Abstract: An introducer for providing intravascular access to a patient is disclosed, and includes a dilator and sheath that are configured to prevent peeblock, or "fishmouthing," of the sheath during introducer advancement. In one embodiment, the introducer comprises a dilator including a distal tapered region, and a sheath including an inner bore that receives the dilator such that a portion of the tapered region of the dilator extends from the sheath distal end. A distal outer surface of the sheath includes a first curved portion defined by a first radius and extending proximally from the distal end of the sheath to a first end point, and a second curved portion defined by a second radius and extending proximally from the first end point to a second end point. Additionally, an interference fit is established between the dilator tapered region and the sheath distal end to further prevent sheath end deformation.
FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR, OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). Published: — with international search report
INTRODUCER INCLUDING SHAPED DISTAL REGION

CROSS-REFERENCE TO RELATED APPLICATIONS

[01] This application claims the benefit of U.S. Provisional Patent Application No. 60/981,418, filed October 19, 2007, and entitled "Introducer Sheath Having Shaped Distal End," which is incorporated herein by reference in its entirety.

BRIEF SUMMARY

[02] Briefly summarized, embodiments of the present invention are directed to an introducer for providing intravascular access to a patient. Advantageously, the introducer includes a dilator and sheath that are configured to prevent peelback, or "fishmouthing," of the sheath during introducer advancement into the vasculature, often a problem with known introducer designs.

[03] In one embodiment, the introducer comprises a dilator including a distal tapered region, and a sheath including an inner bore that receives the dilator such that a portion of the tapered region of the dilator extends from the sheath distal end. A distal outer surface of the sheath includes a first curved portion defined in cross section by a first radius and extending proximally from the distal end of the sheath to a first end point. The distal outer surface of the sheath further includes a second curved portion defined in cross section by a second radius and extending proximally from the first end point to a second end point. The first and second curved portions define a smoothly shaped distal region on the outer surface of the sheath, thus enabling the sheath to advance smoothly through an incision in a vein or other vessel into which the introducer is to be inserted and reducing the likelihood of sheath distal end deformation.

[04] Additionally, an interference fit is established in one embodiment between the tapered region of the dilator and the sheath distal end by sizing the tapered region to extend proximally through the sheath distal end and into the sheath's inner bore a predetermined distance. This provides a relatively gap-free fit between the distal end of the sheath and the tapered dilator, further serving to prevent sheath end deformation.
These and other features of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

To further clarify the above and other advantages and features of the present invention, a more particular description of the invention will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. The invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:

FIG. IA is a partially exploded, perspective view of an introducer including a sheath defining a shaped distal region in accordance with an example embodiment of the present invention;

FIG. IB is a side view of the introducer of FIG. IA;

FIG. 2A is a partial cross sectional side view of a sheath assembly of the introducer shown in FIG. IA;

FIG. 2B is an end view of the sheath assembly of FIG. 2A;

FIG. 3 is a cross sectional view of a shaped distal region of the sheath assembly of FIG. 2A, showing various aspects thereof, according to one embodiment;

FIG. 4 is a partial cross sectional side view of a dilator of the introducer shown in FIG. IA;

FIG. 5 is a cross sectional view of a distal region of the dilator showing various aspects thereof, according to one embodiment;

FIG. 6 is a cross sectional view of a distal region of the introducer of FIG. IA, showing various aspects thereof, according to one embodiment;

FIG. 7 is a side view of a portion of an introducer, showing aspects of a distal region of a sheath assembly according to another embodiment of the present invention;
FIG. 8 is a side view of a portion of an introducer, showing aspects of a distal region of a sheath assembly according to yet another embodiment of the present invention;

FIG. 9A is a partial cross sectional side view of a sheath assembly according to still another embodiment of the present invention; and

FIG. 9B is an end view of the sheath assembly of FIG. 9B.

DETAILED DESCRIPTION OF SELECTED EMBODIMENTS

Reference will now be made to figures wherein like structures will be provided with like reference designations. It is understood that the drawings are diagrammatic and schematic representations of exemplary embodiments of the invention, and are not limiting of the present invention nor are they necessarily drawn to scale.

FIGS. 1A-9B depict various features of embodiments of the present invention, which are generally directed to an introducer for use in facilitating intravascular access to the body of a patient. Such access is desired in connection with the intravascular insertion a medical device, such as a peripherally inserted central catheter ("PICC") or other catheter, for instance.

Advantageously, the introducer includes a dilator and sheath that are configured in such a way as to improve insertion of the introducer tip into a vein or other portion of a patient's vasculature. In particular, the interface region of the dilator and sheath is configured so as to prevent peelback, or "fishmouthing," of the sheath distal end during advancement of the introducer, a problem often encountered with known sheath designs, especially those composed of polytetrafluorethylene ("PTFE").

Reference is first made to FIGS. IA-IB, which depict various details of an introducer, generally designated at 10, which is employed in accessing a vessel, such as a vein, or other portion of a patient's vasculature. In the present embodiment, the introducer 10 generally includes a sheath assembly 20 and a dilator 30. The dilator 30 defines an elongate shaft that is sized so as to be removably received within a hollow bore of the sheath assembly 20 such that a distal end 30B of the dilator extends a predetermined distance beyond an open distal end 20B of the sheath assembly 20, as shown in FIG. IB. A hub 32 and locking nut 34 are included on a proximal end 30A of the dilator 30 for use in manipulating the dilator.
during introducer use. The locking nut 34 is threaded so as to threadingly engage a portion of a handle 42 disposed at a proximal end 20A of the sheath assembly 20. Other connective configurations between the handle and the dilator are also possible. A hollow sheath body 44 of the sheath assembly 20 extends distally from the handle 42 at the proximal end 20A to the distal end 20B thereof and defines the majority of the bore into which the dilator 30 is selectively received. A hole (FIG. 2B) is defined in the handle 42 and is in coaxial communication with the bore of the sheath body 44.

[023] The dilator 30 defines a bore extending between its proximal end 30A and distal end 30B so as to enable the introducer 10 to be advanced over a guidewire or other suitable device during insertion into the vasculature, the guidewire having been pre-inserted through incisions in the skin and vein or other vessel into the vasculature. During such advancement, the introducer is assembled as shown in FIG. 1B. So assembled, a tapered region 60 of the dilator, to be discussed further below, extends from the dilator distal end 30B to at least the distal end 20B of the sheath assembly 20. As such, the tapered region 60 enables the dilator 30 to enlarge the incision previously defined in the vein or other vessel in preparation for the insertion of a PICC or medical device. Once the incision has been enlarged, the dilator 30 can be removed from the sheath assembly 20 and the PICC can be inserted through the vein incision and into the patient’s vasculature via the sheath body 44.

[024] Reference is now made to FIGS. 2A-3 in describing further details regarding the sheath assembly 20. As mentioned, the sheath assembly includes the sheath body 44, which defines a substantially cylindrical bore extending between the proximal end 20A and distal end 20B thereof. The handle 42 at the proximal end 20A of the sheath assembly 20 is attached to the sheath body 44 and is splittable such that the sheath assembly can be separated into two along a dividing plane 48 corresponding to the longitudinal length of the sheath body. This enables the sheath assembly 20 to be split apart during removal of the sheath from the vein. In the present embodiment the sheath body 44 is composed of polytetrafluoroethylene ("PTFE"), which provides relative ease of longitudinal splitting of the body. Note, however, that other materials can be alternatively employed to form the sheath including, for instance, fluorinated ethylene propylene ("FEP").

[025] In accordance with one embodiment, a distal region of the sheath body 44 is shaped so as to ease entry of the introducer into the patient’s vein or other vessel. As shown in FIG. 3, this is realized by including a shaped region 50 on an outer surface of the distal
region of the sheath body 44. In particular, the shaped region 50 includes a first curved portion 52 cross sectionally defined by a first radius and a second curved portion 54 cross sectionally defined by a second radius. The first curved portion 52 extends proximally on the sheath body outer surface a predetermined distance from the sheath distal end 20B, while the second curved portion 54 extends proximally a predetermined distance from the proximal terminus of the first curved portion. Proximally of the second curved portion, the sheath body outer surface defines a substantially cylindrical shape. So configured, the first and second curved portions 52 and 54 define annular surfaces about the outer surface of the sheath body 44 proximate the distal end 20B of the sheath assembly 20.

[026] As seen FIG. 3, the cross section of the first curved portion 52 is defined by a small radius and proximally extends a short distance relative to the radius and extension of the second curved portion 54. This enables the wall of the sheath body 44 to increase to a sufficient thickness within a relatively short distance proximal to the sheath distal end 20B while still providing a smooth transition region between the distal end and the more proximal portion of the sheath body outer surface. Similarly, the relatively longer extension and larger radius defining a cross section of the second curved portion 54 continues a transition in the increase of the outer diameter of the sheath body outer surface proximally from the distal end 20B. Thus, the shaped region 50 differs from a traditional sheath end taper, which taper results in substantial thinning of the sheath wall near the distal end thereof, undesirably contributing to fishmouthing or other undesired distal end deformation.

[027] Configured as shown in FIG. 3, the distal end 20B of the sheath assembly 20 is provided a rounded profile by the first curved portion 52. Further, the distal region of the sheath assembly is more generally provided a bluntly rounded, or bullet-shaped, cross sectional profile by the configuration of the shaped region 50 as discussed above. As will be seen, introducer performance is improved as a result of this configuration. Of course, the relative longitudinal length and radius values of both curved portions can vary according to size, use, or other configuration of the introducer. Additionally, it is appreciated that the first and second curved portions can define other curved surfaces including oval or parabolic sections, for instance.

[028] The value of the first and second radii that respectively define the first and second curved portions 52 and 54 can vary according to the size or other aspect of the introducer 10. Table 1 gives possible radius values for the cross sectional shapes of the first and second
curved portions according to French size of the introducer, according to one possible implementation. Of course, these values are exemplary only and merely illustrative of the size variation possible with the shaped region of the introducer. It is further noted that the principles described herein apply to introducers of various configurations, including microintroducer, macrointroducers, valved introducers, etc.

<table>
<thead>
<tr>
<th>Introducer French Size (Fr.)</th>
<th>Radius of First Curved Portion (in.)</th>
<th>Radius of Second Curved Portion (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>.005</td>
<td>.221</td>
</tr>
<tr>
<td>4.5</td>
<td>.005</td>
<td>.230</td>
</tr>
<tr>
<td>5</td>
<td>.005</td>
<td>.234</td>
</tr>
<tr>
<td>6</td>
<td>.007</td>
<td>.241</td>
</tr>
<tr>
<td>6.5</td>
<td>.010</td>
<td>.150</td>
</tr>
<tr>
<td>7</td>
<td>.010</td>
<td>.156</td>
</tr>
<tr>
<td>8</td>
<td>.010</td>
<td>.163</td>
</tr>
<tr>
<td>10</td>
<td>.010</td>
<td>.177</td>
</tr>
<tr>
<td>13</td>
<td>.010</td>
<td>.195</td>
</tr>
<tr>
<td>14</td>
<td>.010</td>
<td>.205</td>
</tr>
<tr>
<td>15</td>
<td>.010</td>
<td>.209</td>
</tr>
<tr>
<td>16.5</td>
<td>.010</td>
<td>.218</td>
</tr>
</tbody>
</table>

Table 1- Radius Values According to Introducer French Size
The longitudinal distance the shaped region 50 extends from the distal end 2OB of
the sheath assembly generally varies according to the size of the introducer, but in the case of
a 5 Fr. introducer for instance, the shaped region extends a distance of approximately 0.05
inches proximally from the sheath assembly distal end 20B. Other shaped region extension
distances are also possible.

Notwithstanding the above discussion, it is appreciated that the length, magnitudes
and shape configurations of the sheath assembly distal portion can be varied from what is
described herein while still residing within the scope of present invention. For instance, the
shaped region can include more than two curved portions, if desired. Or, the curved portions
can include straight bevels in addition or alternative to the curved surfaces. Thus, these and
other possible modifications to the sheath assembly are contemplated as included within the
principles of the present invention.

Reference is now made to FIGS. 4 and 5. As already discussed, the dilator 30 is
received within the sheath assembly 20 such that the tapered region 60 of the dilator extends
from the distal end 20B of the sheath assembly. The tapered region 60 enables the dilator 30
to enlarge the incision previously defined in the vein or other vessel in preparation for the
insertion of a PICC or medical device into the patient's vasculature.

In greater detail, the dilator 30 includes an inner bore 56 extending from the
dilator proximal end 30A and through the hub 32, locking nut 34, and dilator body to the
dilator distal end 30B for receiving a guidewire therethrough. In the present embodiment, the
tapered region 60 on the outer surface of the distal portion of the dilator 30 includes a first
tapered portion 62 defining a first taper angle, and a proximally adjacent second tapered
portion 64 defining a second taper angle. As shown in FIG. 5, the first tapered portion 62
extends from the dilator distal end 30B to a predetermined proximal endpoint, while the
second tapered portion 64 extends from the proximal endpoint of the first tapered portion 62
to its respective proximal endpoint. As will be discussed, in one embodiment the proximal
endpoint of the second tapered portion 64, as part of the tapered region 60, terminates
longitudinally proximal to the point where the dilator 30 extends from the distal end 20B of
the sheath assembly to provide an interference fit between the dilator and the sheath body 44.
In other embodiments, the longitudinal extension of the tapered region 60 from the dilator
distal end 30B can vary according to introducer size and configuration. For instance, the
tapered region can extend proximally to the point where the dilator 30 extends from the distal
end 20B of the sheath assembly 20, or can extend further proximally along the dilator body than what is described above.

[033] The taper angles of the first tapered portion 62 and the second tapered portion 64 in one embodiment fall within a range of approximately five (5) to eight (8) degrees and one (1) to four (4) degrees, respectively. These ranges are merely exemplary, however, and it is appreciated that each tapered portion can define one of a variety of possible taper angles, according to need or desired configuration. Indeed, it is also appreciated that the tapered portion can include only one tapered portion, or more than two tapered portions.

[034] Reference is now made to FIG. 6, which depicts the distal region of the introducer 10 in cross section. As shown, the dilator 30 exits distally from a sheath body central inner bore 46 at the distal end 20B of the sheath assembly 20, a point designated here as interface 70. The second tapered portion 64 of the outer surface of the dilator 30 extends proximally past the interface 70 and into the sheath body inner bore 46 when the dilator 30 and sheath assembly 20 are mated. So configured, an interference fit is achieved in the illustrated embodiment between the outer surface of the dilator 30 and the inner surface of the sheath assembly 20 at its distal end 20B at the interface 70.

[035] In light of the above discussion, it can be seen that the introducer 10 as described herein is advantageously configured to reduce or preclude the incidence of peelback ("fishmouthing") or other undesired deformation of the sheath assembly distal end during insertion of the introducer into the patient vasculature. First, the shaped region 50 of the distal portion of the sheath body 44 includes the first and second curved portions 52 and 54. These curved portions prevent deformation or peeling away of the distal end 20B of the sheath assembly 20 from the dilator 30 should the sheath distal end encounter resistance or an obstacle during introducer insertion by providing a smoothly curved and transitioning outer surface while also ensuring sufficient sheath wall thickness at the distal end thereof. This in turn enables the sheath to proceed past the obstruction or resistance without damaging the sheath assembly or patient vasculature.

[036] Second, and as already described in connection with FIG. 6, the tapered region 60 of the dilator 30 extends proximally through the sheath assembly distal end 20B and into the inner bore 46 of the sheath body 44. This provides an interference fit between the dilator 30 and the sheath body 44 at the interface 70, thus eliminating any gap between the two
components and further reducing the likelihood of peelback or deformation of the distal end of the sheath body 44. In another embodiment it is appreciated that, alternatively, the inner diameter of the sheath body inner bore 46 could be reduced proximate the sheath assembly distal end 20B to provide a similar interference.

[037] It should be appreciated that the shaped region proximate the distal end of the sheath assembly can be configured in various ways to achieve the beneficial effects described immediately above. Examples of this can be found in FIGS. 7 and 8, which each depict a shaped region 50 at the distal end 20B of the sheath assembly 20. In particular, the shaped region 50 of FIG. 7 proximally extends a distance of approximately .075 in. from the sheath assembly distal end 20B and includes both a first curved portion 152 cross sectionally defined by a radius of approximately .005 in. and a second curved portion 154 cross sectionally defined by a radius of approximately .463 in. Similarly, the shaped region 50 of FIG. 8 proximally extends a distance of approximately .05 in. from the sheath assembly distal end 20B and includes both a first curved portion 252 cross sectionally defined by a radius of approximately .003 in. and a second curved portion 254 cross sectionally defined by a radius of approximately .234 in. In yet another example, FIGS. 9A and 9B depict a sheath assembly 310 including a handle 342 into which is incorporated a valve 344 for preventing the aspiration of fluids or infusion of air during introduction of the introducer into the patient's vasculature. The valved sheath assembly 310 can include a shaped region on its distal end and can receive a dilator having a tapered region similar to the previous embodiments discussed herein. These embodiments are therefore exemplary of a variety of possible configurations that may be utilized in connection with an introducer of the present invention.

[038] Aspects of the present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative, not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.

What is claimed is:
CLAIMS

1. An introducer for introducing a medical device into a vasculature of a patient, comprising:
 a sheath defining a proximal end, an open distal end, and a central bore extending therebetween, a distal region of the sheath including at least one curved outer surface portion proximally extending from the distal end thereof, a cross section of the at least one curved outer surface portion at least partially defined by a first radius; and a dilator that is removably received within the central bore of the sheath such that at least a portion of a distal tapered region of the dilator extends distally of the distal end of the sheath.

2. The introducer as defined in claim 1, wherein the at least one curved outer surface portion provides an annular rounded surface to the distal end of the sheath.

3. The introducer as defined in claim 1, wherein the sheath further includes a second curved outer surface portion cross sectionally defined by second radius.

4. The introducer as defined in claim 3, wherein the at least one curved outer surface portion and the second curved outer surface portion provide a bullet-shape cross sectional profile to the distal end of the sheath.

5. The introducer as defined in claim 1, wherein a composition of the sheath includes polytetrafluorethylene.

6. The introducer as defined in claim 1, wherein the at least one curved outer surface portion extends approximately 0.05 inches proximally from the distal end of the sheath.
A sheath assembly for use with an introducer in introducing a medical device into a vasculature of a patient, comprising:

- A sheath defining a proximal end, an open distal end, and a central bore extending therebetween, a distal region of an outer surface of the sheath including:
 - A first curved portion defined in cross section by a first radius and extending proximally from the sheath distal end to a first endpoint;
 - And
 - A second curved portion defined in cross section by a second radius and extending proximally of the first endpoint to a second endpoint.

The sheath assembly as defined in claim 7, wherein the second curved portion is contiguous with the first curved portion.

The sheath assembly as defined in claim 7, wherein the central bore of the sheath is sized to receive a dilator therethrough, the dilator including a distal tapered region.

The sheath assembly as defined in claim 9, wherein the distal tapered region of the dilator includes a first tapered portion defined by a first taper angle and a second tapered portion defined by a second taper angle.

The sheath assembly as defined in claim 10, wherein a proximal termination of the second tapered portion is disposed proximally of the distal end of the sheath when the dilator is seated within the central bore of the sheath such that the second tapered portion extends into the central bore.

The sheath assembly as defined in claim 7, wherein an inner diameter of a wall defining the distal region of the sheath is substantially constant.

The sheath assembly as defined in claim 7, wherein an inner diameter of a wall defining the distal region of the sheath is smaller adjacent the distal end relative to a more proximal portion of the wall defining the distal region.

The sheath assembly as defined in claim 7, wherein the first and second curved portions are annularly defined on the outer surface of the sheath.
15. The sheath assembly as defined in claim 7, wherein the second radius of the second curved portion of the sheath is larger than the first radius of the first curved portion.

16. The sheath assembly as defined in claim 7, wherein the first radius of the first curved portion has a magnitude of from about .003 inch to about .010 inch.

17. The sheath assembly as defined in claim 7, wherein the second radius of the second curved portion has a magnitude of from about .15 inch to about .5 inch.

18. The sheath assembly as defined in claim 7, wherein the first and second curved portions are convexly shaped with respect to an exterior view of the sheath distal region.

19. An introducer for introducing a medical device into a vasculature of a patient, the introducer comprising:
 a dilator including a distal tapered region; and
 a sheath including an inner bore extending between a proximal and a distal end thereof for removably receiving the dilator therein such that at least a portion of the distal tapered region of the dilator distally extends from the distal end of the sheath, an outer surface of the sheath including:
 a first curved portion cross sectionally defined by a first radius and extending proximally from the distal end of the sheath to a first end point; and
 a second curved portion cross sectionally defined by a second radius and extending proximally from the first end point to a second end point.

20. The introducer as defined in claim 19, wherein the first and second curved portions assist in preventing deformation of the distal end of the sheath during introduction of the introducer into the patient vasculature.

21. The introducer as defined in claim 20, wherein the introducer is used to insert a catheter into the patient vasculature.
22. The introducer as defined in claim 21, wherein the distal tapered region of the dilator extends into the bore of the sheath so as to provide an interference fit between the dilator and the distal end of the sheath.

23. The introducer as defined in claim 22, wherein the distal tapered region includes a first tapered portion defined by a first taper angle and extending proximally from a distal end of the dilator and a second tapered portion defined by a second taper angle and extending proximally from a proximal end point of the first tapered portion.

24. The introducer as defined in claim 23, wherein the first taper angle has a magnitude of from about five (5) to eight (8) degrees, and wherein the second taper angle has a magnitude of from about one (1) to four (4) degrees.

25. The introducer as defined in claim 24, wherein the first and second curved portions together extend proximally at least .05 inch from the distal end of the sheath.

26. The introducer as defined in claim 25, wherein the sheath is splittable and wherein the proximal end of the sheath includes a splittable handle, the handle including a threaded connector for threadably engaging a locking nut disposed on a proximal portion of the dilator.

27. The introducer as defined in claim 26, wherein the dilator defines a longitudinal bore for receiving a guidewire therethrough.
A CLASSIFICATION OF SUBJECT MATTER
IPC(8) - A61M 29/00 (2008.04)
USPC - 604/93.01
According to International Patent Classification (IPC) or to both national classification and IPC

B FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC(8) - A61M 25/06, 25/08, 29/00 (2008 04)
USPC - 604/93 01, 164 01, 606/108
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
PatBase

C DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C

Date of the actual completion of the international search
12 December 2008

Date of mailing of the international search report
23 December 2008

Name and mailing address of the ISA/US
Mail Stop PCT, Attn ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No 571-273-3201