The disclosure relates to a system for dynamic association of a computational device, which includes at least one communication interface and a control system coupled to the at least one communication interface with a communication device. A request to authenticate an association between a computational device and a communication device is received by the control system and a communication connection is established with the communication device. A request for authentication information is sent via the communication connection to the communication device. A response is received from the communication device and information determined from the response is forwarded.
FIG. 6

- ACCESS NETWORK INTERFACE 50
- CONTROL SYSTEM 42
- MEMORY 44
- SOFTWARE 46
- SWITCH INTERFACE 48
TELEPHONE TO COMPUTATIONAL DEVICE ASSOCIATION

[0001] This application is a Continuation Application of co-pending U.S. patent application Ser. No. 13/404,508, entitled TELEPHONE TO COMPUTATIONAL DEVICE ASSOCIATION, filed Feb. 24, 2012, which is a Continuation Application of U.S. patent application Ser. No. 10/866,622, entitled TELEPHONE TO COMPUTATIONAL DEVICE ASSOCIATION, filed Jun. 12, 2004, now issued U.S. Pat. No. 8,139,738, the disclosures of which are both hereby incorporated by reference in their entireties.

FIELD OF THE INVENTION

[0002] The present invention relates to telecommunications, and in particular to associating a computational device with a telephone.

BACKGROUND OF THE INVENTION

[0003] As communications and computing technologies evolve, a greater need exists to associate telephony and computational devices. Such an association allows the computational device to control certain aspects and functions of the associated telephony device, as well as allowing the computational device to keep track of operational aspects of the telephony device. Although the association can be very beneficial, there is generally significant provisioning necessary to establish the association.

[0004] Given the increasing mobility of computational devices, such as personal computers and personal digital assistants, there are many instances where different computational devices may be associated with a given telephony device at any given time. In addition to the difficulty in provisioning such an association, there are significant security issues surrounding the association. Since these associations often allow access to incoming calls and the ability to initiate calls, which may result in billing charges or security issues, it is often inappropriate to allow uncontrolled associations between computational and telephony devices. Accordingly, there is a need for an effective and efficient technique for associating computational devices and telephony devices in an authorized and secure fashion.

SUMMARY OF THE INVENTION

[0005] The present invention allows for dynamic association of a computational device, such as a personal computer or personal digital assistant, with a telephone terminal. A computer-telephone adaptor or like function implemented in a telephony switch or other telephony device will receive authentication indicia. The authentication indicia may be provided by the computational device that is to be associated with the telephony terminal, or through other means. The authentication indicia may be provided by a user or generated by the computational device or by other means. To confirm the association, the user must enter confirmatory authentication indicia corresponding to the original authentication indicia through the telephony terminal.

[0006] In one embodiment, a request for an association is received by the computer-telephone adaptor or function, which will then effect the establishment of a call to the telephone terminal, wherein the user can provide the confirmatory authentication indicia. The request may also include the address of the telephone terminal, wherein the address may take the form of a directory number associated with the telephone terminal. The request may also identify the duration for which the association is maintained. Once the association is established, events or occurrences associated with the telephone terminal may be provided to the computer-telephone adaptor or function, which will provide a corresponding alert to the computational device. The computational device can then display information, such as identifying an incoming call as being received at the telephone terminal and any associated caller identification. Further, the computer-telephone adaptor or function may receive instructions from the computational device and take the necessary steps to control operations of the telephone terminal or entities associated therewith based on the instructions.

[0007] Those skilled in the art will appreciate the scope of the present invention and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.

BRIEF DESCRIPTION OF THE DRAWING FIGURES

[0008] The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the invention, and together with the description serve to explain the principles of the invention.

[0009] FIG. 1 is a block representation of a communication environment according to one embodiment of the present invention.

[0010] FIGS. 2A and 2B illustrate an exemplary communication flow according to a first embodiment of the present invention.

[0011] FIG. 3 is an exemplary communication flow according to a second embodiment of the present invention.

[0012] FIG. 4 is an exemplary communication flow according to a third embodiment of the present invention.

[0013] FIG. 5 is a block representation of a telephony switch according to one embodiment of the present invention.

[0014] FIG. 6 is a block representation of a computer-telephone adaptor according to one embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0015] The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the invention and illustrate the best mode of practicing the invention. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the invention and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.

[0016] With reference to FIG. 1, a communication environment 10 is illustrated according to one embodiment of the present invention. As illustrated, one or more computational devices 12, such as a personal computer 12(A, C) or personal digital assistant 12(B), may be associated with a telephone terminal 14. The telephone terminals 14 may be directly connected to a telephony switch 16 via a telephony line, or may be indirectly coupled to the telephony switch 16 through a communication network 18. Notably, the telephony switch
The communication network 18 may be based on circuit-switched or packet-based communication technologies. The communication network 18 may include both circuit-switched and packet-based networks, such as the Public Switched Telephone Network (PSTN) and the Internet, respectively.

[0017] To control the association between the computational devices 12 and the telephone terminals 14, a computer-telephone adaptor 20 is provided in association with the telephone switch 16, and may be implemented as a function within the telephone switch 16 or may be a separate peripheral that is capable of communicating with the telephone switch 16 to effect an association with one or more of the telephone terminals 14. The computer-telephone adaptor 20 is coupled to the computational devices 12 directly or indirectly through a local network 22, such as a local area network (LAN) or wireless local area network (WLAN), and an access network 24, such as a T1, digital subscriber line (DSL), cable connection, or the like. Additionally, an interactive voice response (IVR) system 26 may be associated with the telephone switch 16 and may be capable of establishing a call or a similar voice session with one of the telephone terminals 14 to provide information to the user of the telephone terminal 14 as well as receive information provided by the user. The information provided by the user may be in the form of a dial tone multifrequency (DTMF) signals resulting from the user pressing buttons on the keypad associated with the telephone terminal 14, or may be speech, wherein the IVR system 26 will be able to recognize the speech of the user and process it as appropriate. Those skilled in the art will recognize that the IVR functionality can be implemented in the telephone switch 16, the computer-telephone adaptor 20, or in a separate peripheral as illustrated.

[0018] In operation, the computer-telephone adaptor 20, whether implemented as a function of the telephone switch 16 or as a separate entity, will facilitate the association between a computational device 12 and a telephone terminal 14 in a dynamic fashion. Once the association is established, the computer-telephone adaptor 20 may alert the computational device 12 of actions taking place at the associated telephone terminal 14, or may control the telephone terminal 14 based on instructions received from the associated computational device 12, such as initiating a call from the telephone terminal 14.

[0019] In general, associating a computational device 12 with a telephone terminal 14 occurs as follows. First, a user will select a telephone terminal 14 with which a computational device 12 is to be associated, and establish authentication indicia. The authentication of the telephone terminal 14 and the authentication indicia is provided to the computer-telephone adaptor 20, either through the computational device 12 or by other appropriate means. Subsequently, the user will go to the selected telephone terminal 14 and enter the authentication indicia through the keypad of the telephone terminal 14 or by speaking the authentication indicia. The authentication indicia is provided directly or indirectly to the computer-telephone adaptor 20 and compared with the authentication indicia provided through the computational device 12 or other means. If the authentication indicia provided through the computational device 12 or other means and the telephone terminal 14 match, an association between the computational device 12 and the telephone terminal 14 is established. Once the association is established, the telephone terminal 14 may be controlled by the computer-telephone adaptor 20 in response to instructions received from the computational device 12. Further, information pertaining to operational aspects of the telephone terminal 14 may be provided to the computer-telephone adaptor 20, which will forward or otherwise alert the computational device 12 of the events occurring at the telephone terminal 14. For example, upon receiving an incoming call, the computer-telephone adaptor 20 will receive information indicating an incoming call is being received, and provide an alert to the computational device 12. The computational device 12 will then generate a screen pop, or information window, prompting a message to the user indicating an incoming call is being received at the telephone terminal 14 and may provide caller identification information corresponding to the incoming call.

[0020] Those skilled in the art will recognize various techniques for retrieving the authentication indicia from the user via the telephone terminal 14 and for providing the authentication indicia to the computer-telephone adaptor 20. The communication flow diagrams of FIGS. 2, 3, and 4 illustrate an exemplary authentication scenario, a screen pop scenario in response to an incoming call, and initiating a call from the telephone terminal 14 in response to instructions from the computational device 12, respectively.

[0021] Turning now to FIGS. 2A and 2B, assume that the computational device 12 identifies a telephone terminal 14 with which to associate when a user enters an address associated with the telephone terminal 14 at the computational device 12 (step 100). In this example, the address is a directory number (DN) associated with a telephone line coupled to the telephone switch 16. Next, the computational device 12 will generate authentication indicia, which may be internally generated and provided to the user of the computational device 12, or may be received directly from the user (step 102). Optionally, the computational device 12 may determine the duration of the association, based on user input or other predefined criteria (step 104). At this point, the computational device 12 will send a request for the association to the computer-telephone (CT) adaptor 20 (step 106). The request may include the directory number (DN) for the telephone terminal 14, the authentication indicia, as well as the duration of the association, if applicable. The computer-telephone adaptor 20 will process the request (step 108) and automatically initiate a voice session, such as a traditional voice call, to the telephone terminal 14 to retrieve the confirmatory authentication from the user via the telephone terminal 14. In this example, the IVR system 26 is used to retrieve the confirmatory authentication indicia from the user via the telephone terminal 14. As such, a Request is sent to the telephone switch 16 to establish a call to the directory number (DN) associated with the telephone terminal 14 and may identify a message to provide to the user once the call is established (step 110). The message may be one of any number of automated messages, which are stored in the IVR system 26 and capable of being audibly announced to the user once the call is established with the telephone terminal 14.

[0022] When the telephone switch 16 receives the Request from the computer-telephone adaptor 20, the telephone switch 16 will send a Setup Request to the IVR system 26 (step 112). The setup request will include the directory number of the telephone terminal 14 and identification information identifying the message to provide to the user. In the illustrated embodiment, a Primary Rate Interface (PRI) is provided between the telephone switch 16 and the IVR system 26. As such, the IVR system 26 will send a Connect
message back to the telephony switch 16 (step 114), wherein a voice connection is established between the IVR system 26 and the telephone terminal 14 via the telephony switch 16 (step 116). Once the voice connection is established, the IVR system 26 will provide the selected message in an audible format to the user via the telephone terminal 14 (step 118). For example, the message may state, “Please enter your authentication indicia to confirm an association with computing device XXX by entering the authentication indicia on your telephone keypad or by clearly speaking the authentication indicia. Please press the pound sign once you are finished entering your authentication indicia.” In response to the message, the user will enter the authentication indicia on the telephone keypad or speak the authentication indicia. The IVR system 26 will receive the authentication indicia (step 120), and send a Release message to the telephony switch 16 to release the voice connection to the telephone terminal 14 (step 122), as well as send a Response to the computer-telephone adapter 20 including the authentication indicia received by the user via the telephone terminal 14 (step 124).

[0023] The computer-telephone adapter 20 will process the authentication indicia (step 126) and determine whether or not the association should be established. In essence, the authentication indicia received from the computational device 12 or via other means and that received from the user through the telephone terminal 14 are compared. If the comparison is positive, the association is approved, otherwise the association is not approved. Once a determination is made as to whether to associate the computational device 12 with the telephone terminal 14, an Association Response is sent to the computational device 12 to indicate whether the association has been established (step 128). At this point, assuming the authentication indicia received from the computational device 12 and the telephone terminal 14 match, an association is established.

[0024] With reference to FIG. 3, assume an incoming call intended for directory number DNX, which is associated with telephone terminal 14, is received at the telephony switch 16 (step 200). The telephony switch 16 is provisioned to provide an alert to the computer-telephone adapter 20 to indicate that an incoming call is being received at the telephone terminal 14 (step 202). The alert may include the directory number associated with the telephone terminal 14, as well as any caller identification information (caller ID) associated with the caller initiating the incoming call. The computer-telephone adapter 20 may then initiate a screen pop by sending an appropriate message to the computational device 12 (step 204). The message may include the directory number, as well as the caller identification.

[0025] The computational device 12 will then process the message and provide the information to the user in the form of a screen pop, which may be a window provided to the user overtop of all running applications, indicating that there is an incoming call intended for the telephone terminal 14, as well as providing the caller identification (step 206). The computational device 12 can instruct the telephone terminal 14 to answer the call, reject the call, transfer the call, terminate the call in voice mail, reroute the call to a computational device soft client, or other options.

[0026] Once the association is established, the computational device 12 may be used to control the telephone terminal 14. With reference to FIG. 4, an exemplary scenario is shown wherein the computational device 12 is used to initiate a call to directory number DNX from telephone terminal 14. Initially, the computational device 12 will determine that there is a need to initiate a call to directory number DNX, and send a message to the computer-telephone adapter 20 to initiate a call to directory number DNX from the telephone terminal 14 (step 300). The computer-telephone adapter 20 will then instruct the telephony switch 16 to initiate a call to directory number DNX (step 302). The telephony switch 16 will establish a voice connection with the telephone terminal 14 (step 304), as well as initiate a call to a telephony switch (not shown) supporting directory number DNX (step 306). The message to initiate the call may take the form of an Integrated Services User Part (ISUP) Initial Address Message (IAM). When the call is answered (step 308), a voice connection is established between the called party device associated with directory number DNX and the telephone switch 16 (step 310). The respective voice connections are connected and a call is established between the telephone terminal 14 and the called party’s device. Alternatively, the computer-telephone adapter 20 may initiate a call to directory number DNX from the telephone terminal 14 such that the telephony switch 16 will initiate ringing of the telephone terminal 14 prior to or in parallel with establishing a connection to the telephone terminal associated with directory number DNX. The telephony switch 16 will establish a voice connection between the telephone terminal associated with directory number DNX and the telephone terminal 14 when the respective terminals are answered. The latter embodiment is particularly beneficial when the computer-telephone adapter 20 cannot control whether the telephone terminal 14 is on or off hook.

[0027] Turning now to FIG. 5, a block representation of a telephony switch 16 is illustrated. These telephony switches may be implemented in a variety of ways using different equipment types, such as Nortel Networks Limited’s DMS-100 local switching system or private branch exchange switch.

[0028] The telephony switch 16 typically includes a switching fabric module 28, a computing module 30 including storage for software 32, a telephone line interface 34, a network interface 36, an operations/administration and maintenance (OA & M) module 38 and an interface to the computer-telephone adapter 20. The switching fabric 28 may comprise logical and physical switches for interconnecting the telephone line interface 34 with the communication network 18 through the network interface 36. As illustrated, the computing module 30 controls circuit-switched communications via the switching fabric 28 and is capable of providing traditional intelligent network monitoring and functions as well as the computer-telephone adapter functionality in select embodiments. Further, the computing module 30 may cooperate with a provisioning database 40, which provides information allowing the telephony switch 16 to properly identify, locate, and provision the various telephone terminals 14 supported by the telephony switch 16. Notably, the IVR 26 may be embedded in the telephony switch 16.

[0029] With reference to FIG. 6, a computer-telephone adapter 20 is illustrated as having a control system 42 with sufficient memory 44 to store the software 46 used to provide the functionality described above. The control system 42 may be associated with a telephony switch interface 48, as well as an access network interface 50. The access network interface 50 is used to communicate with the computational devices 12 directly or indirectly, and the switch interface 48 is used to communicate with the telephony switch 16, if necessary. As noted, the functionality of the computer-telephone adapter 20
may be implemented in the telephony switch 16. Further, the IVR functionality may be embedded in the computer-telephone switch 20.

[0030] Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present invention. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.

What is claimed is:

1. A system for associating a computational device with a communication device, the system comprising:
 a control system coupled to the at least one communication interface; and
 receive a request to authenticate an association between the computational device and the communication device;
 establish a communication connection with the communication device;
 send a request for authentication information to the communication device via the communication connection;
 receive a response to the request for authentication information from the communication device; and
 forward information determined from the response to the request for authentication information.

2. The system of claim 1, wherein the association between the computational device and the communication device allows the computational device to control at least one function of the communication device.

3. The system of claim 1, wherein the association between the computational device and the communication device allows the computational device to keep track of at least one operational aspect of the communication device.

4. The system of claim 1, comprising a computer-telephone switch configured to send the request to authenticate the association between the computational device and the communication device.

5. The system of claim 4, comprising a telephony switch coupled between the computer-telephone switch and the at least one communication interface, wherein the request to authenticate an association between the computational device and the communication device is received via the telephony switch.

6. The system of claim 1, comprising a communication switch, the control system being configured to establish the communication connection with the communication device via the communication switch.

7. The system of claim 1, wherein an interactive response system comprises the at least one communication interface and the control system coupled to the at least one communication interface.

8. The system of claim 7, wherein the control system is configured to send the request for authentication information by providing an automated voice message to the communication device via a telephony connection.

9. The system of claim 7, wherein the control system is configured to receive the response to the request for authentication information by receiving a voice response from the communication device.

10. The system of claim 7, wherein the control system is configured to receive the response to the request for authentication information by receiving a voice response from the communication device, the control system being configured to perform speech recognition on the voice response.

11. The system of claim 1, wherein the control system is configured to forward the information determined from the response to the request for authentication information by forwarding information to a computer-telephone switch.

12. The system of claim 1, wherein the control system is configured to forward the information determined from the response for authentication information by forwarding the information to a network device configured to associate computational devices with communication devices.

13. The system of claim 1, wherein the control system is further configured to:
 receive a request to establish a communication session with two communication devices from a network device configured to associate computational devices with communication devices;
 establish the requested communication session.

14. A communication system comprising:
 a plurality of communication interfaces;
 a switching fabric coupled to the plurality of communication interfaces; and
 a control system coupled to the switching fabric and configured to:
 receive a request to authenticate a communication device from a network device configured to associate computational devices with communication devices;
 establish a communication connection with the communication device;
 send a request for authentication information to the communication device via the communication connection;
 receive a response to the request for authentication information from the communication device; and
 forward information determined from the response to the request for authentication information.

15. The system of claim 14, comprising an interactive voice response system coupled to a communication switch, wherein the control system is configured to send the request for authentication information by providing an automated voice message from the interactive voice response system to the communication device via a telephony switch.

16. The system of claim 15, wherein the control system is configured to receive the response to the request for authentication information by receiving signaling resulting from keypad entries on the communication device.

17. The system of claim 16, wherein the control system is further configured to:
 receive the response to the request for authentication information by receiving a voice response from the communication device; and
 couple the voice response to the interactive voice response system; and
 wherein the interactive voice response system is configured to perform speech recognition on the voice response.

18. The system of claim 14, wherein the control system is further configured to forward information determined from the response for authentication information by forwarding information to the network device configured to associate computational devices with communication devices.

19. The system of claim 14, wherein the control system is further configured to:
receive a request to establish a communication session with two communication devices from the network device configured to associate computational devices with communication devices; and establish the requested communication session.

20. The system of claim 14, wherein an association between a computational device and a communication device allows the computational device to control at least one function of the associated communication device.

21. The system of claim 14, wherein an association between a computational device and a communication device allows the computational device to keep track of at least one operational aspect of the communication device.