»UK Patent .,GB

(m2528405

(13)B

(45)Date of B Publication 23.06.2021

(54) Title of the Invention: Efficiently performing operations on distinct data values

(51) INT CL: GO6F 16/21 (2019.01) GO6F 16/2455 (2019.01)
GO6F 17/16 (2006.01)
(21) Application No: 1517897.3
(22) Date of Filing: 14.03.2014
Date Lodged: 09.10.2015

(30) Priority Data:

(31) 13835590 (32) 15.03.2013 (33) US

(86) International Application Data:
PCT/US2014/027907 En 14.03.2014

(87) International Publication Data.
W02014/143791 En 18.09.2014

(43) Date of Reproduction by UK Office 20.01.2016

(56) Documents Cited:

EP 0883847 B1
US 8386435 B2
US 7953766 B2
US 20100011031 A1
US 20080062944 A1
US 20040260684 A1
US 20020032676 A1

WO 1989/004013 A1
US 8204985 B2
US 6507846 B1
US 20080071769 A1
US 20070050379 A1
US 20020143521 A1

(58) Field of Search:

As for published application 2528405 A viz:
INT CL GO6F
updated as appropriaie

Additional Fields
INT CL GO6F
Other: WPI, EPODOC

GOG6F 16/27 (2019.01)

GO6F 16/28 (2019.01)

(72) Inventor(s):
Richard Grondin
Evgueni Fadeitchev

(73) Proprietor(s):
Informatica LLC

2100 Seaport Blvd., Redwood City 94063, California,
United States of America

(74) Agent and/or Address for Service:

Marks & Clerk LLP
15 Fetter Lane, London, EC4A 1BW, United Kingdom

d S0P8¢5¢ 99O

1/18

Customer Name =iore ID

Amount Spest

Bili 1

1

Bil

Ko

{yeoree 1

11

o

eorge

11

bt

hiax

Lary I

I

Parry

Fig.

1A

=iore 1D

Count of Visits

b

Fig.

1B

Store ID

Amoun{ spent

LS
ko

[

" A
Ly

Fig.

1C

2/18

Store

Average Amount bpent | Count of Visifs

17 173 3

k-

13 344 4

Fig. 1D

Store 1D

Minimum Spent

10

Fou

5l

Fig. 1E

store 1D

Maximunm Spent

k-

21

Fig. 1F

Store ID

Number of Distinct Customers

t-.s

Fig. 1G

3/18

Store a tokenized column,
the tokenized column
created by tokenizing data
values in a domain of data
corresponding to the
column

201

NS

Receive a query directed to
the column of data, the
guery defining one or more
group sets for grouping the
data

202

S

Generate an entity map
vector for each of the group
sets, each bit of the entity
map vector referring to an
entity

203

Fig. 2A

4/18

Receive a query directed to
the column of data, the
query defining one or more
group sets for grouping the
data

210

:/7

Generate an entity map
vector for each of the group
sets, each bit of the entity
map vector referring to an
entity

211

Fig. 2B

301

305

302

307

k-
P
£
oy

- P.fu]

i o T
ot | B
¢ A
i

fro-oi
¢

T

I—ul..

-ﬁ ' : \ s T
iﬁzgﬁz,
BB A AR AT
SOIOGE
W £ TR >
LD U e % | 3 £
. . e e
SRINN2 LGS 2B B
- e S -
" - R R 3 T Y S
SO PGS IR &R 2 Lul i3l
T ¥ . |
" YA T Y AN T N S ¥ad
SUTEGE IR ing P - Eit
; L 13 3 3
RIS N IR T =1 . N
| 1 + + + {
T, A £ e 3 - I 4™ 2
R A i f‘r,.:-:.;!ii (X2, i 118 i
~3-
i £ Pt o £ € L Fal
1 2RI I00E 135 ii i sl
" NEHR + =X T i R ™
201 20I08 IN03 167 20 30 0
........................ |

312

D Week

Eigd Value
1 201001
2 201002
3 201003

313 314 315

316

D Storeld
Eid Value
1 1601
2 1002
3 1003

D Custid

Eid Value
165
167
268
301

> Productid
Eid Vaiue

10
11
12
20

D _Qty

£ Gd M) s
£ Ll B -

/

31Cl//

Fig. 3B

Eid Value

10
15
20
30

D Spent

317

Eid Value

15
20
30
30
5

200

6/18

O Week O Storefd O _Custid D Productid D Qty D _Spent
fid Value fid Value Eid Value Ed Value 6d Value §d Value
I 200 1 001 1 ' ' . ?
2 W02 2 o 2
3 201003 3 1003 2
"\ 3

e
{7y

'--‘
Fi
~aod SV
it
| i
pob
b
boot
'...h
LFY

b
F-i bbb

¥ J
4
5

5 Lk B
’.-j

Lo L6
Lo

310

Fod
£
N e G b
'a‘:; [
%
OV W L G wd

l . ’
!

‘\\'\\\\\\‘\\\‘\'\\‘*

4
4
. 4
-
-
. 4

400

Tupleld [Week

7/18

b *)‘l
=
Fo.

" |
.

fep_tustid

P

o

o

P | P | Poik
Pl

".-..’. .

bkt | Li

podd

hts

!-o = 1

Tttt anlete

'un L C a'niy

Week

b b Custld

LN A

(-2

F-J

Fig. 4B

Tupleld

MR R

Week

sum O Custld

NI T N N el £ 2 T At F T RIS L

42_

0-a. -
= = 3
R 3 2

420 —

Fig. 4C

501

506

513 \

8/18

1
.
-

t‘*mﬂ

Does Group

Set (Week 1,
Store 2)
include

Custld=17?

507

No

i 7

Does Group

Store 2)
include

Custld=27

508

Set (Week 1,

NO

i 7

OB 0 O

Fig. 5B

. 513
.-/

Does Group

Set (Week 1,

Store 2)
include

Custld=3?

509

Yes

i 7

1

Does Group

Set (Week 1,
Store 2)
include

Custld=47

510

Yes

i 7

1

520 \

533

9/18

Lexically Ordered List of Unigne Data Values in D Custld

165

Does Group
Set (Week
201001,
Store 1002)
include the
Custld at the
lowest lexical
position?

NO

Fig. 5C

Set (Week
201001,

second

position?

Does Group

Store 1002)

include the
Custld at the

lowest lexical

NO

Does Group
Set (Week
201001,
Store 1002)
include the
Custld at the
third lowest
lexical
position?

Does Group
Set (Week
201001,
Store 1002)
include the
Custld at the
fourth lowest
lexical
position?

Yes

i?

1

Yes

i?

1

Week 1: CustID (Week
1, Store 1) + CustID
(Week 1, Store2)

601A

Week 2: CustID (Week
2, Store 1) + CustID
(Week 2, Store2) +

CustID (Week 2, Store3)

601B

10/18

Week 1: OB1100 ||
0B0011

602A

Week 1: OB1111

Week 3: CustID (Week
3, Store 1) + CustID
(Week 3, Store3)

601C

Week 2: 0B1101 ||
OB0010 || OB0100

602B

NS

603A

611 \

Week 1: OB1000 ||
0B0100

602C

> Week 2: OB1111
6038

Fig. 6A

612 \

» Week 1: OB1100
’ 603C

613 \

Tupleld VWeek EMY _CD Cusild
1 1 4
2 2 4

/

610 /

Fig. 6B

Store tokenized
columns of data in
partition 1 mapping
domain partition 1

values to partition EIDs

11/18

Fig. 7A

Store tokenized
columns of data in
partition 2 mapping
domain partition 2

values to partition EIDs

Receilve a query
directed to the one or
more columns of data

in partition 1, the query
defining one or more
group sets for grouping
the data

N7

Store tokenized
columns of data in
partition 3 mapping
domain partition 3

values to partition EIDs

NS

Recelve a query
directed to the one or
more columns of data

in partition 2, the query
defining one or more
group sets for grouping
the data

~ 7

Generate an entity map
vector for each of the
group sets in partition

1, each bit of the bit
map vector referring to
a partition EID

NS

Recelve a query
directed to the one or
more columns of data

in partition 3, the query
defining one or more
group sets for grouping
the data

NS

Generate an entity map
vector for each of the
group sets in partition

2, each bit of the bit
map vector referring to
a partition EID

NS

NS

Generate an entity map
vector for each of the
group sets in partition

3, each bit of the bit
map vector referring to
a partition EID

NS

Merge domain partitions to generate global domain

702

NS

To Fig. /B

/701

12/18

From Fig. 7A

=
Tv

Generate global EIDs for unique data values in global domain

703

NS

Convert partition EIDs for all partitions to global EIDS

704

NS
NS

Convert partition EMVs to global EMVs

705

Fig. 7B

13/18

801A 801B 201¢

Partition 1 Partition 2 Partition 3

0 _Custid D _Custid 8 Castid
35 Wakue £ Yalue i PR AT
' LHE ‘ 163 3 8

bt ot A

AT AT A T RN

802A 802B 802C

Fig. A

3803

304

Fig. 8B

14/18

311 812 313

Partition 1 Partition 2

k3 awr Pg weE

821 822 3823

Partition 1 Partition 2 Partition 3

D] HNAG

e e e e e e e e et S e B A B B B B B B B ERR KRN RN R RN N R e e e b e,

NRARET] Ul AT ENE § SRR

At A A

SRR R R R R
T R S T AN A
G TR

et

PELE R R

Group
Sets
902

N

Partitions
903

15/18

900

Entity Map Vectors
901

Fig. 9

16/18

Existing Data Warehouse (chronologically assigned EIDs) / 1002
ogn | Custd LLD Vaiue
OBO1G0 : 468
OB1110 . 1o
3 165
OBG101
4 268
| 1001
Data Update (chronologically assigned EIDs) / 1005
| 1006
| \ Lacal EID Valae
Custld
| 1 393
OB1dl
| L 135
OBl 1
| 3 163

1004

| | / 1008

1009 \ + | EID Yalae
1010 f 368
Custld \ ¢
— 2 167
OB010000 Custld
3 165
OR11 1000 OB]
4 208
ORO16100 OBG10410 - 5
Updated Data Warehouse (chronologically p 163
assigned EIDs)

1007

Fig. 10

Local EID | Value

1104
1 Fil) /
2 167
3 163
4 301

/ 1105

Local EID | Global EID
1 2
2 3
3 <
4 &

1108

Partition 1
1101

Fig. 11B

17/18

1106 \ Local EID | Value
R i 153
Global EID YValae
__ 2 167
1 163
3 168
2 165
3 167
FLocal EID Global EID
4 168
_ i 1
. 268
2 R
o RIVR
\ 3 4
1103 1107///
1109

Partition 2

Fig. 11A 1102

1110

OB101 ~>| 0B100100
1109 1111

18/18

. . S L S - - -

c VA AAAAAAAAANANAAN

I -
-
— | -
/,"
LA B
+ L7
-~
N

) &
t'-----*----- &
PR

<

.
'>
\
\
!'

ﬂ'ﬁ"d-f‘h‘

BN
N
O
O

[———————————————— -~ ————— -~~~ ——— - ————— - ————— -

i#'
“\,?‘

A A AAAAAALAANMAAALAAAAALAAANALMAAANMALAAANMAAAMAAAAANMAALAAMAALAAAMAAANAMAAAAAANMAAGA AAMAMAAMAMAMAMG G « o« o o s &«

AN
N
—
-

122

'
td
td

S

S S S — RN | S —— 0 S

’*f‘?.#,f“'.vhhl :.“'-bh'\

c A A A AAAA

P B T I I I B R R A

e e e o A

\

1128

N
N)
~
-

P S S

................... T R T A R YT YT S R YT T R Y YT Y R YT Y Y Y Y Y R YT Y Y Y Y Y MY T MY Y YA Y YN T AAAAAAAANANAAANAAANANAANANAAANANAAANAAANAAAANAAAAAAAAAA T s s e s e s e

i S - —————————————— - ——————— -

P I I A I L I 2 I L I I A

L4

’

e A A AT A AN AN AN AN NN AN ANA AN
.

R o O 0 O O O O O O O O O O O O O O O O O B O O O O O O O O O O O O O O O O O O B O O O O O O 0 O O O O 0

Fig. 12

P

EFFICIENTLY PERFORMING OPERATIONS ON DISTINCT DATA VALUES

RELATED APPLICATION DATA

0001} This application claims priority to U.S. Patent Application Serial No. 13/835,590,

filed March 15, 2013, the disclosure of which 1s hereby incorporated by reference 1n 1ts entirety.

BACKGROUND

[0002] Enterprises frequently store data in data warchouses. Such data warchouses often
have large volumes of data spread out over multiple databases and database tables. Theretfore, 1n
order to compile data from the numerous tables and databases, data aggregation techniques must

be utilized.

0003} Low Level Aggregate (LLA) tables, which store a summary of data at a lower
level, are frequently used to improve the performance of the aggregation process in a data
warchouse. In the case of a distributed database stored on multiple partitions, an LLA table can
be utilized for each partition and an aggregation process can combine the data from each of the
LLA tables to generate an aggregated table for the entire database. Such an aggregation process
1s known as a roll-up process, and 1s useful because a higher level of summary can be generated
from a lower level of summary (the LLA table), rather than from the source data.

[0004] Roll-up processes can be utilized for an aggregate query over multiple data
partitions 1n the context of a Massively Parallel Processing (MPP) database architecture, or to

run queries on a partitioned table.

[0005] In order to correctly aggregate data from multiple tables during a roll-up process,
the underlying function that 1s being aggregated must additive. For example, 1f a first table and a
second table both have a column corresponding to spending amounts, and a user desires to
compute the sum of all the spending amounts 1n both tables, they can additively aggregate the
sum of the spending amounts 1n first table and the sum of the spending amounts in the second
table and arrive at the correct total sum. However, not all functions that users may wish to

aggregate 1 a roll-up process are additive functions.

BRIEF DESCRIPTION OF THE DRAWINGS

10006} Figs. 1A-1G illustrate a sample database table containing records of visits to
stores by customers and some examples of low level aggregation tables generated from the

sample database table.

[0007] Figs. 2A-2B are flowcharts of methods for efficiently performing operations on

distinct data values according to a disclosed embodiment.

0008} Figs. 3A-3C are tables illustrating steps for tokenizing one or more columns of

data 1n a table according to a disclosed embodiment.

10009] Figs. 4A-4C illustrate an LLA table generated from a tokenized table and two

sample higher level aggregate tables generated from the LLA table.

[0010] Fig. 5A illustrates an LLA table generated from a tokenized table which utilizes

the entity map vector data structure according to a disclosed embodiment.

[0011] Fig. 5B illustrates a method of assigning values to each of the bits in the entity

map vector according to a disclosed embodiment.

[0012] Fig. 5C illustrates a table of lexically ordered unique data values in a domain
according to a disclosed embodiment.

|0013] Fig. 5D illustrates a method of assigning values to each of the bits in the entity
map vector according to a disclosed embodiment.

[0014] Fig. 6A illustrates the steps involved in carrying out a roll-up process on the

entity map vectors stored in the LLA table of Fig. SA according to a disclosed embodiment.

[00135] Fig. 6B illustrates the higher level table that is the result of the roll-up process
shown 1n Fig. 6A.

10016} Figs. 7A-7B illustrate a flowchart for efficiently performing operations on distinct
data values m a distributed database by merging domains across multiple partitions according to
a disclosed embodiment.

[0017] Figs. 8A-8&D illustrate cach of steps required to convert a sample set of partition
specific entity IDs into global entity IDs according to a disclosed embodiment.

[0013] Fig. 9 illustrates a data cube for storing global entity map vectors across multiple
partitions according to a disclosed embodiment.

[0019] Fig. 10 illustrates a database warchouse update operation using chronologically
assigned entity IDs according to a disclosed embodiment.

[0020] Fig. 11A illustrates domain synchronization data structures and process flow
according to a disclosed embodiment.

10021} Fig. 11B illustrates the mapping of local entity map vectors to a global entity map

vectors using a mapping table.

[0022] Fig. 12 illustrates an exemplary computing environment that can be used to carry

out the method for efficiently performing operations on distinct data values according to a

disclosed embodiment.

DETAILED DESCRIPTION

10023] While methods, apparatuses, and computer-readable media are described herein
by way of examples and embodiments, those skilled 1n the art recognize that methods,
apparatuses, and computer-readable media for efficiently performing operations on distinct data
values are not limited to the embodiments or drawings described. It should be understood that
the drawings and description are not intended to be limited to the particular form disclosed.
Rather, the intention 1s to cover all modifications, equivalents and alternatives falling within the
spirit and scope of the appended claims. Any headings used herein are for organizational
purposes only and are not meant to limit the scope of the description or the claims. As used
herein, the word “can” 18 used 1n a permissive sense (1.€., meaning having the potential to) rather

than the mandatory sense (1.e., meaning must). Similarly, the words “include,” “including,” and
“Includes” mean mcluding, but not limited to.

[0024] Some examples of roll-up processes for additive functions will now be discussed
with reference to the table in Fig. 1A, which shows a sample database table containing records of

visits to stores by customers. The table contains columns for customer name, store ID, and

amount spent during the visit.

[0025] The query language used throughout this specification is Structured Query

Language (SQL), but 1t 1s understood that any database query language can be utilized without

departing from the scope of this invention, including Contextual Query Language (CQL),

XQuery, YQL, Datalog, OQL, RDQL, Multidimensional Expressions (MDX), and many others.

10026] An LLA table of the number of visits to each store is shown in Fig. 1B. The
“Count of Visits” column 1s generated by counting the number of records for each of the stores,
resulting 1 3 visits for store 1 and 4 visits for store 2. If the user wishes to execute a roll-up
process using this table 1n order to determine the total number of visits to all the stores, the data
can be rolled up with the function Sum(Count of Visits), which will result 1n a total value of 7.

In this case, there 18 no need to go back to the original table to determine the total number of
VISItS to stores.

[0027] Similarly, the table in Fig. 1C is an LLA table of the total amount spent at cach of
the stores. This amount 1s determined by summing the values in the “Amount Spent” column of
the original table for each store. If a user wants to roll-up this table to determine the total amount
spent at all stores, they can use the function Sum(Amount Spent) on the LLA table of Fig. 1C to

arrive at the correct total amount ot 107.

[0028] The aggregation of LLA tables during a roll-up process can be accomplished for
functions outside of simple sums as well. Fig. 1D shows an LLA table of the average amount
spent at each store per visit. This amount 1s determined by averaging the values 1n the “Amount
Spent” column of the original table for each store. Additionally, the LLA table contains a count
of the number of visits to each store as discussed earlier. If a user wants to roll-up this table to

determine the average amount spent at all stores, they can use the following function:

((AVGstore1 X ViSitSgeore 1) + (AVGstorer X ViSitSgore 2))

Average Spent (total) = Sum(Visits)

[0029] Once again, the roll-up process does not require the original table and can be

accomplished using the LLA table alone.

10030] Figs. 1E and 1F show LLA tables containing the minimum spent at each store and
the maximum spent at each store, respectively. To roll-up the table in Fig. 1E to determine
minimum amount spent at any store, the user can use the function Min(Mmimum Spent) on the
LLA table and arrive at the correct answer of 5. Similarly, to roll-up the table in Fig. 1F to
determine maximum amount Spent at any store, the user can use the function Max(Maximum

Spent) on the LLA table and arrive at the correct answer of 31.

0031} Referring now to Fig. 1G, an LLA table is shown which contains a count of the
number distinct customers which have visited each store. This can accomplished with a
Count(distinct<Customer Name>) function that 1s grouped by store ID. So, in this case, 3
distinct customers (Bill, George, and Larry) visited store 1 and 4 distinct customers (Bill,

George, Max, and Larry) visited store 2.

[0032] If a user wished to roll-up the LLA table in Fig. 1G, there would be no way for
them to correctly determine the total number of distinct customers that frequented store 1 or store
2 without accessing the underlying main table in Fig. 1A. A count-distinct function run on the
distinct customers column of the LLA table would only return a total of 2 distinct values, and a
sum would return 7, when the correct number of distinct customers to visit both stores 1s 4.
Similarly, 1f the LLA table contained a sum of all the distinct dollar amounts spent at cach store,
and the user wanted to compute the sum of all the distinct dollar amounts spent at all stores, they
would have to access the original table, since otherwise the 11 dollars spent at store 1 and the 11
dollars spent at store 2 would be double counted. Additionally, 1f the LLA table contained an

average of all the distinct amounts spent at each store, a roll-up to determine the average of all of

the distinct amounts spent at both stores would be unsuccesstul and the underlying main table

would have to be accessed.

[0033] Queries that include non-additive commands, such as count<distinct>, cannot
make use of roll-up operations of LLA tables, resulting in much higher computation costs, since
these commands must be run on the underlying data. In a partitioned or otherwise distributed
database, this cost 1s magnified because the underlying data must be aggregated or exchanged
between partitions 1n order to retrieve the correct values. For example, 1t column XYZ 1s spread
out over two partitions, and the user wants to determine the number of distinct values 1in column
XYZ, then all of the values of column XY Z on the first partition must somehow be pooled with

all the values of column XYZ on the second partition to determine the number of distinct values.

[0034] Applicants have discovered a method and associated data structure, referred to as
the Entity Map Vector (EMYV), which allows users to use non-additive aggregate functions as
additive, thereby allowing roll-up processes to be carried out on LLA tables for functions which
would previously have required access to and processing of underlying data in tables at a lower
level than the LLA tables. Applicants’ technique further allows for the amount of data
exchanged between nodes of a partitioned database to be greatly reduced, since LLA tables for

cach node can be additively aggregated even for non-additive aggregate functions.

0033} Fig. 2A shows a flowchart of a method for generating an EMV according to a
disclosed embodiment. At step 201, a tokenized column of data in a table of a database 1s stored
prior to generating the EMV. This tokenization process 18 described with reference to Figs. 3A-
3C. Additionally, as shown in Fig. 2B and described later, an EMV can be generated even
without a tokenized column of data, based on a lexical ordering of the unique data values in a

particular domain.

10036} Fig. 3A shows a table of customer transactions before tokenization 300. The table
includes tuple ID 301, and data columns for week 302, store ID 303, customer ID 304, product
ID 3035, quantity 306, and amount spent 307. Each of the data columns can correspond to an
associated domain. For example, a domain containing customer ID’s can be used to populate
customer ID column of the table shown, but the same domain can be used to populate another
table that lists customer ID’s with customer addresses. Of course, a domain can also be used to
populate multiple columns 1n the same table. For example, a domain of city names can be used

to populate columns 1n a table corresponding to an origin city and a destination city. So the

column for week 302 can correspond to domain D Week, store ID 303 can correspond to
domain D Storeld, customer ID 304 can correspond to domain D Custld, product ID 305 can

correspond to domain D Productld, quantity 306 can correspond to domam D Qty, and amount

spent 307 can correspond to domain D Spent.

[0037] In order to tokenize the data values in cach of the data columns, the unique data
values that occur 1n each of the domains (corresponding to the different columns) must be
identified and mapped to unique token values. Mapping table 310 in Fig. 3B shows this mapping
of unique data values to unique token values for each domain 1n the table. Each of the unique
data values 1n cach of the domains 1s mapped to a unique token for that domain, referred to as an
Entity ID, or EID. So, for example, D Week 312 contains three unique data values and therefore
those three unique data values are mapped to three corresponding unique EIDs. Similarly,

D StoreID 313 also has three unique data values and three EIDs, D Custld 314 has four unique
data values and four EIDs , D Productld has four unique data values and four EIDs, D Qty has

five unique data values and five EIDs, and D Spent has six unique data values and six EIDs.

[0038] The mapping tables used to map unique data values in a domain to corresponding
EIDs can be stored as a look-up dictionary, so that functions and associated processes can
retrieve data values using EIDs 1f necessary. Additionally, the mapping of unique data values to
EIDs 1s shown as occurring mn the lexical order of the unique data values, since this can simplity
the assignment process, future data storage, and retrieval, but the assignment of EIDs to unique
data values can occur 1n any order of unique data values. For example, EIDs can be assigned to
be assigned to data values in chronological order, so that a first data value encountered before a

second data value will have a lower EID.

[0039] Fig. 3C shows the table of customer transactions after tokenization 320. The
EIDs from mapping table 310 have replaced the data values in each of the columns of data.
However, even in this advanced encoded structure, any LLA tables generated via from the table
320 will not store data in the proper format to execute roll-up processes involving non-additive

(distinct-type) aggregate functions.

10040} For example, an LLA table can be generated based on the transaction table
(“Trx’’) 320 that lists the week, the store ID, and the distinct customers that visit each store cach
week using the following detinition:

Create Table LLA TRX as
Select Week,
Storeld,

Count(distinct Custld) as CD Custld,
From Trx

Group By Week, Storeld;

[0041] This definition assigns the value corresponding to the distinct customers that
visited each store each week to the column CD Custld. Additionally, the “group by” command

creates group sets corresponding to week-store ID pairs. For example, group set 1(week 1, store

1), group set 2 (week 1, store 2), and so on. Any arrangement or number of group sets are

possible. For example, the group sets can be based on a single column, or two or more columns.

10042} Referring to Fig. 4A, the resulting LLA TRX table 400 1s shown. The table
accurately represents the number of distinct customers per group set. For example, the table
correctly lists the number of distinct customers that visited store 1 in week 1 as two, or the

number of distinct customers that visited store 1 1n week 2 as three.

[0043] If a user tried to roll-up the table LLA TRX for each week to list the number of
distinct customers that visited any of the stores each week, they would be unable to produce a
correct count of the number of distinct customers for each group set, the group sets 1n this case

being group 1(week 1), group 2(week 2), and so on. For example, 1f the following definition was

used to create a higher level LLA table:

Create Table LLA TRX WEEK as

Select Week,
Count(distinct CD Custld) as CD CD Custld,

From LLA Trx
Group By Week;

0044] Then the resulting table, shown as Table 410 in Fig. 4B, would incorrectly list the
number of distinct customers that visited any of the stores each week. Similarly, 1f a sum
function was used to aggregate the table LLA TRX:

Create Table LLA TRX WEEK as

Select Week,
Sum(distinct CD Custld) as Sum CD Custld,

From LLA Trx
Group By Week;

10

[0045] Then the resulting table, shown in Fig. 4C, would also incorrectly list the number
of distinct customers that visited any of the stores each week. For example, the number of
distinct customers 1n week 2, based on the table 320 1n Fig. 3C, 15 4 (custld’s 1,2,3 and 4), but

the table 410 m Fig. 4B lists 2 and the table 1 Fig. 4C 420 lists 3.

[0046)] As discussed earlier, this is because the aggregation of distinct values 1s non-
additive. In order to determine the correct values for the number of distinct customers per week,
1t 18 necessary to return to the original data table, making the LLA TRX table useless for non-

additive aggregation queries.

[0047] The EMV data structure generated according to a disclosed embodiment solves
this problem by storing the distinct values of each group set efficiently, and 1n a way that allows
them to be aggregated. Returning to Fig. 2A, at step 202, a special query can be received which
specifies one or more group sets and mcludes a new function, or other similar command, which
1s used to generate the EMV data structure. At step 203, the computing system can generate one
or more entity map vectors. Of course, steps 201, 202, and 203 can be executed mn a different
order. For example, a query can first be recerved (step 202), then the tokenized column of data
can be stored (step 201), and then one or more entity map vectors can be generated (step 203).
[0043] To facilitate steps 202-203, a new SQL function count

(Additive distinct<Column Name>) can be defined to instruct the computing system to produce
an EMV for cach group set, instead of a value. An EMV can be a bit map vector, with cach bit
mapped to a different entity. By storing the information relating to the distinct values 1n a group
set in an EMV, each distinct value, referred to as an entity, can be mapped to one bit of a bit map
vector. So using the earlier example of the tokenized transactions table (Trx) 320 in Fig. 3C, the

following definition can be used to generate the LLA table LLA TRX:

11

Create Table LLA TRX as
Select Week,
Storeld,
Count(Additive distinct Custld) as CD Custld,
From Trx
Group By Week, Storeld;

[0049] Fig. 5A shows the resulting LLA TRX table 500. As in the previous LLA TRX
table, the tuple ID 501 corresponding to each group set, week 502, and store ID 503 are stored.

However, rather than storing the count of distinct customers as a numeral, the distinct customers
for each group set are stored in an EMV with each bit referring to different EID and the value of

the bit indicating the presence or absence that EID 1n the group set.

[0050] Of course, an SQL extension, such as Additive distinct, is not required to instruct
the computing system to produce an EMV for each group set. For example, the database engine
can detect the creation of a table with a column that involves an aggregation function of distinct
data values, such as Count (distinct<Column Name>), and automatically build an EMV to store
the count of distinct data values. This allows the EMV structure to be utilized with existing front

end tools.

[0031] The structure of an EMV will now be described with respect to the second EMV
513 corresponding to the group set (week 1, store ID 2). Referring to Fig. 5B, an empty EMV
505 1s shown. Lead characters 506 serve only to label the EMV as a bit map vector and can be
any suitable characters or can be omitted. The length dimension of the EMV 505 1s the number
of bit slots and does not include any lead characters. The length of EMV 1s equal to the total
number of EIDs in the domain of the column that 1s used to generate the EMV. In other words,
the length of the EMV 1s equal to the number of unique values in the domain which 1s being used

to generate the EMV. So, for example, the domain used to generate the EMVs for table 500 1n

12

Fig. 5SA 1s the D_Custld domain, and from Fig. 3B we see that the D Custld domain has 4 EIDs.
Therefore the length of the EMVs for that domain will have a length of 4, with 4 corresponding
bit slots.

[00352] Referring back to Fig. 5B, each of the bit slots corresponds to a different EID, in
the order that the EIDs are assigned. So the first slot corresponds to EID=1, the second slot
corresponds to EID=2, and so on. To determine the value of the bit in each of the bt slots 1n an
EMYV, the group set corresponding to the EMV 15 checked to see whether it contains the EID
value. So for the first bit in EMV 513, 1t 1s determined whether the group set (week 1, store 2)
includes a Custld=1 at step 507. From table 320 in Fig. 3C we can see that a Custld=1 does not

appear 1n during week 1 at store 2. Therefore the value of the first bit 15 0.

[0053] In a similar manner, for the second bit in EMV 513, it 1s determined whether the
eroup set (week 1, store 2) includes a Custld=2 at step 508. Since Custld=2 also does not appear
during week 1 at store 2, the value of the second bit 1s also zero. For the third bit in EMV 513, 1t
1s determined whether the group set (week 1, store 2) includes a Custld=3 at step 509. From
table 320 we see that Custld=3 appears twice during week 1 at store 2. Therefore the value of
the third bit 1s equal to 1. For the fourth bit in EMV 513, 1t 1s determined whether the group set
(week 1, store 2) includes a Custld=4 at step 510. Since a Custld=4 also appears during week 1
at store 2, the fourth bit 1s also set to 1. The resulting EMV 513 captures the distinct customers

that visited store 2 during week 1 1n a format that allows for additive aggregation.

[0054] If a user wanted to determine the number of distinct customers per group set, all
they would have to do 1s sum cach of the bits in the EMV for that group set. For example, the

EMYV for group set (week 1, store 1) 1s OB1100, so the total number of distinct customers 18

13

1+14+0+0 = 2. The EMYV for group sect (week 2, store 1) 1s OB1101 so the total number of

distinct customers for that group set 1s 1+1+0+1 = 3.

[0035] Referring back to Fig. 2B, a method for generating EMVs from a non-tokenized
data column will now be described. Step 210 1s similar to step 202 of Fig. 2A, 1n that a query 18
received which specifies one or more group sets and includes a new extension, or other similar
command, which instructs the database engine to generate the EMV data structure. At step 211,
an entity map vector 1§ generated for each of the group sets, based on the lexical ordering of the
unique data values i the domain corresponding to the column of data. Figs. 5C and 5D illustrate
this process in greater detail with regard to an EMV generated for the group set (week 201001,
store 1002) 1n the non-tokenized table 300 in Fig. 3A. Table 520 shows the unique data values 1n
the domain Custld, arranged 1n lexical order. The EMV generation process shown m Fig. 5D
uses this lexical ordering to bypass the step of generating EIDs. As shown in empty EMV 525,
the length of each of the EMVs generated 18 equal to the number of unique data values 1n the
domain. In this case, since there are four unique data values in the domain Custld, the length of
the EMVs generated for a particular group set will be four. The position of each of the bits in
cach EMV corresponds to the lexical position of a corresponding unique data value 1n the
lexically ordered list of unique data values 520 and the value of each bit in the EMV indicates
the presence or absence of the corresponding unique data value 1n the group set. So for the first
bit in EMV 533, 1t 1s determined whether the group set (week 201001, store 1002) includes the
Custld which 1s at the lowest lexical position. This Custld 1s 165, and from table 300 1n Fig. 3A,
we see that this Custld does not occur 1n the group set (week 201001, store 1002), so the bit 1s
equal to zero. Similarly, the second bit of EMV 533 refers to the unique data value with the

second lowest lexical position, which 1s 167, and also does not occur 1n the group set, resulting in

14

a zero for the bit. The third bit of EMV 333 refers to the unique data value with the third lowest
lexical position, which 1s 268, and we see from table 300 1n Fig. 3A that this value does occur in
the group set (week 201001, store 1002), so the third bit 1s set to 1. Simularly, the value
corresponding to the fourth bit, 301, also occurs 1n the group set, so the fourth bit 1s set to 1.
This results 1n the same EMV that was generated 1in Fig. 5B, but which can be generated from a

non-tokenized column of data.

10056 Unlike the previous examples of LLA tables which do not utilize the entity map
vector, LLA tables with EMVs can be correctly aggregated during a roll-up process. For
example, the following definition can be used to generate a higher level table for the number of

distinct customers that visited any of the stores from the LLA table, grouped by week:

Create Table LLA TRX WEEK as

Select Week,
Count(Distinct CD Custld) as EMV CD Custld,

From LLA Trx
Group By Week;

10057} Referring to Fig. 6A, the process for aggregating the bit vectors across stores and
erouping by week 1s shown. Each of the group sets which must be aggregated 1s determined for
cach week 1 steps 601A, 601B, and 601C. For example, the group sets that must be combined
for week 1 are the Custld’s corresponding to group sets week 1, store 1 and week 1, store 2. The

oroup scts that must be combined for week 2 are the Custld’s corresponding to group sets week
2, store 1, week 2, store 2, and week 2, store 3. The group sets that must be combined for week 3

arc the Custld’s corresponding to group sets week 3, store 1 and week 3, store 3.

[0058] Referring to steps 602A, 602B, and 602C, the EMVs for each of the group sets

that must be combined for cach week are aggregated using a Boolean OR. So, for example, 1f

13

two EMVs are being combined with a Boolean OR and only the first EMV has a “1” 1n the first

position, then the resulting EMV will have a 17 1n the first position.

[0059] The resulting combined EMVSs are shown in steps 603A, 603B, and 603C. Each
EMYV corresponds to a different week group set. As discussed carlier, the count of distinct

customers 1n each week can be determined by summing all of the bits in each of the EMVs.

[0060)] Fig. 6B shows the resulting table 600 with the tuple ID 601 for each group set, the
week number 602, and the count of distinct customers 603 based on the combined EMVs from
Fig. 6A. By referring to the original table 320 1n Fig. 3C, we can see the count of distinct
customers 603 1n table 600 correctly mdicates that 4 distinct customers (1,2,3, and 4) went to any
of the stores 1n week 1, 4 distinct customers (1,2,3, and 4) went to any of the stores 1n week 2,
and 2 distinct customers (1 and 2) went to any of the stores m week 3.

[0061] Of course, aggregation of non-additive aggregate functions is not limited to
counting the number of distinct elements 1n a group set. If a user wishes to sum a set of distinct
values 1n a particular group set or average a set of distinct values 1n a group set, that can be
accomplished by looking up the unique data values corresponding to each bit of the EMV 1n the
look-up dictionary and adding 1t to the sum or including 1t in the average if the bit 1s “1.”
Additionally, the look-up dictionary can be used to retrieve each of the unique data values
corresponding to the bits in the entity map vector for any other purpose, such as customized
calculations or metrics. In situations where the entity map vectors are generated from non-
tokenized data values based on the lexical ordering of the unique data values, that same lexical
ordering relationship can be used to retrieve the unique data values corresponding to each bit.
For example, 1f the first bit in an EMV 1s a “1,” then the unique data value with the lowest lexical

position can be included 1n a sum, average, or other calculation involving the data values 1n the

16

set. Simularly, 1f the second bit in an EMV 1s a *“0,” then the unique data value corresponding to

the second lowest lexical position can be left out of the sum, average, or other calculation.

10062} An overview of query processing in a partitioned database and a process for EMV
based representation of data in a partitioned database will now be described. Given a three
partition database containing a transaction table, a logical view of that table can be presented as a
View:

Create View V1 as

Select * from Partition1.TRX
Union All

Select * from Partition2.TRX
Union All

Select * from Partition3.TRX

0063} Table partitioning enables efficient distributed parallel processing of requests,
with the exception of non-additive aggregate functions. For example, 1f an original query for a
transaction table named TRX similar to table 300 m Fig. 3A 1s “Select Week, Sum(Spent) from
TRX group by Week,” but the table 1s distributed over three partitions, the query can be
transformed into the distributed request:

Select Week, Sum(P_Spent) from (

Select Week, Sum(Spent) as P Spent from Partition1.TRX group by Week
Union All

Select Week, Sum(Spent) as P Spent from Partition2. TRX group by Week

Union All
Select Week, Sum(Spent) as P Spent from Partition3.TRX group by Week

) T
Group By Week

[0064] For that distributed request, cach query segment, like “Select Week, Sum(Spent)

as P_Spent from Partition]. TRX group by Week™ can be executed independently and their

17

intermediate result set could be appended together and finally reprocessed to produce the final

query result.

10063} In the case of a non-additive aggregate function request, such as “Select Week,
Count(Distinct Custld) from TRX group by Week,” the request can be transtformed 1nto the
distributed request:

Select Week, Count(Distinct Custld) from (
Select Week, Custld from Partition1.TRX group by Week, Custld

Union All
Select Week, Custld from Partition2.TRX group by Week, Custld
Union All
Select Week, Custld from Partition3.Trx group by Week, Custld
) T

Group By Week

[0066)] The distributed request in this case does preserve the list of unique Custlds from
cach partition, but can require a huge amount of data to be exchanged between ¢ach of the

partitions and subsequently processed. For example, the list of Custlds in the first partition for
the first week will have to be compared to the list of Custlds in the second partition for the first

week to determine 1f there 1s any overlap. As a result, such a distributed request mntroduces a

bottlenecking of the request execution process.

[0067] The method to transform a non-additive aggregate function to an additive one can
be applied to one or more partitioned databases to reduce the amount of data exchanged between
partitions and 1improve performance. For example, the original query “Select Week,
Count(Distinct Custld) from TRX group by Week” can be transformed to:

Select Week, Count(Distinct Custld) from

(
Select Week, Count(Additive distinct Custld) Custld from Partition1.TRX group by Week

Union All

18

Select Week, Count(Additive distinct Custld) Custld from Partition2.TRX group by Week
Union All

Select Week, Count(Additive distinct Custld) Custld from Partition3.Trx group by Week
) T
Group By Week

[0068] Fig. 7A illustrates the steps for processing this distributed request according to a

disclosed embodiment. The first three steps 701 can be performed 1n parallel for each of the
partitions and are similar to the steps for generating an EMV shown in Fig. 2A, applied to each
partition. Of course, these steps do not need to be performed 1n parallel and can be performed 1n
any suitable order. After the first three steps 701 are executed for each of the partitions, the
result will be three sets of EMVs, one for each partition, with cach digit of the EMVs referring to
local partition EIDs. For example, Fig. 8A shows three hypothetical EMV sets 802A, 802B, and
802C, corresponding to the three partitions, along with three hypothetical EID mapping tables
S01A, 801B, and 801C, for cach of the unique data values 1n each of the partitions. Since the
EIDs 1n the mapping tables 801A-801C all correspond to different unique data values, and since
the number of EIDS 1n each partition varies, the length of the EMVs and significance of the bits
in each of the EMVs in EMYV sets 802A-802C varies. As a result, the EMV sets 802A-802C

cannot be combined by the union operator in their present state.

[0069)] Referring back to Fig. 7A, at step 702, a domain merge process 1s carried out to
build a global domain from each of the domain partitions so that the EMV sets can be
standardized. Continuing to Fig. 7B, at step 703 global EIDs are generated for each of the
unique data values in the global domain. Since the global EIDs correspond to the same unique
data values as the partition EIDs, cach of the partition EIDs can be converted into global EIDs at
step 704 of Fig. 7B. At step 703, the partition specific EMVs are converted into global EM Vs,

all of which will have the same length and will reference the same unique data values at each bat.

19

This 1s accomplished by using a partition-to-global EID mapping table to rebuild each of the

EMVs created 1n the partition to create new ones which map to the global EIDs

10070] For an illustration of this process, Fig. 8B shows a global domain 803 that results
from a domain merge of the domain partitions 1n Fig. 8A and the corresponding global EIDs 804.
Fig. 8C shows the partition-to-global EID mapping tables for partition 1 811, partition 2, 812 and
partition 3, 8§13. As discussed earlier, the partition-to-global EID mappings are gencrated by
cross referencing a unique data value with its partition EID and global EID. This mapping table
1s then used to convert the partition specific EMVs to global EMVs. The resulting global EMVs

generated from conversion are shown in Fig. 8D for partition 1 821, partition 2 822, and partition

3 823.

[0071] Once the partition specific EMVs have been converted to global EMVs, they can
be aggregated as discussed earlier with a Boolean OR. The resulting combined global EMVs
will indicate the presence or absence of unique data values 1n a particular group sct across all of
the combined partitions. Additionally, the sum of the bits 1n a combined global EMV will equal
the total number of distinct data values 1n the group set corresponding to that EMV across

partitions.

[0072] This domain merge process can be utilized for database update operations. In
data warchouse environments, the update process often comprises appending new data. By
processing the appended data as a new partition to generate an associated partition LLA table
and then combining the partition LLA table with existing LLA tables using the techniques

discussed above, the new data can merged with existing LLA tables.

0073} For example, the global EMVs for each of the partitions can be stored in a data

cube. Fig. 9 shows an exemplary data cube 900 storing the global EIDs according to a disclosed

20

embodiment. As shown, the dimensions can include an EMV dimension 901, a group sect
dimension 902, and a partition dimension 903. When a new data update 1s received, it can be
treated as a partition and added to the data cube using the domain merge processes discussed
above.

[0074] As discussed carlier, EIDs may also be assigned in chronological order of
appearance of the data values, rather than lexical order of the data values. By assigning EIDs in
this manner, the domain merge step for an update to a data warchouse may be ¢limimated.
Referring to Fig. 10, an existing data warchouse 1s shown at 1001. In this example, the
chronological order in which the data values are processed 1s used to assign the EIDs for each
data value. The table 1002 shows the EIDs for four data values processed 1n the following
sequence: 368, 167, 165, 268. Additionally, table 1003 shows the EMVs for three group sets
which contain data values. So, for example, the second EMV “OB1110” corresponds to a group
set which contains the data values 368, 167, and 1635.

[0075] Fig. 10 also shows a data update 1004 for the data warchouse. The data update 1s
similar to the earlier discussed partitions. A local EID mapping table 1005 shows the EIDs for
the data values 1n the update, also assigned in chronological order. Additionally, the EMVs for
two group sets are shown at 1006. In this case, two of the data values in the update are new, with

one of the data values already existing in the data warchouse.

[0076] The updated data warchouse is shown at 1007. Since the EIDs are assigned in
chronological order, there 18 no need to perform a domain merge process. Rather, the two new
data values 1n the data update, 392 and 163, arc assigned the next two available EIDs, 5 and 6 1n
this case. Since there 15 no remapping of existing EIDs, the existing table of EMVs 1003 can be

updated simply by extending the length of each EMV by adding a number of zeroes equal to the

21

number of new EIDs to the end of cach EMV. This results in table 1009 with the updated
EMVs. Of course, the zeroes do not necessarily need to be appended to the EMVs, as the

absence of a character at a particular position can be mterpreted as a zero.

[0077] The only remapping that is required for a data update when the EIDs are assigned
based on chronological order of the data values 1s to the EMVs in the actual data update. In this
case, the EMVs m update 1006 must be remapped to use the global EID table 1008 rather than
the local EID table 1005 to generate the updated EMVs 1n table 1010. So, for example, since the
first EMV 1n the update 1006 corresponds to a group set that includes the values 392 and 163
(1’s at the first and third position of the EMV), and the global EIDs corresponding to those data
values are 5 and 6, the first EMV 1n the updated data table 1010 corresponding to the first EMV

in the data update will have 1’s at the fifth and sixth positions.

[0078] In the scenario where one or more partition-specific EMVs are generated from a
non-tokenized column of data in a first data partition and a merge 1s carried out with one or more
other partitions, the first domain partition corresponding to the non-tokenized column of data n
the first data partition can be combined with one or more other domain partitions in the set of
domain partitions to generate a global domain. This global domain can be used to generate one
or more global EMVs corresponding to the one or more partition-specitic EMVs based on the
lexical ordering of all of the unique data values 1n the global domain, similar to the process of
generating an EMV described with regards to Fig. 2B. The length of each global EMV can be
cqual to the number of unique data values in the global domain, the position of cach bit 1n a
global EMV can correspond to the lexical position of a corresponding unique data value i a

lexically ordered list of the unique data values in the global domain, and the value of each bit in a

22

global EMV can indicate the presence or absence of the corresponding unique data value 1n a

group set.

[0079] A domain synchronization process will now be described which can be used to
bypass the domain merge process described earlier, and which can make operation of a database
in distributed system more efficient. Fig. 11A shows two partitions, 1101 and 1102, in a
distributed database. Similar to the distributed database of Fig. 8A, each of the partitions
includes a local EID table, with table 1104 tor partition 1101 and table 1106 for partition 1102.
In this example, the EIDs ar¢ shown as being assigned based upon lexical order of the data
values, but the EIDs can also be assigned chronologically, as discussed earlier. Additionally, the
distributed database includes a global EID table 1103. Global EID table 1103 contains mappings
of all of the data values to global EIDs. Once again, these global EIDs are assigned based upon
lexical order of data values, but can be assigned based upon chronological order of data values.
Although global EID table 1103 1s shown as being stored outside of partition 1101 and partition

1102, the global EID table can be stored on one or both of the partitions as well.

[0080] Each of the partitions, 1101 and 1102, also includes a local EID-to-global EID
mapping table, table 1105 for partition 1101 and table 1107 for partition 1102. These mapping

tables can be used to translate local EMVs to global EMVs, as will be discussed later using the

examples of EMVs 1108 and 1109.

[0081] When an update is received at either partition 1101 or partition 1102, any new
unique data values can be sent to the global EID table 1103. These new unique data values can
be used to update the global EID table. For example, when the EIDs are assigned by lexical
order of the unique data values, the data values in the global EID table 1103 can be re-sorted and

the global EIDs can be reassigned to each of the unique data values taking into account the new

23

unique data values received. Note that if chronologically assigned EIDs are used, this process 18
grcatly simplified, as new unique data values will be assigned the next available EID, and there

18 no need to reassign EIDs to all of the preexisting unique data values.

[0082] After the global EID table 1103 18 updated, any new global EIDs can be
propagated back to the partitions 1101 and 1102. The new global EIDs can be used to update
cach of the local EID-to-global EID mapping tables, 1105 and 1107. Once again,
chronologically assigned EIDs are more efficient for this process, as the only new global EIDs
will be for the new unique data values, whereas with lexically assigned EIDs, all of the EIDs for
ex1sting unique data values can potentially be reshuttled.

[0083] When a query requires EMVs from more than one partition, the local EID-to-
global EID mapping tables, 1105 and 1107, can be used to convert any local EMVs to global
EMVs. Referring to Fig. 11B, the conversion process 18 shown for sample EMV 1108 1n
partition 1101. As shown m Fig. 11B, each b1t in the local EMV 18 mapped from 1ts local
position to 1ts global position 1n the equivalent global EMV 1110. So, for example, since the
local EID-to-global EID mapping table 1105 maps local EID “3” to global EID “3,” the value of
the bit at the third position 1n the local EMV 1108 1s assigned to the fifth position of the global
EMV 1110. If there 1s no mapping for a position in the global EMV, such as for the fourth
position 1n global EMV 1110, then that value can be set to zero to reflect the absence of the
particular unique data value in the group set, since if that value was present it would be 1n the
local EID-to-global EID mapping table 1105. Simularly, local EID-to-global EID mapping table

1107 can be used to generate global EMV 1111 from local EMV 1109 1n partition 1102.

|0084] Through this domain synchronization process, the domain merge procedure

described earlier can be bypassed, resulting 1n processing time improvement, and reducing the

24

number of unique data values that need to be exported at one time. Of course, a single EMV 1s
shown 1n cach partition for the sake of clarity only. In practice, 1f a local EID and value existed
in a particular partition, then some group set and EMV would have to contain that value.

Additionally, two partitions are shown for the sake of clarity only, and the database can contain

any number of partitions.
[0085] One or more of the above-described techniques can be implemented in or involve
on¢ or more computer systems. Fig. 12 illustrates a generalized example of a computing

environment 1200. The computing environment 1200 15 not intended to suggest any limitation

as to scope of use or functionality of a described embodiment.

[0086] With reference to Fig. 12, the computing environment 1200 includes at least one
processing unit 1210 and memory 1220. The processing unit 1210 executes computer-
executable instructions and can be a real or a virtual processor. In a multi-processing system,
multiple processing units execute computer-executable instructions to increase processing power.
The memory 1220 can be volatile memory (e.g., registers, cache, RAM), non-volatile memory
(e.g., ROM, EEPROM, flash memory, etc.), or some combination of the two. The memory 1220

can store software 1280 implementing described techniques.

0087} A computing environment can have additional features. For example, the
computing environment 1200 includes storage 1240, one or more input devices 1250, one or
mor¢ output devices 1260, and one or more communication connections 1290. An
Interconnection mechanism 1270, such as a bus, controller, or network interconnects the
components of the computing environment 1200. Typically, operating system software or

firmware (not shown) provides an operating environment for other software executing 1n the

23

computing environment 1200, and coordinates activities of the components of the computing

environment 1200.

[0088] The storage 1240 can be removable or non-removable, and includes magnetic
disks, magnetic tapes or cassettes, CD-ROMs, CD-RWs, DVDs, or any other medium which can
be used to store information and which can be accessed within the computing environment 1200.

The storage 1240 can store mstructions for the software 1280.

[0089] The input device(s) 1250 can be a touch input device such as a keyboard, mouse,
pen, trackball, touch screen, or game controller, a voice input device, a scanning device, a digital
camera, remote control, or another device that provides input to the computing environment
1200. The output device(s) 1260 can be a display, television, monitor, printer, speaker, or

another device that provides output from the computing environment 1200.

[0090] The communication connection(s) 1290 enable communication over a
communication medium to another computing entity. The communication medium conveys
information such as computer-¢xecutable instructions, audio or video mformation, or other data
in a modulated data signal. A modulated data signal 1s a signal that has one or more of its
characteristics set or changed 1n such a manner as to encode information in the signal. By way
of example, and not limitation, communication media include wired or wireless techniques

implemented with an electrical, optical, RF, infrared, acoustic, or other carrier.

[0091] Implementations can be described in the general context of computer-readable
media. Computer-readable media are any available media that can be accessed within a
computing environment. By way of example, and not limitation, within the computing
environment 1200, computer-readable media include memory 1220, storage 1240,

communication media, and combinations of any of the above.

26

[0092] Of course, Fig. 12 1llustrates computing environment 1200, display device 1260,
and 1nput device 1250 as separate devices for ease of 1dentification only. Computing
environment 1200, display device 1260, and input device 1250 can be separate devices (¢.g., a
personal computer connected by wires to a monitor and mouse), can be mtegrated 1n a single
device (e.g., a mobile device with a touch-display, such as a smartphone or a tablet), or any
combination of devices (€.g., a computing device operatively coupled to a touch-screen display
device, a plurality of computing devices attached to a single display device and input device,
etc.). Computing environment 1200 can be a set-top box, personal computer, or one or more
servers, for example a farm of networked servers, a clustered server environment, or a cloud

network of computing devices.

[0093] Having described and illustrated the principles of our invention with reference to
the described embodiment, 1t will be recognized that the described embodiment can be modified
in arrangement and detail without departing from such principles. It should be understood that
the programs, processes, or methods described herein are not related or limited to any particular
type of computing environment, unless indicated otherwise. Various types of general purpose or
specialized computing environments can be used with or perform operations in accordance with
the teachings described herein. Elements of the described embodiment shown in software can be

implemented 1n hardware and vice versa.

[0094] In view of the many possible embodiments to which the principles of our
invention can be applied, we claim as our imnvention all such embodiments as can come within

the scope and spirit of the following claims and equivalents thereto.

27

Claims:

1. A method for efficiently performing operations on distinct data values by one or more
computing devices, the method comprising:

providing data suitable for a database to one or more computing devices;

storing, by at least one of the one or more computing devices, a tokenized column of the
data 1n a table, the tokenized column of data created by mapping each unique data value 1in a
domain of a database to an entity ID, and replacing each of a plurality of data values 1n a column
of data corresponding to the domain with the corresponding entity ID to generate the column of
tokenized data containing a plurality of entity 1Ds;

recerving, by at least one of the one or more computing devices, a query, inputted by a
user, directed to the column of data, the query defining one or more group sets for grouping data
retrieved 1n response to the query, wherein each group set in the one or more group sets
corresponds to a unique group of one or more values associated with one or more other domains
of the database:

generating, by at least one of the one or more computing devices, an entity map vector for
each group set 1n the one or more group sets by 1dentifying any entity IDs 1n the tokenized
column of data which are present 1n any rows of the table which include the unique group of one
or more values corresponding to the group set, wherein the length of each entity map vector 1s
equal to the total number of entity IDs 1n the domain and the value of each bit in each entity map

vector indicates the presence or absence of a different entity ID 1n the corresponding group set;

and

producing a final query result in response to the query using the generated entity map
vector.
2. The method of claim 1, wherein the mappings between each of the entity IDs and the

unique data values are stored 1n a look-up dictionary.
3. The method of claim 1, wherein a value of “1” for a bit 1n an entity map vector indicates

the presence of an entity ID 1n the group set, and a value of “0” for a b1t 1n an entity map vector

indicates the absence of the entity ID 1n the group set.

- 728 -

4. The method of claim 1, wherein the number of distinct data values 1n any group set 1s
equal to the sum of the values of each of the bits of the entity map vector corresponding to that

oroup set.

S. The method of claim 1, wherein the one or more group sets comprise at least two group
sets, the method further comprising:

recerving, by at least one of the one or more computing devices, a command to aggregate
the data from two or more of the group sets into a combined group set; and

performing, by at least one of the one or more computing devices, a Boolean OR
operation on the entity map vectors corresponding to the two or more group sets to generate a

combined entity map vector.

6. The method of claim 5, wherein the number of distinct data values 1n the combined

agroup set 1s equal to the sum of the values of each of the bits of the combined entity map vector.

7. The method of claim 1, wherein the table 1s partitioned and distributed over a plurality of
computing nodes, and wherein the column of data 1s a first column partition 1n a set of column
partitions, the domain 1s a first domain partition 1n a set of domain partitions, the one or more
entity IDs are one or more first partition entity IDs, and the entity map vectors are one or more
first partition entity map vectors, the method further comprising:

combining, by at least one of the one or more computing devices, the first domain
partition with one or more other domain partitions 1n the set of domain partitions to generate a
oglobal domain;

tokenizing, by at least one of the one or more computing devices, one or more of the
unique data values 1n the global domain by mapping each of the one or more unique data values
to a global entity ID to generate one or more global entity IDs;

mapping, by at least one of the one or more computing devices, each of the one or more
first partition entity IDs to a corresponding global entity ID 1n the one or more global entity IDs

by cross-referencing a common unique data value; and

- 20 .

translating, by at least one of the one or more computing devices, each of the one or more
first partition entity map vectors to one or more global entity map vectors based on the mapping

of one or more first partition entity IDs to one or more global entity IDs.

3. The method of claim 7, further comprising:

performing, by at least one of the one or more computing devices, a Boolean OR
operation on the one or more global entity map vectors corresponding to the first partition and
one or more second global entity map vectors corresponding to a second partition to generate one

or more combined global entity map vectors.

9 The method of claim 8, wherein the sum of the values of each of the bits of each of the
combined global entity map vectors 1s the total number of distinct elements 1n a particular group
set corresponding to that global entity map vector across the first partition and the second

partition.

10. The method of claim 7, wherein the global entity map vectors for each partition are
stored 1n a global data cube, the global data cube including an entity map vector dimension, a

agroup set dimension, and a partition dimension.

11. The method of claim 1, wherein the number of group sets 1s determined, at least 1n part,

by the number of distinct data values 1n a second column of data in the table.

12. The method of claim 1, wherein the group sets are defined 1n reference to one or more

second columns of data in the table.
13. The method of claim 1, wherein each entity ID 1s mapped to each unique data value 1n

chronological order of appearance of the unique data values, such that the first entity ID 1s

mapped to the first unique data value encountered.

- 30 -

14, The method of claim 13, wherein the one or more entity IDs are one or more global
entity IDs and the one or more the entity map vectors are one or more preexisting global entity
map vectors, the method further comprising:

recerving, by at least one of the one or more computing devices, an update comprising

one or more new entity map vectors corresponding to one or more new entity IDs, wherein each

of the new entity IDs corresponds to a unique data value;

assigning, by at least one of the one or more computing devices, a new global entity ID to
each unique data value that 1s not already represented in the domain; and

generating, by at least one of the one or more computing devices, one or more global
entity map vectors corresponding to the one or more new entity map vectors, wherein the length
of each global entity map vector 1s equal to the total number of global entity IDs, and the value
of each bit in each global entity map vector indicates the presence or absence of a different

global entity ID 1n a corresponding group set.

15. The method of claim 14, further comprising;

updating, by at least one of the one or more computing devices, the pre-existing global
entity map vectors by appending a number of zeroes to the end of each of the pre-existing global
entity map vectors, wherein the number of zeroes 1s equal to the number of unique data values 1n

the update that were not already represented 1n the domain.

16. The method of claim 1, wherein each entity ID 1s mapped to each unique data value 1n

the lexical order of the unique data values, such that the first entity ID 1s mapped to the unique

data value that 1s first in the lexical order of the unique data values.

17. The method of claim 1, wherein the numerical location of each bit 1n an entity map

vector corresponds to the entity ID whose presence or absence 1n the group set the bit represents.

18. The method of claim 1, wherein storing a tokenized column of data occurs after

receiving a query.

- 3] -

19. The method of claim 1, wherein storing a tokenized column of data occurs before

receiving a query.

20. The method of claim 1, wherein the query includes a sum command pertaining to each of
the one or more group sets and the method further comprises:

for each of the one or more group sets, summing, by at least one of the one or more
computing devices, the unique data values corresponding to the entity IDs which are indicated as

present 1n the entity map vector corresponding to that group set.

21. The method of claim 1, wherein the query includes an average command pertaining to
each of the one or more group sets and the method further comprises:

for each of the one or more group sets, computing, by at least one of the one or more
computing devices, the average of the unique data values corresponding to the entity IDs which

are indicated as present 1n the entity map vector corresponding to that group set.

22. An apparatus for efficiently performing operations on distinct data values, the apparatus
comprising:

one or more processors; and

one or more memories operatively coupled to at least one of the one or more processors
and having instructions stored thereon that, when executed by at least one of the one or more
processors, cause at least one of the one or more processors to:

store a tokenized column of data 1n a table, the tokenized column of data created

by mapping each unique data value in a domain of a database to an entity ID, and replacing each
of a plurality of data values 1n a column of data corresponding to the domain with the

corresponding entity ID to generate the column of tokenized data containing a plurality of entity

IDs;
recerve a query inputted by a user directed to the column of data, the query

defining one or more group sets for grouping data retrieved 1n response to the query, wherein

each group set 1n the one or more group sets corresponds to a unique group of one or more

values associated with one or more other domains of the database;

-3 -

generate an entity map vector for each group set in the one or more group sets by
1dentifying any entity IDs 1n the tokenized column of data which are present in any rows of the
table which include the unique group of one or more values corresponding to the group set,
wherein the length of each entity map vector 1s equal to the total number of entity IDs 1n the
domain and the value of each bit 1n each entity map vector indicates the presence or absence of a
different entity ID 1n the corresponding group set; and
produce a final query result 1n response to the query using the generated entity map

vector.

23. The apparatus of claim 22, wherein the mappings between each of the entity IDs and the

unique data values are stored 1n a look-up dictionary.

24. The apparatus of claim 22, wherein a value of “1” for a bit 1n an entity map vector
indicates the presence of an entity ID 1n the group set, and a value of “0” for a bit 1n an entity

map vector indicates the absence of the entity ID 1n the group set.

25. The apparatus of claim 22, wherein the number of distinct data values 1n any group set 1s
equal to the sum of the values of each of the bits of the entity map vector corresponding to that

oroup set.

26. The apparatus of claim 22, wherein the one or more group sets comprise at least two
agroup sets, and the one or more memories have further instructions stored thereon, that, when
executed by at least one of the one or more processors, cause at least one of the one or more
processors to:

recetve a command to aggregate the data from two or more of the group sets into a
combined group set; and

perform a Boolean OR operation on the entity map vectors corresponding to the two or

more group sets to generate a combined entity map vector.

27. The apparatus of claim 26, wherein the number of distinct data values 1n the combined

agroup set 1s equal to the sum of the values of each of the bits of the combined entity map vector.

- 33 -

28. The apparatus of claim 22, wherein the table 1s partitioned and distributed over a
plurality of computing nodes, and wherein the column of data 1s a first column partition 1n a set
of column partitions, the domain 1s a first domain partition in a set of domain partitions, the one
or more entity IDs are one or more first partition entity IDs, and the entity map vectors are one or
more first partition entity map vectors, wherein the one or more memories have further
instructions stored thereon, that, when executed by at least one of the one or more processors,
cause at least one of the one or more processors to:

combine the first domain partition with one or more other domain partitions 1n the set of
domain partitions to generate a global domain;

tokenize one or more of the unique data values 1n the global domain by mapping each of

the one or more unique data values to a global entity ID to generate one or more global entity

IDs:;
map each of the one or more first partition entity IDs to a corresponding global entity ID
in the one or more global entity IDs by cross-referencing a common unique data value; and
translate each of the one or more first partition entity map vectors to one or more global
entity map vectors based on the mapping of one or more first partition entity IDs to one or more

global entity IDs.

29. The apparatus of claim 28, wherein the one or more memories have further instructions
stored thereon, that, when executed by at least one of the one or more processors, cause at least

one of the one or more processors to:

perform a Boolean OR operation on the one or more global entity map vectors
corresponding to the first partition and one or more second global entity map vectors

corresponding to a second partition to generate one or more combined global entity map vectors.

30. The apparatus of claim 29, wherein the sum of the values of each of the bits of each of
the combined global entity map vectors 1s the total number of distinct elements 1n a particular
group set corresponding to that global entity map vector across the first partition and the second

partition.

_34 -

31. The apparatus of claim 28, wherein the global entity map vectors for each partition are
stored 1n a global data cube, the global data cube including an entity map vector dimension, a

agroup set dimension, and a partition dimension.

32. The apparatus of claim 22, wherein the number of group sets 1s determined, at least 1n

part, by the number of distinct data values 1n a second column of data in the table.

33. The apparatus of claim 22, wherein the group sets are defined 1n reference to one or

more second columns of data 1n the table.

34. The apparatus of claim 22, wherein each entity ID 1s mapped to each unique data value
in chronological order of appearance of the unique data values, such that the first entity ID 1s

mapped to the first unique data value encountered.

35. The apparatus of claim 34, wherein the one or more entity IDs are one or more global
entity IDs, the one or more the entity map vectors are one or more preexisting global entity map
vectors, and wherein the one or more memories have further instructions stored thereon, that,
when executed by at least one of the one or more processors, cause at least one of the one or
more processors 1o:

recerve an update comprising one or more new entity map vectors corresponding to one
or more new entity IDs, wherein each of the new entity IDs corresponds to a unique data value;

assign a new global entity ID to each unique data value that 1s not already represented 1n
the domain; and

generate one or more global entity map vectors corresponding to the one or more new
entity map vectors, wherein the length of each global entity map vector 1s equal to the total
number of global entity IDs, and the value of each bit in each global entity map vector indicates

the presence or absence of a different global entity ID 1n a corresponding group set.
36. The apparatus of claim 35, wherein the one or more memories have further instructions

stored thereon, that, when executed by at least one of the one or more processors, cause at least

one of the one or more processors to:

- 35 -

update the pre-existing global entity map vectors by appending a number of zeroes to the
end of each of the pre-existing global entity map vectors, wherein the number of zeroes 1s equal

to the number of unique data values 1n the update that were not already represented 1n the

domain.

37. The apparatus of claim 22, wherein each entity ID 1s mapped to each unique data value
in the lexical order of the unique data values, such that the first entity ID 1s mapped to the unique

data value that 1s first in the lexical order of the unique data values.

38. The apparatus of claim 22, wherein the numerical location of each bit in the entity map

vector corresponds to an entity ID whose presence or absence 1n the group set the bit represents.

30. The apparatus of claim 22, wherein the tokenized column of data 1s stored after receiving
a query.
40. The apparatus of claim 22, wherein the tokenized column of data 1s stored before

receiving a query.

41. The apparatus of claim 22, wherein the query includes a sum command pertaining to
each of the one or more group sets and wherein the one or more memories have further
instructions stored thereon, that, when executed by at least one of the one or more processors,

cause at least one of the one or more processors to:

for each of the one or more group sets, sum the unique data values corresponding to the

entity IDs which are indicated as present in the entity map vector corresponding to that group set.

42, The apparatus of claim 22, wherein the query includes an average command pertaining

to each of the one or more group sets and wherein the one or more memories have further

instructions stored thereon, that, when executed by at least one of the one or more processors,

cause at least one of the one or more processors to:

- 36 -

for each of the one or more group sets, compute the average of the unique data values
corresponding to the entity IDs which are indicated as present in the entity map vector

corresponding to that group set.

43. At least one non-transitory computer-readable medium storing computer-readable

instructions that, when executed by one or more computing devices, cause at least one of the one
or more computing devices to:

store a tokenized column of data 1n a table, the tokenized column of data created by
mapping each unique data value in a domain of a database to an entity ID, and replacing each of
a plurality of data values 1n a column of data corresponding to the domain with the

corresponding entity ID to generate the column of tokenized data containing a plurality of entity

IDs:;

receive a query inputted by a user directed to the column of data, the query defining one
or more group sets for grouping data retrieved 1n response to the query, wherein each group set
in the one or more group sets corresponds to a unique group of one or more values associated
with one or more other domains of the database;

generate an entity map vector for each group set in the one or more group sets by

1dentifying any entity IDs 1n the tokenized column of data which are present in any rows of the
table which include the unique group of one or more values corresponding to the group set,
wherein the length of each entity map vector 1s equal to the total number of entity IDs 1n fe+ the
domain and the value of each bit 1n each entity map vector indicates the presence or absence of a
different entity ID 1n the corresponding group set; and

produce a final query result 1n response to the query using the generated entity map

vector.
44. The at least one non-transitory computer-readable medium of claim 43, wherein the
mappings between each of the entity IDs and the unique data values are stored 1n a look-up

dictionary.

45. The at least one non-transitory computer-readable medium of claim 43, wherein a value

of “1” for a b1t 1n an entity map vector indicates the presence of an entity ID 1n the group set, and

- 37 -

a value of “0” for a bit 1n an entity map vector indicates the absence of the entity ID 1n the group

set.

46. The at least one non-transitory computer-readable medium of claim 43, wherein the

number of distinct data values 1n any group set 1s equal to the sum of the values of each of the

bits of the bit map vector corresponding to that group set.

47. The at least one non-transitory computer-readable medium of claim 43, wherein the one
or more group sets comprise at least two group sets, the at least one non-transitory computer-
readable medium further comprising additional instructions that, when executed by one or more
computing devices, cause at least one of the one or more computing devices to:

recetve a command to aggregate the data from two or more of the group sets 1nto a
combined group set; and

perform a Boolean OR operation on the entity map vectors corresponding to the two or

more group sets to generate a combined entity map vector.

48. The at least one non-transitory computer-readable medium of claim 47, wherein the
number of distinct data values 1n the combined group set 1s equal to the sum of the values of each

of the bits of the combined entity map vector.

49. The at least one non-transitory computer-readable medium of claim 43, wherein the table
1s partitioned and distributed over a plurality of computing nodes, and wherein the column of
data 1s a first column partition 1n a set of column partitions, the domain 1s a first domain partition
1n a set of domain partitions, the one or more entity IDs are one or more first partition entity IDs,
and the entity map vectors are one or more first partition entity map vectors, the at least one non-
transitory computer-readable medium further comprising additional 1nstructions that, when
executed by one or more computing devices, cause at least one of the one or more computing
devices to:

combine the first domain partition with one or more other domain partitions in the set of

domain partitions to generate a global domain;

- 38 -

tokenize one or more of the unique data values 1n the global domain by mapping each of

the one or more unique data values to a global entity ID to generate one or more global entity

IDs:

2

map each of the one or more first partition entity IDs to a corresponding global entity 1D
in the one or more global entity IDs by cross-referencing a common unique data value; and

translate each of the one or more first partition entity map vectors to one or more global
entity map vectors based on the mapping of one or more first partition entity IDs to one or more

global entity IDs.

50. The at least one non-transitory computer-readable medium of claim 49, the at least one
non-transitory computer-readable medium further comprising additional instructions that, when
executed by one or more computing devices, cause at least one of the one or more computing
devices to:

perform a Boolean OR operation on the one or more global entity map vectors
corresponding to the first partition and one or more second global entity map vectors

corresponding to a second partition to generate one or more combined global entity map vectors.

51. The at least one non-transitory computer-readable medium of claim 50, wherein the sum

of the values of each of the bits of each of the combined global entity map vectors 1s the total
number of distinct elements 1n a particular group set corresponding to that global entity map

vector across the first partition and the second partition.

52. The at least one non-transitory computer-readable medium of claim 49, wherein the
global entity map vectors for each partition are stored 1n a global data cube, the global data cube

including an entity map vector dimension, a group set dimension, and a partition dimension.
53. The at least one non-transitory computer-readable medium of claim 43, wherein the

number of group sets 1s determined, at least 1n part, by the number of distinct data values 1n a

second column of data in the table.

- 30 .

54. The at least one non-transitory computer-readable medium of claim 43, wherein the

ogroup sets are defined 1n reference to one or more second columns of data 1n the table.

55. The at least one non-transitory computer-readable medium of claim 43, wherein each

entity ID 1s mapped to each unique data value 1n chronological order of appearance of the unique

data values, such that the first entity ID 1s mapped to the first unique data value encountered.

56. The at least one non-transitory computer-readable medium of claim 355, wherein the one
or more entity IDs are one or more global entity IDs, the one or more the entity map vectors are
one or more preexisting global entity map vectors, and the at least one non-transitory computer-
readable medium further comprises additional instructions that, when executed by one or more
computing devices, cause at least one of the one or more computing devices to:

recerve an update comprising one or more new entity map vectors corresponding to one
or more new entity IDs, wherein each of the new entity IDs corresponds to a unique data value;

assign a new global entity ID to each unique data value that 1s not already represented 1n
the domain; and

generate one or more global entity map vectors corresponding to the one or more new
entity map vectors, wherein the length of each global entity map vector 1s equal to the total
number of global entity IDs, and the value of each bit in each global entity map vector indicates

the presence or absence of a different global entity ID 1n a corresponding group set.

57. The at least one non-transitory computer-readable medium of claim 56, the at least one

non-transitory computer-readable medium further comprising additional instructions that, when
executed by one or more computing devices, cause at least one of the one or more computing
devices to:

update the pre-existing global entity map vectors by appending a number of zeroes to the
end of each of the pre-existing global entity map vectors, wherein the number of zeroes 1s equal
to the number of unique data values 1n the update that were not already represented 1n the

domain.

_ 40 -

58. The at least one non-transitory computer-readable medium of claim 43, wherein each
entity ID 1s mapped to each unique data value 1n the lexical order of the unique data values, such

that the first entity ID 1s mapped to the unique data value that 1s first 1n the lexical order of the

unique data values.

59. The at least one non-transitory computer-readable medium of claim 43, wherein the
numerical location of each bit 1n an entity map vector corresponds to the entity ID whose

presence or absence 1n the group set the bit represents.

60. The at least one non-transitory computer-readable medium of claim 43, wherein the

tokenized column of data 1s stored after recerving a query.

61. The at least one non-transitory computer-readable medium of claim 43, wherein the

tokenized column of data 1s stored before receiving a query.

62. The at least one non-transitory computer-readable medium of claim 43, wherein the
query 1includes a sum command pertaining to each of the one or more group sets, and the at least
one non-transitory computer-readable medium further comprises additional instructions that,
when executed by one or more computing devices, cause at least one of the one or more
computing devices to:

for each of the one or more group sets, sum the unique data values corresponding to the

entity IDs which are indicated as present 1n the entity map vector corresponding to that group set.

63. The at least one non-transitory computer-readable medium of claim 43, wherein the
query 1ncludes an average command pertaining to each of the one or more group sets, and the at
least one non-transitory computer-readable medium further comprises additional instructions
that, when executed by one or more computing devices, cause at least one of the one or more
computing devices to:

for each of the one or more group sets, compute the average of the unique data values
corresponding to the entity IDs which are indicated as present in the entity map vector

corresponding to that group set.

_ 41 -

	Page 1 - BIBLIOGRAPHY
	Page 2 - DRAWINGS
	Page 3 - DRAWINGS
	Page 4 - DRAWINGS
	Page 5 - DRAWINGS
	Page 6 - DRAWINGS
	Page 7 - DRAWINGS
	Page 8 - DRAWINGS
	Page 9 - DRAWINGS
	Page 10 - DRAWINGS
	Page 11 - DRAWINGS
	Page 12 - DRAWINGS
	Page 13 - DRAWINGS
	Page 14 - DRAWINGS
	Page 15 - DRAWINGS
	Page 16 - DRAWINGS
	Page 17 - DRAWINGS
	Page 18 - DRAWINGS
	Page 19 - DRAWINGS
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - DESCRIPTION
	Page 43 - DESCRIPTION
	Page 44 - DESCRIPTION
	Page 45 - DESCRIPTION
	Page 46 - DESCRIPTION
	Page 47 - CLAIMS
	Page 48 - CLAIMS
	Page 49 - CLAIMS
	Page 50 - CLAIMS
	Page 51 - CLAIMS
	Page 52 - CLAIMS
	Page 53 - CLAIMS
	Page 54 - CLAIMS
	Page 55 - CLAIMS
	Page 56 - CLAIMS
	Page 57 - CLAIMS
	Page 58 - CLAIMS
	Page 59 - CLAIMS
	Page 60 - CLAIMS

