión covalente, unión de afinidad, intercalación, unión de coordenadas y formación de complejos.

La unión covalente se puede conseguir mediante condensación directa de cadenas laterales existentes o mediante la incorporación de moléculas de puenteo externas. Muchos agentes bivalentes o polivalentes son útiles en el acoplamiento de moléculas de proteínas a otras proteínas, péptidos o funciones amina. Por ejemplo, la bibliografía está repleta de agentes de acoplamiento tales como carbodiimidas, diisocianatos, glutaraldehído, diazobencenos y hexametilendiaminas. Esta lista no pretende ser exhaustiva de los diversos agentes de acoplamiento conocidos en la técnica sino, más bien, es ilustrativa de los agentes de acoplamiento más comunes.

En algunas realizaciones, se contempla que se desee primero derivatizar el anticuerpo y luego fijar el agente terapéutico al producto derivatizado. Agentes reticulantes adecuados para uso de esta manera incluyen, por ejemplo, SPDP (N-succinimidil-3-(2-piridilditio)propionato), y SMPT, 4-succinimidil-oxicarbonil-metil-(2-piridilditio)tolueno.

Además, proteínas toxinas se pueden fusionar al anticuerpo anti-PSMA o fragmento de unión a antígeno del mismo por métodos genéticos para formar una proteína de fusión de inmunotoxina híbrida. Las proteínas de fusión pueden incluir secuencias peptídicas adicionales tales como espaciadores peptídicos que fijan operativamente, por ejemplo, el anticuerpo anti-PSMA y toxina, siempre que secuencias adicionales de este tipo no afecten de manera apreciable a las actividades de fijación como objetivo o de toxina de la proteína de fusión. Las proteínas se pueden fijar por un enlazador o un espaciador peptídico tal como un péptido espaciador de glicina-serina, o una bisagra de péptido, según se conoce en la técnica. Así, por ejemplo, el extremo C de un anticuerpo anti-PSMA o fragmento de unión a antígeno del mismo se puede fusionar al extremo N de la molécula de proteína toxina para formar una inmunotoxina que conserva las propiedades de unión del anticuerpo anti-PSMA. Otras disposiciones de fusión serán conocidas por un experto ordinario en la técnica. Para expresar la inmunotoxina de fusión, el ácido nucleico que codifica la proteína de fusión se inserta en un vector de expresión de acuerdo con métodos convencionales para la expresión estable de la proteína de fusión tal como en células de mamíferos tales como células CHO. La proteína de fusión se puede aislar y purificar de las células o del sobrenadante del cultivo utilizando una metodología convencional tal como una columna de afinidad de PSMA.

Los radionucleidos se acoplan típicamente a un anticuerpo o fragmento de unión a antígeno del mismo mediante quelación. Por ejemplo, en el caso de radionucleidos metálicos, se utiliza habitualmente un quelante bifuncional para enlazar el isótopo al anticuerpo u otra proteína de interés. Típicamente, el quelante se fija primero al anticuerpo, y el conjugado quelante-anticuerpo se pone en contacto con el radioisótopo metálico. Para este fin se ha desarrollado un cierto número de quelantes bifuncionales, que incluyen las series ácido dietilentriaminapentaacético (DTPA) de aminoácidos descritos en las patentes de EE.UU. 5.124.471, 5.286.850 y 5.434.287. Como otro ejemplo, agentes quelantes bifuncionales basados en ácido hidroxámico se describen en la patente de EE.UU. 5.756.825. Otro ejemplo es el agente quelante denominado *p*-SCN-Bz-HEHA (ácido 1,4,7,10,13,16-hexaazaciclo-octadecano-N,N',N", N"", N"", hexaacético) (Deal et al., *J. Med. Chem.* 42:2988 (1999), que es un quelante eficaz de radiometales tales como ²²⁵Ac. Todavía otro ejemplo es DOTA (ácido 1,4,7,10-tetraazaciclododecano N,N',N",N""-tetraacético) que es un agente quelante bifuncional (véase McDevitt et al., Science 294:1537-1540, 2001) que se puede utilizar en un método de dos etapas para el marcaje, seguido de

conjugación.

5

10

15

20

25

30

35

40

45

50

55

60

Otros agentes terapéuticos incluyen también virus selectivos de replicación. Virus competentes para la replicación tales como el mutante de adenovirus dl1520 que fija como objetivo la vía p53, ONYX-015, extermina selectivamente células tumorales (Biederer, C. et al., J. Mol. Med. 80(3):163-175, 2002). En algunas realizaciones, el virus puede conjugarse a anticuerpos de PSMA o fragmentos de unión a antígeno de los mismos.

Las composiciones proporcionadas por la presente invención se pueden utilizar en unión con otras modalidades de tratamiento terapéutico. Otros tratamientos de este tipo incluyen cirugía, radiación, criocirugía, termoterapia, tratamiento con hormonas, quimioterapia, vacunas y otras inmunoterapias.

Los ADCs de la invención tales como a través de su anticuerpo o fragmento de unión a antígeno del mismo se pueden enlazar a un marcador. Marcadores incluyen, por ejemplo, marcadores fluorescentes, marcadores enzimáticos, marcadores radiactivos, marcadores activos de resonancia magnética nuclear, marcadores luminiscentes o marcadores cromóforos.

Las composiciones proporcionadas pueden incluir un vehículo, excipiente o estabilizante fisiológica o farmacéuticamente aceptable, mezclado con el ADC. En algunas realizaciones, cuando una composición comprende dos o más ADCs diferentes, cada uno de los anticuerpos o fragmentos de unión a antígeno de los mismos de los ADCs se une a un epítopo conformacional distinto de PSMA.

Tal como se utiliza en esta memoria, "célula diana" ha de significar cualquier célula indeseable en un sujeto (p. ej., un ser humano o animal) que puede ser fijada como objetivo por un ADC de la invención. En algunas realizaciones, la célula diana es una célula que expresa o sobre-expresa PSMA. Células que expresan PSMA incluyen típicamente células tumorales tales como células tumorales de próstata, vejiga, páncreas, pulmón, riñón, colon, así como células de melanoma y sarcoma.

Composiciones farmacéuticas de la invención se pueden administrar en una terapia de combinación, es decir, combinadas con otros agentes. Por ejemplo, la terapia de combinación puede incluir una composición de la presente invención con al menos un agente antitumoral, inmunomodulador, agente inmunoestimulante u otra terapia convencional. El otro agente se puede conjugar a o formar como una molécula de fusión recombinante con un anticuerpo de PSMA o fragmento de unión a antígeno del mismo para dirigir la fijación como objetivo del agente a células que expresan PSMA. En otra realización, el otro agente terapéutico puede estar no conjugado. Agentes terapéuticos adicionales pueden administrarse o ponerse en contacto con las células que expresan PSMA a través de co-administración. "Co-administrar", tal como se utiliza en esta memoria, se refiere a administrar dos o más agentes terapéuticos simultáneamente en forma de una mezcla en una composición sencilla, o secuencialmente, y lo suficientemente próximo en el tiempo, de modo que los compuestos puedan ejercer un efecto aditivo o incluso sinérgico. Todavía en otras realizaciones, se puede administrar un agente terapéutico adicional antes, durante o después de la administración de uno o más ADCs o composiciones de los mismos.

Tal como se utiliza en esta memoria, "vehículo farmacéuticamente aceptable" o "vehículo fisiológicamente aceptable" incluye cualquiera y todas las sales, disolventes, medios de dispersión, revestimientos, agentes antibacterianos y antifúngicos, agentes isotónicos y de adsorción retardada y similares que sean fisiológicamente compatibles. En algunas realizaciones, el vehículo es adecuado para la administración por vía intravenosa, intramuscular, subcutánea, parenteral, espinal o epidermal (p. ej., mediante inyección o infusión). Dependiendo de la vía de administración, el compuesto activo se puede revestir en un material para proteger al compuesto frente a la acción de los ácidos y otras condiciones naturales que puedan inactivar al compuesto.

Cuando se administran, los preparados farmacéuticos de la invención se aplican en cantidades farmacéuticamente aceptables y en composiciones farmacéuticamente aceptables. La expresión "farmacéuticamente aceptable" significa un material no tóxico que no interfiere con la eficacia de la actividad biológica de los ingredientes activos. Preparados de este tipo pueden contener rutinariamente sales, agentes tampón, conservantes, vehículos compatibles y, opcionalmente, otros agentes terapéuticos tales como agentes potenciadores inmunes suplementarios que incluyen adyuvantes, quimioquinas y citoquinas. Cuando se utilizan en medicina, las sales deberían ser farmacéuticamente aceptables, pero convenientemente se pueden utilizar sales no farmacéuticamente aceptables para preparar sales farmacéuticamente aceptables de las mismas y no se excluyen del alcance de la invención.

Una sal conserva la actividad biológica deseada del compuesto parental y no imparte efectos toxicológicos indeseados algunos (véase, p. ej., Berge, S.M., et al. (1977) *J. Pharm. Sci.* 66: 1-19). Ejemplos de sales de este

tipo incluyen sales por adición de ácidos y sales por adición de bases. Sales por adición de ácidos incluyen las derivadas de ácidos inorgánicos no tóxicos tales como clorhídrico, nítrico, fosfórico, sulfúrico, bromhídrico, yodhídrico, fosforoso y similares, así como de ácidos orgánicos no tóxicos tales como ácidos mono- y dicarboxílicos alifáticos, ácidos alcanoicos fenil-sustituidos, ácidos hidroxi-alcanoicos, ácidos aromáticos, ácidos sulfónicos alifáticos y aromáticos y similares. Sales por adición de bases incluyen las derivadas de metales alcalinotérreos tales como sodio, potasio, magnesio, calcio y similares, así como de aminas orgánicas no tóxicas tales como N,N'-dibenciletilendiamina, N-metilglucamina, cloroprocaina, colina, dietanolamina, etilendiamina, procaina y similares.

Un ADC se puede combinar, si se desea, con un vehículo farmacéuticamente aceptable. La expresión "vehículo farmacéuticamente aceptable" tal como se utiliza en esta memoria, significa una o más cargas sólidas o líquidas, diluyentes o sustancias encapsulantes compatibles, que sean adecuados para la administración a un ser humano. El término "vehículo" designa un ingrediente orgánico o inorgánico, natural o sintético, con el que el ingrediente activo se combina para facilitar la aplicación. Los componentes de las composiciones farmacéuticas son también capaces de ser co-mezclados de una manera tal que no exista interacción que perjudique sustancialmente la eficacia farmacéutica deseada.

20

25

45

50

55

60

Las composiciones farmacéuticas pueden contener agentes tampón adecuados, que incluyen: ácido acético en una sal; ácido cítrico en una sal; ácido bórico en una sal; y ácido fosfórico en una sal.

Las composiciones farmacéuticas también pueden contener, opcionalmente, conservantes adecuados tales como cloruro de benzalconio; clorobutanol; parabenos y timerosal.

Las composiciones farmacéuticas pueden presentarse convenientemente en forma dosificación unitaria y se pueden preparar por cualquiera de los métodos bien conocidos en la técnica de farmacia. Todos los métodos incluyen la etapa de asociar el agente activo con un vehículo que constituye uno o más ingredientes accesorios. En general, las composiciones se preparan asociando uniforme e íntimamente el compuesto activo con un vehículo líquido, un vehículo sólido finamente dividido, o ambos, y luego, si es necesario, conformando el producto.

Composiciones adecuadas para la administración por vía parenteral comprenden un preparado acuoso o no acuoso estéril de los compuestos que, en algunas realizaciones, es isotónico con la sangre del receptor. Este preparado se puede formular de acuerdo con métodos conocidos, utilizando agentes dispersantes o humectantes y agentes de suspensión adecuados. El preparado inyectable estéril también puede ser una disolución o suspensión inyectable estéril en un diluyente o disolvente no tóxico y parenteralmente aceptable, por ejemplo en forma de una disolución en 1,3-butanodiol. Entre los vehículos y disolventes aceptables que se pueden emplear se encuentran agua, solución de Ringer y disolución isotónica de cloruro de sodio. Además, convencionalmente se emplean aceite fijos estériles como disolvente o medio de suspensión. Para este fin, se puede emplear cualquier mezcla de aceite fijo que incluya mono- o di-glicéridos sintéticos. Además, en la preparación de inyectables se pueden utilizar ácidos grasos tales como ácido oleico. Formulaciones de vehículo adecuadas para la administración por vía oral, subcutánea, intravenosa, intramuscular, etc. se pueden encontrar en *Remington's Pharmaceuticals Sciences*, Mack Pulbishing Co., Easton, PA.

Los compuestos activos se pueden preparar con vehículos que protegerán al compuesto frente a una liberación rápida tal como una formulación de liberación controlada, incluidos implantes, parches transdermales y sistemas de administración microencapsulados. Se pueden utilizar polímeros biodegradables y biocompatibles tales como etileno-acetato de vinilo, polianhídridos, ácido poliglicólico, colágeno, poliortoésteres y ácido poliláctico. Muchos métodos para la preparación de formulaciones de este tipo están patentados o son generalmente conocidos por los expertos en la técnica. Véase, p. ej. Sustained and Controlled Release Drug Delivery Systems, J.R. Robinson, comp., Marcel Dekker, Inc., Nueva York, 1978.

Los productos terapéuticos de la invención se pueden administrar por cualquier vía convencional, incluida inyección o mediante infusión gradual a lo largo del tiempo. La administración puede ser, por ejemplo, oral, intravenosa, intraperitoneal, intramuscular, intracavidad, intratumoral o transdermal. Cuando se utilizan terapéuticamente compuestos que contienen anticuerpos, vías de administración incluyen la intravenosa y por aerosol pulmonar. Técnicas para preparar sistemas de administración de aerosol que contienen anticuerpos son bien conocidas por los expertos en la técnica. Generalmente, sistemas de este tipo deberían utilizar componentes que no perjudiquen significativamente las propiedades biológicas de los anticuerpos tales como la capacidad de unión al parátopo (véase, por ejemplo, Sciarra y Cutie, "Aerosols" en Remington's Pharmaceutical Sciences, 18ª edición, 1990, págs. 1694-1712). Los expertos en la técnica pueden determinar fácilmente los diversos parámetros y condiciones para producir aerosoles de anticuerpo sin recurrir a una experimentación excesiva.

Las composiciones de la invención se administran en cantidades eficaces. Una "cantidad eficaz" es la cantidad de cualquiera de los ADCs proporcionadas en esta memoria que sola, o junto con dosis adicionales y/u otros agentes terapéuticos, produce la respuesta deseada, p. ej., trata una enfermedad mediada por PSMA en un sujeto. Esto puede implicar solamente ralentizar temporalmente el progreso de la enfermedad, a pesar de que en algunas realizaciones implica detener permanentemente el progreso de la enfermedad. Esto se puede vigilar por métodos rutinarios. La respuesta deseada al tratamiento de la enfermedad o estado también puede retardar el brote o incluso prevenir el brote de la enfermedad o estado. Una cantidad que es eficaz puede ser la cantidad de un ADC solo que produce el punto final terapéutico deseado. Una cantidad que es eficaz es también la cantidad de un ADC en combinación con otro agente que produce el resultado deseado.

10

15

20

25

35

40

45

50

55

60

Cantidades de este tipo dependerán, naturalmente, de la enfermedad mediada por PSMA particular que se esté tratando, la gravedad del estado, los parámetros del paciente individuales incluidas la edad, condición física, altura y peso, la duración del tratamiento, la naturaleza de la terapia concurrente (si existe), la vía específica de administración y factores similares dentro del conocimiento y experiencia del practicante. Estos factores son bien conocidos por los expertos ordinarios en la técnica y pueden acometerse sin más que mediante una experimentación rutinaria. Generalmente, se prefiere utilizar una dosis máxima de los componentes individuales o combinaciones de los mismos, es decir, la dosis más elevada segura, de acuerdo con el juicio médico. Se comprenderá por parte de los expertos ordinarios en la técnica, sin embargo, que un paciente puede insistir en una dosis menor o una dosis tolerable por razones médicas, razones psicológicas o virtualmente por cualesquiera otras razones.

Las composiciones farmacéuticas utilizadas en los métodos que anteceden son preferiblemente estériles y contienen una cantidad eficaz de un ADC, sólo o en combinación con otro agente, para producir la respuesta deseada en una unidad de peso o volumen adecuada para la administración a un paciente. La respuesta, por ejemplo, se puede medir determinando los efectos fisiológicos de la composición de ADC tales como la regresión de un tumor o la disminución de síntomas de la enfermedad. Otros ensayos serán conocidos por un experto ordinario en la técnica y se pueden emplear para medir el nivel de la respuesta.

Las dosis de ADCs administradas a un sujeto se pueden elegir de acuerdo con diferentes parámetros, en particular de acuerdo con el modo de administración utilizado y el estado del sujeto. Otros factores incluyen el período de tratamiento deseado. En el caso de que una respuesta en un sujeto sea insuficiente en las dosis iniciales aplicadas, se pueden emplear dosis mayores (o dosis eficazmente mayores por una vía de suministro diferente y más localizada) en la medida en que lo permita la tolerancia del paciente.

En general, las dosis pueden oscilar entre aproximadamente 10 μg/kg y aproximadamente 100.000 μg/kg. En algunas realizaciones, las dosis pueden oscilar entre aproximadamente 0,1 mg/kg y aproximadamente 20 mg/kg. Todavía en otras realizaciones, las dosis pueden oscilar entre aproximadamente 0,1 mg/kg y 5 mg/kg, 0,1 mg/kg y 10 mg/kg o 0,1 mg/kg y 15 mg/kg. Todavía en otras realizaciones, las dosis oscilan entre aproximadamente 1 mg/kg y 5 mg/kg, 5 mg/kg y 10 mg/kg, 10 mg/kg y 15 mg/kg o 15 mg/kg y 20 mg/kg. En realizaciones adicionales, la dosis es de aproximadamente 0,1 mg/kg, 0,5 mg/kg, 1 mg/kg, 2 mg/kg, 3 mg/kg, 5 mg/kg, 7 mg/kg, 10 mg/kg, 12 mg/kg, 15 mg/kg, 17 mg/kg, 20 mg/kg, 25 mg/kg o 30 mg/kg. En otra realización, la dosis es de aproximadamente 1 mg/kg, 3 mg/kg, 5 mg/kg o 6 mg/kg. Basado en la composición, la dosis se puede administrar de modo continuo tal como mediante una bomba continua, o a intervalos periódicos. En algunas realizaciones, cuando el ADC se administra por vía intravenosa, la dosis oscila entre 0,1 y 20 mg/kg o cualquier valor entremedias. Intervalos de tiempos deseados de múltiples dosis de una composición particular se pueden determinar sin una experimentación excesiva por parte de un experto en la técnica. Otros protocolos para la administración de las composiciones proporcionadas serán conocidas por un experto ordinario en la técnica, en que la cantidad de dosis, el programa de administración, los sitios de administración, el modo de administración y similares varían de lo que antecede. En algunas realizaciones, a los sujetos se les administra el ADC con un régimen de dosis de q4d x 3 o q4d x 6. En una realización, la dosis se administra por vía intravenosa. En otra realización, el régimen de dosis es una dosis intravenosa única.

La administración de composiciones de ADC a mamíferos distintos de seres humanos, p. ej., para fines de ensayo o fines terapéuticos de veterinaria, se lleva a cabo bajo sustancialmente las mismas condiciones que las arriba descritas.

Las composiciones de la presente invención tienen utilidades diagnósticas y terapéuticas *in vitro* e *in vivo*. Por ejemplo, las moléculas se pueden administrar a células de un cultivo, p. ej. *in vitro* o ex vivo, o en un sujeto, p. ej. *in vivo*, para tratar, prevenir o diagnosticar una diversidad de enfermedades mediadas por PSMA. Tal como se

utiliza en esta memoria, el término "sujeto" pretende incluir seres humanos y animales no humanos. Sujetos incluyen un paciente humano que tiene un trastorno caracterizado por la expresión, típicamente una expresión aberrante (p. ej., sobre-expresión) de PSMA, trastornos de este tipo están incluidos en la definición "enfermedad mediada por PSMA".

Las composiciones proporcionadas en esta memoria se pueden utilizar en la terapia *in vivo* de cáncer. Los ADCs se pueden utilizar para inhibir la proliferación de las células o tejidos malignos después de la administración y localización de los conjugados. Las composiciones proporcionadas pueden incluir anticuerpos anti-PSMA, en algunas realizaciones, que pueden mediar en la destrucción del tumor mediante fijación del complemento o citotoxicidad celular dependiente de anticuerpos. Alternativamente, las composiciones pueden contener un agente terapéutico adicional que dé como resultado efectos terapéuticos sinérgicos (Baslya y Mendelsohn, 1994, *Breast Cancer Res. and Treatment* 29: 127-138).

Las composiciones de la invención también se pueden administrar, en algunas realizaciones, junto con anticuerpos anti-PSMA de complemento y/o no conjugados. Por consiguiente, dentro del alcance de la invención se encuentran composiciones que comprenden ADC y suero o complemento. Estas composiciones son ventajosas, debido a que el complemento está situado en estrecha proximidad a los anticuerpos humanos o fragmentos de unión a antígeno de los mismos. Alternativamente, los ADCs, anticuerpos o fragmentos de unión a antígeno de los mismos y/o complemento o suero se pueden administrar por separado.

El uso de los ADCs de la presente invención tiene un cierto número de beneficios. Dado que los ADCs fijan preferentemente como objetivo PSMA, p. ej., en células de cáncer de próstata, se puede reponer otro tejido. Como resultado, el tratamiento con agentes biológicos de este tipo es más seguro, particularmente para pacientes de edad. Se espera que el tratamiento con ADCs de acuerdo con la presente invención sea particularmente eficaz, en algunas realizaciones, debido a que puede dirigir altos niveles de ADCs a la médula ósea y nódulos linfáticos en los que pueden predominar metástasis de cáncer tales como metástasis de cáncer de próstata. El tratamiento con ADCs de acuerdo con la presente invención se puede vigilar eficazmente con parámetros clínicos tales como antígeno prostático específico en suero y/o características patológicas del cáncer de un paciente, incluida fase, puntuación de Gleason, invasión extracapsular, seminal, vesicular o perineural, márgenes positivos, nódulos linfáticos implicados, etc. Alternativamente, estos parámetros se pueden utilizar para indicar cuando debería emplearse un tratamiento de este tipo.

También dentro del alcance de la invención se encuentran kits que comprenden las composiciones, p. ej. uno o más ADCs de la invención e instrucciones para su uso. Los kits pueden contener, además, al menos un reactivo adicional tal como complemento, agente quimioterapéutico, un corticosteroide o uno o más anticuerpos que se unen a PSMA. Otros kits pueden incluir también multímeros de PSMA. En otra realización, un kit puede comprender un soporte que esté repartido en compartimientos para alojar en estrecho confinamiento en su interior uno o más medios de recipiente o series de medios de recipiente tales como tubos de ensayo, viales, matraces, frascos, jeringas o similares. Uno primero de dichos medios de recipiente o serie de medios de recipiente puede contener uno o más anticuerpos anti-PSMA o fragmentos de unión a antígeno de los mismos. Un segundo medio de recipiente o series de medio de recipiente puede, en algunas realizaciones, contener MMAE o MMAF, o el compuesto de **Fórmula 1** conjugado a MMAE o MMAF. En algunas realizaciones, un tercer medio de recipiente o series de medio de recipiente contienen un compuesto de **Fórmula 1**. Se pueden preparar kits para uso en la localización del tumor *in vivo* y el método de terapia que contiene los ADCs. Los componentes de los kits pueden envasarse en un medio acuoso o en forma liofilizada. Los componentes de los conjugados ADC se pueden suministrar en forma totalmente conjugada, en forma de compuestos intermedios o como restos separados a conjugar por parte del usuario del kit.

Tal como se utiliza en esta memoria con respecto a polipéptidos, proteínas o fragmentos de los mismos, "aislado" significa separado de su entorno nativo y presente en una cantidad suficiente para permitir su identificación o uso. Aislado, cuando se refiere a una proteína o polipéptido significa, por ejemplo. (i) producido selectivamente mediante clonación de expresión o (ii) purificado tal como por cromatografía o electroforesis. Proteínas o polipéptidos aislados pueden pero no necesitan ser sustancialmente puros. La expresión "sustancialmente puros" significa que las proteínas o polipéptidos están esencialmente exentos de otras sustancias con las que se pueden encontrar en la naturaleza o sistemas *in vivo* en una medida práctica y apropiada para su uso pretendido. Polipéptidos sustancialmente puros se pueden producir por técnicas bien conocidas en la técnica. Dado que una proteína aislada se puede mezclar con un vehículo farmacéuticamente aceptable en un preparado farmacéutico, la proteína puede comprender sólo un pequeño porcentaje en peso del preparado. No obstante, la proteína está aislada, debido a que ha sido separada de las sustancias con las que puede estar asociada en sistemas vivos, es decir, aislada de otras proteínas.

Las composiciones proporcionadas en esta memoria pueden estar en forma liofilizada o pueden ser proporcionadas en un medio acuoso.

5 La presente invención se ilustra adicionalmente mediante los siguientes **Ejemplos**.

Ejemplos

10

15

35

40

45

<u>Ejemplo 1: Potente Actividad Antitumoral de un Anticuerpo Monoclonal Conjugado con Auristatina, Totalmente Humano, contra Antígeno Prostático Específico de Membrana</u>

Materiales y métodos

Líneas de células y anticuerpos

LNCaP™ (CRL-1740), PC-3™ (CRL-1435) y 3T3™ (CRL-2752) se obtuvieron de American Type Culture Collection (Rockville, MD). La línea de células C4-2, una sub-línea de células procedente de LNCaP™, se obtuvo de The Cleveland Clinic Foundation (Cleveland, OH). Una línea de células de 3T3™-PSMA se obtuvo de Memorial Sloan-Kettering Cancer Center (Nueva York, NY). LNCaP™, C4-2 y PC-3™ se cultivaron en RPMI 1640 (Life Technologies, Gaithersburg, MD), y 3T3™ y 3T3™-PSMA se cultivaron en DMEM (Life Technologies). Los medios 20 de cultivo se suplementaron con suero de bovino fetal al 10% (Hyclone, Logan, UT), L-glutamina, penicilina y estreptomicina (Life Technologies). Se determinó que células C4-2, LNCaP™ y 3T3™-PSMA expresan PSMA a niveles de aproximadamente 2×10^5 , 6×10^5 y > 1 x 10^6 copias/célula, respectivamente, de acuerdo con los métodos publicados (Ma D, et al., Leukemia 2002; 16:60-6). C4-2 es un sub-clon andrógeno-independiente de 25 células LNCaP™ andrógeno-dependientes. PC-3™ es una línea de células de cáncer de próstata des-diferenciada que no expresa PSMA. PSMA Acms (AB-PG1-XG1-006 (PTA-4403 y PTA 4404) y Abgenix 4.40.2 (PTA-4360)) se produjeron tal como se describe previamente en la solicitud de patente de EE.UU. Nº. 10/395.894 y Schulke N et al., PNAS USA, 2003; 100:12590-5, cada uno de los cuales se incorpora en esta memoria como referencia en su totalidad. Abgenix 4.40.2 se utilizó como control. Un PSMA Acm totalmente humano (IgG1, κ) se desarrolló en 30 ratones transgénicos para el locus del gen de inmunoglobulina humana (XenoMice™, Abgenix, Inc., Fremont, CA) después de inmunización con PSMA soluble recombinante y células LNCaP según se ha descrito previamente

Internalización de PSMA

Acms se modificaron con quelatos bifuncionales de ácido ciclohexil-dietilentriaminapentaacético (CHX-DTPA) obtenidos del National Cancer Institute (Bethesda, MD) y se marcaron con ¹¹¹In (Perkin Elmer, Boston, MA), tal como se describe previamente (Ma D, et al., *Leukemia* 2002; 16:60-6; Nikula TK, et al., *J Nucl. Med* 1999; 40:166-76). Se determinó que el Acm marcado con ¹¹¹In era > 90% inmunorreactivo al incubar el radioconjugado con un exceso de células 3T3™-PSMA y medir la fracción unida de acuerdo con métodos publicados (Ma D, et al., *Leukemia* 2002; 16:60-6; Nikula TK, et al., *J Nucl. Med* 1999; 40:166-76). Para el análisis de la internalización, el Acm marcado con ¹¹¹In se incubó con 2 x 10⁵ células C4-2 a 37°C en 5% de CO₂. A instantes secuenciales, el Acm no ligado se separó mediante lavado en PBS y el Acm de la superficie de la célula se eluyó utilizando el tampón de pH bajo (pH 2,4, glicina/NaCl). El material eluido de bajo pH se recontó por separado a partir del sedimento de células, y el porcentaje de internalización se calculó como se describe previamente (McDevitt MR, et al., *Cancer Res* 2000; 60:6095-100).

Preparación de Conjugados Anticuerpo-Fármaco

(Schulke N et al., PNAS USA, 2003; 100:12590-5).

La síntesis y el diseño de los enlazadores y la conjugación del enlazador al fármaco citotóxico se llevaron a cabo según se describe en la patente de EE.UU. Nº. 6.884.889 y la patente de EE.UU. Nº. 6.214.345, cada una de las cuales se incorpora en esta memoria como referencia en su totalidad. La conjugación de Acms con maleimidocaproil (mc)-valina (Val)-citrulina (Cit)-monometil auristatina E (MMAE) se realizó según se describe (Doronina SO, et al., *Nat. Biotechnology*. 2003; 21:778-84). PSMA Acm e IgG1 humana control de isotipo (Calbiochem, San Diego, CA) en PBS que contenía borato 50 mM, pH 8,0, se trataron con ditiotreitol (DTT) (10 mM final) a 37°C durante 30 min. Las concentraciones de la reacción finales eran 7,5 mL – 8,0 ml, 1 mL de borato de sodio 0,5 M pH 8 y NaCl 0,5 M, 1 mL de DTT 100 mM y 0,5 mL o 0 ml, respectivamente, de PBS. Esta disolución se incubó a 40°C durante 1 h y el anticuerpo se purificó en una columna de filtración en gel. La columna se equilibró con DTPA 10 mM en PBS a razón de 10 mL/min, se cargó con 10,0 mL de mezcla de reducción de anticuerpos y se eluyó a 8 mL/min en tampón PBS/DTPA. La concentración de anticuerpo-cisteína tioles

producidos se determinó titulando con 5,5'-ditio-bis-(ácido 2-nitrobenzoico) (DTNB) (Pierce Chemical Co., Rockford, IL). Un producto químico equivalente se puede obtener de Sigma (St. Louis, MO).

El Acm totalmente reducido Abgenix 4.40.2 (22,6 mL de Acm 7,8 μ M, cisteína-tiol 75,6 μ M) se re-oxidó parcialmente con 35,43 μ L de DTNB 10 mM, y el Acm totalmente reducido AB-PG1-XG1-006 (25,1 mL de Acm 11,2 μ M, cisteína-tiol 95,8 μ M) se re-oxidó parcialmente con 56,27 μ L de DTNB 10 mM. El color de la disolución se volvió inmediatamente amarilo.

El fármaco mc-Val-Cit-carbamato de paraaminobencil-MMAE (vcMMAE) se conjugó luego con los Acms parcialmente re-oxidados como sigue: primeramente, los Acms se enfriaron hasta 0°C. vcMMAE (5 equivalentes molares por anticuerpo: 89,7 y 140,6 μL, respectivamente, de una disolución patrón 10 mM de vcMMAE) se disolvieron en 5 mL de acetonitrilo y luego se añadieron a la disolución de anticuerpos al tiempo que se sometía a vórtice con cuidado. Las mezclas de reacción se incubaron en hielo. No se observó cambio de color adicional alguno. Las mezclas de reacción se enfriaron bruscamente con 20 equivalentes molares de cisteína/fármaco. El conjugado se purificó utilizando una columna de filtración en gel a 4°C y se eluyó con PBS a razón de 8,0 mL/min. Se determinó que los ADCs tenían ≥ 98% de Acm monomérico que contenía 3,0-3,5 fármacos por Acm, utilizando los métodos publicados (Doronina SO, et al., *Nat Biotechnol.* 2003; 21: 778-84).

Alternativamente, la conjugación de Acms con maleimidocaproil (mc)-valina (Val)-citrulina (Cit)-monometil auristatina E (MMAE) se realizó como se describe (Doronina SO, et al., *Nat Biotechnol.* 2003; 21:778-84). PSMA Acm e IgG1 humana control de isotipo (Calbiochem, San Diego, CA) en PBS, que contenía borato 50 mM, pH 8,0, se trataron con ditiotreitol (DTT) (10 mmM final) a 37°C durante 30 min. Los Acms se intercambiaron en PBS que contenía DTPA 1 mM (Aldrich, Milwaukee, WI) mediante el paso a través de una columna Sephadex G-25 (Amersham Biosciences, Piscataway, NJ). Las disoluciones de Acm se enfriaron rápidamente hasta 4°C y se combinaron con el derivado de fármaco maleimido en CH₃CN frío. Al cabo de una 1 hora, las reacciones se enfriaron bruscamente con cisteína en exceso, y los conjugados se concentraron e intercambiaron en tampón PBS. Se determinó que los ADCs tenían ≥ 98% de Acm monomérico que contenía 3,0-3,5 fármacos por Acm utilizando métodos publicados (Doronina SO, et al., *Nat Biotechnol.* 2003; 21:778-84).

30 Reactividad de ADCs con PSMA de la Superficie de la Célula

La unión de PSMA Acm y ADC a células 3T3™-PSMA y 3T3™ parentales se analizó utilizando un citómetro de flujo FACSCalibur (BD Bioscience, San Diego, CA). En síntesis, 2 x 10⁵ células 3T3™-PSMA (o 3T3™) se incubaron con diferentes concentraciones de Acm o ADC en hielo durante 1 h. Después del lavado, la presencia de anticuerpos ligados se detectó utilizando IgG-FITC anti-humano de cabra (Caltag Laboratories, Burlingame, CA). En paralelo se examinaron el anticuerpo control de isotipo y ADC.

Ensayo de Citotoxicidad In Vitro

20

25

35

50

55

60

Células PSMA-positivas (C4-2, LNCaP™ o 3T3™-PSMA) y células PSMA-negativas (PC-3™ o 3T3™) se añadieron a microplacas de 96 pocillos (Falcon, BD Biosciences, San Jose, CA) a razón de 2,5 x 10³ células/pocillo y se incubaron durante una noche a 37°C y 5% de CO₂. Las células se incubaron luego con ADCs diluidos en serie durante 4 días. El medio de cultivo celular se reemplazó por medio reciente que contenía azul de Alamar al 10% (Biosource International, Camarillo, CA), y las células se incubaron durante 4 h. Después, las placas se leyeron en un lector de placas para fluorescencia utilizando una longitud de onda de excitación de 530 nm y una longitud de onda de emisión de 590 nm. La supervivencia de células se comparó en cultivos tratados y no tratados, y se determinó la concentración de ADC requerida para el exterminio del 50% de las células (valor Cl₅o).

Modelo de Xenoinjerto de Cáncer de Próstata Andrógeno-Independiente

Todos los estudios con animales se llevaron a cabo de acuerdo con las directrices del Comité para el Cuidado y Uso de Animales. A ratones inmunológicamente deficientes machos atímicos (National Cancer Institute, Frederick, MD) de 6-8 semanas de edad se les implantaron con una inyección intramuscular de 5 x 10⁶ células C4-2 mezcladas con Matrigel al 50% (Beckon Dickinson Labware, Bedford, MA) en la pata trasera izquierda según se describe (McDevitt MR, et al., *Cancer Res* 2000; 60:6095-100). Aproximadamente 1 día antes del inicio del tratamiento, los animales fueron repartidos al azar de acuerdo con los niveles de suero de antígeno prostático específico (PSA) según se mide por ELISA (Medicorp, Montreal, Quebec, Canadá). ADC, Acms y control vehículo se administraron a través de inyección en la vena de la cola. En la primera serie de experimentos, los ratones fueron tratados en grupos de 6 con 2 ó 10 mg/kg de PSMA ADC o con control vehículo. El tratamiento se inició 17 días después de la implantación y consistía en 3 inyecciones a intervalos de 4 días (q4d x 3). La segunda serie de

experimentos examinó los niveles de dosis de 0,3 ó 6 mg/kg. El tratamiento se inició 14 días post-implantación y consistía en 6 inyecciones a intervalos de 4 días (q4d x 6). Los animales fueron vigilados en cuanto a su aspecto físico, peso corporal, nivel de PSA y tamaño del tumor. Las tasas de supervivencia se registraron a lo largo de los estudios.

Análisis Estadísticos

Los efectos del tratamiento se examinaron en cuanto a la significancia a través de ensayos t (para niveles de PSA) o ensayos de rangos logarítmicos (para la supervivencia de animales) utilizando análisis apareados de dos colas. Los datos eran considerados significativos cuando P < 0,05.

Resultados

Internacionalización de PSMA Acm en Células de Cáncer de Próstata Humano

La internalización se examinó utilizando PSMA Acm marcado con ¹¹¹In y células C4-2. En las **Fig. 1** se ilustra la unión total y el porcentaje de internalización a lo largo del tiempo. Más de la mitad del Acm ligado se internalizó en el espacio de 2 h (**Fig. 1A**). La unión total aumentó a lo largo del tiempo, presumiblemente debido al reciclaje de PSMA (**Fig. 1B**). Así, el PSMA Acm se internaliza fácilmente en células que expresan PSMA.

Reactividad del PSMA ADC con Células que expresan PSMA

La citometría de flujo se utilizó para comparar la unión de PSMA Acm y ADC. El Acm y ADC no modificados demostraron niveles equiparables de unión a 3T3™-PSMA a lo largo de un amplio intervalo de dilución (**Fig. 2**). Ni la cantidad máxima de unión ni la concentración requerida para la unión semi-máxima se vio apreciablemente afectada por la conjugación. No se observó unión significativa alguna para el ADC de control de isotipo o anticuerpo en células 3T3™-PSMA o para el PSMA Acm o ADC en células 3T3™ parentales.

Potencia y selectividad in vitro del PSMA ADC

PSMA y control ADCs se sometieron a ensayo en cuanto a citotoxicidad *in vitro* frente a líneas de células de cáncer de próstata humanas y células 3T3™-PSMA. La **Fig. 3** ilustra curvas de dosis-respuesta para células C4-2 PSMA-positivas y células PC-3™ PSMA-negativas en un experimento representativo, y valores Cl₅₀ para las diversas líneas de células se listan en la **Tabla 2**. El PSMA ADC eliminaba en potencia todas las líneas de células PSMA-positivas examinadas, a valores Cl₅₀ de 65-210 pM, mientras que estas concentraciones no tenían efecto alguno sobre células PSMA-negativas. En contraposición, se requerían concentraciones aproximadamente 1000 veces mayores para el ADC control, cuya actividad era independiente de la expresión de PSMA (**Fig. 3** y **Tabla 2**).

Tabla 2: Sumario de la citotoxicidad in vitro (valores Cl₅₀ en pM)

	C4-2	LNCaP™	3T3™-PSMA
PSMA ADC	65 ± 19 (n = 3)	83 ± 21 (n = 2)	208 ± 37 (n = 3)
ADC control	54.954 (n = 1)	72.444 (n = 1)	154.880 (n = 1)
Selectividad*	848	877	744

^{*}La selectividad iguala a la relación de valores Cl₅₀ observados para el PSMA ADC y ADC control

Eficacia del PSMA ADC en un Modelo de Xenoinjerto de Cáncer de Próstata Andrógeno-Independiente

La eficacia *in vivo* del PSMA ADC se evaluó en un modelo de ratón de cáncer de próstata humano andrógeno-independiente. A ratones inmunológicamente deficientes se les injertaron por vía intramuscular células C4-2 en la pata trasera izquierda. Aproximadamente 14-17 días más tarde se midieron los niveles de PSA en el suero y se utilizaron para asignar al azar, animales a grupos de tratamiento. Los animales fueron tratados por vía intravenosa con el PSMA ADC y los animales fueron vigilados en cuanto a la carga del tumor, niveles de PSA y otros parámetros durante un tiempo tan prolongado como de 500 días.

En el primer experimento, los animales fueron tratados q4d x 3 con 0.2 ó 10 mg/kg de PSMA ADC. Los animales que se dejaron sin tratar desarrollaron rápidamente tumores y los animales tenían una supervivencia mediana de 32 días. En contraposición, los grupos tratados con 2 mg/kg y 10 mg/kg de PSMA ADC tenían supervivencias medianas de 58 días (P = 0.0035) y 94,5 días (P = 0.0012), respectivamente (**Tabla 3, Fig. 4A**). El tratamiento con

10

15

20

5

30

25

40

45

50

PSMA ADC mejoró significativamente la supervivencia mediana hasta 4,5 veces de una manera dependiente de la dosis. No existía evidencia de toxicidad relacionada con el tratamiento.

Los niveles de PSA en el suero se midieron a lo largo del tiempo mediante ELISA. La **Fig. 4B** representa la concentración media de PSA en cada uno de los grupos en los días de estudio 17, 23 y 30. El tratamiento a razón de 10 mg/kg redujo los niveles de PSA > 10 veces desde 8,8 ± 11,7 ng/mL el día 17 hasta 0,7 ± 0,9 ng/mL el día 30, mientras que niveles de PSA en el grupo control aumentaban > 60 veces a lo largo del mismo período de tiempo. Se observó una respuesta intermedia a 2 mg/kg de PSMA ADC. Las diferencias en los niveles de PSA el día 30 eran significativas tanto para los grupos de dosis de 2 mg/kg (*P* = 0,0048) como de 10 mg/kg (*P* = 0,0006). Tres de seis animales en el grupo de 10 mg/kg tenían un PSA no detectable hasta el día 52 del estudio.

5

10

15

20

25

30

35

40

45

50

Con el fin de ampliar estos hallazgos, se realizó un segundo estudio de PSMA ADC que también incluía Acm no modificado y ADC control de isotipo. Después de la aleatorización el día 14 con un nivel medio de PSA de 2,0 + 1,1 ng/mL en cada uno de los grupos (n = 5), los animales fueron tratados con un régimen de q4d x 6. En la Fig. 5 se representan curvas de supervivencia según Kaplan-Meier para cada uno de los grupos. Los animales tratados con control vehículo, 6 mg/kg de PSMA Acm no modificado y 6 mg/kg de ADC control tenían tiempos de supervivencia medianos similares de 29, 31 y 31 días, respectivamente; y estas diferencias no eran significativas. Sin embargo, la supervivencia mediana se amplió hasta 49 días y 148 días para animales tratados con 3 mg/kg y 6 mg/kg de PSMA ADC, respectivamente (Tabla 3). El tratamiento del grupo de PSMA ADC con 6 mg/kg mejoró la supervivencia post-aleatorización 7,9 veces con relación al grupo ADC control (P = 0,0018). El día 500, 2 de 5 animales no tenían evidencia de tumor, no había un PSA mensurable y se consideraron curados mediante el tratamiento. Como en el primer estudio, el tratamiento tenía un impacto significativo sobre los niveles de PSA el día 29 (P = 0,0068 para grupos de 6 mg/kg de PSMA y vehículo). Además de ello, en el grupo de 6 mg/kg de PSMA ADC, el PSA del suero disminuyó hasta niveles no detectables post-tratamiento y permaneció siendo no detectable hasta el día 63 en 4 de 5 animales. No existía una toxicidad evidente asociada con la terapia con ADC. El aspecto físico y la actividad se vieron no afectados por el tratamiento, y los pesos corporales de animales tratados y vehículo-control no eran significativamente diferentes en cualquier instante.

Tabla 3: Sumario de los tiempos de supervivencia medianos de animales portadores de tumores C4-2 tratados con PSMA ADC

	Artículo de ensayo	Dosis (mg/kg)	Supervivencia mediana (días)	Valor <i>P</i> *
Estudio nº 1	Vehículo	NA	32	NA
	PSMA ADC	2	58	0,0035
	PSMA ADC	10	95	0,0010
Estudio nº 2	Vehículo	NA	29	NA
	PSMA Acm	6	31	0,1869
	ADC control	6	31	0,2970
	PSMA ADC	3	49	0,0018
	PSMA ADC	6	148	0,0018

^{*}Comparado con el grupo control vehículo en un análisis de rangos logarítmicos de doble cara. NA = no aplicable

Ejemplo 2: Evaluación de PSMA Acm Conjugado a Tres Fármaco-enlazador Diferentes

Se evaluó el PSMA Acm cuando se conjugaba a vcMMAE y a otros dos fármaco-enlazador vcMMAF y mcMMAF. Las estructuras químicas completas de los tres fármaco-enlazador diferentes se ilustran en la **Fig. 6.**

Preparación de Tres Conjugados de Fármaco-enlazador de PSMA Acm

Los tres fármaco-enlazador se conjugaron directamente a PSMA Acm a través de un enlace tioéter para preparar aproximadamente cuatro fármacos por conjugado de anticuerpos. La reducción parcial de los disulfuros de la intercadena del Acm prosiguió con un ligero exceso de tris(2-carboxietil)fosfina (TCEP) a pH 7,2 y 37°C y la subsiguiente conjugación de los tioles libres con fármaco-enlazadores era cuantitativa. En síntesis, el PSMA Acm (10 mg, 67,5 nmol en PBS) se incubó a 37°C con DTPA 1 mM y 169 nmol de TCEP durante 90 min. A tres instantes durante la incubación (30, 60 y 90 minutos) se separaron partes alícuotas de 50 µg de Acm y se hicieron reaccionar con un exceso de vcMMAE. El análisis de los ADCs resultantes mediante cromatografía por interacción hidrofóbica permitió seguir el progreso de la reducción. Los resultados indicaban que el Acm se reducía rápidamente bajo las condiciones anteriores, completándose esencialmente al cabo de 1 hora. Además de ello, el grado de reducción resultó en una carga media de fármaco de 5 fármacos/Acm.

Para preparar un ADC 4 veces cargado con fármaco-enlazadores procedentes del Acm parcialmente reducido anterior, 0,5 equivalentes de DTNB se añadieron para re-oxidar de nuevo la población de Acm al nivel deseado. Después, 3 mg de este material (20,3 nmol) se hicieron reaccionar con 101 nmol de vcMMAE, vcMMAF o mcMMAF en una disolución de reacción de dimetilsulfóxido (DMSO) al 15%. Esta reacción prosiguió durante 1 hora a 0°C y luego se enfrió bruscamente con un exceso de 20 veces de N-acetil-cisteina. Los ADCs se separaron del fármaco que no había reaccionado y otras impurezas de moléculas pequeñas mediante cromatografía por exclusión del tamaño (SEC) en una columna PD-10 (Amersham Biosciences/GE Healthcare, Piscataway, NJ) y se concentraron con un dispositivo de concentración centrífugo (30 kD MWCO) (Amicon Bioseparations, Millipore Corporation, Bedford, MA).

Un resumen de la caracterización de tres conjugados fármaco-enlazador se proporciona en las **Tablas 4-6** para vcMMAE, vcMMAF y mcMMAF, respectivamente. Para cada uno de los tres fármaco-enlazadores, el ADC contiene aproximadamente 4 fármacos por Acm, según se determina mediante distribución de la carga de cadena H/L y la distribución de la especie, y < 2% de fármaco libre según se determina utilizando HPLC de fase inversa (RP). Para todos los conjugados, no se detectaron agregados mediante SEC-HPLC. Además, los rendimientos globales de Acm eran 70-80%.

Tabla 4 Certificado de Ensayo del Conjugado 699028A PSMA Acm vcMMAE Reducción Parcial

Ensayo Método Resultado Concentración de Acm UV 3,3 mg/mL Distribución de la Carga de cadena 4,3 Fármaco/Acm mol/mol H/L (PLRP) Distribución de la especie (HIC) Fármaco No Conjugado RP-HPLC < 0,5 % de fármaco total Homogeneidad del Tamaño SEC-HPLC No detectado % de Agregado Distribución de la Relación Molar HIC-HPLC 3.5% 0 fármacos/Ac % del total 19,4% 2 fármacos/Ac 39,6% 4 fármacos/Ac 21.0% 6 fármacos/Ac 11,7% 8 fármacos/Ac PLRP-HPLC Anticuerpo Desnaturalizado 31,3% L0 68.7% L1 10,7% H0 40,4% H1 25.1% H2 23,7% H3

25

5

10

15

Tabla 5 Certificado de Ensayo del Conjugado 699028B

PSMA Acm vcMMAF Reducción Parcial

	Į	

Reduction Partial										
Ensayo	Método	Resultado								
Concentración de Acm	UV	3,1								
mg/mL										
<u>Fármaco/Acm</u>	Distribución de la Carga de cadena	4,4								
mol/mol	H/L (PLRP)									
	Distribución de la especie									
	(HIC)									
Fármaco No Conjugado	RP-HPLC	< 0,5								
% de fármaco total										
Homogeneidad del Tamaño	SEC-HPLC	No detectado								
% de Agregado										
Distribución de la Relación Molar	HIC-HPLC	3,3% 0 fármacos/Ac								
% del total		18,5% 2 fármacos/Ac								
		39,0% 4 fármacos/Ac								
		22,2% 6 fármacos/Ac								
		13,5% 8 fármacos/Ac								
Anticuerpo Desnaturalizado	PLRP-HPLC	29,0% L0								
		71,0% L1								
		9,9% H0								
		40,2% H1								
		24,9% H2								
		25,0% H3								

Tabla 6 Certificado de Ensayo del Conjugado 699028C

PSMA Acm vcMMAF Reducción Parcial

15

	Neuuccion Faiciai	
Ensayo	Método	Resultado
Concentración de Acm	UV	3,7
mg/mL		
<u>Fármaco/Acm</u>	Distribución de la Carga de cadena	4,4
mol/mol	H/L (PLRP)	
	Distribución de la especie	
	(HIC)	
<u>Fármaco No Conjugado</u>	RP-HPLC	1,8
% de fármaco total		
Homogeneidad del Tamaño	SEC-HPLC	No detectado
% de Agregado		
Distribución de la Relación Molar	HIC-HPLC	3,8% 0 fármacos/Ac
% del total		22,4% 2 fármacos/Ac
		36,3% 4 fármacos/Ac
		23,1% 6 fármacos/Ac
		14,4% 8 fármacos/Ac
Anticuerpo Desnaturalizado	PLRP-HPLC	32,7% L0
		67,3% L1
		14,7% H0
		39,6% H1
		23,8% H2
		21,9% H3

Potencia y selectividad de Conjugados de PSMA Acm sobre Células de Cáncer de Próstata Humano

Se realizaron estudios de citotoxicidad in vitro con líneas de células PSMA-positivas y PSMA-negativas. En

síntesis, células PSMA-positivas (C4-2, LNCaP™ o 3T3™-PSMA) y células PSMA-negativas (PC-3T™ o 3T3™) se añadieron a microplacas de 96 pocillos a razón de 2,5 x 10³ células/pocillo y se incubaron durante una noche a 37°C y 5% de CO₂. Después, las células se incubaron con ADCs diluidos en serie durante 4 días y se sometieron a ensayo en cuanto al porcentaje de exterminio de células en comparación con controles no tratados, utilizando azul de Alamar al 10%. Se determinó la concentración de ADCs requerida para el extermino del 50% de las células (valor CI₅₀).

La Fig. 7 ilustra curvas de dosis-respuesta de conjugados de vcMMAE (Fig. 7A), vcMMAF (Fig. 7B) y mcMMAF (Fig. 7C) para células C4-2 PSMA-positivas y células PC-3™ PSMA-negativas en un experimento representativo. En la Tabla 7 se lista un resumen de la potencia (CI₅₀) y selectividad sobre líneas de células C4-2 y PC-3™. La CI₅₀ en células C4-2 que expresan PSMA se encontraba en concentraciones picomolares de 11, 42 y 60 para conjugados de vcMMAF, mcMMAF y vcMMAE, respectivamente. En contraposición, los CI₅₀ en células PC-3™ PSMA-negativas eran mayores que 90 nM, oscilando desde 94 a 264 nM. En base a la potencia de cada uno de los conjugados en PC-3™ y C4-2, se calculó la selectividad que era de 13.636; 6.286 y 1.567 para conjugados vcMMAF, mcMMAF y vcMMAE, respectivamente. El conjugado vcMMAF era el más potente en la línea de células C4-2 PSMA-positiva, y el mcMMAF era el menos tóxico frente a la línea de células control PC-3™. En comparación con el conjugado vcMMAE, existía una mejora de 4 veces y 9 veces en la selectividad para conjugados mcMMAF y vcMMAF, respectivamente.

Tabla 7: Sumario de la potencia y selectividad in vitro (valores Cl₅₀ en pM)

	Poten	cia (pM)	Selectividad	Mejora frente a
	C4-2 (n = 3)	PC-3 (n = 2)	(PC-3/C4-2)	vcMMAE
Fármaco-enlazador				
vcMMAF	11	150.000	13636	9 veces
mcMMAF	42	264.000	6286	4 veces
vcMMAE	60	94.000	1567	-

Mecanismo del Exterminio de Células por parte de Conjugado PSMA Acm Fármaco

30

35

25

5

10

15

20

Se realizó un análisis del ciclo celular para determinar el mecanismo de la citotoxicidad mediada por MMAE-Acm conjugado. Células $3T3^{TM}$ -PSMA o C4-2 se cultivaron en presencia de PSMA ADC 0,2 nM o PSMA Acm 20 nM no modificado. Las células no tratadas servían como cultivo control. A las 12 h, 24 h y 48 h, las células se tiñeron con yoduro de propidio (PI) para detectar el ADN total y se analizaron mediante citometría de flujo. Tal como se indica en la **Fig. 8**, las células tratadas con PSMA ADC se paralizaron en la fase G_2 . Mediante post-tratamiento durante 48 h, el porcentaje de células con un conjunto duplicado de cromosomas era > 50% para los cultivos de PSMA ADC y 2% para cultivos no tratados. La paralización del ciclo celular requería la presencia de la toxina, en este caso MMAE, dado que sólo el 3% de las células tratadas con Acm no modificado se encontraban en la fase G_2 /M a las 48 h. Los datos demuestran que el tratamiento de células de cáncer de próstata con MMAE ADCs conduce a una paralización en G_2 /M y luego a la apoptosis de células diana.

ES 2 440 482 T3

LISTADO DE SECUENCIAS

5	<110>	PSMA DEVELOPMENT COMPANY, L.L.C. MA, Dangshe MADDON, Paul J. OLSON; William C. DORONINA. Svetlana TOKI, Brian SENTER, Peter															
10	<120>			DOS [DE PS	1A-AM	NTICU	ERPC	–FÁF	RMAC	o						
	<130>	p0741.70008wo00															
15	<150> <151>		60/792 4-2006														
20	<150> <151>	US 60/692.399 20-06-2005															
20	<160>	33	33														
	<170>	Pate	ntln ve	ersión	3.1												
25	<210> <211> <212> <213>	1 750 PRT Hom	o sapi	ens													
30	<400>	1															
		Met 1	Trp	Asn	Leu	Leu 5	His	Glu	Thr	Asp	Ser 10	Ala	Val	Ala	Thr	Ala 15	Arg
		Arg	Pro	Arg	Trp 20	Leu	Cys	Ala	Gly	Ala 25	Leu	Val	Leu	Ala	30 30	Gly	Phe
		Phe	Leu	Leu 35	Gly	Phe	Leu	Phe	Gly 40	Trp	Phe	Ile	Lys	Ser 45	Ser	Asn	Glu
		Ala	Thr 50	Asn	Ile	Thr	Pro	Lys 55	His	Asn	Met	Lys	Ala 60	Phe	Leu	Asp	Glu

35

ES 2 440 482 T3

Leu 65	Lys	Ala	Glu	Asn	Ile 70	Lys	Lys	Phe	Leu	Tyr 75	Asn	Phe	Thr	Gln	Ile 80
Pro	His	Leu	Ala	Gly 85	Thr	Glu	Gln	Asn	Phe 90	Gln	Leu	Ala	Lys	Gln 95	Ile
Gln	Ser	Gln	Trp 100	Lys	Glu	Phe	Gly	Leu 105	Asp	Ser	Val	Glu	Leu 110	Ala	His
Tyr	Asp	Val 115	Leu	Leu	Ser	Tyr	Pro 120	Asn	Lys	Thr	His	Pro 125	Asn ·	Tyr	Ile
Ser	Ile 130	Ile	Asn	Glu	Asp	Gly 135	Asn	Glu	Ile	Phe	Asn 140	Thr	Ser	Leu	Phe
Glu 145	Pro	Pro	Pró	Pro	Gly 150	Tyr	Glu	Asn	Val	Ser 155	Asp	Ile	Val	Pro	Pro 160
Phe	Ser	Ala	Phe	Ser 165	Pro	Gln	Gly		Pro 170	Glu	Gly	Asp	Leu	Val 175	Tyr
Val	Asn	Tyr	Ala 180	Arg	Thr	Glu	Asp	Phe 185	Phe	Lys	Leu	Glu	Arg 190	Asp	Met
Lys	Ile	Asn 195	Cys	Ser	Gly	Lys	Ile 200	Val	Ile	Ala	Arg	Tyr 205	Gly	Lys	Val
Phe	Arg 210	Gly	Asn	Lys	Val	Lys 215	Asn	Ala	Gln	Leu	Ala 220	Gly	Ala	Lys	Gly
Val 225	Ile	Leu	Tyr		Asp 230	Pro	Ala	Asp	Tyr	Phe 235	Ala	Pro	Gly ,	Val	Lys 240
Ser	Tyr	Pro	Asp	Gly 245	Trp	Asn	Leu	Pro	Gly 250	Gly	Gly	Val	Gln	Arg 255	Gly
Asn	Ile	Leu	Asn 260	Leu	Asn	Gly	Ala	Gly 265	Asp	Pro	Leu	Thr	Pro 270	Gly	Tyr
Pro	Ala	Asn 275	Glu	Туг	Ala	Tyr	Arg 280	Arg	Gly	Ile	Ala	Glu 285	Ala	Val	Gly
Leu	Pro 290	Ser	Ile	Pro	Val	His 295	Pro	Ile	Gly	Туг	Tyr 300	Asp	Ala	Gln	Lys

Leu 305	Lev	Glu	Lys	Met	Gly 310		Ser	Ala	Pro	Pro 315		Ser	Ser	Trp	Arg 320
Gly	Ser	Leu	Lys	Val 325		Tyr	Asn	Val	Gly 330		Gly	Phe	Thr	Gly 335	Asn
Phe	Ser	Thr	Gln 340		Val	Lys	Met	His 345		His	Ser	Thr	Asn 350		Val
Thr	Arg	Ile 355		Asn	Val	Ile	Gly 360	Thr	Leu	Arg	Gly	Ala 365	Val	Glu	Pro
Asp	Arg 370		Val	Ile	Leu	Gly 375	Gly	His	Arg	Asp	Ser 380	Trp	Val	Phe	Gly
Gly 385	Ile	Asp	Pro	Gln	Ser 390	Gly	Ala	Ala	Val	Val 395	His	Glu	Ile	Val	Arg 400
Ser	Phe	Gly	Thr	Leu 405	Lys	Lys	Glu	G1y	Trp 410	Arg	Pro	Arg	Arg	Thr 415	Ile
Leu	Phe	Ala	Ser 420	Trp	Asp	Ala	Glu	Glu 425		Gly	Leu	Leu	Gly 430	Ser	Thr
Glu	Trp	Ala 435	Glu	·Glu	Asn	Ser	Arg 440	Leu	Leu	Gln	Glu	Arg 445	Gly	Val	Ala
Tyr	Ile 450	Asn	Ala	Asp	Ser	Ser 455	Ile	Glu	Gly	Asn	Tyr 460	Thr	Leu	Arg	Val
Asp 465	Cys	Thr	Pro	Leu	Met 470	Туг	Ser	Leu	Val	His 475	Asn	Leu	Thr	Lys	Glu 480
Leu	Lys	Ser	Pro	Asp 485	Glu	Gly	Phe	Glu	Gly 490	Lys	Ser	Leu	Tyr	Glu 495	Ser
Trp	Thr	Lys	Lys 500	Ser	Pro	Ser	Pro	Glu 505	Phe	Ser	Gly	Met	Pro 510	Arg	Ile
Ser	Lys	Leu 515	Gly	Ser	Gly	Asn	Asp 520	Phe	Glu	Val	Phe	Phe 525	Gln	Arg	Leu
Gly	Ile 530	Ala	Ser	Gly	Arg	Ala - 535	Arg	Tyr	Thr	Lys	Asn 540	Trp	Glu	Thr	Asn
Lys	Phe	Ser	Gly	Tyr	Pro	Leu	Tyr	His	Ser	Val	Tyr	Glu	Thr	Tyr	Glu

	545					550				٠	555					560
	Leu	Val	Glu	Lys	Phe 565	Tyr	Asp	Pro	Met	Phe 570	Lys	Tyr	His	Leu	Th <i>r</i> 575	Val
	Ala	Gln	Val	Arg 580	Gly	Gly	Met	Val	Phe 585	Glu	Leu	Ala	Asn	Ser 590	Ile	Val
	Leu	Pro	Phe 595	Asp	Суз	Arg	Asp	Tyr 600	Ala	Val	Val	Leu	Arg 605	Lys	Tyr	Ala
	Asp	Lys 610	Ile	Tyr	Ser	Ile	Ser 615	Met	Lys	His	Pro	Gln 620	Glu	Met	Lys	Thr
	Tyr 625	Ser	Val	Ser	Phe	Asp 630	Ser	Leu	Phe	Ser	Ala 635	Val	Lys	Asn	Phe	Thr 640
	Glu	Ile	Ala	Ser	Lys 645	Phe	Ser	Glu	Arg	Leu 650	Gln	Asp	Phe	Asp	Lys 655	Ser
	Asn	Pro	Ile	Val 660	Leu	Arg	Met	Met	Asn 665	Asp	Gln	Leu	Met	Phe 670	Leu	Glu
	Arg	Ala	Phe 675	Ile	Asp	Pro	Leu	Gly 680	Leu	Pro	Asp	Arg	Pro 685	Phe	Tyr	Arg
	His	Val 690	Ile	Tyr	Ala	Pro	Ser 695	Ser	His	Asn	Lys	Tyr 700	Ala	Gly	Glu	Ser
	Phe 705	Pro	Gly	Ile	Tyr	Asp 710	Ala	Leu	Phe	Asp	Ile 715	Glu	Ser	Lys	Va.1	Asp 720
	Pro	Ser	Lys	Ala	Trp 725	Gly	Glu	Val	Lys	Arg 730	Gln	Ile	Tyr	Val	Ala 735	
	Phe	Thr	Val	Gln 740	Ala	Ala	Ala	Glu	Thr 745	Leu	Ser	Glu	Val	Ala 750		
<210><211><211><212><213><220>	2 7570 ADN Secue	ncia A	rtificia	ıl												
<223>	Plásmi	ido														

5

10

<400> 2

gacggatcgg	gagatetece	gatecectat	ggtcgactct	cagtacaatc	tgctctgatg	60
ccgcatagtt	aagccagtat	ctgctccctg	cttgtgtgtt	ggaggtoget	gagtagtgcg	120
cgagcaaaat	ttaagctaca	acaaggcaag	gcttgaccga	caattgcatg	aagaatctgc	180
ttagggttag	gcgttttgcg	ctgcttcgcg	atgtacgggc	cagatatacg	cgttgacatt	240
gattattgac	tagttattaa	tagtaatcaa	ttacggggtc	attagttcat	agcccatata	300
tggagttccg	cgttacataa	cttacggtaa	atggcccgcc	tggctgaccg	cccaacgacc	360
cccgcccatt	gacgtcaata	atgacgtatg	ttcccatagt	aacgccaata	gggactttcc	420
attgacgtca	atgggtggac	tatttacggt	aaactgccca	cttggcagta	catcaagtgt	480
atcatatgcc	aagtacgccc	cctattgacg	tcaatgacgg	taaatggccc	gcctggcatt	. 540
atgcccagta	catgacctta	tgggactttc	ctacttggca	gtacatctac	gtattagtca	600
togotattac	catggtgatg	cggttttggc	agtacatcaa	tgggcgtgga	tagcggtttg	660
actcacgggg	atttccaagt	ctccacccca	ttgacgtcaa	tgggagtttg	ttttggcacc	720
aaaatcaacg	ggactttcca	aaatgtcgta	acaactccgc	cccattgacg	caaatgggcg	780
gtaggcgtgt	acggtgggag	gtctatataa	gcagagctct	ctggctaact	agagaaccca	840
ctgcttactg	gcttatcgaa	attaatacga	ctcactatag	ggagacccaa	gctggctaga	900
ggtaccaagc	ttggatctca	ccatggagtt	gggactgcgc	tggggcttcc	tcgttgctct	960
tttaagaggt	gtccagtgtc	aggtgcaatt	ggtggagtct	gggggaggcg	tggtccagcc	1020
tgggaggtcc	ctgagactct	cctgtgcagc	gtctggattc	gccttcagta	gatatggcat	1080
gcactgggtc	cgccaggctc	caggcaaggg	gctggagtgg	gtggcagtta	tatggtatga	1140
tggaagtaat	aaatactatg	cagactccgt	gaagggccga	ttcaccatct	ccagagacaa	1200
ttocaagaac	acgcagtatc	tgcaaatgaa	cagcctgaga	gccgaggaca	cggctgtgta	1260
ttactgtgcg	agaggcggtg	acttecteta	ctactactat	tacggtatgg	acgtctgggg	1320
ccaagggacc	acggtcaccg	totoctcage	ctccaccaag	ggcccatcgg	tattacccct	1380
ggcaccctct	agcaagagca	cctctggggg	cacagcggcc	ctgggctgcc	tggtcaagga	1440
ctacttcccc	gaaccggtga	cggtgtcgtg	gaactcaggc	gccctgacca	gcggcgtgca	1500
caccttcccg	gctgtcctac	agtcctcagg	actctactcc	ctcagcagcg	tggtgaccgt	1560
gccctccage	agcttgggca	cccagaccta	catctgcaac	gtgaatcaca	agcccagcaa	1620
caccaaggtg	gacaagagag	ttggtgagag	gccagcacag	ggagggaggg	tgtctgctgg	1680
aagccaggct	cagcgctcct	gectggaege	atcccggcta	tgcagtccca	gtccagggca	1740

gcaaggcagg	ccccgtctgc	ctcttcaccc	ggaggcctct	gecegeècea	ctcatgctca	1800
gggagagggt	cttctggctt	tttccccagg	ctctgggcag	gcacaggcta	ggtgccccta	1860
acccaggccc	tgcacacaaa	ggggcaggtg	ctgggctcag	acctgccaag	agccatatcc	1920
gggaggaccc	tgcccctgac	ctaagcccac	cccaaaggcc	aaactctcca	ctccctcagc	1980
teggacacet	teteteetee	cagattccag	taactcccaa	tottototot	gcagagccca	2040
aatcttgtga	caaaactcac	acatgeceae	cgtgcccagg	taagccagcc	caggcetege	2100
cctccagctc	aaggcgggac	aggtgcccta	gagtagcctg	catccaggga	caggececag	2160
ccgggtgctg	acacgtccac	ctccatctct	tcctcagcac	ctgaactcct	ggggggaccg	2220
tcagtcttcc	tettececce	aaaacccaag	gacaccotca	tgatctcccg	gacccctgag	2280
gtcacatgcg	tggtggtgga	cgtgagccac	gaagaccctg	aggtcaagtt	caactggtac	2340
gtggacggcg	tggaggtgca	țaatgccaag	acaaagccgc	gggaggagca	gtacaacagc	2400
acgtaccgtg	tggtcagcgt	cctcaccgtc	ctgcaccagg	actggctgaa	tggcaaggag	2460
tacaagtgca	aggtetecaa	caaagccctc	ccagccccca	tcgagaaaac	catctccaaa	2520
gccaaaggtg	ggacccgtgg	ggtgcgag g g	ccacatggac	agaggccggc	teggeecace	2580
ctctgccctg	agagtgaccg	ctgtaccaac	ctctgtccct	acagggcage	cccgagaacc	2640
acaggtgtac	accetgeece	catcccggga	ggagatgacc	aagaaccagg	tcagcctgac	2700
ctgcctggtc	aaaggcttct	atcccagcga	categeegtg	gagtgggaga	gcaatgggca	2760
geeggagaae	aactacaaga	ccacgcctcc	cgtgctggac	teegaegget	ccttcttcct	2820
ctatagcaag	ctcaccgtgg	acaagagcag	gtggcagcag	gggaacgtct	tctcatgctc	2880
cgtgatgcat	gaggetetge	acaaccacta	cacgcagaag	agcetetece	tgtctccggg	2940
taaatgagaa	ttcctcgagt	ctagagggcc	cgtttaaacc	cgctgatcag	cctcgactgt	3000
gccttctagt	tgccagccat	ctgttgtttg	cccctccccc	gtgccttcct	tgaccctgga	3060
aggtgccact	cccactgtcc	tttcctaata	aaatgaggaa	attgcatcgc	attgtctgag	3120
taggtgtcat	tctattctgg	ggggtggggt	ggggcaggac	agcaaggggg	aggattggga	3180
agacaatage	aggcatgctg	gggatgcggt	gggctctatg	gcttctgagg	cggaaagaac	3240
cagctggggc	tctagggggt	atccccacgc	gccctgtagc	ggcgcattaa	gcgcggcggg	3300
tgtggtggtt	acgcgcagcg	tgaccgctac	acttgccagc	gccctagcgc	ccgctccttt	3360
agatttatta	ccttcctttc	togccacgtt	cgccggcttt	ccccgtcaag	ctctaaatcg	3420
gggcatccct	ttagggttcc	gatttagtgc	tttacggcac	ctcgacccca	aaaaacttga	3480
ttagggtgat	ggttcacgta	gtgggccatc '	gecetgatag	acggttttc	gccctttgac	3540 ·
gttggagtcc	acgttcttta	atagtggact	cttgttccaa	actggaacaa	cactcaaccc	3600

tateteggte	tattcttttg	atttataagg	gattttgggg	atttcggcct	attggttaaa	3660
aaatgagctg	atttaacaaa	aatttaacgc	gaattaattc	tgtggaatgt	gtgtcagtta	3720
gggtgtggaa	agtccccagg	ctccccaggc	aggcagaagt	atgcaaagca	tgcatctcaa	3780
ttagtcagca	accaggtgtg	gaaagteece	aggetececa	gcaggcagaa	gtatgcaaag	3840
catgcatctc	aattagtcag	caaccatagt	cccgccccta	acteegeeca	tecegecect.	3900
aactccgccc	agttccgccc	attctccgcc	ccatggctga	ctaattttt	ttatttatgc	3960
agaggccgag	geegeetetg	cctctgagct	attccagaag	tagtgaggag	gcttttttgg	4020
aggcctaggc	ttttgcaaaa	agctcccggg	agcttgtata	tccattttcg	gatctgatca	4080
gcacgtgatg	aaaaagcctg	aactcaccgc	gacgtctgtc	gagaagtttc	tgatcgaaaa	4140
gttcgacagc	gtctccgacc	tgatgcagct	ctcggagggc	gaagaatctc	gtgctttcag	4200
cttcgatgta	ggagggcgtg	gatatgtcct	gcgggtaaat	agctgcgccg	atggtttcta	4260
caaagatcgt	tatgtttatc	ggcactttgc	atcggccgcg	ctcccgattc	cggaagtgct	4320
tgacattggg	gaattcagcg	agaġcctgac	ctattgcatc	tecegeegtg	cacagggtgt	4380
cacgttgcaa	gacctgcctg	aaaccgaact	gcccgctgtt	ctgcagccgg	tegeggagge	4440
catggatgcg	atcgctgcgg	ccgatettag	ccagacgagc	gggttcggcc	catteggace	4500
gcaaggaatc	ggtcaataca	ctacatggcg	tgatttcata	tgcgcgattg	ctgatcccca	4560
tgtgtatcác	tggcaaactg	tgatggacga	caccgtcagt	gegteegteg	cgcaggctct	4620
cgatgagetg	atgctttggg	ccgaggactg	ccccgaagtc	eggcaceteg	'tgcacgcgga	4680
tttcggctcc	aacaatgtcc	tgacggacaa	tggccgcata	acagcggtca	ttgactggag	4740
cgaggcgatg	ttcggggatt	cccaatacga	ggtcgccaac	atcttcttct	ggaggccgtg	4800
gttggcttgt	atggagcagc	agacgcgcta	cttcgagcgg	aggcateegg	agettgeagg	4860
atcgccgcgg	ctccgggcgt	atatgctccg	cattggtctt	gaccaactct	atcagagett	4920
ggttgacggc	aatttcgatg	atgcagcttg	ggcgcagggt	cgatgcgacg	caatcgtccg	4980
atccggagcc	gggactgtcg	ggcgtacaca	aatcgcccgc	agaagcgcgg	ccgtctggac	5040
egatggetgt	gtagaagtac	tegeegatag	tggaaaccga	cgccccagca	ctcgtccgag	5100
ggcaaaggaa	tagcacgtgc	tacgagattt	cgattccacc	gccgccttct	atgaaaggtt	5160
gggcttcgga	atcgttttcc	gggacgccgg	ctggatgatc	ctccagcgcg	gggatctcat	5220
gctggagttc	ttegeccacc	ccaacttgtt	tattgcagct	tataatggtt	acaaataaag	5280
caatagcatc	acaaatttca	caaataaagc	attttttca	ctgcattcta	gttgtggttt	5340
gtccaaactc	atcaatgtat	cttatcatgt	ctgtataccg	togacotota	gctagagctt	5400

ggcgtaatca	tggtcatagc	tgtttcctgt	gtgaaattgt	tatccgctca	caattccaca	5460
caacatacga	gccggaagca	taaagtgtaa	agcetggggt	gcctaatgag	tgagctaact	5520
cacattaatt	gegttgeget	cactgcccgc	tttccagtcg	ggaaacctgt	cgtgccagct	5580
gcattaatga	atcggccaac	gcgcggggag	aggeggtttg	cgtattgggc	getetteege	5640
ttcctcgctc	actgactcgc	tgcgctcggt	cgttcggctg	cggcgagcgg	tatcagctca	5700
ctcaaaggcg	gtaatacggt	tatccacaga	atcaggggat	aacgcaggaa	agaacatgtg	5760
agcaaaaggc	cagcaaaagg	ccaggaaccg	taaaaaggcc	gcgttgctgg	cgtttttcca	5820
taggeteege	cccctgacg	agcatcacaa	aaatcgacgc	tcaagtcaga	ggtggcgaaa	5880
cccgacagga	ctataaagat	accaggcgtt	tecccetgga	agctccctcg	tgcgctctcc	5940
tgttccgacc	ctgccgctta	ccggatacct	gtacgcattt	ctcccttcgg	gaagcgtggc	6000
gctttctcaa	tgctcacgct	gtaggtatct	cagttcggtg	taggtcgttc	gctccaagct	6060
gggctgtgtg	cacgaacccc	ccgttcagcc	cgaccgctgc	gccttatccg	gtaactatcg	6120
tcttgagtcc	aacccggtaa	gacacgactt	atcgccactg	gcagcagcca	ctggtaacag	6180
gattagcaga	gcgaggtatg	taggeggtge	tacagagttc	ttgaagtggt	ggcctaacta	6240
eggetacact	agaaggacag	tatttggtat	ctgcgctctg	ctgaagccag	ttaccttcgg	6300
aaaaagagtt	ggtagetett	gateeggeaa	acaaaccacc	gctggtagcg	gtggttttt	6360
tgtttgcaag	cagcagatta	cgcgcagaaa	aaaaggatct	caagaagatc	ctttgatctt	6420
ttctacgggg	tetgaegete	agtggaacga	aaactcacgt	taagggattt	tggtcatgag	6480
attatcaaaa	aggatcttca	cctagatcct	tttaaattaa	aaatgaagtt	ttaaatcaat	6540
ctaaagtata	tatgagtaaa	cttggtctga	cagttaccaa	tgcttaatca	gtgaggcacc	6600
tatctcagcg	atctgtctat	ttcgttcatc	catagttgcc	tgactccccg	tcgtgtagat .	6660
aactacgata	cgggagggct	taccatctgg	cccagtgct	gcaatgatac	cgcgagaccc	6720
acgctcaccg	gctccagatt	tatcagcaat	aaaccagcca	gccggaaggg	ccgagcgcag	6780
aagtggtcct	gcaactttat	ccgcctccat	ccagtctatt	aattgttgcc	gggaagctag	6840
agtaagtagt	togocagtta	atagtttgcg	caacgttgtt	gccattgcta	caggcatcgt	6900
ggtgtcacgc	tegtegtttg	gtatggcttc	attcagetce	ggttcccaac	gatcaaggcg	6960
agttacatga	tcccccatgt	tgtgcaaaaa	agcggttagc	tccttcggtc	ctccgatcgt	7020
tgtcagaagt	aagttggccg	cagtgttatc	actcatggtt	atggcagcac	tgcataattc	7080
tcttactgtc	atgccatccg	taagatgctt	ttctgtgact	ggtgagtact	caaccaagtc	7140
attctgagaa	tagtgtatgc	ggcgaccgag	ttgctcttgc	ceggegteaa	tacgggataa	7200
taccgcgcca	catagcagaa	ctttaaaagt	gctcatcatt	ggaaaacgtt	cttcggggcg	7260

aaaactctca aggatcttac cgctgttgag atccagttcg atgtaaccca ctcgtgcacc 7320
caactgatct tcagcatctt ttactttcac cagcgtttct gggtgagcaa aaacaggaag 7380
gcaaaatgcc gcaaaaaagg gaataagggc gacacggaaa tgttgaatac tcatactctt 7440
cctttttcaa tattattgaa gcatttatca gggttattgt ctcatgagcg gatacatatt 7500
tgaatgtatt tagaaaaata aacaaatagg ggttccgcgc acatttcccc gaaaagtgcc 7560
acctgacgtc 7570

<210> 3

<211> 7597

5 <212> ADN

<213> Secuencia Artificial

<220>

<223> Plásmido

10 <400> 3

gacggategg gagatetece gatecectat ggtegactet cagtacaate tgetetgatg 60 cogcatagtt aagccagtat etgeteectg ettgtgtgtt ggaggteget gagtagtgeg 120 cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 180 ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt 240 gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata 300 360 tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc cocgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 420 480 attgacgtca atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt 540 atcatatgoc aagtacgocc cotattgacg toaatgacgg taaatggooc gootggoatt 600 atgcccagta catgacetta tgggaettte etaettggca gtacatetae gtattagtea togotattac catggtgatg eggttttggc agtacatcaa tgggegtgga tageggtttg 660 actcacgggg atttccaagt ctccaccca ttgacgtcaa tgggagtttg ttttggcacc 720 aaaatcaacg ggactttcca aaatgtegta acaactccgc cccattgacg caaatgggcg 780 840 gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca 900 ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctaga ggtaccaage ttggatetea ceatggggte aacegecate eteaccatgg agttgggget 960 gcgctgggtt ctcctcgttg ctcttttaag aggtgtccag tgtcaggtgc agctggtgga

gtctggggga	ggcgtggtcc	agcctgggag	gtccctgaga	ctctcctgtg	cagcgtctgg	1080
attcaccttc	agtaactatg	tcatgcactg	ggtccgccag	gctccaggca	aggggctgga .	1140
gtgggtggca	attatatggt	atgatggaag	taataaatac	tatgcagact	ccgtgaaggg .	1200
ccgattcacc	atctccagag	acaattccaa	gaacacgctg	tatctgcaaa	tgaacagcct	1260
gagagccgag	gacacggctg	tgtattactg	tgcgggtgga	tataactgga	actacgagta	1320
ccactactac	ggtatggacg	tctggggcca	agggaccacg	gtcaccgtct	cctcagcctc	1380
caccaagggc	ccatcggtct	tocccctggc	accetetage	aagagcacct	ctgggggcac	1440
ageggeeetg	ggctgcctgg	tcaaggacta	cttccccgaa	ccggtgacgg	tgtcgtggaa	1500
ctcaggcgcc	ctgaccagcg	gcgtgcacac	cttcccggct	gtcctacagt	cctcaggact	1560
ctactccctc	agcagcgtgg	tgaccgtgcc	ctccagcagc	ttgggcaccc	agaċctacat	1620
ctgcaacgtg	aatcacaagc	ccagcaacac	caaggtggac	aagagagttg	gtgagaggcc	1680
agcacaggga	gggagggtgt	ctgctggaag	ccaggeteag	egetectgee	tggacgcatc	1740
ccggctatgc	agtcccagtc	cagggcagca	aggcaggccc	cgtctgcctc	ttcacccgga	1800
ggcctctgcc	cgccccactc	atgctcaggg	agagggtctt	ctggcttttt	ccccaggete	1860
tgggcaggca	caggctaggt	gcccctaacc	caggccctgc	acacaaaggg	gcaggtgctg	1920
ggeteagace	tgccaagagc	catateeggg	aggaccctgc	ccctgaccta	ageceacece	1980
aaaggccaaa	ctctccactc	cetcageteg	gacaccttct	ctcctcccag	attccagtaa	2040
ctcccaatct	tctctctgca	gagcccaaat	cttgtgacaa	aactcacaca	tgcccaccgt	2100
gcccaggtaa	gccagcccag	gcctcgccct	ccagctcaag	gcgggacagg	tgccctagag	2160
tagcctgcat	ccagggacag	geeceageeg	ggtgctgaca	cgtccacctc	catctcttcc	2220
teagcacetg	aactcctggg	gggaccgtca	gtatteatet	tcccccaaa	acccaaggac	2280
accctcatga	totocoggac	ccctgaggtc	acatgcgtgg	tggtggacgt	gagecaegaa	2340
gaccctgagg	tcaagttcaa	ctggtacgtg	gacggcgtgg	aggtgcataa	tgccaagaca	2400
aagccgcggg	aggagcagta	caacagcacg	taccgtgtgg	tcagcgtcct	caccgtcctg	2460
caccaggact	ggctgaatgg	caaggagtac	aagtgcaagg	tctccaacaa	agccctccca	2520
geceecateg	agaaaaccat	ctccaaagcc	aaaggtggga	cccgtggggt	gcgagggcca	2580
catggacaga	ggccggctcg	geccaecete	tgccctgaga	gtgaccgctg	taccaacctc	2640
tgtccctaca	gggcagcccc	gagaaccaca	ggtgtacacc	ctgccccat	cccgggagga	2700
gatgaccaag	aaccaggtca	gcctgacctg	cctggtcaaa	ggcttctatc	ccagcgacat	2760
cgccgtggag	tgggagagca	atgggcagcc	ggagaacaac	tacaagacca	cgcctcccgt	2820
gctggactcc	gacggctcct	tetteeteta	tagcaagctc	accgtggaca	agagcaggtg	2880

gċagċagggg	aacgtcttct	catgotocgt	gatgcatgag	gctctgcaca	accactacac	2940
gcagaagagc	ctotocotgt	ctccgggtaa	atgagaattc	ctcgagtcta	gagggcccgt	3000
ttaaaccegc	tgatcagcct	cgactgtgcc	ttctagttgc	cagccatctg	ttgtttgccc	3060
ctcccccgtg	ccttccttga	ccctggaagg	tgccactccc	actgtccttt	cctaataaaa	3120
tgaggaaatt	gcatcgcatt	gtctgagtag	gtgtcattct	attctggggg	gtggggtggg	3180
gcaggacagc	aagggggagg	attgggaaga	caatagcagg	catgctgggg	atgcggtggg	.3240
ctctatggct	tetgaggegg	aaagaaccag	ctggggctct	agggggtatc	cccacgcgcc	3300
ctgtagcggc	gcattaagcg	cggcgggtgt	ggtggttacg	cgcagcgtga	ccgctacact	3360
tgccagegcc	ctagegeeeg	ctcctttcgc	tttcttccct	teettteteg	ccacgttcgc	3420
cggctttccc	cgtcaagctc	taaatcgggg	catcccttta	gggttccgat	ttagtgcttt	3480
acggcacctc	gaccccaaaa	aacttgatta	gggtgatggt	tcacgtagtg	ggccatcgcc.	3540
ctgatagacg	gtttttcgcc	ctttgacgtt	ggagtccacg	ttctttaata	gtggactctt	3600
gttccaaact	ggaacaacac	tcaaccctat	ctcggtctat	tcttttgått	tataagggat	3660
tttggggatt	teggeetatt	ggttaaaaaa	tgagctgatt	taacaaaaat	ttaacgcgaa	3720
ttaattctgt	ggaatgtgtg	tcagttaggg	tgtggaaagt	ccccaggete	cccaggcagg	3780
cagaagtatg	caaagcatgc	atctcaatta	gtcagcaacc	aggtgtggaa	agtccccagg	3840
etccccagca	ggcagaagta	tgcaaagcat	gcatctcaat	tagtcagcaa	ccatagtece	3900
gcccctaact	ccgcccatcc	cgcccctaac	tccgcccagt	tccgcccatt	ctccgcccca ·	3960
tggctgacta	attttttta	tttatgcaga	ggccgaggcc	gcctctgcct	ctgagctatt	4020
ccagaagtag	tgaggaggct	tttttggagg	cctaggcttt	tgcaaaaagc	tecegggage	4080
ttgtatatcc	attttcggat	ctgatcagca	cgtgatgaaa	aagcctgaac	teacegegae	4140
gtctgtcgag	aagtttctga	tcgaaaagtt	cgacagcgtc	teegaeetga	tgcagctctc	4200
ggagggcgaa	gaatctcgtg	ctttcagctt	cgatgtagga	gggcgtggat	atgtcctgcg	4260
ggtaaatagc	tgcgccgatg	gtttctacaa	agatcgttat	gtttatcggc	actttgcatc	4320
ggccgcgctc	ccgattccgg	aagtgcttga	cattggggaa	ttcagcgaga	gcctgaccta	4380
ttgcatctcc	cgccgtgcac	agggtgtcac	gttgcaagac	ctgcctgaaa	ccgaactgcc	4440
cgctgttctg	cagccggtcg	cggaggccat	ggatgcgatc	gctgcggccg	atcttagcca	4500
gacgagcggg	ttcggcccat	teggacegea	aggaatcggt	caatacacta	catggcgtga	4560
tttcatatgc	gcgattgctg	atccccatgt	gtateactgg	caaactgtga	tggacgacac	4620
cgtcagtgcg	teegtegege	aggetetega	tgagctgatg	ctttgggccg	aggactgccc	4680

cgaagtccgg	cacctegtge	acgcggattt	cggctccaac	aatgtcctga	cggacaatgg	4740
ccgcataaca	gcggtcattg	actggagcga	ggcgatgttc	ggggattccc	aatacgaggt	4800
cgccaacatc	ttcttctgga	ggccgtggtt	ggcttgtatg	gagcagcaga	cgcgctactt	4860
cgagcggagg [,]	catccggagc	ttgcaggatc	geegeggete	cgggcgtata	tgctccgcat	4920
tggtcttgac	caactctatc	agagcttggt	tgacggcaat	ttcgatgatg	cagcttgggc	4980
gcagggtcga	tgcgacgcaa	togtocgato	cggagccggg	actgtcgggc	gtacacaaat	5040
cgcccgcaga	agcgcggccg	totggaccga	tggctgtgta	gaagtactcg	ccgatagtgg	5100
aaaccgacgc	cccagcactc	gtccgagggc	aaaggaatag	cacgtgctac	gagatttcga	5160
ttecacegee	gccttctatg	aaaggttggg	cttcggaatc	gttttccggg	acgccggctg	5220
gatgatecte	cagcgcgggg	atctcatgct	ggagttcttc	geceacecca	acttgtttat	5280
tgcagcttat	aatggttaca	aataaagcaa	tagcatcaca	aatttcacaa	ataaagcatt	5340
tttttcactg	cattctagtt	gtggtttgtc	caaactcatc	aatgtatctt	atcatgtctg	5400
tataccgtcg	acctctagct	agagettgge	gtaatcatgg	tcatagctgt	ttcctgtgtg	5460
aaattgttat	ccgctcacaa	ttccacacaa	catacgagcc	ggaagcataa	agtgtaaagc	5520
ctggggtgcc	taatgagtga	gctaactcac	attaattgcg	ttgcgctcac	tgcccgcttt	5580
ccagtcggga	aacctgtcgt	gccagctgca	ttaatgaatc	ggccaacgcg	cggggagagg	5640
cggtttgcgt	attgggcgct	cttccgcttc	ctcgctcact	gactcgctgc	gctcggtcgt	5700
toggotgogg	cgagcggtat	cagctcactc	aaaggcggta	atacggttat	ccacagaatc	5760
aggggataac	gcaggaaaga	acatgtgagc	aaaaggccag	caaaaggcca	ggaaccgtaa	5820
aaaggccgcg	ttgctggcgt	ttttccatag	geteegeece	cctgacgage	atcacaaaaa	5880
togacgotca	agtcagaggt	ggcgaaaccc	gacaggacta	taaagatacc	aggcgtttcc	5940
ccctggaagc	teectegtge	geteteetgt	teegaeeetg	ccgcttaccg	gatacctgtc	6000
cgcctttctc	ccttcgggaa	gcgtggcgct	ttctcaatgc	tcacgctgta	ggtatctcag	6060
ttcggtgtag	gtcgttcgct	ccaagctggg	ctgtgtgcac	gaaccccccg	ttcagcccga	6120
ccgctgcgcc	ttatccggta	actatogtot	tgagtccaac	ccggtaagac	acgacttatc	6180
gccactggca	gcagccactg	gtaacaggat	tagcagagcg	aggtatgtag	geggtgetae	6240
agagttcttg	aagtggtggc	ctaactacgg	ctacactaga	aggacagtat	ttggtatctg	6300
cgctctgctg	aagccagtta	ccttcggaaa	aagagttggt	agctcttgat	ccggcaaaca	6360
aaccaccgct	ggtagcggtg	gtttttttgt	ttgcaagcag	cagattacgc	gcagaaaaaa	6420
aggatctcaa	gaagatcctt	tgatcttttc	tacggggtct	gacgctcagt	ggaacgaaaa	6480
ctcacgttaa	gggattttgg	tcatgagatt	atcaaaaagg	atcttcacct	agatectttt	6540

aaattaaaaa	tgaagtttta	aatcaatcta	aagtatatat	gagtaaactt	ggtctgacag	6600
ttaccaatgc	ttaatcagtg	aggcacctat	ctcagcgatc	tgtctatttc	gttcatccat	6660
agttgcctga	ctccccgtcg	tgtagataac	tacgatacgg	gagggcttac	catctggccc	6720
cagtgctgca	atgataccgc	gagacccacg	ctcaccggct	ccagatttat	cagcaataaa	6780
ccagccagcc	ggaagggccg	agegeagaag	tggtcctgca	actttatccg	cctccatcca	6840
gtctattaat	tgttgccggg	aagctagagt	aagtagttcg	ccagttaata	gtttgcgcaa	6900
cgttgttgcc	attgctacag	gcatcgtggt	gtcacgctcg	tcgtttggta	tggcttcatt	6960
cagctccggt	tcccaacgat	caaggcgagt	tacatgatcc	cccatgttgt	gcaaaaaagc	7020
ggttagctcc	ttcggtcctc	cgatcgttgt	cagaagtaag	ttggccgcag	tgttatcact.	7080
catggttatg	gcagcactgc	ataattctct	tactgtcatg	ccatccgtaa	gatgetttte	7140
tgtgactggt	gagtactcaa	ccaagtcatt	ctgagaatag	tgtatgcggc	gaccgagttg	7200
atattgacag	gcgtcaatac	gggataatac	cgcgccacat	agcagaactt	taaaagtgct	7260
catcattgga	aaacgttctt	cggggcgaaa	actctcaagg	atcttaccgc	tgttgagatc	7320
cagttcgatg	taacccactc	gtgcacccaa	ctgatcttca	gcatctttta	ctttcaccag	7380
cgtttctggg	tgagcaaaaa	caggaaggca	aaatgccgca	aaaaagggaa	taagggcgac	7440
acggaaatgt	tgaatactca	tactcttcct	ttttcaatat	tattgaagca	tttatcaggg	7500
ttattgtctc	atgagcggat	acatatttga	atgtatttag	aaaaataaac	aaataggggt	7560
teegegeaca	tttccccgaa	aagtgccacc	tgacgtc			7597

<210> 4

<211> 7579

<212> ADN <213> Secuencia Artificial

<220>

<223> Plásmido

10 <400> 4

gacggategg gagatetece gatecectat ggtegaetet eagtacaate tgetetgatg 60
cegeatagtt aageeagtat etgeteeetg ettgtgtgtt ggaggteget gagtagtgeg 120
cgageaaaat ttaagetaca acaaggeaag gettgaeega eaattgeatg aagaatetge 180
ttagggttag gegtttgeg etgettegeg atgtaeggge eagatataeg egttgaeatt 240
gattattgae tagttattaa tagtaateaa ttaeggggte attagtteat ageecatata 300

tggagttccg	cgttacataa	cttacggtaa	atggcccgcc	tggctgaccg	cccaacgacc	360
cccgcccatt	gacgtcaata	atgacgtatg	ttcccatagt	aacgccaata	gggactttcc	420
attgacgtca	atgggtggac	tatttacggt	aaactgccca	cttggcagta	catcaagtgt	480
atcatatgcc	aagtacgccc	cctattgacg	tcaatgacgg	taaatggccc	gcatggcatt	540
atgeccagta	catgacctta	tgggactttc	ctacttggca	gtacatctac	gtattagtca	600
togotattac	catggtgatg	cggttttggc	agtacatcaa	tgggcgtgga	tagcggtttg	660
actcacgggg	atttccaagt	ctccacccca	ttgacgtcaa	tgggagtttg	ttttggcacc	720
àaaatcaacg	ggactttcca	aaatgtcgta	acaactccgc	cccattgacg	caaatgggcg	780
gtaggcgtgt	acggtgggag	gtctatataa	gcagagetet	ctggctaact	agagaaccca	840
ctgcttactg	gcttatcgaa	attaatacga	ctcactatag	ggagacccaa	gctggctaga	900
ggtaccaagc	ttggatctca	ccatggagtt	gggacttagc	tgggttttcc	tegttgetet	960
tttaagaggt	gtccagtgtc	aggtccagct	ggtggagtct	gggggaggcg	tggtccagcc	1020
tgggaggtcc	ctgagactct	cctgtgcagc	gtctggattc	accttcagta	gctatggcat	1080
gcactgggtc	cgccaggctc	caggcaaggg	gctggactgg	gtggcaatta	tttggcatga	1140
tggaagtaat	aaatactatg	cagactccgt	gaagggccga	ttcaccatct	ccagagacaa	1200
ttccaagaag	acgctgtacc	tgcaaatgaa	cagtttgaga	gccgaggaca	cggctgtgta	1260
ttactgtgcg	agagcttggg	cctatgacta	cggtgactat	gaatactact	tcggtatgga	1320
cgtctggggc	caagggacca	cggtcaccgt	ctcctcagcc	tccaccaagg	gcccatcggt	1380
cttccccctg	gcaccctcta	gcaagagcac	ctctgggggc	acageggeee	tgggctgcct	1440
ggtcaaggac	tacttccccg	aaccggtgac	ggtgtcgtgg	aactcaggcg	ccctgaccag	1500
cggcgtgcac	accttcccgg	ctgtcctaca	gtcctcagga	ctctactccc	tcagcagcgt	1560
ggtgaccgtg	ccctccagca	gcttgggcac	ccagacctac	atctgcaacg	tgaatcacaa	1620
gcccagcaac	accaaggtgg	acaagagagt	tggtgagagg	ccagcacagg	gagggagggt	1680
gtctgctgga	agccaggctc	agegeteetg	cctggacgca	teceggetat	gcagtcccag	1740
tccagggcag	caaggcaggc	cccgtctgcc	tcttcacccg	gaggcctctg	cccgcccac	1800
tcatgctcag	ggagagggtc	ttctggcttt	ttccccaggc	tetgggeagg	cacaggetag	1860
gtgcccctaa	cccaggccct	gcacacaaag	gggcaggtgc	tgggctcaga	cctgccaaga	1920
gccatatccg	ggaggaccct	gcccctgacc	taageccaec	ccaaaggcca	aactctccac	1980
tocctcagct	cggacacctt	ctctcctccc	agattccagt	aactcccaat	cttctctctg	2040
cagagcccaa	atcttgtgac	aaaactcaca	catgcccacc	gtgcccaggt	aagccagccc	2100
aggcctcgcc	ctccagctca	aggcgggaca	ggtgccctag	agtagcctgc	atccagggac	2160

	aggeceeage	caaatactaa	cacgtccacc	tocatotott	cctcagcacc	tgaactcctg	2220
			cttccccca				2280
							2340
			ggtggtggac				
	aactggtacg	tggacggcgt	ggaggtgcat	aatgccaaga	caaagccgcg	ggaggagcag	2400
	tacaacagca	cgtaccgtgt	ggtcagcgtc	ctcaccgtcc	tgcaccagga	ctggctgaat	2460
	ggcaaggagt	acaagtgcaa	ggtctccaac	aaagccctcc	cagcccccat	cgagaaaacc _,	2520
	atctccaaag	ccaaaggtgg	gacccgtggg	gtgcgagggc	cacatggaca	gaggccggct	2580
	cggcccaccc	tctgccctga	gagtgaccgc	tgtaccaacc	tetgteecta	cagggcagcc	2640
	ccgagaacca	caggtgtaca	ccctgccccc	atcccgggag	gagatgacca	agaaccaggt	2700
	cagcetgace	tgcctggtca	aaggcttcta	tcccagcgac	atcgccgtgg	agtgggagag	2760
	caatgggcag	ccggagaaca	actacaagac	cacgcctccc	gtgctggact	ccgacggctc	2820
:	cttcttcctc	tatagcaagc	tcaccgtgga	caagagcagg	tggcagcagg	ggaacgtctt	2880
	ctcatgctcc	gtgatgcatg	aggctctgca	caaccactac	acgcagaaga	gcctctccct	2940
	gtctccgggt	aaatgagaat	tcctcgagtc	tagagggccc	gtttaaaccc	gctgatcagc	3000
	ctcgactgtg	ccttctagtt	gccagccatc	tgttgtttgc	ccctcccccg	tgeetteett	3060
	gaccctggaa	ggtgccactc	ccactgtcct	ttcctaataa	aatgaggaaa	ttgcatcgca	3120
	ttgtctgagt	aggtgtcatt	ctattctggg	gggtggggtg	gggcaggaca	gcaaggggga	3180
	ggattgggaa	gacaatagca	ggcatgctgg	ggatgcggtg	ggctctatgg	cttctgaggc	3240
	ggaaagaacc	agctggggct	ctagggggta	tocccacgcg	ccctgtagcg	gcgcattaag	3300
	cgcggcgggt	gtggtggtta	cgcgcagcgt	gaccgctaca	cttgccagcg	ccctagcgcc	3360
	egeteettte	gctttcttcc	cttcctttct	cgccacgttc	gaaggattta	cccgtcaagc	3420
	tctaaatcgg	ggcatccctt	tagggttccg	atttagtgct	ttacggcacc	tcgaccccaa	3480
	aaaacttgat	ţagggtgatg	gttcacgtag	tgggccatcg	ccctgataga	cggtttttcg	3540
	ccctttgacg	ttggagtcca	cgttctttaa	tagtggactc	ttgttccaaa	ctggaacaac	3600
	actcaaccct	atctcggtct	attcttttga	tttataaggg	attttgggga	tttcggccta	3660
	ttggttaaaa	aatgagctga	tttaacaaaa	atttaacgcg	aattaattct	gtggaatgtg	3720
	tgtcagttag	ggtgtggaaa	gtccccaggc	tececaggea	ggcagaagta	tgcaaagcat	3780
	gcatctcaat	tagtcagcaa	ccaggtgtgg	aaagtcccca	ggctccccag	caggcagaag	3840
	tatgcaaagc	atgcatctca	attagtcagc	aaccatagtc	ccgcccctaa	ctccgcccat	3900
	cccgccccta	actecgecca	gttccgccca	tteteegece	catggctgac	taatttttt	3960

tatttatgca	gaggccgagg	cegeetetge	ctctgagcta	ttccagaagt	agtgaggagg	4020
cttttttgga	ggcctaggct	tttgcaaaaa	gctcccggga	gcttgtatat	ccattttcgg ,	4080
atctgatcag	cacgtgatga	aaaagcctga	actcaccgcg	acgtctgtcg	agaagtttct	4140
gatcgaaaag	ttcgacagcg	teteegaeet	gatgcagctc	teggagggeg	aagaatctcg	4200
tgctttcagc	ttcgatgtag	gagggcgtgg	atatgtcctg	cgggtaaata	gctgcgccga	4260
tggtttctac	aaagatcgtt	atgtttatcg	gcactttgca	teggeegege	tecegattee	4320
ggaagtgctt	gacattgggg	aattcagcga	gagcctgacc	tattgcatct	cccgccgtgc	4380
acagggtgtc	acgttgcaag	acctgcctga	aaccgaactg	cccgctgttc	tgcagccggt	4440
cgcggaggcc	atggatgcga	tegetgegge	cgatcttagc	cagacgagcg	ggtteggeee	4500
atteggaeeg	caaggaatcg	gtcaatacac	tacatggcgt	gatttcatat	gcgcgattgc	4560
tgatecccat	gtgtatcact	ggcaaactgt	gatggacgac	accgtcagtg	cgtccgtcgc	4620
gcaggetete	gatgagetga	tgctttgggc	cgaggactgc	cccgaagtcc	ggcacctcgt	4680
gcacgcggat	ttcggctcca	acaatgteet	gacggacaat	ggccgcataa	cagcggtcat	4740
tgactggagc	gaggcgatgt	tcggggattc	ccaatacgag	gtcgccaaca	tettettetg	4800
gaggccgtgg	ttggcttgta	tggagcagca	gacgcgctac	ttcgagcgga	ggcatccgga	4860
gcttgcagga	tegeegegge	teegggegta	tatgctccgc	attggtcttg	accaactcta	4920
tcagagettg	gttgacggca	atttcgatga	tgcagcttgg	gegeagggte	gatgcgacgc	4980
aatcgtccga	teeggageeg	ggactgtcgg	gcgtacacaa	atcgcccgca	gaagegegge	5040
cgtctggacc	gatggctgtg	tagaagtact	cgccgatagt	ggaaaccgac	gccccagcac	5100
tcgtccgagg	gcaaaggaat	agcacgtgct	acgagatttc	gattccaccg	ccgccttcta	5160
tgaaaggttg	ggcttcggaa	tcgttttccg	ggacgccggc.	tggatgatcc	tccagcgcgg	5220
ggatctcatg	ctggagttct	tcgcccaccc	caacttgttt	attgcagctt	ataatggtta	5280
caaataaagc	aatagcatca	caaatttcac	aaataaagca	ttttttcac	tgcattctag	5340
ttgtggtttg	tccaaactca	tcaatgtatc	ttatcatgtc	tgtataccgt	cgacctctag	5400
ctagagcttg	gcgtaatcat	ggtcatagct	gtttcctgtg	tgaaattgtt	atccgctcac	5460
aattccacac	aacatacgag	ccggaagcat	aaagtgtaaa	gcctggggtg	cctaatgagt	5520
gagctaactc	acattaattg	cgttgcgctc	actgcccgct	ttccagtcgg	gaaacctgtc	5580
gtgccagctg	cattaatgaa	tcggccaacg	cgcggggaga	ggcggtttgc	gtattgggcg	5640
ctcttccgct	tectegetea	ctgactcgct	gcgctcggtc	gtteggetge	ggcgagcggt	5700
atcagctcac	tcaaaggcgg	taatacggtt	atccacagaa	tcaggggata	acgcaggaaa	5760
gaacatgtga	gcaaaaggcc	agcaaaaggc	caggaaccgt	aaaaaggccg	egttgetgge	5820

gtttttccat	aggeteegee	cccctgacga	gcatcacaaa	aatcgacgct	caagtcagag	5880
gtggcgaaac	ccgacaggac	tataaagata	ccaggcgttt	cccctggaa	gctccctcgt	5940
gogototoot	gttccgaccc	tgccgcttac	cggatacctg	teegeettte	tecetteggg	6000
aagegtggeg	ctttctcaat	gctcacgctg	taggtatctc	agttcggtgt	aggtcgttcg	6060
ctccaagctg	ggctgtgtgc	acgàaccccc	cgttcagccc	gaccgctgcg	ccttatccgg	6120
taactatcgt	cttgagtcca	acceggtaag	acacgactta	tegecactgg	cagcagccac	6180
tggtaacagg	attagcagag	cgaggtatgt	aggoggtgct	acagagttct	tgaagtggtg	6240
gcctaactac	ggctacacta	gaaggacagt	atttggtatc	tgcgctctgc	tgaagccagt	6300
taccttcgga	aaaagagttg	gtagctcttg	atccggcaaa	caaaccaccg	ctggtagcgg	6360
tggťttttt	gtttgcaagc	agcagattac	gcgcagaaaa	aaaggatctc	aagaagatcc	6420
tttgatcttt	tctacggggt	ctgacgctca	gtggaacgaa	aactcacgtt	aagggatttt	6480
ggtcatgaga	ttatcaaaaa	ggatcttcac	ctagatcctt	ttaaattaaa	aatgaagttt	6540
taaatcaatc	taaagtatat	atgagtaaac	ttggtctgac	agttaccaat	gcttaatcag	6600
tgaggcacct	atctcagcga	tctgtctatt	togttcatcc	atagttgcct	gactccccgt	6660
cgtgtagata	actacgatac	gggagggctt	accatctggc	cccagtgctg	caatgatacc	6720
gcgagaccca	cgctcaccgg	ctccagattt	atcagcaata	aaccagccag	ccggaagggc	6780
cgagcgcaga	agtggtcctg	caactttatc	cgcctccatc	cagtctatta	attgttgccg	6840
ggaagctaga	gtaagtagtt	cgccagttaa	tagtttgcgc	aacgttgttg	ccattgctac	6900
aggcatcgtg	gtgtcacgct	cgtcgtttgg	tatggcttca	ttcagetccg	gttcccaacg	6960
atcaaggcga	gttacatgat	ccccatgtt	gtgcaaaaaa	geggttaget	ccttcggtcc	7020
tccgatcgtt	gtcagaagta	agttggccgc	agtgttatca	ctcatggtta	tggcagcact	7080
gcataattct	cttactgtca	tgccatccgt	aagatgcttt	tetgtgactg	gtgagtactc	7140
aaccaagtca	ttctgagaat	agtgtatgcg	gcgaccgagt	tgatattgaa	cggcgtcaat	7200
acgggataat	accgcgccac	atagcagaac	tttaaaagtg	ctcatcattg	gaaaacgttc	7260
ttcggggcga	aaactctcaa	ggatcttacc	gctgttgaga	tccagttcga	tgtaacccac	7320
tegtgeacce	aactgatctt	cagcatcttt	tactttcacc	agcgtttctg	ggtgagcaaa	7380
aacaggaagg	caaaatgccg	caaaaaaggg	aataagggcg	acacggaaat	gttgaatact	7440
catactcttc	ctttttcaat	attattgaag	catttatcag	ggttattgtc	tcatgagcgg	7500
atacatattt	gaatgtattt	agaaaaataa	acaaataggg	gtteegegea	catttccccg	7560
aaaagtgcca	cctgacgtc					7579

<211> 7558

<212> ADN

<213> Secuencia Artificial

<220>

5

<223> Plásmido

<400> 5 gacggatcgg gagatctccc gatcccctat ggtcgactct cagtacaatc tgctctgatg 60 cogcatagtt aagcoagtat otgotocotg cttgtgtgtt ggaggtogot gagtagtgog 120 180 cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc ttaqqqttaq qcqttttqcq ctqcttcqcq atgtacqqqc cagatatacq cqttqacatt 240 gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata 300 tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc 360 eccgeceatt gaegteaata atgaegtatg tteccatagt aacgecaata gggaetttee 420 480 attgacgtca atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540 600 atgeccagta catgacetta tgggaettte etaettggea gtacatetae gtattagtea 660 tegetattae categorgate eggttttggc agtacateaa tgggcgtgga tageggtttg actcacgggg atttccaagt ctccaccca ttgacgtcaa tgggagtttg ttttggcacc 720 780 aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca 840 ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctaga 900 ggtaccaagc ttggatccca ccatggggtc aaccgtcatc ctcgccctcc tcctggctgt 960 tctccaagga gtctgtgccg aggtgcagct ggtgcagtct ggagcagagg tgaaaaagcc 1020 cggggagtet ctgaagatet eetgtaaggg ttetggatae agetttaeea gttaetggat 1080 cggctgggtg cgccagatgc ccgggaaagg cctggagtgg atggggatca tctatcctgg 1140 1200 tgactotgat accagataca goocgtoott ccaaggooag gtoaccatct cagoogacaa gtecateage accecetace tgeagtggag cageetgaag geeteggaca cegecatgta 1260 ttactgtgcg agacggatgg cagcagctgg cccctttgac tactggggcc agggaaccet 1320 1380 ggtcaccgtc tectcagect ccaccaaggg cecateggtc ttecceetgg caccetetag caagagcacc tctgggggca cagcggccct gggctgcctg gtcaaggact acttccccga 1440

accggtgacg gtgtcgtgga	actcaggcgc	cctgaccagc	ggcgtgcaca	ccttcccggc	1500
tgtcctacag tcctcaggac	tctactccct	cagcagcgtg	gtgaccgtgc	cctccagcag	1560
cttgggcacc cagacctaca	tctgcaacgt	gaatcacaag	cccagcaaca	ccaaggtgga	1620
caagagagtt ggtgagaggc	cagcacaggg	agggagggtg	tctgctggaa	gccaggctca	1680
gcgctcctgc ctggacgcat	cccggctatg	cagtcccagt	ccagggcagc	aaggcaggcc	1740
cogtotgcct cttcacccgg	aggectetge	cegececact	catgctcagg	gagagggtct	1800
totggotttt tocccaggot	ctgggcaggc	acaggctagg	tgcccctaac	ccaggccctg	1860
cacacaaagg ggcaggtgct	gggctcagac	ctgccaagag	ccatatccgg	gaggaccctg	1920
ccctgacct aagcccaccc	caaaggccaa	actotocact	ccctcagctc	ggacaccttc	1980
tctcctccca gattccagta	actoccaato	ttatatatga	agagcccaaa	tottgtgaca	2040
aaactcacac atgcccaccg	tgcccaggta	agecagecca	ggcctcgccc	tocageteaa	2100
ggcgggacag gtgccctaga	gtagcctgca	tccagggaca	ggccccagcc	gggtgctgac	2160
acgtecacet ecatetette	ctcagcacct	gaactcctgg	ggggaccgtc	agtottooto	2220
ttcccccaa aacccaagga	caccctcatg	atetecegga	cccctgaggt	cacatgcgtg	2280
gtggtggacg tgagccacga	agaccctgag	gtcaagttca	actggtacgt	ggacggcgtg	2340
gaggtgcata atgccaagac	aaagccgcgg	gaggagcagt	acaacagcac	gtaccgtgtg	2400
gtcagegtee teacegteet	gcaccaggac	tggctgaatg	gcaaggagta	caagtgcaag	2460
gtetecaaca aageceteee	agcccccatc	gagaaaacca	tetecaaage	caaaggtggg	2520
acccgtgggg tgcgagggcc	acatggacag	aggeeggete	ggcccaecct	ctgccctgag	2580
agtgaccgct gtaccaacct	ctgtccctac	agggcagccc	egagaaccac	aggtgtacac	2640
cctgcccca tcccgggagg	agatgaccaa	gaaccaggtc	agectgacet	gcctggtcaa	2700
aggettetat eccagegaca	tcgccgtgga	gtgggagagc	aatgggcagc	cggagaacaa	2760
ctacaagacc acgcctcccg	tgctggactc	cgacggctcc	ttcttcctcţ	atagcaagct	2820
caccgtggac aagagcaggt	ggcagcaggg	gaacgtcttc	tcatgctccg	tgatgcatga	2880
ggctetgeac aaccactaca	cgcagaagag	cctctccctg	teteegggta	aatgagaatt	2940
cetegagtet agagggeeeg	tttaaacccg	ctgatcagcc	tegaetgtge	cttctagttg	3000
ccagccatct gttgtttgcc	cctccccgt	gccttccttg	accctggaag	gtgccactcc	3060
cactgtcctt tcctaataaa	atgaggaaat	tgcatcgcat	tgtctgagta	ggtgtcattc	3120
tattctgggg ggtggggtgg	ggcaggacag	caagggggag	gattgggaag	acaatagcag	3180
gcatgctggg gatgcggtgg	gctctatggc	ttctgaggcg	gaaagaacca	gctggggctc	3240

	tagggggtat	cccacgcgc	cctgtagcgg	cgcattaagc	gcggcgggtg	tggtggttac	3300
	gcgcagcgtg	accgctacac	ttgccagcgc	cctagcgccc	geteettteg	ctttcttccc	3360
	tteetttete	gccacgttcg	ccggctttcc	ccgtcaagct	ctaaatcggg	gcatcccttt	3420
	agggttccga	tttagtgctt	tacggcacct	cgaccccaaa	aaacttgatt	agggtgatgg	3480
	ttcacgtagt	gggccatcgc	cctgatagac	ggtttttcgc	cctttgacgt	tggagtccac	3540
	gttctttaat	agtggactct	tgttccaaac	tggaacaaca	ctcaacccta	tctcggtcta	3600
	ttcttttgat	ttataaggga	ttttggggat	ttcggcctat	tggttaaaaa	atgagctgat	3660
	ttaacaaaaa	tttaacgcga	attaattctg	tggaatgtgt	gtcagttagg	gtgtggaaag	3720
	tocccagget	ccccaggcag	gcagaagtat	gcaaagcatg	catctcaatt	agtcagcaac	3780
	caggtgtgga	aagtccccag	gctccccagc	aggcagaagt	atgcaaagca	tgcatctcaa	3840
	ttagtcagca	accatagtcc	cgcccctaac	teegeceate	ccgcccctaa	ctccgcccag	3900
	ttccgcccat	teteegeece	atggetgact	aattttttt	atttatgcag	aggeegagge	3960
	egeetetgee	tctgagctat	tecagaagta	gtgaggaggc	ttttttggag	gcctaggctt	4020
	ttgcaaaaag	ctcccgggag	cttgtatatc	cattttcgga	totgatcago	acgtgatgaa	4080
	aaagcctgaa	ctcaccgcga	cgtctgtcga	gaagtttctg	atcgaaaagt	tcgacagcgt	4140
	ctccgacctg	atgeagetet	cggagggcga	agaatctcgt	gctttcagct	tcgatgtagg	4200
	agggcgtgga	tatgtcctgc	gggtaaatag	ctgcgccgat	ggtttctaca	aagatcgtta	4260
	tgtttatcgg _.	cactttgcat	cggccgcgct	cccgattccg	gaagtgcttg	ácattgggga	4320
•	attcagcgag	agcctgacct	attgcatctc	ccgccgtgca	cagggtgtca	cgttgcaaga	4380
	cctgcctgaa	accgaactgc	ccgctgttct	gcagccggtc	geggaggeea	tggatgcgat	4440
	cgctgcggcc	gatettagee	agacgagcgg	gttcggccca	ttcggaccgc	aaggaatcgg	4500
	tcaatacact	acatggcgtg	atttcatatg	cgcgattgct	gatccccatg	tgtatcactg	4560
	gcaaactgtg	atggacgaca	ccgtcagtgc	gteegtegeg	caggeteteg	atgagctgat	4620
	gctttgggcc	gaggactgcc	ccgaagtccg	geacetegtg	cacgcggatt	teggetecaa	4680
	caatgtcctg	acggacaatg	gccgcataac	ageggteatt	gactggagcg	aggegatgtt	4740
	cggggattcc	caatacgagg	tegecaacat	ettettetgg	aggccgtggt	tggcttgtat	4800
	ggagcagcag	acgcgctact	tcgagcggag	gcaticcggag	cttgcaggat	egeegeget	4860
	ccgggcgtat	atgeteegea	ttggtcttga	ccaactctat	cagagettgg	ttgacggcaa	4920
	tttcgatgat	gcagcttggg	cgcagggtcg	atgegaegea	ategteegat	ccggagccgg	4980
	gactgtcggg	cgtacacaaa	tegeeegeag	aagcgcggcc	gtctggaccg	atggctgtgt	5040
	agaagtactc	gccgatagtg	gaaaccgacg	ccccagcact	cgtccgaggg	caaaggaata	5100

gcacgtgcta	cgagatttcg	attccaccgc	cgccttctat	gaaaggttgg	gcttcggaat	5160
egttttccgg	gacgccggct	ggatgatcct	ccagcgcggg	gatctcatgc	tggagttett	5220
egeceacece	aacttgttta	ttgcagctta	taatggttac	aaataaagca	atagcatcac	5280
aaatttcaca	aataaagcat	ttttttcact	gcattctagt	tgtggtttgt	ccaaactcat	5340
caatgtatct	tatcatgtct	gtataccgtc	gacctctagc	tagagcttgg	cgtaatcatg	5400
gtcatagctg	tttcctgtgt	gaaattgtta	toogotoaca	attocacaca	acatacgage	5460
cggaagcata	aagtgtaaag	cctggggtgc	ctaatgagtg	agctaactca	cattaattgc	5520
gttgcgctca	ctgcccgctt	tccagtcggg	aaacctgtcg	tgccagctgc	attaatgaat	5580
cggccaacgc	gcggggagag	gcggtttgcg	tattgggcgc	tattaagatt	cctcgctcac	5640
tgactcgctg	cgctcggtcg	tteggetgeg	gcgagcggta	tcagetcact	caaaggcggt	5700
aatacggtta	tecacagaat	caggggataa	cgcaggaaag	aacatgtgag	caaaaggcca	5760
gcaaaaggcc	aggaaccgta	aaaaggccgc	gttgctggcg	tttttccata	ggeteegeee	5820
ccctgacgag	catcacaaaa	atcgacgctc	aagtcagagg	tggcgaaacc	cgacaggact	5880
ataaagatac	caggcgtttc	cccctggaag	ctccctcgtg	cgctctcctg	ttccgaccct	5940
gccgcttacc	ggatacctgt	ccgcctttct	cccttcggga	agegtggege	tttctcaatg	6000
ctcacgctgt	aggtatctca	gttcggtgta	ggtcgttcgc	tecaagetgg	gctgtgtgca	6060
cgaacccccc	gttcagcccg	accgctgcgc	cttatccggt	aactatcgtc	ttgagtccaa	6120
cccggtaaga	cacgacttat	cgccactggc	agcagccact	ggtaacagga	ttagcagagc	6180
gaggtatgta	ggcggtgcta	cagagttett	gaagtggtgg	cctaactacg	gctacactag	6240
aaggacagta	tttggtatct	gegetetget	gaagccagtt	accttcggaa	aaagagttgg	6300
tagctcttga	teeggeaaac	aaaccaccgc	tggtagcggt	ggttttttg	tttgcaagca	6360
gcagattacg	cgcagaaaaa	aaggatetea	agaagatcct	ttgatctttt	ctacggggtc	6420
tgacgctcag	tggaacgaaa	actcacgtta	agggattttg	gtcatgagat	tatcaaaaag	6480
gatettcacc	tagatccttt	taaattaaaa	atgaagtttt	aaatcaatct	aaagtatata	6540
tgagtaaact	tggtctgaca	gttaccaatg	cttaatcagt	gaggcaccta	tctcagcgat	6600
ctgtctattt	cgttcatcca	tagttgcctg	actoccogto	gtgtagataa	ctacgatacg	6660
ggagggctta	ccatctggcc	ccagtgctgc	aatgataccg	cgagacccac	gctcaccggc	6720
tccagattta	tcagcaataa	accagccagc	cggaagggcc	gagegeagaa	gtggtcctgc	6780
aactttatcc	gcctccatcc	agtotattaa	ttgttgccgg	gaagctagag	taagtagttc	6840
gccagttaat	agtttgcgca	acgttgttgc	cattgctaca	ggcatcgtgg	tgtcacgctc	6900

6960 atcatttggt atggcttcat tcagctccgg ttcccaacga tcaaggcgag ttacatgatc ccccatgttg tgcaaaaaag cggttagctc cttcggtcct ccgatcgttg tcagaagtaa 7020 gttggccgca gtgttatcac tcatggttat ggcagcactg cataattctc ttactgtcat 7080 gccatccgta agatgctttt ctgtgactgg tgagtactca accaagtcat tctgagaata 7140 gtgtatgcgg cgaccgagtt gctcttgccc ggcgtcaata cgggataata ccgcgccaca 7200 tagcagaact ttaaaagtgc tcatcattgg aaaacgttct tcgggggcgaa aactctcaag 7260 7320 gatettaceg etgttgagat ceagttegat gtaacceact egtgeaccea actgatette 7380 agcatctttt actttcacca gcgtttctgg gtgagcaaaa acaggaaggc aaaatgccgc aaaaaaggga ataagggcga cacggaaatg ttgaatactc atactcttcc tttttcaata 7440 ttattqaaqc atttatcagg gttattgtct catgagcgga tacatatttg aatgtattta 7500 gaaaaataaa caaatagggg ttccgcgcac atttccccga aaagtgccac ctgacgtc 7558

<210> 6

<211> 7576

<212> ADN

<213> Secuencia Artificial

<220>

<223> Plásmido

10 <400> 6

60 gacggategg gagatetece gatecectat ggtegactet cagtacaate tgetetgatg 120 ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg 180 cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 240 ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt 300 gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata 360 tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc 420 cocgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 480 attgacgtca atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt 540 atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 600 atgeccagta catgacetta tgggaettte etaettggea gtacatetae gtattagtea 660 tegetattae catggtgatg eggttttgge agtacateaa tgggegtgga tageggtttg actcacgggg atttecaagt ctccaccca ttgacgtcaa tgggagtttg ttttggcacc 720 aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg 780

gtaggcgtgt	acggtgggag	gtctatataa	gcagagctct	ctggctaact	agagaaccca	840
ctgcttactg	gcttatcgaa	attaatacga	ctcactatag	ggagacccaa	gctggctaga	900
ggtaccaagc	ttggatctca	ccatggagtt	tgggctgtgc	tggattttcc	tegttgetet	960
tttaagaggt	gtccagtgtc	aggtgcagct	ggtggagtct	gggggaggcg	tggtccagcc	1020
tgggaggtcc	ctgagactct	cctgtgcagc	ctctggattc	accttcatta	gctatggcat	1080
gcactgggtc	cgccaggete	caggcaaggg	gctggagtgg	gtggcagtta	tatcatatga	1140
tggaagtaat	aaatactatg	cagactccgt	gaagggccga	ttcaccatct	ccagagacaa	1200
ttccaagaac	acgctgtatc	tgcaaatgaa	cagectgaga	gctgaggaca	cggctgtgta	1260
ttactgtgcg	agagtattag	tgggagcttt	atattattat	aactactacg	ggatggacgt	1320
ctggggccaa	gggaccacgg	tcaccgtctc	ctcagcctcc	accaagggcc	catcggtctt	1380
cccctggca	ccctctagca	agagcacctc	tgggggcaca	geggeeetgg	gctgcctggt	1440
caaggactac	ttccccgaac	cggtgacggt	gtcgtggaac	tcaggcgccc	tgaccagcgg	1500
cgtgcacacc	ttcccggctg	tcctacagtc	ctcaggactc	tactccctca	gcagcgtggt	1560
gaccgtgccc	tccagcagct	tgggcaccca	gacctacatc	tgcaacgtga	atcacaagcc	i620
cagcaacacc	aaggtggaca	agagagttgg	tgagaggcca	gcacagggag	ggagggtgtc	1680
tgctggaagc	caggeteage	gatactgaat	ggacgcatcc	cggctatgca	gtcccagtcc	1740
agggcagcaa	ggcaggcccc	gtctgcctct	tcacccggag	gectetgece	gccccactca	1800
tgctcaggga	gagggtcttc	tggctttttc	cccaggctct	gggcaggcac	aggctaggtg	1860
cccctaaccc	aggecetgea	cacaaagggg	caggtgctgg	gctcagacct	gccaagagcc	1920
atatccggga	ggaccctgcc	cctgacctaa	gcccacccca	aaggccaaac	tctccactcc	1980
ctcagctcgg	acaccttctc	toctoccaga	ttccagtaac	tcccaatctt	ctctctgcag	2040
agcccaaatc	ttgtgacaaa	actcacacat	goccacogtg	cccaggtaag	ccagcccagg	2100
cctcgccctc	cagctcaagg	cgggacaggt	gccctagagt	agcctgcatc	cagggacagg	2160
ccccagccgg	gtgctgacac	gtccacctcc	atctcttcct	cagcacctga	actcctgggg	2220
ggaccgtcag	tottcotott	cccccaaaa	cccaaggaca	ccctcatgat	ctcccggacc	2280
cctgaggtca	catgcgtggt	ggtggacgtg	agccacgaag	accctgaggt	caagttcaac	2340
tggtacgtgg	acggcgtgga	ggtgcataat	gccaagacaa	agccgcggga	ggagcagtac	2400
aacagcacgt	accgtgtggt	cagcgtcctc	accgtcctgc	accaggactg	gctgaatggc	2460
aaggagtaca	agtgcaaggt	ctccaacaaa	gccctcccag	ccccatcga	gaaaccatc	. 2520
tccaaagcca	aaggtgggac	ccgtggggtg	cgagggccac	atggacagag	gccggctcgg	2580

cccaccctet gccctgaga	g tgaccgctgt	accaacctct	gteectacag	ggcagccccg	2640
agaaccacag gtgtacacc	c tgcccccatc	ccgggaggag	atgaccaaga	accaggtcag	2700
cctgacctgc ctggtcaaa	g gcttctatcc	cagcgacatc	gccgtggagt	gggagagcaa	2760
tgggcagccg gagaacaac	t acaagaccac	geeteeegtg	ctggactccg	acggctcctt	2820
cttcctctat agcaagete	a ccgtggacaa	gagcaggtgg	cagcagggga	acgtettete	2880
atgctccgtg atgcatgag	g ctctgcacaa	ccactacacg	cagaagagcc	tetecetgte	2940
teegggtaaa tgagaatte	c tcgagtctag	agggcccgtt	taaacccgct	gatcagcctc	3000
gactgtgcct tctagttgc	c agccatctgt	tgtttgcccc	teeccegtge	cttccttgac	3060
cctggaaggt gccactcc	a ctgtcctttc	ctaataaaat	gaggaaațtg	categeattg	3120
totgagtagg tgtcattot	a ttctgggggg	tggggtgggg	caggacagca	agggggagga	3180
ttgggaagac aatagcagg	c atgctgggga	tgcggtgggc	tctatggctt	ctgaggcgga	3240
aagaaccagc tggggctct	a gggggtatcc	ccacgcgccc	tgtagcggcg	cattaagcgc	3300
ggcgggtgtg gtggttacg	e geagegtgae	cgctacactt	gecagegece	tagegeeege	3360
teettteget ttétteeet	t cetttetege	cacgitegee	ggettteece	gtcaagetet	3420
aaatcggggc atcccttta	g ggttccgatt	tagtgcttta	eggeaceteg	accccaaaaa	3480
acttgattag ggtgatggt	t cacgtagtgg	gccatcgccc	tgatagacgg	tttttcgccc	3540
tttgacgttg gagtccacg	t tctttaatag	tggactcttg	ttccaaactg	gaacaacact '	3600
caaccctatc toggtotat	t cttttgattt	ataagggatt	ttggggattt	cggcctattg	3660
gttaaaaaat gagctgatt	t aacaaaaatt	taacgcgaat	taattctgtg	gaatgtgtgt	3720
cagttagggt gtggaaagt	c cccaggetec	ccaggcaggc	agaagtatgc	aaagcatgca	3780
teteaattag teageaace	a ggtgtggaaa	gtccccaggc	tecceageag	gcagaagtat	3840
gcaaagcatg catctcaat	t agtcagcaac	catagteceg	cccctaactc	cgcccatccc	3900
gecectaact eegeceagt	t ccgcccattc	teegeeceat	ggctgactaa	tttttttat	3960
ttatgcagag gccgaggcc	g cetetgeetė	tgagctattc	cagaagtagt	gaggaggctt	4020
ttttggaggc ctaggcttt	t gcaaaaagct	cccgggaget	tgtatatcca	ttttcggatc	4080
tgatcagcac gtgatgaaa	a agcctgaact	caccgcgacg	totgtogaga	agtttctgat	4140
cgaaaagttc gacagcgtc	t ccgacctgat	gcageteteg	gagggcgaag	aatctcgtgc	4200
tttcagcttc gatgtagga	g ggċgtggata	tgtcctgcgg	gtaaatagct	gegeegatgg	4260
tttctacaaa gatcgttat	g tttatcggca	ctttgcatcg	geegegetee	cgattccgga	4320
agtgcttgac attggggaa	t tcagcgagag	cctgacctat	tgcatctccc	gccgtgcaca	4380
gggtgtcacg ttgcaagac	c tgcctgaaac	cgaactgccc	gctgttctgc	agccggtcgc	4440

ggaggccatg	gatgcgatcg	ctgcggccga	tcttagccag	acgagcgggt	teggeceatt	4500
cggaccgcaa	ggaatcggtc	aatacactac	atggcgtgat	ttcatatgcg	cgattgctga	4560
tccccatgtg	tatcaćtggc	aaactgtgat	ggaegaeaee	gtcagtgcgt	ccgtcgcgca	4620
ggetetegat	gagctgatgc	tttgggccga	ggactgcccc	gaagtccggc	acctcgtgca	4680
cgcggatttc	ggctccaaca	atgtcctgac	ggacaatggc	cgcataacag	cggtcattga	4740
ctggagcgag	gcgatgttcg	gggattccca	atacgaggtc	gccaacatct	tcttctggag	4800
gccgtggttg	gcttgtatgg	agcagcagac	gcgctacttc	gagcggaggc	atccggagct	4860
tgcaggatcg	cegeggetee	gggcgtatat	gctccgcatt	ggtcttgacc	aactctatca	4920
gagettggtt	gacggcaatt	tcgatgatge	agettgggeg	cagggtcgat	gcgacgcaat	4980
cgtccgatcc	ggagccggga	ctgtcgggcg	tacacaaatc	gcccgcagaa	gegeggeegt	5040
ctggaccgat	ggctgtgtag	aagtactcgc	cgatagtgga	aaccgacgcc	ccagcactcg	5100
tccgagggca	aaggaatagc	acgtgctacg	agatttcgat	tccaccgccg	ccttctatga	5160
aaggttgggc	ttcggaatcg	ttttccggga	cgccggctgg	atgatcctcc	agcgcgggga	5220
totcatgotg	gagttcttcg	cccaccccaa	cttgtttatt	gcagcttata	atggttacaa	5280
ataaagcaat	agcatcacaa	atttcacaaa	taaagcattt	ttttcactgc	attotagttg	5340
tggtttgtcc	aaactcatca	atgtatctta	tcatgtctgt	ataccgtcga	cctctagcta	5400
gagettggeg	taatcatggt	catagctgtt	tcctgtgtga	aattgttatc	cgctcacaat	5460
tecacacaac	atacgagccg	gaagcataaa	gtgtaaagcc	tggggtgcat	aatgagtgag	5520
ctaactcaca	ttaattgcgt	tgcgctcact	geeegettte	cagtcgggaa	acctgtcgtg	5580
ccagctgcat	taatgaatcg	gccaacgcgc	ggggagaggc	ggtttgcgta	ttgggcgctc	5640
ttaagattaa	tcgctcactg	actcgctgcg	ctcggtcgtt	cggctgcggc	gagcggtatc	5700
agctcactca	aaggcggtaa	tacggttatc	cacagaatca	ggggataacg	caggaaagaa	5760
catgtgagca	aaaggccagc	aaaaggccag	gaaccgtaaa	aaggccgcgt	tgctggcgtt	5820
tttccatagg	ctccgccccc	ctgacgagca	tcacaaaaat	cgacgctcaa	gtcagaggtg	5880
gcgaaacccg	acaggactat	aaagatacca	gġcgtttccc	cctggaagct	ecctcgtgcg	5940
ctctcctgtt	ccgaccctgc	cgcttaccgg	atacctgtcc	gcctttctcc	cttcgggaag	6000
cgtggcgctt	tctcaatgct	cacgctgtag	gtatctcagt	toggtgtagg	togttogete	6060
caagctgggc	tgtgtgcacg	aaccccccgt	tcagcccgac	cgctgcgcct	tatccggtaa	6120
ctatcgtctt	gagtccaacc	cggtaagaca	cgacttatcg	ccactggcag	cagccactgg	6180
taacaggatt	agcagagcga	ggtatgtagg	cggtgctaca	gagttcttga	agtggtggcc	6240

taactacggc	tacactagaa	ggacagtatt	tggtatctgc	gctctgctga	agccagttac	6300
cttcggaaaa	agagt t ggta	gctcttgatc	cggcaaacaa	accaccgctg	gtagcggtgg	6360
tttttttgtt	tgcaagcagc	agattacgcg	cagaaaaaaa	ggatctcaag	aagatccttt	6420
gatcttttct	acggggtctg	acgctcagtg	gaacgaaaac	tcacgttaag	ggattttggt	6480
catgagatta	tcaaaaagga	tcttcaccta	gatcctttta	aattaaaaat	gaagttttaa	6540
atcaatctaa	agtatatatg	agtaaacttg	gtctgacagt	taccaatgct	taatcagtga	6600
ggcacctatc	tcagcgatct	gtctatttcg	ttcatccata	gttgcctgac	tccccgtcgt	6660
gtagataact	acgatacggg	agggcttacc	atctggcccc	agtgctgcaa	tgataccgcg	6720
agacccacgc	tcaccggctc	cagatttatc	agcaataaac	cagccagccg	gaagggccga	6780
gcgcagaagt	ggtcctgcaa	ctttatccgc	ctccatccag	tctattaatt	gttgccggga	6840
agctagagta	agtagttcgc	cagttaatag	tttgcgcaac	gttgttgcca	ttgctacagg	6900
catcgtggtg	tcacgctcgt	cgtttggtat	ggcttcattc	agctccggtt	cccaacgatc	6960
aaggcgagtt	acatgatccc	ccatgttgtg	caaaaaagcg	gttagctcct	teggteetee	7020
gatcgttgtc	agaagtaagt	tggccgcagt	gttatcactc	atggttatgg	cagcactgca	7080
taattctctt	actgtcatgc	catccgtaag	atgcttttct	gtgactggtg	agtactcaac	7140
caagtcattc	tgagaatagt	gtatgcggcg	accgagttgc	tcttgcccgg	cgtcaatacg	7200
ggataatacc	gcgccacata	gcagaacttt	aaaagtgctc	atcattggaa	aacgttcttc	7260
ggggcgaaaa	ctctcaagga	tcttaccgct	gttgagatcc	agttcgatgt	aacccactcg	7320
tgcacccaac	tgatcttcag	catcttttac	tttcaccagc	gtttctgggt	gagcaaaaac	7380
aggaaggcaa	aatgccgcaa	aaaagggaat	aagggcgaca	cggaaatgtt	gaatactcat	7440
actcttcctt	tttcaatatt	attgaagcat	ttatcagggt	tattgtctca	tgagcggata	7500
catatttgaa	tgtatttaga	aaaataaaca	aataggggtt	ccgcgcacat	ttccccgaaa	7560
agtgccacct	gacgtc					7576

```
<210> 7
5 <211> 7561
<212> ADN
<213> Secuencia Artificial
<220>
<223> Plásmido

10
```

<400> 7

gacggategg gagatetece gatecectat ggtegaetet cagtacaate tgetetgatg

15

60

ccgcatagtt	aagccagtat	ctgctccctg	cttgtgtgtt	ggaggtcgct	gagtagtgcg	120
cgagcaaaat	ttaagctaca	acaaggcaag	gcttgaccga	caattgcatg	aagaatctgc	180
ttagggttag	gcgttttgcg	ctgcttcgcg	atgtacgggc	cagatatacg	cgttgacatt	240
gattattgac	tagttattaa	tagtaatcaa	ttacggggtc	attagttcat	agcccatata	300
tggagttccg	cgttacataa	cttacggtaa	atggcccgcc	tggctgaccg	cccaaçgacc	360
cccgcccatt	gacgtcaata	atgacgtatg	ttcccatagt	aacgccaata	gggactttcc	420
attgacgtca	atgggtggac	tatttacggt	aaactgccca	cttggcagta	catcaagtgt	480
atcatatgcc	aagtacgccc	cctattgacg	tcaatgacgg	taaatggccc	gcctggcatt	540
atgcccagta	catgacctta	tgggactttc	ctacttggca	gtacatctac	gtattagtca	600
togotattac	catggtgatg	cggttttggc	agtacatcaa	tgggcgtgga	tagcggtttg	660
actcacgggg	atttccaagt	ctccacccca	ttgacgtcaa	tgggagtttg	ttttggcacc	720
aaaatcaacg	ggactttcca	aaatgtcgta	acaactccgc	cccattgacg	caaatgggcg	780
gtaggcgtgt	acggtgggag	gtctatataa	gcagagctct	ctggctaact	agagaaccca	840
ctgcttactg	gcttatcgaa	attaatacga	ctcactatag	ggagacccaa	gctggctaga	900
ggtaccggat	ctcaccatgg	agttggggct	gagctgggtt	ttcctcgttg	ctcttttaag	960
aggtgtccag	tgtcaggagc	agctggtgga	gtctggggga	ggcgtggtcc	agcctgggag	1020
gtccctgaga	ctctcctgtg	cagcgtctgg	attcaccttc	agtacctatg	gcatgcactg	1080
ggtccgccag	gctccaggca	aggggctgga	gtgggtggca	gttacatggc	atgatggaag	1140
taataaatac	tatgcagact	ccgtgaaggg	ccgattcacc	atctccagag	acaactccaa	1200
gaacacgctg	tatctgcaaa	tgaacagcct	gagaġccgag	gacacggctg	tgtattactg	1260
tgcgagagga	ggagtgggag	caacttacta	ctactactac	ggtatggacg	tctggggcca	1320
agggaccacg	gtcaccgtct	cctcagcctc	caccaagggc	ccatcggtct	tccccctggc	1380
accetetage	aagagcacct	ctgggggcac	ageggeeetg	ggctgcctgg	tcaaggacta	1440
cttccccgaa	ccggtgacgg	tgtcgtggaa	ctcaggcgcc	ctgaccagcg	gcgtgcacac	1500
cttcccggct	gtcctacagt	cctcaggact	ctactccctc	agcagcgtgg	tgaccgtgcc	1560
ctccagcagc	ttgggcaccc	agacctacaț	ctgcaacgtg	aatcacaagc	ccagcaacac	1620
caaggtggac	aagagag t tg	gtgagaggcç	agcacaggga	gggagggtgt	ctgctggaag	1680
ccaggctcag	cgctcctgcc	tggacgcatc	ccggctatgc	agtcccagtc	cagggcagca	1740
aggcaggccc	cgtctgcctc	ttcacccgga	ggcctctgcc	cgccccactc	atgctcaggg	1800
agagggtctt	ctggcttttt	ccccaggetc	tgggcaggca	caggctaggt	gcccctaacc	1860

caggccctgc	acacaaaggg	gcaggtgctg	ggctcagacc	tgccaagagc	catatccggg	1920
aggaccctgc	ccctgaccta	agcccacccc	.aaaggccaaa	ctctccactc	cotcagctcg	1980
gacaccttct	ctcctcccag	attccagtaa	ctcccaatct	tctctctgca	gagcccaaat	2040
cttgtgacaa	aactcacaca	tgcccaccgt	gcccaggtaa	gccagcccag	goctogocct	2100
ccagctcaag	gcgggacagg	tgccctagag	tagcctgcat	ccagggacag	gccccagccg	2160
ggtgctgaca	cgtccacctc	catctcttcc	tcagcacctg	aactcctggg	gggaccgtca	2220
gtetteetet	tecceccaaa	acccaaggac	accctcatga	tctcccggac	ccctgaggtc	2280
acatgcgtgg	tggtggacgt	gagccacgaa	gaccctgagg	tcaagttcaa	ctggtacgtg	2340
gacggcgtgg	aggtgcataa	tgccaagaca	aagccgcggg	aggagcagta	caacagcacg	2400
taccgtgtgg	teagegteet	caccgtcctg	caccaggact	ggctgaatgg	caaggagtac	2460
aagtgcaagg	tctccaacaa	agccctccca	gccccatcg	agaaaaccat	ctccaaagcc	2520
aaaggtggga	cccgtggggt	gcgagggcca	catggacaga	adccaactca.	gcccaccctc	2580
tgccctgaga	gtgaccgctg	taccaacctc	tgtccctaca	gggcagcccc	gagaaccaca	2640
ggtgtacacc	ctgcccccat	cccgggagga	gatgaccaag	aaccaggtca	gcctgacctg	2700
cctggtcaaa	ggcttctatc	ccagcgacat	egeegtggag	tgggagagca	atgggcagcc	2760
ggagaacaac	tacaagacca	cgcctcccgt	gctggactcc	gacggctcct	tetteeteta	2820
tagcaagctc	accgtggaca	agagcaggtg	gcagcagggg	aacgtcttct	catgeteegt	2880
gatgcatgag	gctctgcaca	accactacac	gcagaagagc	ctctccctgt	ctccgggtaa	2940
atgactcgag	tctagagggc	ccgtttaaac	eegetgatea	geetegaetg	tgccttctag	3000
ttgccagcca	tctgttgttt	geceeteece	egtgeettee	ttgaccetgg	aaggtgccac	3060
teccactgte	ctttcctaat	aaaatgagga	aattgcatcg	cattgtctga	gtaggtgtca	3120
ttctattctg	gggggtgggg	tggggcagga	cagcaagggg	gaggattggg	aagacaatag	3180
caggcatgct	ggggatgcgg	tgggctctat	ggcttctgag	gcggaaagaa	ccagctgggg	3240
ctctaggggg	tatececaeg	cgccctgtag	cggcgcatta	agegeggegg	gtgtggtggt	3300
tacgcgcagc	gtgaccgcta	cacttgccag	cgccctagcg	cccgctcctt	togotttott	3360
cccttccttt	ctcgccacgt	togooggatt	toccogtcaa	gctctaaatc	ggggcatccc	3420
tttagggttc	cgatttagtg	ctttacggca	cctcgacccc	aaaaaacttg	.attagggtga	3480
tggttcacgt	agtgggccat	cgccctgata	gacggttttt	cgccctttga	cgttggagtc	3540
cacgttcttt	aatagtggac	tcttgttcca	aactggaaca	acactcaacc	ctatctcggt	3600
ctattcttt	gatttataag	ggattttggg	gatttcggcc	tattggttaa	aaaatgagct	3660
gatttaacaa	aaatttaacg	cgaattaatt	ctgtggaatg	tgtgtcagtt	agggtgtgga	3720

aagtccccag	gctccccagg	caggcagaag	tatgcaaagc	atgcatctca	attagtcagc	3780
aaccaggtgt	ggaaagtccc	caggeteece	agcaggcaga	agtatgcaaa	gcatgcatct	3840
caattagtca	gcaaccatag	tecegeecet	aactccgccc	atccegcccc	taactccgcc	3900
cagttccgcc	catteteege	cccatggctg	actaatttt	tttatttatg	cagaggccga	3960
ggccgcctct	gcctctgagc	tattccagaa	gtagtgagga	ggcttttttg	gaggcctagg	4020
cttttgcaaa	aageteeegg	gagcttgtat	atccattttc	ggatctgatc	agcacgtgat	4080
gaaaaagcct	gaactcaccg	cgacgtctgt	cgagaagttt	ctgatcgaaa	agttcgacag	4140
cgtctccgac	ctgatgcagc	tctcggaggg	cgaagaatct	cgtgctttca	gcttcgatgt	4200
aggagggcgt	ggatatgtcc	tgcgggtaaa	tagctgcgcc	gatggtttct	acaaagatcg	4260
ttatgtttat	cggcactttg	categgeege	gctcccgatt	ccggaagtgc	ttgacattgg	4320
ggaattcagc	gagagcctga	cctattgcat	ataccgccgt	gcacagggtg	tcacgttgca	4380
agacctgcct	gaaaccgaac	tgcccgctgt	totgcagccg	gtcgcggagg	ccatggatgc	4440
gategetgeg	gccgatctta	gccagacgag	cgggttcggc	ccattcggac	cgcaaggaat	4500
cggtcaatac	actacatggc	gtgatttcat	atgcgcgatt	gctgatcccc	atgtgtatca	4560
ctggcaaact	gtgatggacg	acaccgtcag	tgcgtccgtc	gcgcaggctc	tcgatgagct	4620
gatgctttgg	gccgaggact	gccccgaagt	ccggcacctc	gtgcacgcgg	atttcggctc	4680
caacaatgtc	ctgacggaca	atggccgcat	aacagcggtc	attgactgga	gcgaggcgat	4740
gttcggggat	tcccaatacg	aggtcgccaa	catcttcttc	tggaggccgt	ggttggcttg	4800
tatggagcag	cagacgcgct	acttcgagcg	gaggcatecg	gagettgeag	gategeegeg	4860
gctccgggcg	tatatgctcc	gcattggtct	tgaccaactc	tatcagagct	tggttgacgg	4920
caatttcgat	gatgcagctt	gggcgcaggg	tcgatgcgac	gcaatcgtcc	gateeggage	4980
cgggactgtc	gggcgtacac	aaatcgcccg	cagaagcgcg	gccgtctgga	ccgatggctg	5040
tgtagaagta	ctcgccgata	gtggaaaccg	acgccccagc	actcgtccga	gggcaaagga	5100
atagcacgtg	ctacgagatt	tcgattccac	cgccgccttc	tatgaaaggt	tgggettegg	5160
aatcgttttc	cgggacgccg	gctggatgat	cetecagege	ggggatctca	tgctggagtt	5220
cttcgcccac	cccaacttgt	ttattgcagc	ttataatggt	tacaaataaa	gcaatagcat	5280
cacaaatttc	acaaataaag	cattttttc	actgcattct	agttgtggtt	tgtccaaact	5340
catcaatgta	tottatcatg	tctgtatacc	gtcgacctct	agctagagct	tggcgtaatc	5400
atggtcatag	ctgtttcctg	tgtgaaattg	ttatecgete	acaattccac	acaacatacg	5460
agccggaagc	ataaagtgta	aagcctgggg	tgcctaatga	gtgagctaac	tcacattaat	5520

tgcgttgcgc	teactgcccg	ctttccagtc	gggaaacctg	tegtgecage	tgcattaatg	5580
aatcggccaa	cgcgcgggga	gaggcggttt	gcgtattggg	cgctcttccg	cttecteget	5640
cactgactcg	ctgcgctcgg	tegttegget	gcggcgagcg	gtatcagete	actcaaaggc	5700
ggtaatacgg	ttatccacag	aatcagggga	taacgcagga	aagaacatgt	gagcaaaagg	5760
ccagcaaaag	gccaggaacc	gtaaaaaggc	cgcgttgctg	gcgtttttcc	ataggeteeg	5820
ccccctgac	gagcatcaca	aaaatcgacg	ctcaagtcag	aggtggcgaa	accegaeagg	5880
actataaaga	taccaggcgt	ttecccetgg	aagctccctc	gtgcgctctc	ctgttccgac	5940
cctgccgctt	accggatacc	tgtccgcctt	tetecetteg	ggaagcgtgg	cgctttctca	6000
atgctcacgc	tgtaggtatc	tcagttcggt	gtaggtcgtt	cgctccaagc	tgggctgtgt	6060
gcacgaaccc	cccgttcagc	cegacegetg	cgccttatcc	ggtaactatc	gtcttgagtc	6120
caacccggta	agacacgact	tatcgccact	ggcagcagcc	actggtaaca	ggattagcag	6180
agcgaggtat	gtaggcggtg	ctacagagtt	cttgaagtgg	tggcctaact	acggctacac	6240
tagaaggaca	gtatttggta	tatgagatat	gctgaagcca	gttaccttcg	gaaaaagagt	6300
tggtagctct	tgatccggca	aacaaaccac	cgctggtage	ggtggtttt	ttgtttgcaa	6360
gcagcagatt	acgcgcagaa	aaaaaggatc	tcaagaagat	cctttgatct	tttctacggg	6420
gtctgacgct	cagtggaacg	aaaactcacg	ttaagggatt	ttggtcatga	gattatcaaa	6480
aaggatcttc	acctagatcc	ttttaaatta	aaaatgaagt	tttaaatcaa	tctaaagtat	6540
atatgagtaa	acttggtctg	acagttacca	atgcttaatc	agtgaggcac	ctatctcage	6600
gatctgtcta	tttcgttcat	ccatagttgc	ctgactcccc	gtcgtgtaga	taactacgat	6660
acgggaggc	ttaccatctg	gccccagtgc	tgcaatgata	ccgcgagacc	cacgctcacc	6720
ggctccagat	ttatcagcaa	taaaccagcc	agccggaagg	gccgagcgca	gaagtggtcc	6780
tgcaacttta	teegeeteea	tccagtctat	taattgttgc	egggaageta	gagtaagtag	6840
ttcgccagtt	aatagtttgc	gcaacgttgt	tgccattgct	acaggcaticg	tggtgtcacg	6900
ctcgtcgttt	ggtatggctt	cattcagctc	cggttcccaa	cgatcaaggc	gagttacatg	6960
atcccccatg	ttgtgcaaaa	aagcggttag	ctccttcggt	cctccgatcg	ttgtcagaag	7020
taagttggcc	gcagtgttat.	cactcatggt	tatggcagca	ctgcataatt	ctcttactgt	7080
catgccatcc	gtaagatgct	tttctgtgac	tggtgagtac	tcaaccaagt	cattctgaga	7140
atagtgtatg	cggcgaccga	gttgctcttg	cccggcgtca	atacgggata	ataccgcgcc	7200
acatagcaga	actttaaaag	tgctcatcat	tggaaaacgt	tcttcggggc	gaaaactctc	7260
aaggatctta	ccgctgttga	gatccagttc	gatgtaaccc	actogtgcac	ccaactgatc	7320
ttcagcatct	tttactttca	ccagogttto	tgggtgagca	aaaacaggaa	ggcaaaatgc	7380

cgcaaaaag ggaataaggg cgacacggaa atgttgaata ctcatactct tccttttca 7440
atattattga agcatttatc agggttattg tctcatgagc ggatacatat ttgaatgtat 7500
ttagaaaaat aaacaaatag gggttccgcg cacatttccc cgaaaagtgc cacctgacgt 7560
c 7561

<210> 8

<211> 6082

<212> ADN

<213> Secuencia Artificial

<220>

5

<223> Plásmido

10 <400> 8

gacggatcgg gagatctccc gatcccctat ggtcgactct cagtacaatc tgctctgatg 60 cogcatagtt aagocagtat otgotocotg cttgtgtgtt ggaggtogot gagtagtgog 120 cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 180 ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt 240 300 gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata 360 tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc 420 cccgcccatt gacgtcaata atgacgtatg trcccatagt aacgccaata gggactttcc attgacgtca atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt 480 atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540 600 atgoccagta catgacotta tgggacttto ctacttggca gtacatotac gtattagtoa 660 tegetattae eatggtgatg eggttttgge agtacateaa tgggegtgga tageggtttg 720 acteacgggg atttccaagt ctccaccca ttgacgtcaa tgggagtttg ttttggcacc aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg 780 840 gtaggegtgt acggtgggag gtctatataa gcagagetet etggetaact agagaaceca 900 ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctaga 960 aagettggat eteaceatga gggteeetge teageteetg ggaeteetge tgetetgget 1020 cccagatacc agatgtgaca tccagatgac ccagtctcca tcctccctgt ctgcatctgt aggagacaga gtcaccatca cttgccgggc gagtcagggc attagcaatt atttagcctg 1080 1140 gtatcagcag aaaacaggga aagttectaa gtteetgate tatgaageat eeactttgca

atcaggggtc	ccatctcggt	tcagtggcgg	tggatctggg	acagatttca	ctctcaccat	1200
cagcagectg	cagcctgaag	atgttgcaac	ttattactgt	caaaattata	acagtgcccc	1260
attcactttc	ggccctggga	ccaaagtgga	tatcaaacga	actgtggctg	caccctctgt	1320
cttcatcttc	ccgccatctg	atgagcagtt	gaaatctgga	actgctagcg	ttgtgtgcct	1380
gctgaataac	ttctatccca	gagaggccaa	agtacagtgg	aaggtggata	acgccctcca	1440
atcgggtaac	tcccaggaga	gtgtcacaga	gcaggacagc	aaggacagca	cctacagcct	1500
cagcagcacc	ctgacgctga	gcaaagcaga	ctacgagaaa	cacaaagtct	acgcctgcga	1560
agtcacccat	cagggcctga	gctcgcccgt	cacaaagagc	ttcaacaggg	gagagtgtta	1620
ggaattcgcg	gccgctcgag	tctagagggc	ccgtttaaac	ccgctgatca	gcctcgactg	1680
tgccttctag	ttgccagcca	tetgttgttt	gececteece	cgtgccttcc	ttgaccctgg .	1740
aaggtgccac	teccaetgte	ctttcctaat	aaaatgagga	aattgcatcg	cattgtctga	1800
gtaggtgtca	ttctattctg	gggggtgggg	tggggcagga	cagcaagggg	gaggattggg	1860
aagacaatag	caggcatgct	ggggatgcgg	tgggctctat	ggcttctgag	gcggaaagaa.	1920
ccagctgggg	ctctaggggg	tatccccacg	cgccctgtag	cggcgcatta	agegeggegg	1980
gtgtggtggt	tacgcgcagc	gtgaccgcta	cacttgccag	egcectageg	ecegeteett	2040
tegetttett	cccttccttt	ctcgccacgt	tegeeggett	tccccgtcaa	gctctaaatc	2100
ggggcatece	tttagggttc	cgatttagtg	ctttacggca	cctcgacccc	aaaaaacttg	2160
attagggtga	tggttcacgt	agtgggccat	cgccctgata	gacggttttt	cgccctttga	2220
cgttggagtc	cacgttcttt	aatagtggac	tcttgttcca	aactggaaca	acactcaacc	2280
ctatctcggt	ctattcttt	gatttataag	ggattttggg	gatttcggcc	tattggttaa ,	2340
aaaatgagct	gatttaacaa	aaatttaacg	cgaattaatt	ctgtggaatg	tgtgtcagtt	2400
agggtgtgga	aagtccccag	geteeccagg	caggcagaag	tatgcaaagc	atgcatetea	2460
attagtcagc	aaccaggtgt	ggaaagtccc	caggotecee	agcaggcaga	agtatgcaaa	2520
gcatgcatct	caattagtca	gcaaccatag	tecegeceet	aactccgccc	atecegecee	2580
taactccgcc	cagttccgcc	catteteege	cccatggctg	actaatttt	tttatttatg	2640
cagaggccga	ggccgcctct	gcctctgagc	tattccagaa	gtagtgagga	ggctttttg	2700
gaggcctagg	cttttgcaaa	aagctcccgg	gagcttgtat	atccattttc	ggatetgate .	2760
aagagacagg	atgaggatcg	tttcgcatga	ttgaacaaga	tggattgcac	gcaggttctc	2820
cggccgcttg	ggtggagagg	ctattcggct	atgactgggc	acaacagaca	atcggctgct	2880
ctgatgccgc	cgtgttccgg	ctgtcagcgc	aggggcgccc	ggttctttt	gtcaagaccg	2940
acctgtccgg	tgccctgaat	gaactgcagg	acgaggcagc	gcggctatcg	tggctggcca	3000

cgacgggcgt	: teettgegea	getgtgeteg	acgttgtcac	tgaagcggga	agggactggc	3060
tgctattggg	g cgaagtgeeg	gggcaggatc	tectgteate	tcaccttgct	cctgccgaga	3120
aagtatccat	catggctgat	gcaatgcggc	ggctgcatac	gcttgatccg	gctacctgcc	3180
cattcgacca	ccaagcgaaa	catcgcatcg	agcgagcacg	tactcggatg	gaagccggtc	3240
ttgtcgatca	ggatgatctg	gacgaagagc	atcaggggct	cgcgccagcc	gaactgttcg	3300
ccaggctcaa	ggcgcgcatg	cccgacggcg	aggatctcgt	cgtgacccat	ggcgatgcct	3360
gcttgccgaa	tatcatggtg	gaaaatggcc	gcttttctgg	attcatcgac	tgtggccggc	3420
tgggtgtggc	ggaccgctat	caggacatag	cgttggctac	ccgtgatatt	gctgaagagc	3480
ttggcggcga	atgggctgac	cgcttcctcg	tgctttacgg	tatcgccgct	cccgattcgc	3540
agcgcatcgc	cttctatcgc	cttcttgacg	agttcttctg	agcgggactc	tggggttcga	3600
aatgaccgac	caagcgacgc	ccaacctgcc	atcacgagat	ttcgattcca	cegeegeett	3660
ctatgaaagg	ttgggcttcg	gaatcgtttt	ccgggacgcc	ggctggatga	tcctccagcg	3720
cggggatetc	atgctggagt	tettegecea	ccccaacttg	tttattgcag	cttataatgg	3780
ttacaaataa	agcaatagca	tcacaaattt	cacaaataaa	gcatttttt	cactgcattc	3840
tagttgtggt	ttgtccaaac	tcatcaatgt	atcttatcat	gtctgtatac	cgtcgacctc	3900
tagctagagc	ttggcgtaat	catggtcata	gctgtttcct	gtgtgaaatt	gttatccgct	3960
cacaattcca	cacaacatac	gagccggaag	cataaagtgt	aaagcctggg	gtgcctaatg	4020
agtgagctaa	ctcacattaa	ttgcgttgcg	ctcactgccc	gctttccagt	cgggaaacct	4080
gtcgtgccag	ctgcattaat	gaateggeea	acgcgcgggg	agaggcggtt	tgcgtattgg	4140
gegetettee	gcttcctcgc	tcactgactc	gctgcgctcg	gtcgttcggc	tgcggcgagc	4200
ggtatcagct	cactcaaagg	cggtaatacg	gttatccaca	gaatcagggg	ataacgcagg	4260
aaagaacatg	tgagcaaaag	gccagcaaaa	ggccaggaac	cgtaaaaagg	ccgcgttgct	4320
ggcgtttttc	cataggctcc	gcccccctga	cgagcatcac	aaaaatcgac	gctcaagtca	4380
gaggtggcga	aacccgacag	gactataaag	ataccaggcg	tttccccctg	gaageteeet	4440
cgtgcgctct	cctgttccga	ccctgccgct	taccggatac	ctgtccgcct	tteteeette	4500
gggaagcgtg	gcgctttctc	aatgctcacg	ctgtaggtat	ctcagttcgg	tgtaggtcgt	4560
tcgctccaag	ctgggctgtg	tgcacgaacc	ccccgttcag	cccgaccgct	gcgccttatc	4620
cggtaactat	cgtcttgagt	ccaacccggt	aagacacgac	ttatcgccac	tggcagcagc	4680
cactggtaac	aggattagca	gagcgaggta	tgtaggcggt	gctacagagt	tcttgaagtg	4740
gtggcctaac	tacggctaca	ctagaaggac	agtatttggt	atctgcgctc	tgctgaagcc	4800

agttaccttc	ggaaaaagag	ttggtagctc	ttgatccggc	aaacaaacca	ccgctggtag	4860
cggtggtttt	tttgtttgca	agcagcagat	tacgcgcaga	aaaaaggat	ctcaagaaga	4920
tcctttgatc	ttttctacgg	ggtctgacgc	tcagtggaac	gaaaactcac	gttaagggat	4980
tttggtcatg	agattatcaa	aaaggatctt	cacctagatc	cttttaaatt	aaaaatgaag	5040
ttttaaatca	atctaaagta	tatatgagta	aacttggtct	gacagttacc	aatgcttaat	5100
cagtgaggca	cctatctcag	cgatctgtct	atttcgttca	tccatagttg	cctgactccc	5160
cgtcgtgtag	ataactacga	tacgggaggg	cttaccatct	ggccccagtg	ctgcaatgat	5220
accgcgagac	ccacgeteae	cggctccaga	tttatcagca	ataaaccagc	cagccggaag	5280
ggccgagcgc	agaagtggtc	ctgcaacttt	atccgcctcc	atccagtcta	ttaattgttg	5340
ccgggaagct	agagtaagta	gttcgccagt	taatagtttg	cgcaacgttg	ttgccattgc	5400
tacaggcatc	gtggtgtcac	gctcgtcgtt	tggtatggct	tcattcagct	ccggttccca	5460
acgatcaagg	cgagttacat	gatececcat	gttgtgcaaa	aaagcggtta	gctccttcgg	5520
tcctccgatc	gttgtcagaa	gtaagttggc	cgcagtgtta	tcactcatgg	ttatggcagc	5580
actgcataat	tetettactg	tcatgccatc	cgtaagatgc	ttttctgtga	ctggtgagta	5640
ctcaaccaag	tcattctgag	aatagtgtat	gcggcgaccg	agttgctctt	gcccggcgtc	5700
aatacgggat	aataccgcgc	cacatagcag	aactttaaaa	gtgctcatca	ttggaaaacg	5 76 0
ttcttcgggg	cgaaaactct	caaggatctt	accgctgttg	agatccagtt	cgatgtaacc	5820
cactegtgca	cccaactgat	cttcagcatc.	ttttactttc	accagcgttt	ctgggtgagc	5880
aaaaacagga	aggcaaaatg	ccgcaaaaaa	gggaataagg	gcgacacgga	aatgttgaat	5940
actcatactc	ttcctttttc	aatattattg	aagcatttat	cagggttatt	gtctcatgag	6000
cggatacata	tttgaatgta	tttagaaaaa	taaacaaata	ggggttccgc	gcacatttcc	6060
ccgaaaagtg	ccacctgacg	tc				6082

<210> 9 5 <211> 6082

<212> ADN

<213> Secuencia Artificial

<220>

<223> Plásmido

<400> 9

gacggatcgg gagatctccc gatcccctat ggtcgactct cagtacaatc tgctctgatg 60 ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg 120

15

10

cgagcaaaat	: ttaagctaca	acaaggcaag	gcttgaccga	caattgcatg	aagaatctgc	180
ttagggttag	gcgttttgcg	ctgcttcgcg	atgtacgggc	cagatatacg	cgttgacatt	240
gattattgac	: tagttattaa	tagtaatcaa	ttacggggtc	attagttcat	agcccatata	300
tggagttccg	cgttacataa	cttacggtaa	atggcccgcc	tggctgaccg	cccaacgacc	360
eccgcccatt	gacgtcaata	atgacgtatg	ttcccatagt	aacgccaata	gggactttcc	420 -
attgacgtca	atgggtggac	tatttacggt	aaactgccca	cttggcagta	catcaagtgt	480
atcatatgcc	aagtacgccc	cctattgacg	tcaatgacgg	taaatggccc	gcctggcatt	540
atgcccagta	catgacctta	tgggactttc	ctacttggca	gtacatctac	gtattagtca	600
togotattac	catggtgatg	cggttttggc	agtacatcaa	tgggcgtgga	tagcggtttg	660
actcacgggg	atttccaagt	ctccacccca	ttgacgtcaa	tgggagtttg	ttttggcacc	720
aaaatcaacg	ggactttcca	aaatgtcgta	acaactccgc	cccattgacg	·caaatgggcg	780
gtaggcgtgt	acggtgggag	gtctatataa	gcagagctct	ctggctaact	agagaaccca	840
ctgcttactg	gcttatcgaa	attaatacga	ctcactatag	ggagacccaa	gctggctaga	900
aagcttggat	ctcaccatga	gggtccccgc	tcagctcctg	gggctcctgc	tgctctgttt	960
cccaggtgcc	agatgtgaca	tccagatgac	ccagteteca	tcctcactgt	ctgcatctgt	1020
aggagacaga	gtcaccatca	cttgtcgggc	gagtcagggc	attaccaatt	atttagcctg	1080
gtttcagcag	aaaccaggga	aagcccctaa	gtcccttatc	tatgctgcat	ccagtttgca	1140
aagtggggtc	ccatcaaagt	tcagcggcag	tggatctggg	acagatttca	gtctcaccat	1200
cagcagcctg	cagcctgaag	attttgcaac	ttattactgc	caacagtata	atagttaccc	1260
gatcaccttc	ggccaaggga	cacgactgga	gattaaacga	actgtggctg	caccatctgt	1320
cttcatcttc	ccgccatctg	atgagcagtt	gaaatctgga	actgctagcg	ttgtgtgcct	1380
gctgaataac	ttctatccca	gagaggccaa	agtacagtgg	aaggtggata	acgccctcca	1440
atcgggtaac	teccaggaga	gtgtcacaga	gcaggacagc	aaggacagca	cctacageet	1500
cagcagcacc	ctgacgctga	gcaaagcaga	ctacgagaaa	cacaaagtct	acgcctgcga	1560
agtcacccat	cagggcctga	getegeeegt	cacaaagagc	ttcaacaggg	gagagtgtta	1620
ggaattcgcg	geegetegag	tctagagggc	ccgtttaaac	ccgctgatca	gcctcgactg	1680
tgccttctag	ttgccagcca	tctgttgttt	gcccctcccc	cgtgccttcc	ttgaccctgg	1740
aaggtgccac	tcccactgtc	ctttcctaat	aaaatgagga	aattgcatcg	cattgtctga	1800
gtaggtgtca	ttctattctg	gggggtgggg	tggggcagga	cagcaagggg	gaggattggg	1860
aagacaatag	caggcatgct	ggggatgcgg	tgggctctat	ggcttctgag	gcggaaagaa	1920

ccagctgggg	ctctaggggg	tatccccacg	cgccctgtag	cggcgcatta	agcgcggcgg	1980
gtgtggtggt	tacgcgcagc	gtgaccgcta	cacttgccag	cgccctagcg	cccgctcctt	2040
tegetttett	cccttccttt	ctcgccacgt	togooggett	tccccgtcaa	gototaaato	2100
ggggcatccc	tttagggttc	cgatttagtg	ctttacggca	cctcgacccc	aaaaaacttg	2160
attagggtga	tggttcacgt	agtgggccat	cgccctgata	gacggttttt	cgccctttga	2220
cgttggagtc	cacgttcttt	aatagtggac	tcttgttcca	aactggaaca	acactcaacc	2280
ctatctcggt	ctattctttt	gatttataag	ggattttggg	gatttcggcc	tattggttaa	2340
aaaatgagct	gatttaacaa	aaatttaacg	cgaattaatt	ctgtggaatg	tgtgtcagtt	2400
agggtgtgga	aagtccccag	gctccccagg	caggcagaag	tatgcaaagc	atgcatctca	2460
attagtcagc	aaccaggtgt	ggaaagtcċc	caggeteece	agcaggcaga	agtatgcaaa	2520
gcatgcatct	caattagtca	gcaaccatag	teecgeeect	aactccgccc	atcocgcccc	2580
taactccgcc	cagtteegee	catteteege	cccatggctg	actaatttt	tttatttatg	2640
cagaggccga	ggccgcctct	gcctctgagc	tattccagaa	gtagtgagga	ggcttttttg	2700
gaggcctagg	cttttgcaaa	aagctcccgg	gagcttgtat	atccattttc	ggatctgatc	2760
aagagacagg	atgaggatcg	tttcgcatga	ttgaacaaga	tggattgcac	gcaggttctc	2820
cggccgcttg	ggtggagagg	ctattcggct	atgactgggc	acaacagaca	atoggotgot	2880
ctgatgccgc	cgtgttccgg	ctgtcagcgc	aggggegeee	ggttctttt	gtcaagaccg	2940
acctgtccgg	tgccctgaat	gaactgcagg	acgaggcagc	gcggctatcg	tggctggcca	3000
cgacgggcgt	teettgegea	gctgtgctcg	acgttgtcac	tgaagcggga	agggactggc	3060
tgctattggg	cgaagtgccg	gggcaggatc	tcctgtcatc	tcaccttgct	cctgccgaga	3120
aagtatccat	catggctgat	gcaatgcggc	ggctgcatac	gcttgatccg	gctacctgcc	3180
cattcgacca	ccaagcgaaa	categeateg	agcgagcacg	tactcggatg	gaagccggtc	3240
ttgtcgatca	ggatgatctg	gacgaagagc	atcaggggct	egegecagee	gaactgttcg	3300
ccaggctcaa	ggcgcgcatg	cccgacggcg	aggatctcgt	cgtgacccat	ggcgatgcct	3360
gcttgccgaa	tatcatggtg	gaaaatggcc	gcttttctgg	attcatcgac	tgtggccggc	3420
tgggtgtggc	ggaccgctat	caggacatag	cgttggctac	ccgtgatatt	gctgaagagc	3480
ttggcggcga	atgggctgac	cgcttcctcg	tgctttacgg	tategeeget	cccgattcgc	3540
agcgcatcgc	cttctatcgc	cttcttgacg	agttcttctg	agegggaete	tggggttcga	3600
aatgaccgac	caagcgacgc	ccaacctgcc	atcacgagat	ttcgattcca	ccgccgcctt	3660
ctatgaaagg	ttgggcttcg	gaatcgtttt	ccgggacgcc	ggctggatga	tectecageg	3720
cggggatete	atgctggagt	tcttcgccca	ccccaacttg	tttattgcag	cttataatgg	3780

ttacaaataa	agcaatagca	tcacaaattt	cacaaataaa	gcatttttt	cactgcattc	3840
tagttgtggt	ttgtccaaac	tcatcaatgt	atcttatcat	gtetgtatac	cgtcgacctc	3900
tagctagagc	ttggcgtaat	catggtcata	gatgttteat	gtgtgaaatt	gttatccgct	3960
cacaattcca	cacaacatac	gagccggaag	cataaagtgt	aaageetggg	gtgcctaatg	4020
agtgagctaa	ctcacattaa	ttgcgttgcg	ctcactgecc	gctttccagt	cgggaaacct	408(
gtcgtgccag	ctgcattaat	gaatcggcca	acgcgcgggg	agaggcggtt	tgcgtattgg	4140
gcgctcttcc	getteetege	tcactgactc	gatgagatag	gtcgttcggc	tgcggcgagc	4200
ggtatcagct	cactcaaagg	cggtaatacg	gttatccaca	gaatcagggg	ataacgcagg	4260
aaagaacatg	tgagcaaaag	gccagcaaaa	ggccaggaac	cgtaaaaagg	ccgcgttgct	, 4320
ggcgttttc	cataggctcc	gcccccctga	cgagcatcac	aaaaatcgac	gctcaagtca	4380
gaggtggcga	aacccgacag	gactataaag	ataccaggeg	tttccccctg	gaagctccct	4440
cgtgcgctct	cctgttccga	ccctgccgct	taccggatac	ctgtccgcct	ttctcccttc	4500
gggaagcgtg	gcgctttctc	aatgctcacg	ctgtaggtat	ctcagttcgg	tgtaggtcgt	4560
tegetecaag	ctgggctgtg	tgcacgaacc	ccccgttcag	cccgaccgct	gcgccttatc	4620
cggtaactat	cgtcttgagt	ccaacccggt	aagacacgac	ttatcgccac	tggcagcagc	4680
cactggtaac	aggattagca	gagcgaggta	tgtaggcggt	gctacagagt	tcttgaagtg	4740
gtggcctaac	tacggctaca	ctagaaggac	agtatttggt	atctgcgctc	tgctgaagcc	4800
agttaccttc	ggaaaaagag	ttggtagctc	ttgatccggc	aaacaaacca	ccgctggtag	4860
cggtggtttt	tttgtttgca	agcagcagat	tacgcgcaga	aaaaaaggat	ctcaagaaga	4920
tcctttgatc	ttttctacgg	ggtctgacgc	tcagtggaac	gaaaactcac	gttaagggat	4980
tttggtcatg	agattatcaa	aaaggatctt	cacctagatc	cttttaaatt	aaaaatgaag	5040
ttttaaatca	atctaaagta	tatatgagta	aacttggtct	gacagttacc	aatgottaat	5100
cagtgaggca	cctatctcag	cgatctgtct	atttcgttca	tccatagttg	cctgactccc .	5160
cgtcgtgtag	ataactacga	tacgggaggg	cttaccatct	ggccccagtg	ctgcaatgat	5220
accgcgagac	ccacgctcac	cggctccaga	tttatcagca	ataaaccagc	cageeggaag	5280
ggccgagcgc	agaagtggtc	ctgcaacttt	atccgcctcc	atccagtcta	ttaattgttg	5340
ccgggaagct	agagtaagta	gttcgccagt	taatagtttg	cgcaacgttg	ttgccattgc	5400
tacaggcatc	gtggtgtcac	gctcgtcgtt	tggtatggct	tcattcagct	ccggttccca	5460
acgatcaagg	cgagttacat	gatececcat	gttgtgcaaa	aaagcggtta	gctccttcgg	5520
tecteegate	gttgtcagaa	gtaagttggc	cgcagtgtta	tcactcatgg	ttatggcagc	5580

actgcataat tetettaetg teatgceate egtaagatge ttttetgtga etggtgagta 5640 ctcaaccaag tcattctgag aatagtgtat gcggcgaccg agttgctctt gcccggcgtc 5700 aatacgggat aataccgcgc cacatagcag aactttaaaa gtgctcatca ttggaaaacg 5760 ttcttcgggg cgaaaactct caaggatctt accgctgttg agatccagtt cgatgtaacc 5820 cactogtgca cocaactgat cttcagcate ttttactttc accagcgttt ctgggtgage 5880 aaaaacagga aggcaaaatg ccgcaaaaaa gggaataagg gcgacacgga aatgttgaat 5940 actcatactc ttcctttttc aatattattg aagcatttat cagggttatt gtctcatgag 6000 cggatacata tttgaatgta tttagaaaaa taaacaaata ggggttccgc gcacatttcc 6060 ccgaaaagtg ccacctgacg to 6082

<210> 10

<211> 6082

5 <212> ADN

<213> Secuencia Artificial

<220>

<223> Plásmido

10 <400> 10

gacggatcgg gagatctccc gatcccctat ggtcgactct cagtacaatc tgctctgatg 60 ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg 120 cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 180 ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt 240 gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata 300 tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc 360 cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 420 attgacgtca atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt 480 atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540 atgeceagta catgacetta tgggaettte etaettggea gtacatetae gtattagtea 600 tegetattae catggtgatg eggttttgge agtacateaa tgggegtgga tageggtttg 660 acteaegggg atttccaagt ctccaccca ttgaegtcaa tgggagtttg ttttggcacc 720 aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg 780 gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca 840 ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctaga 900

aagcttggat	: ctcaccatga	gggtacatga	teageteetg	gggeteetge	tgctctgttt	960
cccaggtgc	agatgtgace	ı tocagatgac	ccagteteca	tectcactgt	ctgcatctgt	1020
aggagacaga	gtcaccatca	cttgteggge	gagtcagggc	attagccatt	atitagcctg	1080
gtttcagcag	g aaaccaggga	aagcccctaa	gtecetgate	tatgctgcat	ccagtttgca	1140
aagtggggto	ccatcaaagt	tcageggeag	tggatctggg	acagatttca	ctctcaccat	1200
cagcagccta	cageetgaag	attttgcaac	ttattactgc	caacagtata	atagtttccc	1260
gctcactttc	: ggcggaggga	ccaaggtgga	gatcaaacga	actgtggctg	caccatctgt	1320
cttcatcttc	ccgccatctg	atgagcagtt	gaaatctgga	actgctagcg	ttgtgtgcct	1380
gctgaataac	ttctatccca	gagaggccaa	agtacagtgg	aaggtggata	acgccctcca	1440
atcgggtaac	teccaggaga	gtgtcacaga	gcaggacagc	aaggacagca	cctacagcct	1500
cagcagcacc	ctgacgctga	gcaaagcaga	ctacgagaaa	cacaaagtct	acgcctgcga	1560
agtcacccat	cagggcctga	gctcgcccgt	cacaaagagc	ttcaacaggg	gagagtgtta	1620
ggaattcgcg	gccgctcgag	tctagagggc	ccgtttaaac	cegetgatea	gcctcgactg	1680
tgccttctag	ttgccagcca	tctgttgttt	gecectecee	cgtgccttcc	ttgaccctgg	1740
aaggtgccac	tcccactgtc	ctttcctaat	aaaatgagga	aattgcatcg	cattgtctga	1800
gtaggtgtca	ttctattctg	gggggtgggg	tggggcagga	cagcaagggg	gaggattggg	1860
aagacaatag	caggcatgct	ggggatgcgg	tgggctctat	ggcttctgag	gcggaaagaa	1920
ccagctgggg	ctctaggggg	tatccccacg	cgccctgtag	cggcgcatta	agegeggegg	1980
gtgtggtggt	tacgcgcagc	gtgaccgcta	cacttgccag	cgccctagcg	cccgctcctt	2040
tegetttett	cccttccttt	ctcgccacgt	tcgccggctt	tccccgtcaa	gctctaaatc	2100
ggggcatccc	tttagggttc	cgatttagtg	ctttacggca	cctcgacccc	aaaaaacttg	2160
attagggtga	tggttcacgt	agtgggccat	cgccctgata	gacggttttt	cgccctttga	2220
cgttggagtc	cacgttettt	aatagtggac	tcttgttcca	aactggaaca	acactcaacc	2280
ctatctcggt	ctattcttt	gatttataag	ggattttggg	gattteggee	tattggttaa	2340
aaaatgagct	gatttaacaa	aaatttaacg	cgaattaatt	ctgtggaatg	tgtgtcagtt	2400
agggtgtgga	aagtccccag	gctccccagg	caggcagaag	tatgcaaagc	atgcatctca	2460
attagtcagc	aaccaggtgt	ggaaagteee	caggctcccc	agcaggcaga	agtatgcaaa	2520
gcatgcatct	caattagtca	gcaaccatag	tecegeecet	aacteegcce	atocogecee	2580
taactccgcc	cagtteegee	cattctccgc	cccatggctg	actaattttt	tttatttatg	2640
cagaggccga	ggccgcctct	gcctctgage	tatt <u>ccagaa</u>	gtagtgagga	ggcttttttg	2700

gaggcctag	g cttttgcaaa	aagctcccg	gagcttgtat	atccattttc	ggatctgatc	.2760
aagagacag	g atgaggatco	r tttcgcatga	ı ttgaacaaga	tggattgcac	gcaggttctc	2820
cggccgctt	g ggtggagagg	ctattcggct	atgactgggc	acaacagaca	ateggetget	2880
ctgatgccgd	cgtgttccgg	ctgtcagcgc	aggggcgccc	ggttctttt	gtcaagaccg	2940
acctgtccgg	g tgccctgaat	gaactgcagg	acgaggcagc	goggotatog	tggctggcca	3000
cgacgggcgt	: tccttgcgca	getgtgeteg	acgttgtcac	tgaagcggga	agggactggc	3 0 60
tgctattggg	g cgaagtgccg	gggcaggato	tcctgtcatc	tcaccttgct	cctgccgaga	3120
aagtatccat	. catggctgat	gcaatgcggc	ggctgcatac	gcttgatccg	gctacctgcc	3180
cattcgacca	ccaagcgaaa	categeateg	agcgagcacg	tactoggatg	gaagccggtc	3240
ttgtcgatca	ggatgatctg	gacgaagagc	atcaggggct	cgcgccagcc	gaactgttcg	3300
ccaggetcaa	ggcgcgcatg	cccgacggcg	aggatctcgt	cgtgacccat	ggcgatgcct	3360
gcttgccgaa	tatcatggtg	gaaaatggcc	gcttttctgg	attcatcgac	tgtggccggc	3420
tgggtgtggc	ggaccgctat	caggacatag	cgttggctac	ccgtgatatt	gctgaagagc	3480
ttggcggcga	atgggctgac	cgcttcctcg	tgctttacgg	tatcgccgct	cccgattcgc	3540
agcgcatcgc	cttctatcgc	cttcttgacg	agttcttctg	agegggaete	tggggttcga	3600
aatgaccgac	caagcgacgc	ccaacctgcc	atcacgagat	ttcgattcca	ccgccgcctt	3660
ctatgaaagg	ttgggcttcg	gaatcgtttt	ccgggacgcc	ggctggatga	tectecageg	3720
cggggatctc	atgctggagt	têttegecea	ccccaacttg	tttattgcag	cttataatgg	3780
ttacaaataa	agcaatagca	tcacaaattt	cacaaataaa	gcatttttt	cactgcattc	3840
tagttgtggt	ttgtccaaac	tcatcaatgt	atcttatcat	gtctgtatac	egtegacete	3900
tagctagagc	ttggcgtaat	catggtcata	gctgtttcct	gtgtgaaatt	gttatccgct	3960
cacaattcca	cacaacatac	gagccggaag	cataaagtgt	aaagcctggg	gtgcctaatg	4020
agtgagctaa	ctcacattaa	ttgcgttgcg	ctcactgccc	gctttccagt	cgggaaacct	4080
gtcgtgccag	ctgcattaat	gaatcggcca	acgcgcgggg	agaggcggtt	tgcgtattgg	4140
gcgctcttcc	gcttcctcgc	tcactgactc	gctgcgctcg	gtcgttcggc	tgcggcgagc	4200
ggtatcagct	cactcaaagg	cggtaatacg	gttatccaca	gaatcagggg	ataacgcagg	4260
aaagaacatg	tgagcaaaag	gccagcaaaa	ggccaggaac	cgtaaaaagg	ccġcgttgct	4320
ggcgttttc	cataggetee	gcccccctga	cgagcatcac	aaaaatcgac	gctcaagtca	4380
gaggtggcga	aacccgacag	gactataaag	ataccaggcg	tttccccctg	gaagctccct	4440
cgtgcgctct	cctgttccga	ccctgccgct	taccggatac	etgteegeet	ttetecette	4500
gggaagcgtg	gcgctttctc	aatgctcacg	ctgtaggtat	ctcagttcgg	tgtaggtcgt	4560

```
tegetecaag etgggetgtg tgeacgaace eccegtteag eccgaceget gegeettate
                                                                     4620
cggtaactat cgtcttgagt ccaacccggt aagacacgac ttatcgccac tggcagcage
                                                                     4680
cactggtaac aggattagca gagcgaggta tgtaggcggt gctacagagt tcttgaagtg
                                                                     4740
gtggcctaac tacggctaca ctagaaggac agtatttggt atctgcgctc tgctgaagcc
                                                                     4800
agttaccttc ggaaaaagag ttggtagetc ttgatccggc aaacaaacca ccgctggtag
                                                                     4860
cggtggtttt tttgtttgca agcagcagat tacgcgcaga aaaaaaggat ctcaagaaga
                                                                     4920
tcctttgatc ttttctacgg ggtctgacgc tcagtggaac gaaaactcac gttaagggat
                                                                     4980
tttggtcatg agattatcaa aaaggatctt cacctagatc cttttaaatt aaaaatgaag
                                                                     5040
ttttaaatca atctaaagta tatatgagta aacttggtct gacagttacc aatgcttaat
                                                                     5100
cagtgaggca cctatctcag cgatctgtct atttcgttca tccatagttg cctgactccc
                                                                     5160
cgtcgtgtag ataactacga tacgggaggg cttaccatct ggccccagtg ctgcaatgat
                                                                     5220
accgcgagac ccacgctcac cggctccaga tttatcagca ataaaccagc cagccggaag
                                                                     5280
ggccgagcgc agaagtggtc ctgcaacttt atccgcctcc atccagtcta ttaattqttq
                                                                     5340
ccgggaagct agagtaagta gttcgccagt taatagtttg cgcaacgttg ttgccattgc
                                                                     5400
tacaggcate gtggtgtcac getegtegtt tggtatgget teatteaget eeggtteeca
                                                                    5460
acgatcaagg cgagttacat gatcccccat gttgtgcaaa aaagcggtta gctccttcgg
                                                                    5520
teeteegate gttgteagaa gtaagttgge egeagtgtta teacteatgg ttatggeage
                                                                    5580
actgcataat tetettaetg teatgecate egtaagatge ttttetgtga etggtgagta
                                                                    5640
ctcaaccaag tcattctgag aatagtgtat gcggcgaccg agttgctctt gcccggcgtc
                                                                    5700
aatacgggat aataccgcgc cacatagcag aactttaaaa gtgctcatca ttggaaaacg
                                                                    5760
ttettegggg cgaaaactet caaggatett accgetgttg agatecagtt cgatgtaace
                                                                    5820
cactegtgea eccaactgat etteageate ttttaettte accagegttt etgggtgage
                                                                    5880
aaaaacagga aggcaaaatg ccgcaaaaaa gggaataagg gcgacacgga aatgttgaat
                                                                    5940
actcatactc ttcctttttc aatattattg aagcatttat cagggttatt gtctcatgag
                                                                    6000
cggatacata titgaatgta titagaaaaa taaacaaata ggggttccgc gcacatttcc
                                                                    6060
ccgaaaagtg ccacctgacg to
                                                                    60B2
```

```
<210> 11
```

<211> 6085

^{5 &}lt;212> ADN

<213> Secuencia Artificial

<220>

<223> Plásmido

^{10 &}lt;400> 11

60	tgctctgatg	cagtacaatc	ggtcgactct	gatecectat	gagatetece	gacggatcgg
120	gagtagtgcg	ggaggteget	cttgtgtgtt	ctgctccctg	aagccagtat	ccgcatagtt
180	aagaatctgc	caattgcatg	gcttgaccga	acaaggcaag	ttaagctaca	cgagcaaaat
240	cgttgacatt	cagatatacg	atgtacgggc	ctgcttcgcg	gcgttttgcg	ttagggttag
300	agcccatata	attagttcat	ttacggggtc	tagtaatcaa	tagttattaa	gattattgac
360	cccaacgacc	tggctgaccg	atggcccgcc	cttacggtaa	cgttacataa	tggagttccg
420	gggactttcc	aacgccaata	ttcccatagt	atgacgtatg	gacgtcaata	cccgcccatt
480	catcaagtgt	cttggcagta	aaactgccca	tatttacggt	atgggtggac	attgacgtca
540	gcctggcatt	taaatggccc	tcaatgacgg	cctattgacg	aagtacgccc	atcatatgcc
600	gtattagtca	gtacatctac	ctacttggca	tgggactttc	catgacetta	atgcccagta
660	tagcggtttg	tgggcgtgga	agtacatcaa	cggttttggc	catggtgatg	tcgctattac
720	ttttggcacc	tgggagtttg	ttgacgtcaa	ctccacccca	atttccaagt	actcacgggg
780	caaatgggcg	cccattgacg	acaactccgc	aaatgtcgta	ggactttcca	aaaatcaacg
840	agagaaccca	ctggctaact	gcagagetet	gtctatataa	acggtgggag	gtaggcgt gt
900	gctggctaga	ggagacccaa	ctcactatag	attaatacga	gcttatcgaa	ctgcttactg
960	tactctggct	ttccttctgc	tcagcttctc	gggtccccgc	ctcaccatga	aagcttggat
1020	ctgtgtctcc	gecaccetgt	gcagtctcca	tagtgatgac	actggaggaa	cccagatacc
1080	acttagcctg	attggctgga	cagtcagagt	cctgcaggac	gecaccetet	aggggaaaga
1140	cttccaggac	tatggtgcat	gctcctcatc	aggeteecag	aaacctggcc	gtaccaacag
1200	ctctcaccat	acagagttca	tgggtctggg	tcagtggcag	ccagccaggt	cactggtatc
1260	ataactggcc	cagcattatg	ttattactgt	attctgcagt	cagtctgaag	cagcagcctg
1320	ctgcaccatc	cgaactgtgg	ggagatcaaa	ggaccgagct	tttggccagg	catgtgcagt
1380	gcgttgtgtg	ggaactgcta	gttgaaatct	ctgatgagca	ttcccgccat	tgtcttcatc
1440	ataacgccct	tggaaggtgg	caaagtacag	ccagagaggc	aacttctatc	cctgctgaat
1500	gcacctacag	agcaaggaca	agagcaggac	agagtgtcac	aactcccagg	ccaatcgggt
,156C	tetacgeetg	aaacacaaag	agactacgag	tgagcaaagc	accetgaege	cctcagcagc
1620	ggggagagtg	agetteaaca	cgtcacaaag	tgagctcgcc	catcagggcc	cgaagtcacc
1680	tcagcctcga	aacccactaa	agcccattta	gagtetagag	acaaccactc	ttaggaattc

ctgtgccttc tag	gttgccag co	catctgttg	tttgcccctc	ccccgtgcct	toottgacco	1740
tggaaggtgc ca	ctcccact gt	cctttcct	aataaaatga	ggaaattgca	togcattgto	1800
tgagtaggtg to	attotatt ct	ggggggtg	gggtggggca	ggacagcaag	ggggaggatt	1860
gggaagacaa taq	gcaggcat go	ctggggatg	cggtgggctc	tatggcttct	gaggcggaaa	1920
gaaccagetg gg	getetagg ge	gtatecce	acgcccctg	tagcggcgca	ttaagcgcgg	1980
cgggtgtggt ggt	ttacgcgc aç	gcgtgaccg	ctacacttgc	cagogocota	gagaaagata	2040
ctttcgcttt ctt	ceettee tt	tetegeca	cgttcgccgg	ctttccccgt	caagetetaa	2100
atoggggcat co	etttaggg tt	ccgattta	gtgctttacg	gcacctcgac	cccaaaaaac	2160
ttgattaggg tga	atggttca co	stagtgggc	catcgccctg	atagacggtt	tttcgccctt	2220
tgacgttgga gto	cacgttc tt	taatagtg	gactcttgtt	ccaaactgga	acaacactca	2280
accetatete ggt	ctattct tt	tgatttat	aagggatttt	ggggatttcg	gcctattggt	2340
taaaaaatga get	gatttaa ca	aaaattta	acgcgaatta	attctgtgga	atgtgtġtca	2400
gttagggtgt gga	aagtccc ca	ggctcccc	aggcaggcag	aagtatgcaa	agcatgcatc	2460
tcaattagtc ago	caaccagg tg	tggaaagt	ccccaggctc	cccagcaggc	agaagtatgc	2520
aaagcatgca tct	caattag to	agcaacca	tagtcccgcc	cctaactccg	cccatcccgc	2580
cectaactee gee	cagttcc gc	ccattete	cgccccatgg	ctgactaatt	ttttttattt	2640
atgcagagge ega	iggeegee te	tgcctctg	agctattcca	gaagtagtga '	ggaggctttt	2700
ttggaggeet agg	cttttgc aa	aaagctcc	cgggagcttg	tatatccatt	ttcggatctg	2760
atcaagagac agg	atgagga tc	gtttcgca	tgattgaaca	agatggattg	cacgcaggtt	2820
cteeggeege ttg	ggtggag ag	gctattcg	gctatgactg	ggcacaacag	acaatcggct	2880
gctctgatgc cgc	egtgtte eg	gctgtcag	egeaggggeg	cccggttctt	tttgtcaaga	2940
ccgacctgtc cgg	tgccctg aa	tgaactgc	aggacgaggc	agegeggeta	tegtggetgg	3000
ccacgacggg cgt	teettge ge	agctgtgc	tcgacgttgt	cactgaageg	ggaagggact	3060
ggctgctatt ggg	cgaagtg cc	ggggcagg	atctcctgtc	atctcacctt	gatactgaag	31.20
agaaagtatc cat	catggct ga	tgcaatgc	ggcggctgca	tacgcttgat	ccggctacct	3180
gcccattcga cca	ccaagcg aa	acatcgça	tegagegage	acgtactcgg	atggaagccg	3240
gtcttgtcga tca	ggatgat ct	ggacgaag :	agcatcaggg	gctcgcgcca	geegaactgt	3300
tegecagget caa	ggcgcgc at	gcccgacg	gegaggatet	cgtcgtgacc	catggcgatg	3360
cctgcttgcc gaa	tatcatg gt	ggaaaatg (gccgcttttc	tggattcatc	gactgtggcc	3420
ggctgggtgt ggc	ggaccgc ta	tcaggaca ·	tagcgttggc	tacccgtgat	attgctgaag	3480

agcttggcgg	cgaatgggct	gaccgcttcc	tegtgettta	cggtatcgcc	gctcccgatt	3540
cgcagcgcat	cgccttctat	cgccttcttg	acgagttctt	ctgagcggga	ctctggggtt	3600
cgaaatgacc	gaccaagcga	cgcccaacct	gccatcacga	gatttcgatt	ccaccgccgc	3660
cttctatgaa	aggttgggct	tcggaatcgt	tttccgggac	gccggctgga	tgatecteca	3720
gcgcggggat	ctcatgctgg	agttcttcgc	ccaccccaac	ttgtttattg	cagcttataa	3780
tggttacaaa	taaagcaata	gcatcacaaa	tttcacaaat	aaagcatttt	tttcactgca	3840
ttctagttgt	ggtttgtcca	aactcatcaa	tgtatcttat	catgtctgta	taccgtcgac	3900
ctctagctag	agettggegt	aatcatggtc	atagctgttt	cctgtgtgaa	attgttatcc	3960
gctcacaatt	ccacacaaca	tacgageegg	aagcataaag	tgtaaagcct	ggggtgccta	4020
atgagtgagc	taactcacat	taattgcgtt	gegeteactg	cccgctttcc	agtcgggaaa	4080
cctgtcgtgc	cagctgcatt	aatgaatcgg	ccaacgcgcg	gggagaggcg	gtttgcgtat	4140
tgggcgctct	tccgcttcct	cgctcactga	ctcgctgcgc	teggtegtte	ggctgcggcg	4200
agcggtatca	gctcactcaa	aggcggtaat	acggttatcc	acagaatcag	gggataacgc	4260
aggaaagaac	atgtgagcaa	aaggccagca	aaaggccagg	aaccgtaaaa	aggccgcgtt	4320
gctggcgttt	ttccataggc	teegeeeee	tgacgagcat	cacaaaaatc	gacgctcaag	4380
tcagaggtgg	cgaaacccga	caggactata	aagataccag	gcgtttcccc	ctggaagete	4440
cctcgtgcgc	tetectgtte	cgaccctgcc	gcttaccgga	tacctgtccg	cctttctccc	4500
ttcgggaagc	gtggcgcttt	ctcaatgctc	acgctgtagg	tatctcagtt	çggtgtaggt	4560
cgttcgctcc	aagctgggct	gtgtgcacga	acccccgtt	cagcccgacc	gctgcgcctt	4620
atccggtaac	tatogtottg	agtecaacce	ggtaagacac	gacttatcgc	cactggcagc	4680
agccactggt	aacaggatta	gcagagcgag	gtatgtaggc	ggtgctacag	agttcttgaa	4740
gtggtggcct	aactacggct	acactagaag	gacagtattt	ggtatctgcg	ctctgctgaa	4800
gccagttacc	ttcggaaaaa	gagttggtag	ctcttgatcc	ggcaaacaaa	ccaccgctgg	4860
tagcggtggt	ttttttgttt	gcaagcagca	gattacgcgc	agaaaaaaag	gateteaaga	4920
agatectttg	atcttttcta	cggggtctga	cgctcagtgg	aacgaaaact	cacgttaagg	4980
gattttggtc	atgagattat	caaaaaggat	cttcacctag	atccttttaa	attaaaaatg	5040
aagttttaaa	tcaatctaaa	gtatatatga	gtaaacttgg	totgacagtt	accaatgctt	5100
aatcagtgag	gcacctatct	cagcgatctg	tctatttcgt	tcatccatag	ttgcctgact	5160
		cgatacggga				5220
gataccgcga	gacccacgct	caccggetee	agatttatca	gcaataaacc	agccagccgg	5280
aagggccgag	cgcagaagtg	gtcctgcaac	tttatccgcc	tccatccagt	ctattaattg	5340

ttgccgggaa gctagagtaa gtagttcgcc agttaatagt ttgcgcaacg ttgttgccat 5400 tgctacagge ategtggtgt caegetegte gtttggtatg getteattea geteeggtte 5460 ccaacgatca aggcgagtta catgatecee catgttgtgc aaaaaagegg ttageteett 5520 cggtcctccg atcgttgtca gaagtaagtt ggccgcagtg ttatcactca tggttatggc 5580 agcactgcat aattototta ctgtoatgco atcogtaaga tgottttotg tgactggtga 5640 gtactcaacc aagtcattct gagaatagtg tatgcggcga ccgagttgct cttgcccggc 5700 gtcaatacgg gataataccg cgccacatag cagaacttta aaagtgctca tcattggaaa 5760 acgttcttcg gggcgaaaac tctcaaggat cttaccgctg ttgagatcca gttcgatgta 5820 acceactegt geacceaact gatetteage atettttact tteaccageg tttetgggtg 5880 agcaaaaaca ggaaggcaaa atgccgcaaa aaagggaata agggcgacac ggaaatgttg 5940 aatactcata ctcttccttt ttcaatatta ttgaagcatt tatcagggtt attgtctcat 6000 gagcggatac atatttgaat gtatttagaa aaataaacaa ataggggttc cgcgcacatt 6060 toccoga aaa gtgccacctg acgtc 6085

<210> 12

<211> 6097

<212> ADN

<213> Secuencia Artificial

<220>

<223> Plásmido

10 <400> 12

> gacggatcgg gagatctccc gatcccctat ggtcgactct cagtacaatc tgctctgatg 120 cegeatagtt aagecagtat etgeteeetg ettgtgtgtt ggaggteget gagtagtgeg 180 cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc ttagggttag gegttttgeg etgettegeg atgtaeggge eagatataeg egttgaeatt 240 gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata 300 360 tggagtteeg egttacataa ettaeggtaa atggeeegee tggetgaeeg eecaacgaee 420 cocgcccatt gacgtcaata atgacgtatg ttoccatagt aacgccaata gggactttcc 480 attgacgtca atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt 540 atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 600 atgoccagta catgacetta tgggacttte ctacttggca gtacatetac gtattagtea

togotattac	catggtgatg	cggttttggc	agtacatcaa	tgggcgtgga	tagcggtttg	660
actcacgggg	atttccaagt	ctccacccca	ttgacgtcaa	tgggagtttg	ttttggcacc	720
aaaatcaacg	ggactttcca	aaatgtcgta	acaactccgc	cccattgacg	caaatgggcg	780
gtaggcgtgt	acggtgggag	gtctatataa	gcagagetet	ctggctaact	agagaaccca	840
ctgcttactg	gcttatcgaa	attaatacga	ctcactatag	ggagacccaa	gctggctaga	900
aagcttggat	ctcaccatga	gggtccctgc	tcagctcctg	gggctgctaa	tgctctggat	960
acctggatcc	agtgcagata	ttgtgatgac	ccagactcca	ctctctctgt	ccgtcacccc	1020
tggacageeg	gcctccatct	cctgcaagtc	tagtcagagc	ctcctgcata	gtgatggaaa	1080
gacctttttg	tattggtatc	tgcagaagcc	aggccagcct	ccacagetce	tgatctatga	1140
ggtttccaac	cggttctctg	gagtgccaga	taggttcagt	ggcagcgggt	cagggacaga	1200
tttcacactg	aaaatcagcc	gggtggagge	tgaggatgtt	gggctttatt	actgcatgca	1260
aagtatacag	cttccgctca	ctttcggcgg	agggaccaag	gtggagatca	aacgaactgt	1320
ggctgcacca	tctgtcttca	tettecegee	atctgatgag	cagttgaaat	ctggaactgc	1380
tagogttgtg	tgcctgctga	ataacttcta	teccagagag	gccaaagtac	ag tgga aggt	1440
ggataacgcc	ctccaatcgg	gtaactccca	ggagagtgtc	acagagcagg	acagcaagga	1500
cagcacctac	ageeteagea	gcaccctgac	gctgagcaaa	gcagactacg	agaaacacaa	1560
agtetaegee	tgcgaagtca	cccatcaggg	cctgagctcg	cccgtcacaa	agagetteaa	1620
caggggagag	tgttaggaat	tegeggeege	tcgagtctag	agggcccgtt	taaacccgct	1680
gatcagecte	gactgtgcct	tctagttgcc	agccatctgt	tgtttgcccc	teccegtge	1740
cttecttgac	cctggaaggt	gccaetccca	ctgtcctttc	ctaataaaat	gaggaaattg	1800
categeattg	tctgagtagg	tgtcattcta	ttctgggggg	tggggtgggg	caggacagca	1860
agggggagga	ttgggaagac	aatagcagge	atgctgggga	tgeggtggge	tctatggctt	1920
ctgaggcgga	aagaaccagc	tggggctcta	gggggtatcc	ccacgcgccc	tgtagcggcg	1980
cattaagcgc	ggcgggtgtg	gtggttacgc	gcagcgtgac	cgctacactt	gccagcgccc	2040
tagegeeege	tecttteget	ttcttccctt	cctttctcgc	cacgttcgcc	ggctttcccc	2100
gtcaagctct	aaatcggggc	atccctttag	ggttccgatt	tagtgcttta	cggcacctcg	2160
accccaaaaa	acttgattag	ggtgatggtt	cacgtagtgg	gccatcgccc	tgatagacgg	2220
tttttegece	tttgacgttg	gagtccacgt	tctttaatag	tggactcttg	ttccaaactg	2280
gaacaacact	caaccctatc	toggtotatt	cttttgattt	ataagggatt	ttggggattt	2340
cggcctattg	gttaaaaaaat	gagctgattt	aacaaaaatt	taacgcgaat	taattctgtg	2400
gaatgtgtgt	cagttagggt	gtggaaagtc	cccaggetee	ccaggcaggc	agaagtatgc	2460

	aaagcatgca	tctcaattag	tcagcaacca	ggtgtggaaa	gtccccaggc	tccccagcag	2520
	gcagaagtat	gcaaagcatg	catctcaatt	agtcagcaac	catagtcccg	cccctaactc	2580
	cgcccatccc	gcccctaact	ccgcccagtt	cogcccattc	tccgccccat	ggctgactaa	2640
	tttttttat	ttatgcagag	gccgaggccg	cototgooto	tgagctattc	cagaagtagt	2700
	gaggaggctt	ttttggaggc	ctaggctttt	gcaaaaagct	cccgggagct	tgtatatcca	2760
	ttttcggatc	tgatcaagag	acaggatgag	gatcgtttcg	catgattgaa	caagatggat	2820
	tgcacgcagg	ttctccggcc	gcttgggtgg	agaggctatt	cggctatgac	tgggcacaac	2880
	agacaatcgg	ctgctctgat	gccgccgtgt	teeggetgte	agcgcagggg	cgcccggttc	2940
	tttttgtcaa	gaccgacctg	teeggtgeee	tgaatgaact	gcaggacgag	gcagcgcggc	3000
	tatcgtggct	ggccacgacg	ggcgttcctt	gcgcagctgt.	gctcgacgtt	gtcactgaag	3060
	cgggaaggga	ctggctgcta	ttgggcgaag	tgccggggca	ggatctcctg	tcatctcacc	3120
	ttgctcctgc	cgagaaagta	tccatcatgg	ctgatgcaat	äcääcääctä	catacgcttg	3180
	atccggctac	ctgcccattc	gaccaccaag	cgaaacatcg	catcgagcga	gcacgtactc	3240
•	ggatggaagc	cggtcttgtc	gatcaggatg	atctggacga	agagcatcag	gggetegege	3300
	cagccgaact	gttcgccagg	ctcaaggcgc	gcatgcccga	cggcgaggat	ctcgtcgtga	3360
	cccatggcga	tgcctgcttg	ccgaatatca	tggtggaaaa	tggccgcttt	tctggattca	3420
	tcgactgtgg	ccggctgġgt	gtggcggacc	gctatcagga	catagegttg	gctacccgtg	3480
	atattgctga	agagettgge	ggcgaatggg	ctgaccgctt	cctcgtgctt	tacggtatcg	3540
	cegetecega	ttcgcagcgc	ategeettet	ategeettet	tga c gag tt c	ttctgagcgg	. 3600
	gactctgggg	ttcgaaatga	ccgaccaagc	gacgeccaac	ctgccatcac	gagatttcga	3660
	ttccaccgcc	gccttctatg	aaaggttggg	cttcggaatc	gttttccggg	acgccggctg	3720
	gatgateete	cagegegggg	atctcatgct	ggagttcttc	geccacecca	acttgtttat	3780
	tgcagcttat	aatggttaca	aataaagcaa	tagcatcaca	aatttcacaa	ataaagcatt	3840
	tttttcactg	cattctagtt	gtggtttgtc	caaactcatc	aatgtatctt	atcatgtctg	3900
	tataccgtcg	acctctagct	agagettgge	gtaatcatgg	tcatagctgt	ttcctgtgtg	3960
	aaattgttat	ccgctcacaa	ttccacacaa	catacgagcc	ggaagcataa	agtgtaaagc	4020
	ctggggtgcc	taatgagtga	gctaactcac	attaattgcg	ttgcgctcac	tgcccgcttt	4080
	ccagtcggga	aacctgtcgt	gccagctgca	ttaatgaatc	ggccaacgcg	cggggagagg	4140
	cggtttgcgt	attgggcgct	cttccgcttc	ctcgctcact	gactcgctgc	gctcggtcgt	4200
	tcggctgcgg	cgagcggtat	cagctcactc	aaaggcggta	atacggttat	ccacagaatc	4260

aggggataac	gcaggaaaga	acatgtgagc	aaaaggccag	caaaaggcca	ggaaccgtaa	4320
aaaggccgcg	ttgctggcgt	ttttccatag	geteegeeee	cctgacgagc	atcacaaaaa	4380
tcgacgctca	agtcagaggt	ggcgaaaccc	gacaggacta	taaagatacc	aggogtttco	4440
ccctggaagc	tecetegtge	gctctcctgt	teegaceetg	ccgcttaccg	gatacctgtc	4500
cgcctttctc	ccttcgggaa	gcgtggcgct	ttctcaatgc	tcacgctgta	ggtatctcag	4560
ttcggtgtag	gtcgttcgct	ocaagctggg	ctgtgtgcac	gaaccccccg	ttcagcccga	4620
ccgctgcgcc	ttatccggta	actatcgtct	tgagtccaac	ccggtaagac	acgacttatc	4680
gccactggca	gcagccactg	gtaacaggat	tagcagagcg	aggtatgtag	gcggtgctac	4740
agagttcttg	aagtggtggc	ctaactacgg	ctacactaga	aggacagtat	ttggtatctg	4800
cgctctgctg	aagccagtta	ccttcggaaa	aagagttggt	agctcttgat	ccggcaaaca	4860
aaccaccgct	ggtagcggtg	gtttttttgt	ttgcaagcag	cagattacgc	gcagaaaaaa	4920
aggatctcaa	gaagatcctt	tgatcttttc	tacggggtct	gacgctcagt	ggaacgaaaa	4980
ctcacgttaa	gggattttgg	tcatgagatt	atcaaaaagg	atcttcacct	agatcctttt	5040
aaattaaaaa	tgaagtttta	aatcaatcta	aagtatatat	gagtaaactt	ggtctgacag	5100
ttaccaatgc	ttaatcagtg	aggcacctat	ctcagcgatc	tgtctatttc	gttcatccat	5160
agttgcctga	ctccccgtcg	tgtagataac	tacgatacgg	gagggcttac	catctggccc	5220
cagtgctgca	atgataccgc	gagacccacg	ctcaccggct	ccagatttat	cagcaataaa	5280
ccagccagcc	ggaagggccg	agcgcagaag	tggtcctgca	actttatccg	cctccatcca	5340
gtctattaat	tgttgccggg	aagctagagt	aagtagttcg	ccagttaata	gtttgcgcaa	5400
cgttgttgcc	attgctacag	gcatcgtggt	gtcacgctcg	tcgtttggta	tggcttcatt	5460
cagctccggt	toccaacgat	caaggcgagt	tacatgatcc	cccatgttgt	gcaaaaaagc	5520
ggttagctcc	tteggteete	cgatcgttgt	cagaagtaag	ttggccgcag	tgttatcact	5580
catggttatg	gcagcactgc	ataattctct	tactgtcatg	ccatccgtaa	gatgctttc	5640
tgtgactggt	gagtactcaa	ccaagtcatt	ctgagaatag	tgtatgcggc	gaccgagttg	5700
ctcttgcccg	gcgtcaatac	gggataatac	cgcgccacat	agcagaactt	taaaagtgct	5760
catcattgga	aaacgttctt	cggggcgaaa	actctcaagg	atcttaccgc	tgttgagatc	5820
cagttcgatg	taacccactc	gtgcacccaa	ctgatcttca	gcatctttta	ctttcaccag	5880
cgtttctggg	tgagcaaaaa	caggaaggca	aaatgccgca	aaaaagggaa	taagggcgac	5940
acggaaatgt	tgaatactca	tactcttcct	ttttcaatat	tattgaagca	tttatcaggg	6000
ttattgtctc	atgagcggat	acatatttga	atgtatttag	aaaaataaac	aaataggggt	6060
toogogoaca	tttccccgaa	aagtgccacc	tgacgtc			6097

<211> 6094

<212> ADN

<213> Secuencia Artificial

<220>

5

<223> Plásmido

<400> 13

qacqqatcqq gagatctccc gatcccctat ggtcgactct cagtacaatc tgctctgatg 60 120 cogeatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg cqagcaaaat ttaagctaca acaaggcaag gottgaccga caattgcatg aagaatctgc 180 ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt 240 300 gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc 360 cocgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 420 480 attgacgtca atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540 600 atgcccaqta catgacctta tgggactttc ctacttggca gtacatctac gtattagtca 660 tegetattae catggtgatg eggttttgge agtacateaa tgggegtgga tageggtttg 720 actcacqqqq atttccaaqt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc 780 aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca 840 ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctaga 900 aagcttggat ctcaccatgg tgttgcagac ccaggtette atttetetgt taetetggat 960 1020 ctctggtgcc tacggggaca tcgtgatgac ccagtctcca gactccctgg ctgtgtctct gggcgagagg gccaccatca actgcaagtc caaccagagt gtcttacaca gctccaacaa 1080 1140 taagaactat ttagcttggt accagcagaa accaggacag cctcctaaat tgctcattta ttgggcattc ctccgggaat ccggggtecc tgaccgcttc agtggcagcg ggtctgggac 1200 agattteact etcaccatea geageetgea ggetgaagat gtggcagttt attactgtea 1260 1320 ccaatattat totactttat atactttcgg cggagggacc aaggtagaga tcaaacgaac yqtggctgca ccatctgtct tcatcttccc gccatctgat gagcagttga aatctggaac 1380

1	tgctagcgtt	gtgtgcctgc	tgaataactt	ctatcccaga	gaggccaaag	tacagtggaa	1440
9	ggtggataac	gccctccaat	cgggtaactc	ccaggagagt	gtcacagage	aggacagcaa	1500
•	ggacagcacc	tacagcctca	gcagcaccct	gacgctgagc	aaagcagact	acgagaaaca	1560
•	caaagtetac	gcctgcgaag	tcacccatca	gggcctgagc	tegecegtea	caaagagott	1620
(caacagggga	gagtgttagg	cggccgctcg	agtctagagg	gcccgtttaa	acccgctgat	1680
(cagootogao	tgtgccttct	agttgccagc	catctgttgt	ttgcccctcc	cccgtgcctt	1740
(ccttgaccct	ggaaggtgcc	actcccactg	tootttoota	ataaaatgag	gaaattgcat	1800
(egcattgt c t	gagtaggtgt	cattctattc	tggggggtgg	ggtggggcag	gacagcaagg	1860
4	gggaggattg	ggaagacaat	agcaggcatg	ctggggatgc	ggtgggctct	atggcttctg	1920
é	aggcggaaag	aaccagctgg	ggctctaggg	ggtatcccca	cgcgccctgt	agcggcgcat	1980
1	taagegegge	gggtgtggtg	gttacgcgca	gcgtgaccgc	tacacttgcc	agegeeetag	2040
(egecegetee	tttcgctttc	ttecettect	ttctcgccac	gttegeegge	tttccccgtc	2100
ě	aagctctaaa	tcggggcatc	cctttagggt	tccgatttag	tgctttacgg	cacctcgacc	2160
<	ccaaaaaact	tgattagggt	gatggttcac	gtagtgggcc	ategecetga	tagacggttt	2220
1	ttegecettt	gacgttggag	tccacgttct	ttaatagtgg	actcttgttc	caaactggaa	2280
•	caacactcaa	ccctatctcg	gtctattctt	ttgatttata	agggattttg	gggatttcgg	2340
(cctattggtt	aaaaaatgag	ctgatttaac	aaaaatttaa	cgcgaattaa	ttctgtggaa	2400
1	tgtgtgtcag	ttagggtgtg	gaaagtcccc	aggetececa	ggcaggcaga	agtatgcaaa	2460
ç	gcatgcatct	caattagtca	gcaaccaggt	gtggaaagtc	cccaggetee	ccagcaggca	2520
4	gaagtatgca	aagcatgcat	ctcaattagt	cagcaaccat	agtecegeee	ctaactccgc	2580
4	ccatecegee	cctaactccg	cccagttccg	cccattctcc	gccccatggc	tgactaattt	2640
t	ttttattta	tgcagaggcc	gaggccgcct	ctgcctctga	gctattccag	aagtagtgag	2700
Ç	gaggettttt	tggaggccta	ggcttttgca	aaaagctccc	gggagcttgt	atatccattt	2760
1	coggatotga	tcaagagaca	ggatgaggat	cgtttcgcat	gattgaacaa	gatggattgc	2820
ŧ	acgcaggttc	teeggeeget	tgggtggaga	ggetattcgg	ctatgactgg	gcacaacaga	2880
(caateggetg	ctctgatgcc	gccgtgttcc	ggctgtcagc	gcaggggcgc	ceggttettt	2940
1	ttgtcaagac	cgacctgtcc	ggtgccctga	atgaactgca	ggacgaggca	gcgcggctat	3000
<	egtggetgge	cacgacgggc	gttccttgcg	cagctgtgct	cgacgttgtc	actgaagcgg	3060
ç	gaagggactg	gctgctattg	ggcgaagtgc	cggggcagga	tctcctgtca	tctcaccttg	3120
(etectgeega	gaaagtatcc	atcatggctg	atgcaatgcg	gcggctgcat	acgcttgatc .	3180
(eggetacetg	cccattcgac	caccaagcga	aacatcgcat	cgagcgagca	cgtactcgga	3240

tggaagccgg	tcttgtcgat	caggatgatc	tggacgaaga	gcatcagggg	ctcgcgccag	3300
ccgaactgtt	cgccaggctc	aaggcgcġca	tgcccgacgg	cgaggatete	gtcgtgaccc	3360
atggcgatgc	ctgcttgccg	aatatcatgg	tggaaaatgg	ccgcttttct	ggattcatcg	3420
actgtggccg	gctgggtgtg	gcggaccgct	atcaggacat	agcgttggct	accegtgata	3480
ttgctgaaga	gettggegge	gaatgggctg	accgcttcct	cgtgctttac	ggtatcgccg	3540
ctcccgattc	gcagcgcatc	gccttctatc	gccttcttga	cgagttcttc	tgagcgggac	3600
tetggggtte	gaaatgaccg	accaagcgac	gcccaacctg	ccatcacgag	atttcgattc	3660
caccgccgcc	ttctatgaaa	ggttgggctt	cggaatcgtt	ttccgggacg	ccggctggat	3720
gatectecag	cgcggggatc	tcatgctgga	gttettegee	caccccaact	tgtttattgc	3780
agcttataat	ggttacaaat	aaagcaatag	catcacaaat	ttcacaaata	aagcattttt	3840
ttcactgcat	tctagttgtg	gtttgtccaa	actcatcaat	gtatcttatc	atgtctgtat	3900
accgtcgacc	tctagctaga	gcttggcgta	atcatggtca	tagctgtttc	ctgtgtgaaa	3960
ttgttatccg	ctcacaattc	cacacaacat	acgagccgga	agcataaagt	gtaaagcctg	4020
gggtgcctaa	tgagtgagct	aactcacatt	aattgcgttg	cgctcactgc	ccgctttcca	4080
gtcgggaaac	ctgtcgtgcc	agctgcatta	atgaatcggc	caacgcgcgg	ggagaggcgg	4140
tttgcgtatt	gggcgctctt	ccgcttcctc	gctcactgac	tegetgeget	cggtcgttcg	4200
gctgcggcga	gcggtatcag	ctcactcaaa	ggcggtaata	cggttatcca	cagaatcagg	4260
ggataacgca	ggaaagaaca	tgtgagcaaa	aggccagcaa	aaggccagga	accgtaaaaa	4320
ggccgcgttg	ctggcgtttt	tccataggct	cegeecect	gacgagcatc	acaaaaatcg	4380
acgctcaagt	cagaggtggc	gaaacccgac	aggactataa	agataccagg	cgtttccccc	4440
tggaagctcc	ctcgtgcgct	ctcctgttcc	gaccctgccg	cttaccggat	acctgtccgc	4500
ctttctccct	tcgggaagcg	tggcgctttc	tcaatgctca	cgctgtaggt	atctcagttc	4560
ggtgtaggtc	gttcgctcca	agctgggctg	tgtgcacgaa	caccacgtta	agcccgaccg	4620
ctgcgcctta	tccggtaact	atcgtcttga	gtccaacccg	gtaagacacg	acttatcgcc	4680
actggcagca	gccactggta	acaggattag	cagagcgagg	tatgtaggcg	gtgctacaga	4740
gttcttgaag	tggtggccta	actacggcta	cactagaagg	acagtatttg	gtatctgcgc	4800
tctgctgaag	ccagttacct	tcggaaaaag	agttggtagc	tcttgatccg	gcaaacaaac	4860
caccgctggt	agcggtggtt	tttttgtttg	caagcagcag	attacgcgca	gaaaaaaagg	4920
atctcaagaa	gatcctttga	tctttctac	ggggtctgac	gctcagtgga	acgaaaactc	4980
acgttaaggg	attttggtca	tgagattatc	aaaaaggatc	ttcacctaga	tccttttaaa	5040

ttaaaaatga	agttttaaat	caatctaaag	tatatatgag	taaacttggt	ctgacagtta	5100
ccaatgctta	atcagtgagg	cacctatctc	agcgatctgt	ctatttcgtt	catccatagt	5160
tgcctgactc	cccgtcgtgt	agataactac	gatacgggag	ggcttaccat	ctggccccag	5220
tgctgcaatg	ataccgcgag	acccacgctc	accggctcca	gatttatcag	caataaacca	5280
gccagccgga	agggccgagc	gcagaagtgg	tectgeaact	ttatccgcct	ccatccagtc	5340
tattaattgt	tgccgggaag	ctagagtaag	tagttegeca	gttaatagtt	tgcgcaacgt	5400
tgttgccatt	getacaggca	tegtggtgte	acgctcgtcg	tttggtatgg	cttcattcag	5460
ctccggttcc	caacgatcaa	ggcgagttac	atgatecece	atgttgtgca	aaaaagcggt	5520
tagctccttc	ggtcctccga	togttgtcag	aagtaagttg	gccgcagtgt	tatcactcat	5580
ggttatggca	gcactgcata	attctcttac	tgtcatgcca	tccgtaagat	gcttttctgt	5640
gactggtgag	tactcaacca	agtcattctg	agaatagtgt	atgcggcgac	cgagttgctc	5700
ttgcccggcg	tcaatacggg	ataataccgc	gccacatagc	agaactttaa	aagtgctcat	5760
cattggaaaa	cgttcttcgg	ggcgaaaact	ctcaaggatc	ttaccgctgt	tgagatccag	5820
ttcgatgtaa	cccactcgtg	cacceaactg	atcttcagca	tetttaett	tcaccagcgt	5880
ttctgggtga	gcaaaaacag	gaaggcaaaa	tgccgcaaaa	aagggaataa	gggcgacacg	5940
gaaatgttga	atactcatac	tcttcctttt	tcaatattat	tgaagcattt	atcagggtta	6000
ttgtctcatg	agcggataca	tatttgaatg	tatttagaaa	aataaacaaa	taggggttcc	6060
gcgcacattt	ccccgaaaag	tgccacctga	cgtc			6094

<210> 14

5

<223> Incluye el empalme por clonación BamHI/BgIII, péptido señal, región V, parte de la región C y empalme por clonación 3'Xbal/Nbel (pesado) o Nhel (ligero)

<400> 14

ggateteace	atggagttgg	gactgcgctg	gggcttcctc	gttgctcttt	taagaggtgt	60
ccagtgtcag	gtgcaattgg	tggagtctgg	gggaggcgtg	gtccagcctg	ggaggtccct	120
gagactctcc	tgtgcagcgt	ctggattcgc	cttcagtaga	tatggcatgc	actgggtccg	180
ccaggeteca	ggcaaggggc	tggagtgggt	ggcagttata	tggtatgatg	gaagtaataa	240
atactatgca	gactccgtga	agggccgatt	caccatctcc	agagacaatt	ccaagaacac	300

<211> 481

<212> ADN

<213> Secuencia Artificial

<220>

geagtatetg caaatgaaca geetgagage egaggacaeg getgtgtatt actgtgegag 360 aggeggtgac ttectetaet actactatta eggtatggae gtetggggee aagggaceae 420 ggtcaccgtc tectcagect ccaccaaggg cccatcggtc tteccectgg caccetetag 480 481 <210> 15 <211> 142 <212> PRT <213> Homo sapiens <400> 15 Met Glu Leu Gly Leu Arg Trp Gly Phe Leu Val Ala Leu Leu Arg Gly 1 5 15 Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln 20 25 30 Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ala Phe 40 Ser Arg Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 55 Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala 65 70 75 80 Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn 85 Thr Gln Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val 105 Tyr Tyr Cys Ala Arg Gly Gly Asp Phe Leu Tyr Tyr Tyr Tyr Tyr Gly 115 125 Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser 130 135 140 <210> 16 <211> 463 <212> ADN <213> Secuencia Artificial <220> <223> Incluye el empalme por clonación BamHI/BqIII, péptido señal, región V, parte de la región C y empalme por clonación 3'Xbal/Nbel (pesado) o Nhel (ligero)

5

10

15

20

<400> 16

ggat	ctcacc	atgaggg	tcc	ctgct	caget	cctggga	ctc	ctgctc	rctct	ggct	ccca	ga	60
tacc	agatgt	gacatco	aga	tgacc	cagtc	tccatcc	tcc	ctgtct	gcat	ctgt	agga	ga .	120
caga	gtcacc	atcactt	gcc	gggcg	agtca	gggcatt	agc	aattat	ttag	cctç	gtat	ca	180
gcag	aaaaca	gggaaag	ttc	ctaag	ttcct	gatctat	gaa	gcatco	actt	tgca	atca	gg	240
ggtc	ccatct	cggttca	gtg	geggt	ggatc	tgggaca	gat	ttcact	ctca	ccat	cago	ag.	300
cctg	cagoot	gaagatg	ttg	caact	tatta	ctgtcaa	aat	tataac	agtg	cccc	catto	ac	360
tttc	ggccct	gggacca	aag	tggat	atcaa	acgaact	gtg	gctgca	ccct	ctgt	cttc	at	420
cttc	ccgcca	tctgatg	agc	agttg	aaatc	tggaact	gct	agc					463
<212> <213> <400>	17 127 PRT Homo sa 17		Ala	Gln	Leu l	Leu Gly	Le	u Leu	Leu	Leu	Tro	Leu	Pro
1	p ·		_				10				· 4	15	

Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp Leu Pro
1 5 10 15

Asp Thr Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser 20 25 30

Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly
•35 40 45

Ile Ser Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Thr Gly Lys Val Pro 50 55 . 60

Lys Phe Leu Ile Tyr Glu Ala Ser Thr Leu Gln Ser Gly Val Pro Ser 65 70 75 80

Arg Phe Ser Gly Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser 85 90 95

Ser Leu Gln Pro Glu Asp Val Ala Thr Tyr Tyr Cys Gln Asn Tyr Asn 100 105 110

Ser Ala Pro Phe Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys 115 120 125

<210> 18

<211> 508

<212> ADN

15 <213> Secuencia Artificial

<220>

10

<223> Incluye el empalme por clonación BamHl/BgIII, péptido señal, región V, parte de la región C y empalme por clonación 3'Xbal/Nbel (pesado) o Nhel (ligero)

<400>	18														
ggat	ctcac	c at	ggggi	tcaa	ccgc	catco	et ca	ccat	ggag	ttgg	ggct	gc go	etggg	ttct	60
cctc	gtţgo	et et	ttta	agag	gtgt	ccagi	g to	aggt	gcag	ctgg	tgga	gt ci	9999	gagg	120
cgtg	gtcca	ig co	tggga	aggt	ccct	gagad	et et	cetg	tgca	gcgt	ctgg	at to	cacct	tcag	`180
taac	tatgt	c at	gcact	tggg	teeg	ccag	ge te	cagg	caag	gggc	tgga	gt go	ggtgg	caat	240
tata	tggta	ıt ga	tggaa	agta ·	ataa	atact	a tg	caga	ctcc	gtga	aggg	cc ga	attca	ccat	300
ctcc	agaga	ıc aa	ttcca	aaga	acac	gctgt	a to	tgca	aatg	aaca	gcct	ga ga	igccg	agga	360
cacg	gctgt	g ta	ttact	tgtg	cggg	tggat	a ta	actg	gaac	tacg	agta	cc ac	ctact	acgg	420
tatg	gacgt	c tg	gggc	caag	ggac	cacg	jt ca	ccgt	ctcc	tcag	cctc	ca co	caagg	gccc	480
atcg	gtett	c cc	cctg	gcac	cctc	tagc									508
<210> <211> <212> <213>	19 143 PRT Homo	o sapie	ns												
<400>	19														
Met 1	Glu	Leu	Gly	Leu 5	Arg	Trp	Val	Leu	Leu 10	Val	Ala	Leu	Leu	Arg 15	Gly
Val	Gln	Суа	Gln 20	Val	Gln	Leu	Val	Glu 25	Ser	Gly	Gly	Gly	Val 30	Val	Gln
Pro	Gly	Arg 35	Ser	Leu	Arg	Leu	Ser 40	Cys	Ala	Ala	Ser	Gly 45	Phe	Thr	Phe
Ser	Asn 50	Tyr	Val	Met	His	Trp 55	Val	Arg	Gln	Ala	Pro 60	Gly	Lys	Gly	Leu
Glu 65	Trp	Val	Ala	Ile	Ile 70	Trp	Tyr	Asp	Gly	Ser 75	Asn	Lys	Tyr	Tyr	Ala 80
Asp	Ser	Val	Lys	Gly 85	Arg	Phe	Thr	Ile	Ser 90	Arg	Asp	Asn	Ser	Lys 95	Asn
Thr	Leu	Tyr	Leu 100	Gln	Met	Asn	Ser	Leu 105	Arg	Ala	Glu	Asp	Thr 110	Ala	Val
Tyr	Tyr	Cys 115	Ala	Gly	Gly	Tyr	Asn 120	Trp	Asn	Туг	Glu	Tyr 125	His	Tyr	Tyr
Gly <210> <211>	Met 130 20 463	Asp ·	Val	Trp	Gly	Gln 135	Gly	Thr	Thr	Val	Thr 140	Val	Ser	Ser	

	<212> <213> <220>	ADN Secue	encia A	rtificial												
5	<223> por clon								péptido	señal	, regiói	ı V, pa	rte de l	a regió	n C y e	empalme
	<400>	20														
	ggat	ctcac	c at	gaggg	tcc	acgat	cage	t cct	ggggc	etc c	tgctç	gctct	gttt	ccca	aa	60
	tgcc	agatg	rt ga	catco	aga	tgacc	cagt	c tec	atcct	ca c	tgtci	gcat	ctgt	agga	ga	120
	caga	gtcac	c at	cactt	gtc	gggcg	agtc	a ggg	catta	icc a	attat	ttag	cctg	gttt	ca	180
	gcaga	aaacc	a gg	gaaag	ccc (ctaag	tacat	t tate	ctatg	rct g	catco	agtt	tgca	aagto	3 g	240
	ggtc	ccatc	a aaq	gttca	gcg (gcagt	ggato	tgg:	gacag	at t	tcagt	ctca	ccat	cagca	ag	300
	cctg	cagcc	t gaa	agatt	ttg d	caact	tatta	a ctg	ccaac	ag t	ataat	agtt	acco	gatca	3C	360
	cttc	ggcca	a ggg	gacac	gac t	ggag	attaa	a acga	aactg	rtg g	ctgca	ccat	ctgt	cttca	at	420
10	cttc	cgcc	a tct	gatg	agc a	agttg	aaato	c tgga	aactg	ct a	gc					463
15	<210> <211> <212> <213>	127 PRT	sapier	ıs												
	<400>	21														
	Met 1	Arg	Val	Pro	Ala 5	Gln	Leu	Leu		Leu 10	Leu	Leu	Leu	Cys	Phe 15	Pro
	Gly	Ala	Arg	Cys 20	Asp	Ile	Gln	Met	Thr 25	Gln	Ser	Pro	Ser	Ser 30	Leu	Ser
	·Ala	Ser	Val 35	Gly	Asp	Arg	Val	Thr 40	Ile	Thr	Cys	Arg	Ala 45	Ser	Gln	Gly
	Ile	Thr 50	Asn.	Tyr	Leu	Ala	Trp 55	Phe	Gln	Gln	Lys	Pro 60	Gly	Lys	Ala	Pro
	Lys 65	Ser	Leu	Ile	Tyr	Ala 70	Ala	Ser	Ser	Leu	Gln 75	Ser	Gly	Val	Pro	Ser 80
	Lys	Phe	Ser	Gly	Ser 85	GlÀ	Ser	Gly	Thr	Asp 90	Phe	Ser	Leu	Thr	Ile 95	Ser
	Ser	Leu	Gln	Pro	Glu	Asp	Phe	Ala	Thr	Tyr	Tyr	Cys	Gln	Gln	Tyr	Asn

Ser Tyr Pro Ile Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile Lys 115 120 · 125

<210><211><211><212><213><220>	22 490 ADN Secue	encia Ar	tificial												
<223> por clon	-		•	•			l/BgIII,	péptido	seña	al, región	V, par	te de la	región	Суе	mpalme
<400>	22														
ggat	ctcac	c atq	ggagt	tgg (gactt	agcto	ggti	tttcc	etc c	gttgct	cttt	taag	aggtç	jt	60
ccag	tgtca	g gto	ccagc	tgg 1	tggag	tctgg	ggg	aggcg	jtg g	gtccag	cctg	ggag	gtccc	et	120
, gaga	ctctc	c tgt	gcag	cgt (ctgga	ttcac	ctt	cagta	ıgc t	tatggc	atgc	actg	ggtc	g	180
ccag	gctcc	a ggo	caagg	ggc i	tggac	tgggt	ggc	aatta	itt t	tggcat	gatg	gaag	taata	aa	240
atac	tatgo	a gad	ctecg	tga a	agggc	cgatt	cac	catct	cc a	agagac	aatt	ccaa	gaaga	ic	300
gctg	tacct	g caa	aatga	aca (gtttg	agago	cga	ggaca	ıcg ç	gctgtg	tatt	actg	tgcga	ag	360
agct	tġggc	c tat	gact	acg (gtgac	tatga	ata	ctact	tc ç	ggtatg	gacg	tctg	gggco	ca	420
aggg.	accac	g gto	caccg	tct (cctca	gcctc	cac	caago	igc (ccatcg	gtct	tece	cctg	jc	480
accc.	tctag	C		•											490
<210> <211> <212> <213>	23 145 PRT Homo	sapien	S												
<400>	23														
Met 1	Glu	Leu	Gly	Leu 5	Ser	Trp	Val	Phe	Leu 10	l Val	Ala	Leu	Leu	Arg 15	Gly
Val	Gln	Cys	Gln 20	Val	Gln	Leu	Val	Glu 25	Ser	Gly	Gly	Gly	Val 30	Val	Gln
Pro	Gly	Arg 35	Ser	Leu	Arg	Leu	Ser 40	Cys	Ala	a Ala	Ser	Gly 45	Phe	Thr	Phe
Ser	Ser 50	Tyr	Gly	Met	His	Trp 55	Val	Arg	Gln	Ala	Pro 60	Gly	Lys	Gly	Leu

Asp Trp Val Ala Ile Ile Trp His Asp Gly Ser Asn Lys Tyr Tvr Ala 70 75 80 Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys 90 Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val 105 Tyr Tyr Cys Ala Arg Ala Trp Ala Tyr Asp Tyr Gly Asp Tyr Glu Tyr 120 125 115 Tyr Phe Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser 140 130 135 Ser 145 <210> 24 <211> 463 <212> ADN <213> Secuencia Artificial <220> <223> Incluye el empalme por clonación BamHl/BgIII, péptido señal, región V, parte de la región C y empalme por clonación 3'Xbal/Nbel (pesado) o Nhel (ligero) <400> 24 60 ggateteace atgagggtee etgeteaget cetggggete etgetgetet gttteecagg tgccagatgt gacatccaga tgacccagtc tccatcctca ctgtctgcat ctgtaggaga 120 180 cagagicace atcactique qqqcqaqtea gggcattage cattatitag cetggittea 240 qcaqaaacca gggaaagccc ctaagtccct gatctatgct gcatccagtt tgcaaagtgg 300 ggtcccatca aagttcagcg gcagtggatc tgggacagat ttcactctca ccatcagcag cctacagcct gaagattttg caacttatta ctgccaacag tataatagtt tcccgctcac 360 tttcggcgga gggaccaagg tggagatcaa acgaactgtg getgcaccat ctgtcttcat ٠420 463 cttcccgcca tctgatgagc agttgaaatc tggaactgct agc <210> 25 <211> 127 <212> PRT <213> Homo sapiens <400> 25

10

15

20

Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Cys Phe Pro

	1				5					10					15		
	Gly	Ala	Arg	Cys 20	Asp	Ile	Gln	Met	Thr 25	Gln	Ser	Pro	Ser	Ser 30	Leu	Ser	
	Ala	Ser	Val 35	Gly	Asp	Arg	Val	Thr 40	Ile	Thr	Суз	Arg	Ala 45	Ser	Gln	Gly	
	Ile	Ser 50	His	Tyr	Leu	Ala	Trp 55	Phe	Gln	Gln	Lys	Pro 60	Gly	Lys	Ala	Pro	
	Lys 65	Ser	Leu	Ile	Tyr	Ala 70	Ala	Ser	Ser	Leu	Gln 75	Ser	Gly	Val	Pro	Ser 80	
	Lys	Phe	Ser	·Gly	Ser 85	Gly	Ser	Gly	Thr	Asp 90	Phe	Thr	Leu	Thr	Ile 95	Ser	
•	Ser	Leu	Gln	Pro 100	Glu	qeA	Phe	Ala	Thr 105	Tyr	Tyr	Cys	Gln	Gln 110	Tyr	Asn	
	Ser	Phe	Pro 115	Leu	Thr	Phe	Gly	Gly 120	Gly	Thr	Lys	Val	Glu 125	Ile	ГÀЗ		
<'; <'; <';	210> 211> 212> 213> 220>	26 469 ADN Secue	ncia Ai	rtificial													
	223> or clona					onación o Nhel (I/BgIII,	péptido	o seña	l, regiór	ı V, pa	rte de l	a regió	nСує	empalme	,
		26													_		
											tgget					60	
•	ctgto	geega	g gt	gcage	tgg 1	tgcag	tetg	g age	agagọ	gtg a	laaaaç	eccg	ggga	igtct	ct	120	
9	gaaga	tctc	c tgi	taagg	gtt	ctgga	tacaç	g ctt	tacca	agt t	actgo	gatcg	gctç	ıggtg	cg	180	
•	ccaga	atgcc	c gg	gaaag	gec	tggag	tggat	ggg	gatca	atc t	atcct	ggtg	acto	etgat	ac	240	
•	cagat	acag	c cc	gtect	tec	aaggc	caggt	cac	catct	ca g	rccgac	caagt	ccat	cagc	ac	300	
•	egcet	cacct	g ca	gtgga	gca (gcctg	aaggo	c ctc	ggaca	acc g	rccato	gtatt	acto	gtgcg	ag ·	360	
	acaaa	ataac	a qc	ageta	acc (ccttt	gacta	a cta	aaac	aq o	gaaco	ctgg	tcac	agta	tc	420	

5

10

15

469

ctcagcotcc accaagggcc catcggtett ccccctggca ccctctagc

<210> 27 <211> 138 <212> PRT

<213> Homo sapiens 20

<400>

15

<210>

29 <211> 128

Met Gly Ser Thr Val Ile Leu Ala Leu Leu Ala Val Leu Gln Gly Val Cys Ala Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys 30 20 Pro Gly Glu Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe 40 45 35 Thr Ser Tyr Trp Ile Gly Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser 90 75 Pro Ser Phe Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser 95 85 90 Thr Ala Tyr Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met 110 100 105 Tyr Tyr Cys Ala Arg Arg Met Ala Ala Ala Gly Pro Phe Asp Tyr Trp 125 115 120 Gly Gln Gly Thr Leu Val Thr Val Ser Ser 135 <210> 28 <211> 466 <212> **ADN** <213> Secuencia Artificial <220> 10 <223> Incluye el empalme por clonación BamHI/BgIII, péptido señal, región V, parte de la región C y empalme por clonación 3'Xbal/Nbel (pesado) o Nhel (ligero) <400> 28 ggateteace atgagggtee eegeteaget tetetteett etgetaetet ggeteecaga 60 taccactgga ggaatagtga tgacgcagtc tccagccacc ctgtctgtgt ctccagggga 120 180 aagagccacc ctctcctgca ggaccagtca gagtattggc tggaacttag cctggtacca acagaaacct ggccaggctc ccaggctcct catctatggt gcatcttcca ggaccactgg 240 300 tateccagee aggtteagtg geagtgggte tgggacagag tteactetea ccateageag 360 cctgcagtct gaagattctg cagtttatta ctgtcagcat tatgataact ggcccatgtg

cagttttggc caggggaccg agctggaqat caaacqaact gtggctgcac catctgtett

catcttcccg ccatctgatg agcagttgaa atctggaact gctagc

420

	<212> <213>	PRT Homo	sapien	s												
5	<400>	29														
	Met 1	Arg	Val	Pro	Ala 5	Gln	Leu	Leu	Phe	Leu 10	Leu	Leu	Leu	Trp	Leu 15	Pro
	Asp	Thr	Thr	Gly 20	Gly	Ile	Val	Met	Thr 25	Gln	Ser	Pro	Ala	Thr 30	· Leu	Ser
	Val	Ser	Pro 35	Gly	Glu	Arg	Ala	Thr 40	Leu	Ser	Суѕ	Arg	Thr 45	Ser	Gln	Ser
	Ile	Gly 50	Trp	Asn	Leu	Ala	Trp 55	Tyr	Gln	Gln	Lys	Pro 60	Gly	Gln	Ala	Pro
	Arg 65	Leu	Leu	Ile	Tyr	Gly 70	Aļa	Ser	Ser	Arg	Thr 75	Thr	Gly	Ile	Pro	Ala 80
	Arg	Phe	Ser	Gly	Ser 85	Gly	Ser	Gly	Thr	Glu 90	Phe	Thr	Leu	Thr	Ile 95	Ser
	Ser	Leu	Gln	Ser 100	Glu	Asp	Ser	Ala	Val 105	Туг	Tyr	Cys	Gln	His 110	Tyr	Asp
	Asn	Trp	Pro 115	Met	Суз	Ser	Phe	Gly 120	Gln	Gly	Thr	Glu	Leu 125	Glu	Ile	Lys
10	<210><211><211><212><213><220>	30 487 ADN Secue	encia Ai	tificial												
15	<223> por clor								péptid	o señal	, regiói	n V, pa	rte de	la regió	on C y e	empalme
	<400>	30														
20	ggat	ctcad	cc at	ggagt	ttg	ggctg	tgat	g gat	tttc	ctc g	rttgc	tctt	taa	gaggt	gt	60
	ccag	tgtca	ag gt	gcago	tgg	tggag	tetg	g ggg	jaggc	gtg g	tcca	gcctg	gga	g gt cc	ct	120
	gaga	ctctc	c tg	tgcag	rcct	ctgga	ttca	c ctt	catta	agc t	atgg	catgo	act	gggto	.cg	180
	ccag	getec	a gg	caagg	ggc	tggag	tgggi	t ggc	agtta	ata t	cata	tgatg	gaa	gtaat	aa	240
	atac	tatgo	a ga	ctccg	tga :	agggc	cgati	t cac	catct	cc a	gagad	caatt	ccaa	agaac	ac	300

	gctg	tatct	g ca	aatga	aca	geetg	agage	e tga	ıggacı	acg g	gctgt	gtatt	act	gt g cg	ag	360
	agta	ttagt	g gg	agctt	tat	attat	tataa	a cta	ctac	ggg a	atgga	cgtct	ggg	gccaa	gg	420
	gacc	acggt	c ac	cgtct	cct	cagco	tccad	c cae	gggc	cca t	.cggt	ettec	ccc	tggca	cc	480
	ctcta	agc _.														487
5	<210> <211> <212> <213>	PRT	sapier	าร												
	<400>	31														
	Met 1	Glu	Phe	Gly	Leu 5	Cys	Trp	Ile	Phe	Leu 10	Val	Ala	Leu	Leu	Arg 15	Gly
	Val	Gln	Cys	Gln 20	Val	Gln	Leu	Val	.Glu 25	Ser	Gly	Gly	GЉ	Val 30	Val	Gln
	Pro	Gly	Arg 35	Ser	Leu	Arg	Leu	Ser 40	Cys	Ala	Ala	Ser	Gly 45	Phe	Thr	Phe
	Ile	Ser 50	Tyr	Gly	Met	His	Trp 55	Val	Arg	Gln	Ala	Pro 60	Gly	Lys _,	Gly	Leu
	Glu 65	Trp	Val	Ala.	Val	Ile 70	Ser	Tyr	Asp	Gly	Ser 75	Asn	Lys	Tyr	Tyr	Ala 80
	Asp	Ser	Val	Lys	Gly 85	Arg	Phe	Thr	Ile	Ser 90	Arg	Asp	Asn	Ser	Lys 95	Asn
	Thr	Leu	Tyr	Leu 100	Gln	Met	Asn	Ser ·	Leu 105	Arg	Ala	Glu	Asp	Thr 110	Ala	Val
	Tyr	Tyr	Cys 115	Ala	Arg	Val	Leu	Val 120	Gly	Ala	Leu	Tyr	Tyr 125	Tyr	Asn	Tyr
10	Tyr	Gly 130	Met	Asp	Val	Trp	Gly 135	Gln	Gly	Thr	Thr	Val 140	Thr	Val	Ser	Ser
15	<210> <211> <212> <213> <220>	32 478 ADN Secue	encia A	rtificial												
20	<223> por clor								, péptio	do señ	al, regi	ón V, p	arte de	e la reg	ión C y	/ empalme
	<400>	32														

ggateteace	atgagggtcc	ctgctcagct	cctggggctg	ctaatgctct	ggatacctgg	60
atccagtgca	gatattgtga	tgacccagac	tccactctct	ctgtccgtca	cccctggaca	120
gccggcctcc	atctcctgca	agtctagtca	gagectectg	catagigatg	gaaagacctt	180
tttgtattgg	tatotgcaga	agccaggcca	gcctccacag	ctcctgatct	atgaggtttc	240
caaccggttc	tctggagtgc	cagataggtt	cagtggcagc	gggtcaggga	cagatttcac	300
actgaaaatc	agccgggtgg	aggctgagga	tgttgggctt	tattactgca	tgcaaagtat	360
acagetteeg	ctcactttcg	gcggagggac	caaggtggag	atcaaacgaa	ctgtggctgc	420
accatctgtc	ttcatcttcc	cgccatctga	tgagcagttg	aaatctggaa	ctgctagc	478

<210> 33 <211> 132

<212> PRT

~212~ 11(1

<213> Homo sapiens

<400> 33

10

Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Met Leu Trp Ile Pro 1 5 10 15

Gly Ser Ser Ala Asp Ile Val Met Thr Gln Thr Pro Leu Ser Leu Ser 20 25 30

Val Thr Pro Gly Gln Pro Ala Ser Ile Ser Cys Lys Ser Ser Gln Ser 35 40 45

Leu Leu His Ser Asp Gly Lys Thr Phe Leu Tyr Trp Tyr Leu Gln Lys 50 55 60

Pro Gly Gln Pro Pro Gln Leu Leu Ile Tyr Glu Val Ser Asn Arg Phe 65 70 . 75 80

Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe 85 90 95

Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Leu Tyr Tyr
100 105 110

Cys Met Gln Ser Ile Gln Leu Pro Leu Thr Phe Gly Gly Gly Thr Lys
115 120 125

Val Glu Ile Lys 130

REIVINDICACIONES

- 1.- Un conjugado anticuerpo-fármaco, que comprende:
- un anticuerpo o fragmento de unión a antígeno del mismo que se une un antígeno prostático específico de membrana (PSMA), conjugado a monometilauristatina norefedrina o monomentilauristatina fenilalanina, en donde el conjugado anticuerpo-fármaco tiene una selectividad por células PC3 a células C4-2 o LNCaP de al menos 250, y 3 ó 4 moléculas de monometilauristatina norefedrina o monomentilauristatina fenilalanina están conjugadas al anticuerpo o fragmento de unión a antígeno del mismo.
- 10 2.- El conjugado anticuerpo-fármaco de la reivindicación 1, en donde el anticuerpo o fragmento de unión a antígeno del mismo es un anticuerpo monoclonal o fragmento de unión a antígeno del mismo que se une específicamente a:
 - (a) PSMA;

5

15

20

25

30

35

40

45

50

55

60

- (b) un dominio extracelular de PSMA; o
- (c) a un epítopo conformacional de PSMA.
- 3.- El conjugado anticuerpo-fármaco de la reivindicación 1, en donde el anticuerpo es codificado por una molécula de ácido nucleico que comprende una secuencia de nucleótidos que es al menos 90, 95, 97, 98 ó 99% idéntica a una secuencia de nucleótidos que codifica un anticuerpo seleccionado del grupo que consiste en: AB-PG1-XG1-006, AB-PGI-XG1-026 y anticuerpos que comprenden:
- (a) una cadena pesada codificada por una molécula de ácido nucleico que comprende la región o regiones codificadoras de una secuencia de nucleótidos seleccionada del grupo que consiste en secuencias de nucleótidos recogidas como SEQ ID NOs: 2 y 3, y
- (b) una cadena ligera codificada por una molécula de ácido nucleico que comprende la región o regiones codificadoras de una secuencia de nucleótidos seleccionada del grupo que consiste en secuencias de nucleótidos recogidas como SEQ ID NOs: 8 y 9, o
- (c) una región variable de la cadena pesada codificada por una molécula de ácido nucleico que comprende la región o regiones codificadoras de una secuencia de nucleótidos seleccionada del grupo que consiste en secuencias de nucleótidos recogidas como SEQ ID NOs: 14 y 18, y
- (d) una región variable de la cadena ligera codificada por una molécula de ácido nucleico que comprende la región o regiones codificadoras de una secuencia de nucleótidos seleccionada del grupo que consiste en secuencias de nucleótidos recogidas como SEQ ID NOs: 16 y 20.
- 4.- El conjugado anticuerpo-fármaco de la reivindicación 1, en donde el anticuerpo o fragmento de unión a antígeno del mismo es AB-PGI-XG1-006, Al3-PGI-XG1-026 o un fragmento de unión a antígeno del mismo.
- 5.- El conjugado anticuerpo-fármaco de la reivindicación 1, en donde el anticuerpo o fragmento de unión a antígeno del mismo se selecciona del grupo que consiste en:
- (a) anticuerpos que comprenden una cadena pesada codificada por una molécula de ácido nucleico que comprende la región o regiones codificadoras de una secuencia de nucleótidos seleccionada del grupo que consiste en secuencias de nucleótidos recogidas como SEQ ID NOs: 2 y 3, y una cadena ligera codificada por una molécula de ácido nucleico que comprende la región o regiones codificadoras de una secuencia de nucleótidos seleccionada del grupo que consiste en secuencias de nucleótidos recogidas como SEQ ID NOs: 8 y 9, y

fragmentos de unión a antígeno de los mismos;

(b) anticuerpos que comprenden una cadena pesada codificada por una molécula de ácido nucleico que comprende la región o regiones codificadoras de una secuencia de nucleótidos recogida como SEQ ID NO: 2, y una cadena ligera codificada por una molécula de ácido nucleico que comprende la región o regiones codificadoras de una secuencia de nucleótidos recogida como SEQ ID NO: 8, y

fragmentos de unión a antígeno de los mismos; y

(c) anticuerpos que comprenden una cadena pesada codificada por una molécula de ácido nucleico que comprende la región o regiones codificadoras de una secuencia de nucleótidos recogida como SEQ ID NO: 3, y una cadena ligera codificada por una molécula de ácido nucleico que comprende la región o regiones codificadoras de una secuencia de nucleótidos recogida como SEQ ID NO: 9, y

fragmentos de unión a antígeno de los mismos; y

(d) anticuerpos que comprenden una región variable de la cadena pesada codificada por una molécula de ácido nucleico que comprende la región o regiones codificadoras de una secuencia de nucleótidos seleccionada del grupo que consiste en secuencias de nucleótidos recogidas como SEQ ID NOs: 14 y 18, y una región variable de la cadena ligera codificada por una molécula de ácido nucleico que comprende la región o regiones codificadoras de una secuencia de nucleótidos seleccionada del grupo que consiste en secuencias de nucleótidos recogidas como SEQ ID NOs: 16 y 20, y

fragmentos de unión a antígeno de los mismos; y

(e) anticuerpos que comprenden una región variable de la cadena pesada codificada por una molécula de ácido nucleico que comprende la región o regiones codificadoras de una secuencia de nucleótidos recogida como SEQ ID NO: 14, y una región variable de la cadena ligera codificada por una molécula de ácido nucleico que comprende la región o regiones codificadoras de una secuencia de nucleótidos recogida como SEQ ID NO: 16, y

fragmentos de unión a antígeno de los mismos; y

(f) anticuerpos que comprenden una región variable de la cadena pesada codificada por una molécula de ácido nucleico que comprende la región o regiones codificadoras de una secuencia de nucleótidos recogida como SEQ ID NO: 18, y una región variable de la cadena ligera codificada por una molécula de ácido nucleico que comprende la región o regiones codificadoras de una secuencia de nucleótidos recogida como SEQ ID NO: 20, y fragmentos de unión a antígeno de los mismos.

- 6.- El conjugado anticuerpo-fármaco de la reivindicación 1, en donde el anticuerpo o fragmento de unión a antígeno del mismo es IgG1, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, IgAsec, IgD, IgE o tiene un dominio constante y/o variable de inmunoglobulina de IgG1, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, IgAsec, IgD o IgE.
- 7.- El conjugado anticuerpo-fármaco de la reivindicación 1, en donde el anticuerpo es un anticuerpo monoclonal, humanizado, humano, recombinante, quimérico, biespecífico o multiespecífico.
- 8.- El conjugado anticuerpo-fármaco de la reivindicación 1, en donde el fragmento de unión a antígeno es un fragmento Fab, un fragmento F(ab')₂, un fragmento Fv o un fragmento que contiene CDR3.
 - 9.- El conjugado anticuerpo-fármaco de la reivindicación 1, en donde la selectividad por células PC-3 a células C4-2 o LNCaP es al menos 500, 1000, 2500, 6000 ó 13.000.
 - 10.- El conjugado anticuerpo-fármaco de la reivindicación 1, en donde la monometilauristatin norefredina o monometilauristatin fenilalanina está conjugada al anticuerpo o fragmento de unión a antígeno del mismo con un compuesto de la fórmula:

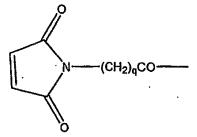
 $-A_n-Y_m-Z_m-X_n-W_n-$

5

10

15

25


30

35

40

45

- en donde A es una unidad acilo carboxílica; Y es un aminoácido; Z es un aminoácido; X y W son cada uno un espaciador auto-inmolativo; n es un número entero de 0 ó 1; y m es un número entero de 0 ó 1, 2, 3, 4, 5 ó 6.
- El conjugado anticuerpo-fármaco de la reivindicación 10, en donde A es
 (a)

en que q es 1-10,

- (b) 4-(N-succinimidometil)ciclohexano-1-carbonilo,
- (c) m-succinimidobenzoilo,
- (d) 4-(p-succinimidofenil)-butirilo,
- (e) 4-(2-acetamido)benzoilo,
- (f) 3-tiopropionilo,
- (g) 4-(1-tioetil)-benzoilo,
- (h) 6-(3-tiopropionilamido)-hexanoilo, o
- (i) maleimida-caproilo.
- 12.- El conjugado anticuerpo-fármaco de la reivindicación 10, en donde Y es alanina, valina, leucina, isoleucina, metionina, fenilalanina, triptófano o prolina.
- 50 13.- El conjugado anticuerpo-fármaco de la reivindicación 10, en donde Z es lisina, lisina protegida con acetilo o formilo, arginina, arginina protegida con tosilo o grupos nitro, histidina, ornitina, ornitina protegida con acetilo o

formilo, o citrulina.

- 14.- El conjugado anticuerpo-fármaco de la reivindicación 10, en donde Y_m-Z_m es valina-citrulina.
- 5 15.- El conjugado anticuerpo-fármaco de la reivindicación 10, en donde Y_m-Z_m es una secuencia de proteínas que es selectivamente escindible por una proteasa.
 - 16.- El conjugado anticuerpo-fármaco de la reivindicación 10, en donde X es:
 - (a) un compuesto que tiene la fórmula

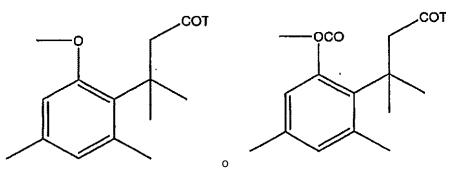
10

15

20

35

en que T es O, N o S;


(b) un compuesto que tiene la fórmula -HN-R¹-COT,

en que R¹ es alquilo C₁-C₅, T es O, N o S;

(c) un compuesto que tiene la fórmula

en que T es O, N o S, R² es H o alquilo C₁-C₅;

- (d) p-aminobencilcarbamoiloxi;
- (e) alcohol p-aminobencílico;
 - (f) carbamato de p-aminobencilo;
 - (g) p-aminobenciloxicarbonilo; o
 - (h) ácido y-aminobutírico; ácido α,α-dimetil-y-aminobutírico o ácido β,β-dimetil-y-aminobutírico.
- 25 17.- El conjugado anticuerpo-fármaco de la reivindicación 10, en donde W es

en que T es O, S o N.

- 30 18.- El conjugado anticuerpo-fármaco de cualquiera de las reivindicaciones 10-17, en donde m y n son 0.
 - 19.- El conjugado anticuerpo-fármaco de la reivindicación 1, que es AB-PG1-XG1-006-maleimida caproil-valina-citrulina-p-aminobenciloxicarbonil-monometilauristatin norefredina, AB-PG1-XG1-006-maleimida caproil-valina-citrulina-p-aminobenciloxicarbonil-monometilauristatin fenilalanina, AB-PG1-XG1-006-maleimida-caproil-monometilauristatin fenilalanina, AB-PG1-XG1-006-maleimida-caproil-valina-citrulina-p-carbamato de

aminobencilo-monometilauristatin norefedrina, AB-PG1-XG1-006-maleimida-caproil-valina-citrulina-p-carbamato aminobencilo-monometilauristatin fenilalanina, AB-PG1-XG1-026-maleimida-caproil-valina-citrulina-paminobenciloxicarbonil-monometilauristatin norefedrina. AB-PG1-XG1-026-maleimida-caproil-valina-citrulina-paminobenciloxicarbonil-monometilauristatin fenilalanina o AB-PG1-XG1-026-maleimida-caproil-monometilauristatin fenilalanina.

- 20.- El conjugado anticuerpo-fármaco de la reivindicación 1, en donde el conjugado anticuerpo-fármaco une una célula tumoral, preferiblemente una célula de tumor de próstata.
- 10 21.- El conjugado anticuerpo-fármaco de la reivindicación 1, en donde el conjugado anticuerpo-fármaco une células endoteliales de la neovasculatura de un tumor, no requiere de una lisis celular para unirse a PSMA, conduce a una paralización del ciclo celular y/o inhibe el crecimiento de células que expresan PSMA.
- 22.- El conjugado anticuerpo-fármaco de la reivindicación 1, en donde el conjugado anticuerpo-fármaco media en el exterminio de células específico de células que expresan PSMA con una CI₅₀ de: 15
 - (a) menor que 1×10^{-10} , 1×10^{-11} 1×10^{-12} M; (b) 11-, 42-, 60- o -65 208×10⁻¹² M; o

 - (c) 11, 42, 60 u 83X10⁻¹² M.
- 23.- El conjugado anticuerpo-fármaco de la reivindicación 1, en donde el conjugado anticuerpo-fármaco, cuando se 20 administra a ratones con un régimen de q4d x 6 a una dosis de 6 mg/kg resulta una tasa de curación de al menos 20%, 30%, 40% o 50%.
- 24.- El conjugado anticuerpo-fármaco de la reivindicación 1, unido a un marcador, preferiblemente un marcador 25 fluorescente, un marcador enzimático, un marcador radiactivo, un marcador activo de resonancia magnética nuclear, un marcador luminiscente o un marcador cromóforo.
 - 25.- El conjugado anticuerpo-fármaco de la reivindicación 1, envasado en forma liofilizada o acuosa.
- 30 26.- El conjugado anticuerpo-fármaco de la reivindicación 1, en una forma estéril.
 - 27.- Una composición que comprende:
 - (a) el conjugado anticuerpo-fármaco de la reivindicación 1 y un vehículo, excipiente o estabilizador farmacéuticamente aceptable; o
- (b) una combinación de dos o más conjugados anticuerpo-fármaco diferentes de acuerdo con la 35 reivindicación 1 y un vehículo, excipiente o estabilizador farmacéuticamente aceptable.
 - 28.- La composición de la reivindicación 27 que comprende, además, un agente antitumoral, un agente inmunoestimulante, un inmunomodulador, corticosteroides o una combinación de los mismos.
 - 29.- La composición de la reivindicación 28, en donde el agente antitumoral es un agente citotóxico, un agente que actúa sobre la neovasculatura del tumor o una combinación de los mismos, preferiblemente docetaxel.
- 30.- La composición de la reivindicación 28, en donde el inmunomodulador es una citoquina, quimioquina, adyuvante o una combinación de los mismos. 45
 - 31.- La composición de la reivindicación 28, en donde el agente inmunoestimulante es interleuquina-2, α-interferón, y-interferón, factor α de necrosis tumoral, un oligonucleótido inmunoestimulante o una combinación de los mismos.
- 50 32.- La composición de la reivindicación 28, en donde el corticosteroide es prednisona o hidrocortisona.
 - 33.- Una composición, que comprende:

uno o más conjugados anticuerpo-fármaco de la reivindicación 1, y uno o más anticuerpos anti-PSMA no conjugados.

- 34.- Un conjugado anticuerpo-fármaco según cualquiera de las reivindicaciones 1-23, para uso en un método para inhibir el crecimiento de una célula que expresa PSMA, en donde el conjugado se ha de poner en contacto con la célula que expresa PSMA.
- 60 35.- Un conjugado anticuerpo-fármaco según la reivindicación 34, en donde la célula que expresa PSMA es una

101

55

40

célula de tumor de próstata, una célula de la neovasculatura de un tumor no prostático, una célula andrógeno-dependiente o una célula andrógeno-independiente.

36.- Un conjugado anticuerpo-fármaco según la reivindicación 34, en donde, en dicho método, la célula que expresa PSMA se ha de poner adicionalmente en contacto con un agente antitumoral, un agente inmunoestimulante, un inmunomodulador, corticosteroide o una combinación de los mismos.

5

10

15

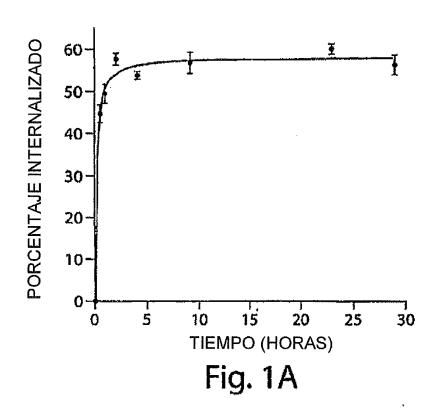
35

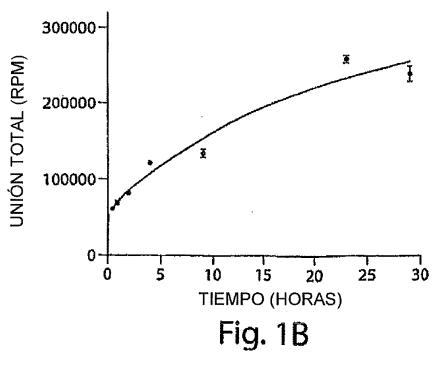
40

45

50

- 37.- Un método *ex vivo* para inhibir el crecimiento de una célula que expresa PSMA, que comprende poner en contacto la célula que expresa PSMA con una cantidad de un conjugado anticuerpo-fármaco según cualquiera de las reivindicaciones 1-23, eficaz para inhibir el crecimiento de la célula que expresa PSMA.
- 38.- Un método según la reivindicación 37, en el que la célula que expresa PSMA es una célula de tumor de próstata, una célula de la neovasculatura de un tumor no prostático, una célula andrógeno-dependiente o una célula andrógeno-independiente.
- 39.- Un método según la reivindicación 37, que comprende, además, poner en contacto la célula que expresa PSMA con un agente antitumoral, un agente inmunoestimulante, un inmunomodulador, corticosteroide o una combinación de los mismos.
- 40.- Un conjugado anticuerpo-fármaco según cualquiera una de las reivindicaciones 1-23, para uso en un método de efectuar la paralización del ciclo celular en una célula que expresa PSMA, en el que el conjugado se ha de poner en contacto con la célula que expresa PSMA.
- 41.- Un conjugado anticuerpo-fármaco según cualquiera de las reivindicaciones 1-23, para uso en un método para tratar el cáncer, opcionalmente cáncer de próstata, o un cáncer no prostático, y dicho cáncer no prostático, opcionalmente, es cáncer de vejiga, cáncer pancreático, cáncer de pulmón, cáncer de riñones, sarcoma, cáncer de mama, cáncer de cerebro, carcinoma neuroendocrino, cáncer de colon, cáncer testicular o melanoma.
- 42.- Un conjugado anticuerpo-fármaco para uso en un método para tratar el cáncer según la reivindicación 41, en donde, en dicho método, otro agente terapéutico se ha de co-administrar para tratar el cáncer, en donde la co-administración se ha de realizar antes, durante o después de la administración del conjugado anticuerpo-fármaco.
 - 43.- Un conjugado anticuerpo-fármaco para uso en un método para tratar el cáncer según la reivindicación 42, en donde el otro agente terapéutico es un agente antitumoral, un agente inmunoestimulante, un inmunomodulador, corticosteroide o una combinación de los mismos.
 - 44.- Un conjugado anticuerpo-fármaco para uso en un método para inhibir el crecimiento de una célula que expresa PSMA según la reivindicación 36, un conjugado anticuerpo-fármaco para uso en un método para tratar el cáncer según la reivindicación 43, o un método según la reivindicación 39, en donde el agente antitumoral es un agente citotóxico, un agente que actúa sobre la neovasculatura del tumor o una combinación de los mismos y, preferiblemente, docetaxel.
 - 45.- Un conjugado anticuerpo-fármaco para uso en un método para inhibir el crecimiento de una célula que expresa PSMA según la reivindicación 36, un conjugado anticuerpo-fármaco para uso en un método para tratar el cáncer según la reivindicación 43, o un método según la reivindicación 39, en donde el inmunomodulador es una citoquina, quimioquina, adyuvante o una combinación de los mismos.
 - 46.- Un conjugado anticuerpo-fármaco para uso en un método para inhibir el crecimiento de una célula que expresa PSMA según la reivindicación 36, un conjugado anticuerpo-fármaco para uso en un método para tratar el cáncer según la reivindicación 43, o un método según la reivindicación 39, en donde el agente inmunoestimulante es interleuquina-2, α-interferón, γ-interferón, factor α de necrosis tumoral, un oligonucleótido inmunoestimulante o una combinación de los mismos.
- 47.- Un conjugado anticuerpo-fármaco para uso en un método para inhibir el crecimiento de una célula que expresa PSMA según la reivindicación 36, un conjugado anticuerpo-fármaco para uso en un método para tratar el cáncer según la reivindicación 43, o un método según la reivindicación 39, en donde el corticosteroide es prednisona o hidrocortisona.
 - 48.- Un conjugado anticuerpo-fármaco para uso en un método para tratar el cáncer según la reivindicación 42, en donde el agente terapéutico es una vacuna, preferiblemente una vacuna que inmuniza contra PSMA.


49.- Un conjugado anticuerpo-fármaco para uso en un método para inhibir el crecimiento de una célula que expresa PSMA según la reivindicación 44, o un conjugado anticuerpo-fármaco para uso en un método para tratar el cáncer según una cualquiera de las reivindicaciones 42-44, en donde, en dicho método, se ha de administrar todavía otro agente terapeútico, preferiblemente prednisona.


5

10

15

- 50.- Un conjugado anticuerpo-fármaco según cualquiera de las reivindicaciones 1-23, para uso en un método para inhibir el crecimiento de un tumor, en donde dicho conjugado se ha de poner en contacto con células que expresan PSMA de la neovasculatura del tumor, para inhibir con ello el crecimiento del tumor.
- 51.- Un conjugado anticuerpo-fármaco para uso en un método para inhibir el crecimiento de un tumor según la reivindicación 50, en donde, en dicho método, las células que expresan PSMA se han de poner en contacto, adicionalmente, con un agente antitumoral, un agente inmunoestimulante, un inmunomodulador, corticosteroide o una combinación de los mismos.
- 52.- Un conjugado anticuerpo-fármaco para uso en un método para inhibir el crecimiento de un tumor según la reivindicación 51, en donde:
- (a) el agente antitumoral es un agente citotóxico, un agente que actúa sobre la neovasculatura del tumor o una combinación de los mismos;
- (b) el inmunomodulador es una citoquina, quimioquina, adyuvante o una combinación de los mismos; y/o (c) el agente inmunoestimulante es interleuquina-2, α-interferón, γ-interferón, factor α de necrosis tumoral, oligonucleótidos inmunoestimulantes o una combinación de los mismos.

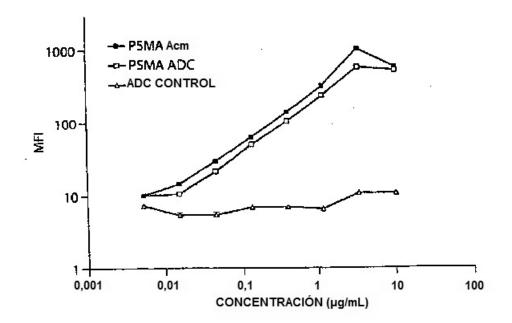


Fig. 2

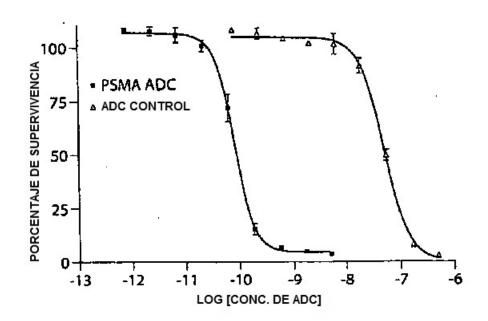
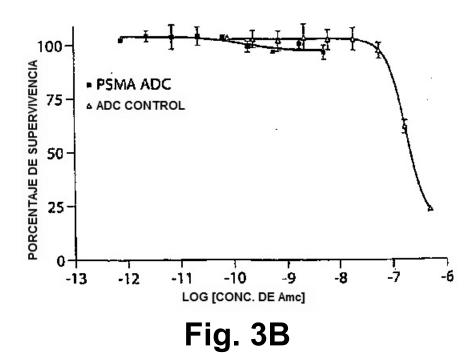
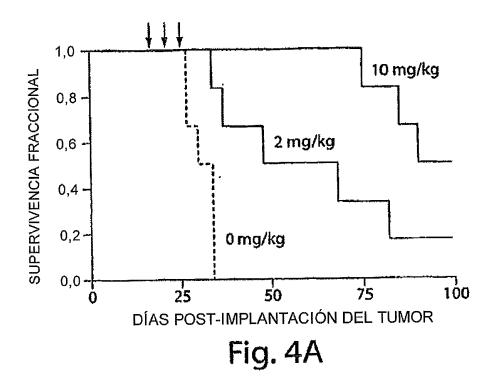




Fig. 3A

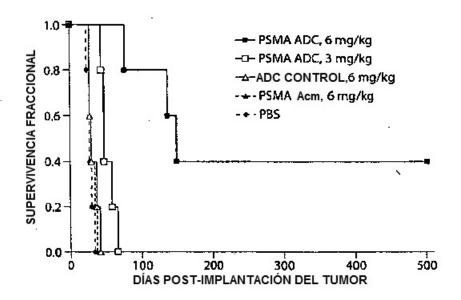


Fig. 5

Fig. 6A

Fig. 6B

Fig. 6C

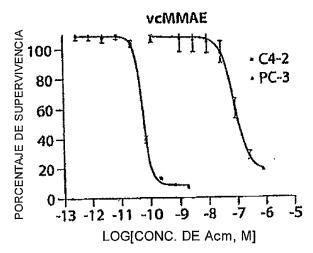


Fig. 7A

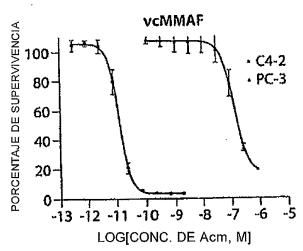


Fig. 7B

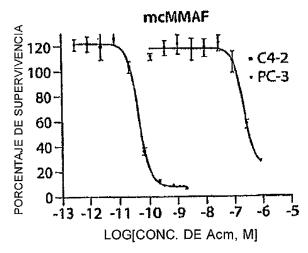
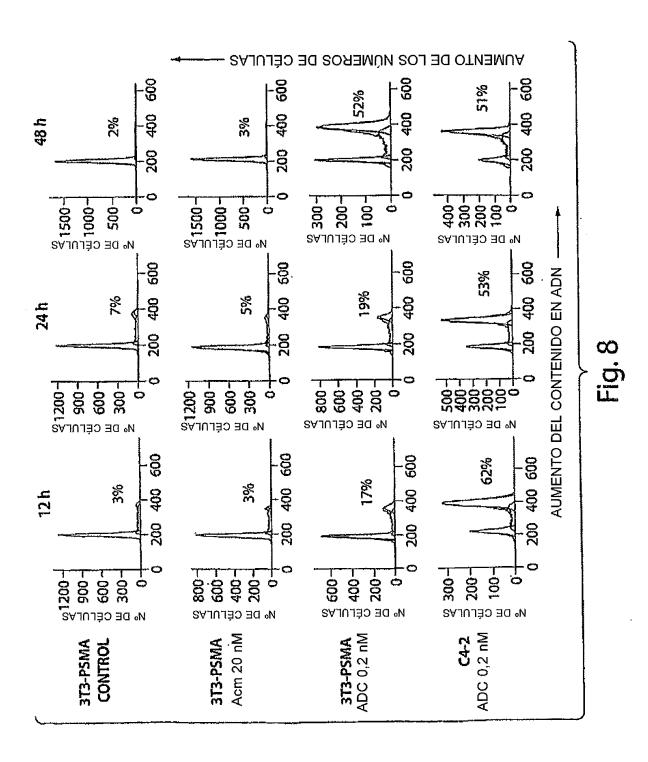
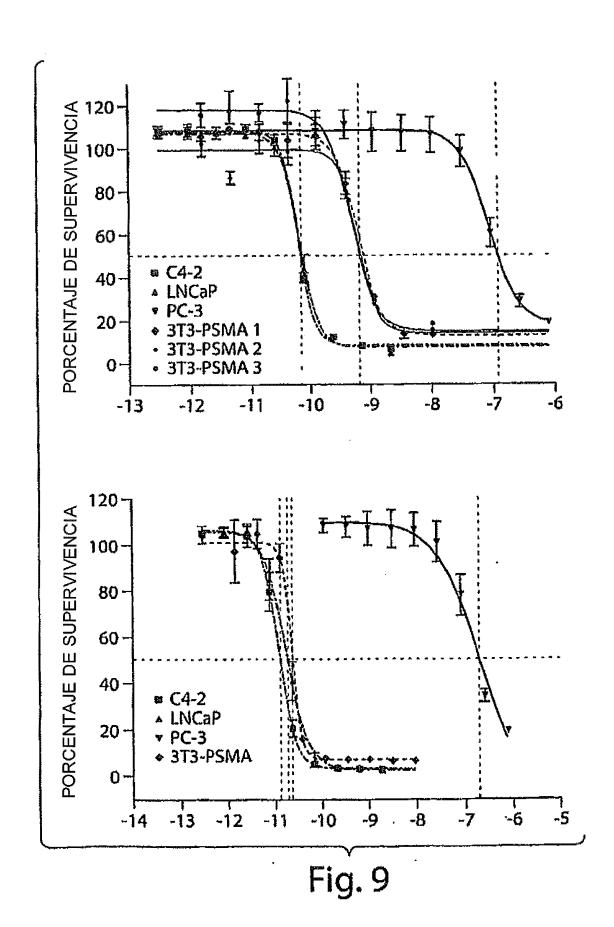




Fig. 7C

