US 20040095927A1

a9 United States

a2 Patent Application Publication (o) Pub. No.: US 2004/0095927 A1l

Chang et al.

43) Pub. Date: May 20, 2004

(54

(76)

@D
(22

(63)

SYSTEM, METHOD AND ARTICLE OF
MANUFACTURE FOR UPDATING A
SWITCHING TABLE IN A SWITCH FABRIC
CHIPSET SYSTEM

Inventors: You-Sung Chang, Taejon (KR);
Ju-Hwan Yi, Taejon (KR);
Seung-Wang Lee, Tacjon (KR);
Moo-Kyung Kang, Tacjon (KR)

Correspondence Address:
SQUIRE, SANDERS & DEMPSEY L.L.P
600 HANSEN WAY
PALO ALTO, CA 94304-1043 (US)
Appl. No.: 10/706,903
Filed: Nov. 12, 2003
Related U.S. Application Data

Continuation of application No. 09/669,319, filed on
Sep. 25, 2000.

(60) Provisional application No. 60/225,034, filed on Aug.
11, 2000.

Publication Classification

(51) Int. CL7 oo H04Q 11/00
(52) US.Cl oo 370/388
(7) ABSTRACT

A system, method and article of manufacture are provided
for updating a switching table in a switch fabric. In general,
one or more status packets are received by a switch fabric
component without handshaking between the transmitting
source(s) and the receiving switch fabric component. Each
status packet includes information relating to a status of an
output port. A switching table is then updated based on the
status information of the received status packet.

i ’ 106 .
.100\ , 112 \’ o
108 L B S
102a Y - S— — i
102b’—§ SF 1 SF5 —— MSF9 |{cRmBErci)
103¢ ros oo o |
102d‘\’ . L 4_
' < (GBI PC)
[Giabi Pe05}«-»| SF 2 SF6 SF10 N isGgemircan)
- 104b 104 104 |
| [Glgabil PCOT 4> iv{Gigabt PCas)
Gigabil PCOB Ji-ip] - <> Gigabl PC24]
| (CmabnPcos}h! SF 3 SF 7 SF 11 ¢-»{Gigabit PCZ5)
{ [Gigabit PCTO Jt-i> - s " >{Cigbn
; | 104 104g. 104k [,
: [Gigabit PC11 Jai- . R <-~->_-,'_Giabil PC27
(Clgabi PCTZ)« < >{Gigabi PC28)
(Cgabi PCT3}e-] SF 4- SF 8 SF12° |[»>Chabirca)
[GgabnPCiaje» . . ' by GigaBl PCI0)
PR 104d 104h 104 [
[GgEBIPCIB)¢ < { Gigahi P31
[CigabI PCTE}«- i « <> Clgabil P32
102 104 102

May 20, 2004 Sheet 1 of 43 US 2004/0095927 A1

Patent Application Publication

)) NM:
e » - , -
e | »{510d 198819 |
| 1] uvot PHOL . .
e . . ATN
> xAEL 84S ¥ 43 |[<-bEroaTeEss
7] I
y | o o - 110d 1gebin
. AP0l 6roL op01
. . . s o L
ik Ll 4S L4 € 49 &
r
1 fvol Tan avol
> 0Lds 94 z4s [¢: .
S 004 ¥aebis
oL a0l ey0l
6 S f > G4 L 48
_, o 3
s NdO ,
— A}

US 2004/0095927 A1

Patent Application Publication May 20, 2004 Sheet 2 of 43

AHd

ay

nqedrn

AHd

nqesdrn

Aouppy| |Arowdpy KroundAll |K1owapy
pyeg | | dnyjoog | dmyjoorg E) A1
[T . R
,) | ./\bNON : _ QNON./.. : _] AHd pend r.% s
19][0.5u0)) 110 R o I9[[0.1}U0)) J10] N001/01 d
J1qesio) - . : e [8)0 .
ﬁ..n .w f/’ .. . P\uv)s .wﬂ— } O . | AHd @&:O R % P
3 duqeyg | Ny N00L/01 14
| wnmg |
o " Tt . | Anapemd| [L]
19[[01JU0)) 110 ~ H _ ©\ | 49qp0.3u0)) 1104 JNoot/ot al
. }1qedi RS . : . IS8R0 .
«..n. . D . ..vo_N ez0g Pedl w. 0 “ AHJ PEnO > %Alv
he - \J R woorior [41
I I - ~~9¢0¢ , I N =
Louwdp| |Krowdpy Kowodpy| |Ktowapy SKod
ey | | dnyoory dnyjoop | | 1arporyg 5ed 91

yolms Hqebis pxy

/oom

US 2004/0095927 A1

Patent Application Publication May 20, 2004 Sheet 3 of 43

€ 'Old

Azw_va..cz,_o_z (JNg)A1oura Ty Atowd Atouny
g dnyooy dnyjoorg Caeg
9208~ H H H o H |
_ _ ‘ ,o_moq_ | 4 31307 . <P e L >
: (ataneduos dnyjoo] ssaippy dmjoopssappvi | - suod g | lqp AHd pend 4P T <>
| |t | , i i o | fer] wooror fent Thas
.:MMWWU_ : VI 1[[0U0D) Blonuo)y OV : -
T Pwany Suiyomg - - Suyoimg . [||WOOL/O1 | [- auaRinnd
uqedin | b/€/T 10ke] p/g/g ke || PWAWY | (4> AHd pend [P 4 (>
: : . > oot/01 .vh.v
AA[o1u0) Jtod nqestn Jajonuo) yiod seq [epQ (€D > >
Y Y W) K . o
ﬁ ﬂ “BZ0E
ndo | | |
B a1dor 10}B13UdN) . “
WSy - 301D i

bupjuij-dn nqebin o

/o_o,m

: ~

(=]
=%

US 2004/0095927 A1

Patent Application Publication May 20, 2004 Sheet 4 of 43

¥ 'Old

wvnzh *OQEH— ?329— ﬂm«.oz.— 7«4—2& ﬂmzn— ﬁzh ﬁmuzn—
row

_EZ TN VET _
pun (
1 W . . BN
454 5 80¥ 90 N: oy 20V
¥ v PP &7 % | 0 [por U
. AN] AN AN |4 cewp—|1AN 14N :
] o Rl bl R ey B NCTTRG
JLvamaxz, |- Rl | o e . S B e o
.”.I%Y ..uz._s { JInpayog 105530014 . | onanp Lyrerep— VING MM““.H o .
r...m:;?. -suga], prATERS E:M_m_.-c JNIEd s P gapeayy |—mesp| sseaSug AZ..a| : Am‘._o.uﬁ_
- Svaxr Powu Hnding |1 (1100 =) fpgewer b H [meme®l qung €
: un g, . jlun O nun xJ RECEL L M — e : . . o Ad XY
" [Sroeer— preailiiurg NN rpeT P : s TR
: o —{ - Ha A R I e
. - T X TT rvv e — o T — v
, . . jun y :
IdN - : . oreE » o oLy S b e
, , - [dN i | MaseuRI 19D a4 . . o A.#
: - Al munyg o o :
1anesey| .. u,r._w.m.m.m..u..w..m.T. - Y N— N XL
poegay Ul f— — d e .m.w«n.“a =n~?_rm._..:x 1IN : > x.._.u_
nuny |- - LU = AN —Pluopjoayuoyy ssasdy| VI —a a7
- A = L — yun m lquu_ﬂv —a
kel 4 AN - NI XL
- évLvaxy - - 3_:.%_.... . axt)
. : — NI®Ep :

SN _.aﬂ.ﬁ gdepIuy IdN Jqlonuw0) NVHSS . vag Jyng
0oy .WMMV A10M1IN nun g - C $Sa43 7

_ yun N vre jun
e 1 Ev wom 9
0 90@&.—0*—-— m N m
V' 104 vey 4/
00b

Patent Application Publication May 20, 2004 Sheet 5 of 43 US 2004/0095927 A1

500

T

T | - S 502
RECEIVING A DATAGRAM, WHEREIN THE DATAGRAM HAS A /-
© HEADER PORTION AND A BODY PORTION -~~~ |

504
SEPARATING THE HEADER PORTION FROM THE BODY PORTION
A 4
506
FORWARDING THE HEADER PORTION FOR PROCESSING -
v “ _
- | | 508
* STORING THE BODY PORTION IN A MEMORY
‘ 510
RECEIVING THE HEADER PORTION AFTER PROCESSING

(6]
~——
N

STORING THE PROCESSED HEADER PORTION IN THE MEMORY

FIG. 5

US 2004/0095927 A1

9914

209

Patent Application Publication May 20, 2004 Sheet 6 of 43

909 809 . OL9 \
SR S 3 5 _ _ . - _
MOLD3A | MOLO3A | e | -
NOILYNILS3a | Fo¥nos | MHONT
~ ¥3av3H Agosg /08

-+

13AVHL 40 NOILOTYIO

US 2004/0095927 A1

Patent Application Publication May 20, 2004 Sheet 7 of 43

Ll

L 9ld

AHOWIW -

'NI.¥30QV3H Q3SS3008d IMOLS

e \ . 130Vd LX3N dAI303d ,.

" oLL

~ ¥30v3H $S300ud

5 ‘,.‘ ~ AYOW3W NI AQO8 FHOLS

i

' | AQO8 WOXH ¥3QV3H JLvyvd3s |
L |

._.,__ |

A

1IN0V 3AI303Y

004

May 20, 2004 Sheet 8 of 43 US 2004/0095927 A1

Patent Application Publication

s

Kowrapy
“dnpfooy

b

sojonued

A ¥s
r \
Y
D— .
. BavpOIY 4 .
PR My JEUN [P N sojnpeyds
. . inding
A4 .
- - Nir
HRrHI9-+o WS G
. J9Beuepy
e oary . .
\ > 3 4 \
N o o & . >
ty] OOEVOI " jonwog g oo
o oYW

-]

ssasfy

e

, oyng

ssa163

May 20, 2004 Sheet 9 of 43 US 2004/0095927 A1

Patent Application Publication

ply

Ksowen

dnpioo

ot
. ’ 3

. *iegonuag

SN WAL
A Y ¥

6°'9ld

08

906

0Ly~

~—206

N

CHENT) {o;.nz ,

ane
Jejyng
ssa63

i

|||||||| \?\OV
Jossesoud .
oped
PR
enanD N
JopeeH
) v
10839301
| ! g
: . v JaBouvepn Vom
R . : 1190 0014 .
’ enuo) %)
seoiBy | T oww
[y
3
azy v

Noov

May 20, 2004 Sheet 10 of 43 US 2004/0095927 Al

Patent Application Publication

80¥

“hun
Buisseosord Jepeay

0L "Old

- Jap1o Buiaes

n_woo L “ q9001.)90

BCO0L

P

£piay Apog

ZpI3y Apoq

PRy Apog ~_ S|

- -

>

fowaw o}

lapeay -

JojeJqie \coEuE .

yor

«nooov
T %2.. e~
_ : “qy001 voo_‘
opiay Apoq

- “qzool

_uonpalp Induj um_v._mma ”

Jade ndui 1axoed

Patent Application Publication May 20, 2004 Sheet 11 of 43

704

g

US 2004/0095927 A1

: e , 1102
DIVIDE INCOMING PACKET INTO CELLS D
| " .(1ST CELL = HEADER)
| 1104
" RESERVE SPACE IN MEMORY FOR HEADER -
y i
A | 1 11086
GENERATE POINTER TO RESERVE SPACE . A
A

'FORWARD HEADER FOR PROCESSING

1108

FIG. 11

Patent Application Publication May 20, 2004 Sheet 12 of 43 US 2004/0095927 A1

706

\

1202

~ 'STORE CELL IN MEMORY

. A,

1204

'GENERATE POINTER TO LINK CELL TO RESERVED SPACE -

1206

AN'QTHER'CELL'?

STORE NEXT CELL IN MEMORY -

\ .

. GENERATE POINTER TO LINK NEXT CELL TO PREVIOUS CELL

| 1210

|

FIG. 12

Patent Application Publication May 20, 2004 Sheet 13 of 43 US 2004/0095927 A1

712

'RECEIVE. PROCESSED HEADER |

. LOCATE RESERVED SPACE_US_ING POINTER

STORE PROCESSED HEADER IN RESERVED SPACE

FIG. 13

US 2004/0095927 A1

Patent Application Publication May 20,2004 Sheet 14 of 43

vl 'Ol

o= 9

BUON

govi—f O

OTU/ |
L {44

eop—f" O

A%

o opop— " 9

N

)
10} pensesay

e\

¥3AV3H

' o >
X K

© AYOWIW

o momum uma,m.wm.m 9_ ,_Qc__om_ ~

AQog

v

ol o)

L 90vL-

N

80¥1

Patent Application Publication May 20, 2004 Sheet 15 of 43 US 2004/0095927 A1

1500
k‘ 1502
RECEIVING NOTIFICATION THAT A PACKET HAS BEEN
PROCESSED IN THE PORT CONTROLLER
1504
ASSIGNING THE PROCESSED PACKET TO AN OUTPUT PRIORITY
QUEUE
\ 4
- 1506
LINKING THE PACKET TO THE ASSIGNED OUTPUT PRIORITY ‘
' QUEUE
1508
RETRIEVING THE PACKET VIA THE LINK
1510
TRANSMITTING THE RETRIEVED PACKET FROM THE PORT
CONTROLLER TO THE SWITCH FABRIC

FIG. 15

Patent Application Publication May 20, 2004 Sheet 16 of 43 US 2004/0095927 A1

1600
/_

1602
NOTIFY OUTPUT ORIENTATED SCHEDULER THAT HEADER OF A
PACKET HAS BEEN PROCESSED
1604
OBTAIN ASSIGNMENT TO A PRIORITY QUEUE FOR THE PACKET
1606

GENERATE POINTER TO LINK STORED HEADER TO START _/
ADDRESS OF ASSIGNED QUEUE OR TO STORED HEADER OF
PACKET JUST AHEAD IN QUEUE

1608
NEXT PROCESSED HEADER

FIG. 16

US 2004/0095927 A1

Patent Application Publication May 20, 2004 Sheet 17 of 43

0\1

193oed e

N
N
N

p

19x0ed &

Ll "Old

el

1oxoed e

ddN

rat

joxoed e

N
N

ddN

\.

19)0ed e

N

ddN

el

19%0ed B

ddN

at

19x%oed e

\

1oxoed e

ot

Pxoede

ddN

"

Pxoede

N

al

1o%oed e

N
N

ddN

a

¢ enanp

~

8011

N
N

Z onanpd

y

90L1L

1ooed e

ddN

} ananp

y

¥oLL

©
-
N~

¢l

*

19oed e

= \

8L/1

1ox0ed e

T
"

14 7A%
—

1axoed e

d

dN
| \

~

0LL1

1ooed e

ddN

m] 0 8nand

AN

[AVA

00Z1L

US 2004/0095927 A1

Patent Application Publication May 20, 2004 Sheet 18 of 43

8L "9Old

oL8l—— 19%0ed selhq gz
[dON
8081 — 19%oed s81kq gz 8 _‘w b
{ dON ¢ .
908L— 1o%oed s814q 821 w—%r
[dON ¢
P08 L—— 1e)oed seihq gz .vrww‘
[dON v L
¢c08Ll—— Y (se14qz1)6e) jrusaqu)
_ ddN / | dON _
N—\N_‘ z ONWF Sl €2 N_‘m—. [

Hoowp

US 2004/0095927 A1

Patent Application Publication May 20, 2004 Sheet 19 of 43

[]
6l 'Old
dnooy Kowepy
woed
.
v A
m .
A
19(j0u0)
A WYHS Q
A 3
r b
13104000
4 Nvda
A ”m_l\ |||||||| A
_ _ _
| a | i
4 d (|
| 1oped 4
< PR 8096Z ~ 0v9 <
PR W.r:] anpeps | I \ PR wha PR U”w_z PR
R indino 1 |) enenp ssouBu|
b — [R— spran
) 13 v | A 4
¥ 0 “ Jaxord “ H) g
[S id
U3 AYHSHPWLSRI-357
1
NN.V v seBeueyy
neQ eelq

_JITI .‘ vey

axe
298HaU) sHOMON Jayng
Y ss0.183

Nt)

US 2004/0095927 A1

Patent Application Publication May 20, 2004 Sheet 20 of 43

0Z 'Ol | o0z

102 rAXirA 0102 «\\

f) \

dRJIPI U] [BUINXY

un Z

1a3eugy mand

A
U@O/ON b = ElE

J3geue | [13D) 31y

nm nun

P
P

| (S8 SALELEG |
[;xa; oun\j
| A |

3 '] 8002
Y p
I I _m 3 .|
$S3439 :jo.juo)) eI ALSLC R $5348U] :[oajuo)) [BIIUID)
jiun ssaugdas) . Jun ssaasur
A I
_w B2] </woom
XN :[onue)) [E1Hu) el m_ &
xnu &
.El , | J o I< D
\ A 4
tdN| aso0z/ T [N
Eeel]
A 4
ausued — I" ¢ JIA1IY m
dejIRU] XIJB Al YOHMS < . ———— el uy m
| PXaxxpy
yun yun x <) nun A
} N 200z
900¢ ¥00¢

Patent Application Publication May 20, 2004 Sheet 21 of 43 US 2004/0095927 A1

2100
\. 2102
RECEIVING A DATAGRAM, WHEREIN THE DATAGRAM INCLUDES A
DESTINATION VECTOR INDICATING ONE OR MORE DESTINATIONS
OF THE DATAGRAM
A
2104
EXTRACTING THE DESTINATION VECTOR FROM THE RECEIVED
DATAGRAM
2106
GENERATING A PORT BITMAP FOR THE DATAGRAM BASED ON
THE DESTINATION VECTOR
2108

TRANSMITTING THE DATAGRAM TOWARDS THE DESTINATION
UTILIZING THE GENERATED PORT BITMAP

FIG. 21

May 20, 2004 Sheet 22 of 43 US 2004/0095927 Al

Patent Application Publication

0L Od

600d

80 Dd

£100d

PC 06

S 5 . 5 5
= = €€ OId ¢ &
H Pz0ZZ 92022
b/l v/8 £/l €8
) pIL |[«————> €/9 el f— siod |
oigeL oL | stod |
BuyoIms Buyoumsg :
LS A e/5 gz] o0d |
bl g 149 £l €/€ €4S
qz0ze ez0zzZ
~ v \
L zi8 VL 18
219 el [L9 bb e 1004]
slqeL oL | tood |
Buiyoums Buiyoyms
2 A4 S g] 04|
Iy Zie L3S Ly VE 1dS

PC 05

PC 04

PC 03

o
o
N
o~

May 20, 2004 Sheet 23 of 43 US 2004/0095927 Al

Patent Application Publication

€¢ 'Old

-~

OJO|O|O|O |~ |+

OJOoO|Oo]|jOo]jO0O|O|OC|O

OJOjJO]|]OoO]J]OJO |0 |O

Ojo|o]lojo]ojo|O

OJOoOjJOoO]O0O|JO]|O|O|O

OJ]OjJjO|]|O|jO |0 |O|O

OJO|O]|]OjO0O|O|O|O

OJOjJO|Oo]|JOC OO |0O

OJOJO|]O]JO OO |O

[Noll foi ol Nl Nl ol N

oOj|jo|lo|ojo]|]o]jo|o

OJOJ0OJOJO]|OC}JO O

OO0 |OJOC O |O|COC]O

OJOjO|]OojJO |0]|J]O|0O

OoO|lo|o|]lojojo oo
OoOl|lo|jo|o]|]o|]o]jo|©o

oljlo|ojol|lo]|]lojo|o

OlJ]ojojOo|Oo]O |~ |

oOjlOo|lo]|Co|O|O]|~ |+

[== 3 e B Y o B e B e) B Y IR o

OO OO |OC O]|v |+

OO OO |Q|Q | |+

[« Foll o il Nl R 2 Bl K2R X~

O|Oo|JCO|O]~]|«~]O]O

OO0 |O{~|—]JOC|O

OJjlOoO|Qo]|]O]|v~]]O|]O

OJl0OjO|O|~|—~jJO|]O

OJjOo|JO|O|—~|—}JO|O

OO |O]l~JO]JlO O O

OoOlo|~|o|]olo o]

Ol]JOjJ]OJO]J]O 1O |O

—J]OjO|]OjJ]O|J]O)|J]O|O

-

c0€ee

o
™

~—
o

o
o«

(o2
N

o}
N

~
N

©
o~

u
o~

<
N

[5¢]
(3]

N
o

-~
N
o
N
D
~

8l

1d0d 30IA3a

Ll

9l

Sl

<t
-

N
-—

378V.L ONIHOLIMS L4S

~—
~—

o
-—

]
(=]

2]
o

~
o

(o]
(=]

0
o

<
o

M
o

N
o

-
o

y0€e

L/8
L2
L/9
LIS
Wy
Lig
Lz
L/

0ec

1¥0d 4S

May 20, 2004 Sheet 24 of 43 US 2004/0095927 Al

Patent Application Publication

ZADIE

1401574

/8

¢/l

/9

¢/S

a4

1d0d 4S8

¢/t

oOjJ]ojlo|]ojOo|JO |O
OJO|QO|O]J]O OO

—JOjJO|©Oo|]O|Oo O

¢le

oOl|]ojojojo|]ojoOo o

OJ|JO]|JOjJO|O0Oj]O]|]O|O

Ol|]lojojojo|]o]|]o o

O|ojojOojo]|]ojOo |O

ojlojJ]ojojo]o|o o

OJOjJOjJO|OCO|O|O|O

oO]J]o]ojoj|joj|jojojo

oOjJjojOojJOoO|jO]|J]O|O |O

OJO0OjJOJ0O|JlOCO|O|O|O

OO0 |J|O|O]|O|O|O

OJOJO OO |O|O

ol|lo|lo|lolo|joj|o|o
ololjo|olo|o]lo]|o
ojolo]lo|lo|lo]lo]o
~|~|olo]Jojo|o|o
~|-]ol|lolo|lojo|o
olo|lo|lo|lo|lo]|~]+
olo|lolo|lo|lo]~ |+
olojJo|lojo|lo]|~ |+

[N ol ol ol Joll Noll R b

O JOJO OO |O |« |~

Ol|lOo|ocjo|ojO |~~~

OJOoOJO|O O |~ |O|O

OO0 |0 |O]|]O{|O

OJO|J|O|~|O]O|O|O

OJj0O]—JO]O|OC|]Oo|O

|]j]OJO|OC|O|O|O

~—

~|-J]OjJO|OO|]O}JO|O

—|-j]OoOjJO|J|O|]O|O|O

¢/l

-

AV 34

o
™

-—
[\2]

(o3
(324

[+2]
N

[+o]
N

M~
~N

©
~N

n
(3]

<
o~

™
(3]

[\
(3]

8l il 9L G
140d 3JIA30A

-~
o
o

LN
(22
~—
<
-—
(324
~
o~
-~

3719VL ONIHOLIMS ¢4S

-~
~

o
~—

(o2
o

@
(=]

L~
o

[{ed
o

[To]
o

<
o

€0

N
(=]

~—
(=]

May 20, 2004 Sheet 25 of 43 US 2004/0095927 Al

Patent Application Publication

G¢ 'Old vogz

€/8
€/l
€19
€/S
ey
¢/e
g/re
e/l

1d0d 4S

O oo OO0 |O
—J]O|]|©Oo|]OoOjJO O |O

oOjlOo|ojojOojo OO
ojJlo|]ojojojojo o
OJjOo|OojOojOolOjO O
OJjlOo|ojojOojOojO|O
o|lo|jlojojojojo|]o
OJ|lOo|Oo|Oo]j]O0o]O]|]O |O
(=B el ol ol ol Noil Joli Jo
(=N ol Noll Ho il ok ol ol Jo
OjJOoOjJOoO]JOoO]|JO|O|O|O
O|0O]J]O]J]OoO]J]Oo]|j]OoO]|O O
oOjJOojojJOo|j]OjOoO |0 |O
[N ol ol el ol Noll Joli N
oOjJojJjojo|]ojo)jo|oOo
oO|]ojojo]jojo|Jo|O
OO0 |O]JO|OC|O O
—|o]j]Oo]|J]OjJO|]O]|JO O
O|lojOo|cojo|Oo]|O |
OoOjo]OoO]|]Oo]jOo]Oo]|+ |0O
OlojOo |~~~]JO|O
OOl |O]r~]|~—]O)|O
OO0 |+« |O|O
O|lo]j0o|O]~]]JO}|O
OO0 ||~]|]O|O
OJOJO|O]v~]+~]O|O
[« No i B ol Al E=2 E=N K= K=/
OO~ |]~jJOJ]O|]O|O
OO~ |~]JO]|OCJ|l]O|O
OO~ |~ jo]jo|o|©o
OO~ |~]|o]jo]jOo|©O
Ol]|]—]J]Oo|JOC|O|O

N
[\23
-~
(224
o
(224
»
N
o
o~
~
N
[(e]
N
wn
N
«
~N
o
N
N
(3]
-
N
o
N
[=)]
-
©
-
<
-
o«
-
N
-~
-
—
o
—
[<2]
o
@
o
N~
o
[{e}
o
wn
(=]
by
o
(22
o
(o]
o
-
o

\v Ll 9L Gi
1H0d 32IA3d
c0ec

319VL ONIHOLIMS €4S 05¢

May 20, 2004 Sheet 26 of 43 US 2004/0095927 Al

Patent Application Publication

9¢ 'Old v062

v/8
1774
v/9
v/S
1744
1Z4%
vic
v/l

1d0d 48

(e B lolh ol Noll ol Joli Ne)
oOjojojojojo|o
—J]O|J]OJO]J]O|O|O

el ol ol ol ol ol Noli fo

oOjo|ojOoO|Oo]j]Oo]|O|O
oOjJoj]OoOjJOoO]OjO|J|O |O

[N ok ol ol joii ol ol No

OO0 |O]|JO|O|OC|O
oOjOo|]ojo]|j]ojJjOo|O |O
OJjOoO|J]OojOoO|]OjJ]O|O|O

OJO|O]JO]|]|O]J]OC]|O|O

OoOJ]Oojojo|o|]ojo o

OJOJlOO]J]OjJO|]OC|JO |O

OJjlOoj0O|]o]|]o]jojJOo|oO
O|]ojojo]Jo|]o]jo o
OoOjJlojo|jo|]o]o]jJo o
o|Jjlojo|o]|j]ojo|]o|o
sl]|]O]J]O]J]O]J]O|O|O
Anll B ol f=l ol No il Noll No il No
—|—]JOo|]o|]ojo|J]o o
OJlOojojo]j]o|OC]|]O |~
o|J]ojo|o]|]o]|]o]|—~]O
o|]ojo|o]|]o]~]|Oo]O
[N Nl ol Noll Bl Hell No i N
OO |~]—~]OCjJOCjO|OC
Ol |~]Oo|]Oo|o|o
OJO]~|—]JO|O|JO|O
OClOo]~|~JO]|]o]|]o]joO
olo|~|~]|]o|lolo]eo
OJOj—~]l—|]O|J]O]J]O |O
Al il N=l Noli ol Noli Noll N
\all Ball =N K=l N=li Nell No ki o]

8l LI 91 SI
140d 30IA30d

o
[x]
—
[y
o
[3p]
D
N
0
o~
~
Y]
©
N
n
N
<t
N
[2¢4
~N
(8]
N
-~
(o]
o
N
[}
~
<t
-
o
-—
(o]
-
-~
~
(=
~
[o23
o
[o]
o
[
o
[{e}
o
2}
o
<
o
o«
o
N
o
-~
o

coge

379VL ONIHOLIMS ¥4S 09¢

Patent Application Publication May 20, 2004 Sheet 27 of 43 US 2004/0095927 A1
2700
\A 2702
RECEIVE PACKET
2704

EXTRACT DESTINATION VECTOR FROM PACKET

BASED ON THE SWITCHING TABLE

GENERATE A PORT BITMAP FROM THE DESTINATION VECTOR

CHECK FOR IDLE PORT IN SWITCH FABRIC COMPONENT

-
"

CREATE MASK FOR PORT BITMAP

!

THE OUTGOING PACKET

TRANSMIT PACKET VIA IDLE PORT & CLEAR PORT BITMAP OF
DESTINATION USING MASK & MODIFY DESTINATION VECTOR OF

YES ANOTHER

DESTINATION INDICATED IN PORT
BITMAP?

FIG. 27

2714

)
~
o
&

n
~J
o
&

Ny
N
Y
o

2712

Patent Application Publication May 20, 2004 Sheet 28 of 43 US 2004/0095927 A1

28042

2808

28008

a packet M\2802
2806
insert tag with 32-bit
Port Controller destination vector
Switch Fabric Component Y
- 2812 During ingress
- ~_ 2802
Switching a packet
table
extract tag
2806 3 '
&:} 32-bit destination vector
>
2810 ¥
8-bit port bitmap
Use the port bitmpp | Store port bitmap
to link cells in linked list
A 4 ~L
T \2814
Store modified
2816 port bitmap
¥ >
8-bit ﬁ “ | Linked tist
mask
modifed 8-bit
portbitmap

e le |
N 2818 When a port.is available,

| 2810
_é:l 8-bit port bitmap

Duringegress | C—— —] Modify 32-bit destination vector

read information about the cell
including: port bitmap.

v

Free the corresponding
memory if all ports are
served.

FIG. 28

May 20, 2004 Sheet 29 of 43 US 2004/0095927 Al

Patent Application Publication

62 "OId

«806¢
GaLavavnie taog Lolololofofofofo]
80 /0 90 SO ¥0 €0 2¢O 10
226¢ 9162
118 30IAY3S ﬁ S V4
aNOD3S 40 YSYW E Jolofofofofi]o]
v 80 L0 90 SO v0 €0 20 10
p1L6Z Namq 0162 0062
S R AN
mraw awwtia twog Lelofofofoo]r o]
80 /0 90 SO v0 €0 20 1O
0262 8162 9162
~ S A%
isua sowswn Lololv[v]oJefo]o]
80 40 90 SO ¥0 €0 20 10
V162 NS& 016¢ 8062
N O RN AN
avwuatdod [ofof[i]iv]o]o[i]o]
80 L0 90 SO ¥0 €0 20 1O
ﬁ mwm vwm ﬂ/N.me

zo”__mwzo_wmm_o _o_r_o_o_o_o_o_o_ﬂ_o_

¢ 1€ 02 6 8 L2 92 SCT ¥Z € 2T IZ O0C 6L 8L LL 9L Sb vL EL ZL L} Ob 60 80 Z0 90 SO YO €0 2O 10

May 20, 2004 Sheet 30 of 43 US 2004/0095927 Al

Patent Application Publication

HOL103A
NOI1V¥NILS3A
a3141a0Nn

NSVYIN SS3HOT

HJOLO3AN
NOILV¥NI1S3d

¥00¢

¢00¢

000¢

~

¢l0g

ojofojojojojofojojojojofojojojojojojojojojojojLjojojofojojofojo
C€ 1€ 0€ 6 8 LZ 92 ST ¥C € € Iz OC 6b 8L Ll 9L Sb ¥L €L ZL Ll OL 60 80 Z0 90 SO YO €0 20 10
ojojojojojofojojojojojojofojofojojojofofojo]jr|fifs]L]|L]Lrjolojol]o
¢¢ 1€ 0t 6C 8 Lz 9 ST ¥T € 2ZZ 1Z 0T 6L 8L L 9L Gl vL €L 2ZL LI O 60 8O L0 90 SO YO €0 20 10

_ 800¢€ 900¢€
ofoJoJolofo]o|ofo|o|ofofo|ofofof[o]o|o|ofofofo][t]o]ofo]o]o]o]i]o
T€ 1€ 0€ 6C 8 LT 9T ST ¥T € ZZ LT 0Z 6L 8L 4L 9L SL vL € TL L OL 6O 80 L0 90 SO ¥0O €0 Z0 1O

Patent Application Publication May 20, 2004 Sheet 31 of 43 US 2004/0095927 A1
31 ooe

3108
-

During ingress

N 3102
Switching a packet
table

extréct tag

3104 v ‘ ‘
7]:] 32-bit destination vector

>

) A 4
8-bit port Bitmap |
Store

3106 I 32-bit destination vector
Use.the port bitmpp in linked list

to link cells
N N %
Store:modified 3110
3112 destination vector
v i) _ _
32-bit Linked list
mask
modifi§d 32:bit
destinaflon vector
A~ 3114 When a port is available,

read information aboUt the cell
including destination vector.

(" 32-bit.destination.vector

During-egress]

A 4

Free the corresponding
memory if all ports are
served.

FIG. 31

Patent Application Publication May 20, 2004 Sheet 32 of 43 US 2004/0095927 A1

3200

\ 3202
RECEIVING ONE OR STATUS PACKETS, WHEREIN THE STATUS /
PACKETS ARE RECEIVED WITHOUT HANDSHAKING

UPDATING A SWITCHING TABLE BASED ON THE STATUS
INFORMATION OF THE RECEIVED STATUS PACKET

FIG. 32

US 2004/0095927 A1

i

May 20,2004 Sheet 33 of 43

Patent Application Publication

€€ Old

2£0d 910d

L€Dd S10d

0€0d #10d

620d ¢l 4S 8 4S ¥ 4S €10d

82¢0d Zod

£20d 110d

920d 010d

§20d Ll 4S L 4dS €4S 600d

$20d 800d

€20d £00d

220d 900d

120d 0L 4S 94S ‘ ¢ 4S 500d
20¢e
Poee
0z0d «—{ ¥00d]
6L0d «—{_€00d_]
810d mo%m «— 200d]
£10d 6 4S > GdS > | 4S [« 100d]

4/88

Patent Application Publication May 20, 2004 Sheet 34 of 43 US 2004/0095927 A1

OUTER LAYER SWITCH MIDDLE LAYER SWITCH

PORT CONTROLLER FABRIC COMPONENT FABRIC COMPONENT

3402
GENERATE STATUS PACKET j

INDICATING STATUS OF
PORT CONTROLLER

2

TRANSMIT STATUS PACKET | 3404
TO ASSOCIATE OUTER J
LAYER SWITCH FABRIC

COMPONENT (VIA
DEDICATED CONDUIT

I

v
RECEIVE & COLLECT | 3406
STATUS PACKET FROM J
EACH ASSOCIATED PORT
CONTROLLER

¥

COMBINE INFORMATION | 3408

FROM COLLECTED STATUS
PACKETS TO GENERATE

COMBINED STATUS PACKET

v

TRANSMIT COMBINED | 3410
STATUS PACKET TO MIDDLE J
LAYER SWITCH FABRIC
COMPONENT (VIA
DEDICATED CONDUIT)

l
v
l 3414 RECEIVE & COLLECT
3412 [UPDATE SWITCHING TABLE|] %TUATTEURSL:’:(%’;ESTVSE%"
_| BASED ON INFORMATION D ABRIC COMPONENTS
FROM RECEIVED STATUS

PACKETS ¥
COMBINE INFORMATION

6
_| FROM COLLECTED STATUS
PACKETS TO GENERATE
COMBINED STATUS PACKET

FIG. 34 ;

8 TRANSMIT COMBINED
\ STATUS PACKET TO OUTER
LAYER SWITCH FABRIC
COMPONENT (VIA
DEDICATED CONDUIT)

]
¥
3422 | RECEIVE & COLLECT J
Eigf:g;?gﬁgg ,'Zgg'T 3420 [UPDATE SWITCHING TABLE
CONTROLLER __| BASED ON INFORMATION
FROM RECEIVED STATUS
! PACKETS

3424 | COMBINE INFORMATION
FROM COLLECTED STATUS
PACKETS TO GENERATE
COMBINED STATUS PACKET

Patent Application Publication May 20, 2004 Sheet 35 of 43 US 2004/0095927 A1

BIT/ PORT
CONTROLLER
w
19)]

o
o

o
-

. 3502
M\ 3504

o
N

o
w

o
N

o
n

o
(o2}

(=)
~

(=]
[0]

(o]
©

M\ 3506

-
o

-
—

-
N

Y
w

-
BN

—
(8]

M\ 3508
™\ 3510

=N
\l

-
[e0]

-
(o]

N
o

N
-

N
N

N
w

[\
F N

N
(&)

N
D

N
~J

N
o]

N
(o)

w
o

w
-_

w -
N (o))
—mlm | alalalaAlalalalalalalalajolo]la|alAalalalaljolalalalalalalala

FIG. 35

Patent Application Publication May 20, 2004 Sheet 36 of 43 US 2004/0095927 A1

3600

N >

RECEIVING DATA OF A DATAGRAM

Y

3604

SEQUENTIALLY FILLING THE BUFFER PORTIONS WITH THE DATA
OF THE DATAGRAM

3606

PERIODICALLY ALLOWING TRANSFER OF DATA FROM THE
' BUFFERS INTO THE SWITCH MATRIX

A

TRANSFERRING THE DATA IN ONE OF THE BUFFER PORTIONS | 3608
INTO THE SWITCH MATRIX AT EACH PERIOD WHERE TRANSFER
OF DATA IS ALLOWED AND IN THE SEQUENCE THAT THE BUFFER
PORTIONS WERE FILLED

FIG. 36

US 2004/0095927 A1

Patent Application Publication May 20,2004 Sheet 37 of 43

01L€

Ll-llllllllllllllllllllll

e E——

[AVA>

o> XUJBN YOUMS 8y} SI SIyL

L€ "Old
[AAAS
%
< un
Zjueg I g Jun A
Alowepy |oke i 7 Un A
L) o jun A
fw I G Hun A
i) b U A
- - ¢ Hun A
SNt - ¢ Jun A
Alows\ NG
™ ¢ | Jun A
0Zs¢ 1 —CL.E vomm\
80.¢

| UN A Joj siayng jnduy|

e 4S e si syl

Iwod sI welbejeq

00.€

US 2004/0095927 A1

Patent Application Publication May 20, 2004 Sheet 38 of 43

8¢ Old
@ 5 (""" 'LSL ‘SEL ‘BLL ‘€0L 28 °LL
- 'GG ‘6€ ‘€2 ‘1) Iunod 8joh)
1 ["JUnod 8|9A2 9| Aioas
e | O
>mw_&mw4 gﬂ ol H e pamojje s sseooe AW\
mlin ajlhqy
mj. alhase < aMhase
uli= g08¢
OO |_ 908¢ 018€ _|
— | — F ﬂ:L—J \/ AA-lllllllllllllllllllll
1 Buiwos s1 weibejeq
_\V_CNm Noﬁv m M ZLLE vomﬂ\
Alows HIH
Hl 17
cee= 1 7 L JUN02 8|2A)
yngy——" 3

00.¢
80.€E

(=]

FA>

US 2004/0095927 A1

Patent Application Publication May 20, 2004 Sheet 39 of 43

6¢€ 'Old

voﬂm my\.m
¢ Jueg H H
AIowa u
N
0
2068~] m
| jued am H
Alows o HH
~ 00

208¢ u [AYA

0cLE

Y
N

80.¢

(""" ‘LGl ‘GEL ‘6Ll ‘€0l L8 L.
‘GG ‘6E ‘€2 /) uN02 8joAD
'Juno2 919Ao g| Alena

pamoj|e sI ssadoe Alows

L JHUn A

allqy
o1kase < 814q.6

- |

Buiwoo s1 weibejeq

€Z lUNod 99AH

US 2004/0095927 A1

Patent Application Publication May 20, 2004 Sheet 40 of 43

0¥ "Old
¢ele 08¢
R N (" '1GL'SEL '6LL 'S0) 28 1L
sls ‘GG ‘6E ‘€T ‘1) IuN02 8j9AD
| HHS "JUN09 9|0A2 g| A1ana
¢ Aueg iiove L pamojje s| ssaooe Alowal\
>._OE®_>_ -lgsalng |-
O HH alkay
soor” H H oMas6 < eMhaye
mm mm F H_ﬁhﬂd \/ ALL“HIIIIIIIIIIIIIIIIIHHI
1 [0 Buiwoo sI weibeleq
mjin
m m [4YA
Fonts H 1S lI9M
Klowap mps IPS10
Nomv]
|/
900V —
H\ o €01 UN0oD BjAD

148[014

~—

80.¢ (YA

US 2004/0095927 A1

Patent Application Publication May 20,2004 Sheet 41 of 43

Klowo

Ly

@orv\ OLLy

0Ly

v 'Ol

]
. (""" *LGL 'SEL '6LL ‘€0L L8 L.
. ‘GG '6€ ‘€ 'Z) Junod 92AD
N ‘Juno?2 99Ad g| Alans
0 g1Aq z¢ pamoj|e sl ssaooe AIoOWSIN
H jii pabeuieq e 8
=l i USTILIMIBAG 9lkq6 < 9lAq.6
n Junog 8ok |

v IHUwQMO_‘ A M_L_Eoo S Em_mmﬁma_|
voLy 4/\\owfq

\(0

US 2004/0095927 A1

AJOWAN

Patent Application Publication May 20, 2004 Sheet 42 of 43

<

¢y "Old

(939)], =

 poId{g
$S900Y

syayoed 9ZIs 9|qelIBA JO] 918D 0)

(319) 17 = 9ZIS $S229® JUIdIJNg

(119) 1Y = 9Z1S SS90 WNWIUIA]

140744
_

(09s/11q) Y = oYl XY

dd4401d
A

weidejep Jurwoou]

[

c0cy

US 2004/0095927 A1

Patent Application Publication May 20, 2004 Sheet 43 of 43

€v "Old

4314vYav

Y3ldvay
JOV4Y3LNI
AY1dSI e
\ \ A\

8ecy 9teY 7761
A%

/

¥3ldvay ¥31dvay

NOILYDINNWINOD oll 2 oY Ndo

/ oLoa N\ \ \
yEEY pLEY oLEY 0LEY

(GE€H) MHOMLIN

0cey

US 2004/0095927 Al

SYSTEM, METHOD AND ARTICLE OF
MANUFACTURE FOR UPDATING A SWITCHING
TABLE IN A SWITCH FABRIC CHIPSET SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. patent
application Ser. No. 09/669,319, filed Sep. 25, 2000, which
claims the benefit of U.S. Provisional Application Serial No.
60/225,034, filed Aug. 11, 2000.

FIELD OF THE INVENTION

[0002] The present invention relates generally to data
routing systems and, more particularly, to routing packets
through a network switch.

BACKGROUND OF THE INVENTION

[0003] Ethernet is a widely-installed local area network
technology. Specified in a standard, Institute of Electrical
and Electronic Engineers (IEEE) 802.3, Ethernet was origi-
nally developed by Xerox and then developed further by
Xerox, DEC, and Intel. An Ethernet LAN typically uses
coaxial cable or special grades of twisted pair wires. A
commonly installed Ethernet systems are called 10BASE-T
and provide transmission speeds up to 10 Mbps. Devices are
connected to the cable and compete for access using a
Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) protocol. Fast Ethernet or 100BASE-T pro-
vides transmission speeds up to 100 megabits per second
and may be used for LAN backbone systems, supporting
workstations with 10BASE-T cards. Gigabit Ethernet pro-
vides an even higher level of backbone support at 1000
megabits per second (1 gigabit or 1 billion bits per second).

[0004] Fast Ethernet is a local area network transmission
standard that provides a data rate of 100 megabits per second
(referred to as “100BASE-T”). Workstations with existing
10 megabit per second (10BASE-T) Ethernet card can be
connected to a Fast Ethernet network. (The 100 megabits per
second is a shared data rate; input to each workstation is
constrained by the 10 Mbps card). Gigabit Ethernet is a local
area network transmission standard that provides a data rate
of 1 billion bits per second (one gigabit). Gigabit Ethernet is
defined in the IEEE 802.3 standard. Gigabit Ethernet may be
used as an enterprise backbone. Gigabit Ethernet may be
carried on optical fibers (with very short distances possible
on copper media). Existing Ethernet LANs with 10 and 100
Mbps cards can feed into a Gigabit Ethernet backbone.

[0005] Data may be sent over a packet switching network
using digital signals. In a packet switching network, users
can share the same paths at the same time and the route a
data unit travels can be varied as conditions change. In
packet-switching, a message is divided into packets, which
are units of a certain number of bytes. The network
addresses of the sender and of the destination are added to
the packet. Each network point looks at the packet to see
where to send it next. Packets in the same message may
travel different routes and may not arrive in the same order
that they were sent. At the destination, the packets in a
message are collected and reassembled into the original
message.

[0006] Layering is the organization of programming into
separate steps that are performed sequentially, defined by

May 20, 2004

specific interface for passing the result of each step to the
next program or layer until the overall function, such as the
sending or receiving of some amount of information, is
completed. Communication programs are often layered. The
reference model for communication programs, Open System
Interconnection (OSI) is a layered set of protocols in which
two programs, one at either end of a communications
exchange, use an identical set of layers. OSI includes of
seven layers, each reflecting a different function that has to
be performed in order for program-to-program communica-
tion to take place between computers. Transmission Control
Protocol and Internet Protocol (TCP/IP) is an example of a
two-layer set of programs that provide transport and network
address functions for Internet communication.

[0007] A switch is a internetworking device that selects a
path or circuit for sending a unit of data to its next desti-
nation. A switch may also include the function of a router
and determine the route and specifically what adjacent
network point the data should be sent to. Relative to the
layered Open Systems Interconnection (OSI) communica-
tion model, a switch may be associated with the data link
layer—Layer 2. Switches may also be capable of performing
the routing functions of the network layer—Layer 3. Layer
3 switches are also sometimes called IP switches.

[0008] The Data Link Layer of OSI—Layer 2— is con-
cerned with moving data across the physical links in the
network. In a network, a switch may be a device that
redirects data messages at the Layer 2 level, using the
destination Media Access Control (MAC) address to deter-
mine where to direct the message. The Data-Link Layer
contains two sublayers that are described in the IEEE-802
LAN standards: Media Access Control (MAC), and Logical
Link Control (LLC). The Data Link Layer assures that an
initial connection has been set up, divides output data into
data frames, and handles the acknowledgements from a
receiver that the data arrived successfully. It also ensures
that incoming data has been received successfully by ana-
lyzing bit patterns at special places in the frames.

[0009] The Network Layer of OSI—Layer 3— is con-
cerned with knowing the address of the neighboring nodes
in the network, selecting routes and quality of service, and
recognizing and forwarding to the transport layer incoming
messages for local host domains. A switch may be a Layer
3 device and perform layer 3 functions. The IP address is a
layer 3 address.

[0010] Switching, does by its nature, involves transient
data flows. At Gigabit speeds, these transients occur
extremely fast, and in a highly random manner. In the past,
it has been difficult to determine in sufficiently fast enough
speeds which components of a switch data flows should be
directed to so as maximize data flow through the switch and
reduce blocking traffic in the switch.

SUMMARY OF THE INVENTION

[0011] A system, method and article of manufacture are
provided for updating a switching table in a switch fabric. In
general, one or more status packets are received by a switch
fabric component without handshaking between the trans-
mitting source(s) and the receiving switch fabric component.
Each status packet includes information relating to a status
of an output port. A switching table is then updated based on
the status information of the received status packet.

US 2004/0095927 Al

[0012] In an aspect of the present invention, the status
packets may be received via paths/channels/conduits dedi-
cated for transmitting the status packets and separate from
paths dedicated for transmitting Ethernet packets through
the switch fabric system. In another aspect of the present
invention, the status packets may be received periodically
and the switching table may be updated in real time.

[0013] In an embodiment of the present invention, a
combined status packet may be generated based on the
combined status information of the received status packets.
The combined status packet may then be transmitted to other
switch fabric components. In one aspect of such an embodi-
ment, the combined status packet may be transmitted from
an outer layer switch fabric component to a middle layer
switch fabric component.

[0014] In one aspect of the present invention, the received
status packet may be generated from a port controller. In a
further aspect of the present invention, the received status
packet may be generated by a switch fabric component. In
yet another aspect of the present invention, the status packet
may comprise 32 bits of data with each bit being associated
with a port of the switch fabric component.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] The foregoing and other features, aspects and
advantages are better understood from the following detailed
description, appended claims, and accompanying drawings
where:

[0016] FIG. 1is a schematic block diagram of a multi-port
switch architecture in accordance with an embodiment of the
present invention;

[0017] FIG. 2 is a schematic block diagram of another
multi-port switch architecture in accordance with an
embodiment of the present invention;

[0018] FIG. 3 is a schematic block diagram of a gigabit
up-linking in accordance with an embodiment of the present
invention;

[0019] FIG. 4 is a schematic block diagram of an archi-
tecture of a port controller in accordance with an embodi-
ment of the present invention;

[0020] FIG. 5 is a flowchart of a process for preparing a
datagram for transmission through a switch fabric in accor-
dance with an embodiment of the present invention;

[0021] FIG. 6 is a schematic representation of an illustra-
tive packet in accordance with an embodiment of the present
invention;

[0022] FIG. 7 is a flowchart for a process for processing
packets in accordance with an embodiment of the present
invention;

[0023] FIG. 8 is a first schematic flow diagram illustrating
the process for processing packets set forth in FIG. 7 in a
port controller in accordance with an embodiment of the
present invention;

[0024] FIG. 9 is a second schematic flow diagram illus-
trating the process for processing packets set forth in FIG.
7 in a port controller in accordance with an embodiment of
the present invention;

May 20, 2004

[0025] FIG. 10 is a schematic diagram representing an
illustration of the processing and storing of a plurality of
incoming packets entering a port controller in accordance
with an embodiment of the present invention;

[0026] FIG. 11 is a flowchart for a process for separating
a header portion from a body portion of a packet in accor-
dance with an embodiment of the present invention;

[0027] FIG. 12 is a flowchart for a process for storing a
body portion of a packet in memory after separation from the
header portion in accordance with an embodiment of the
present invention;

[0028] FIG. 13 is a flowchart for a process for storing a
processed header portion of a packet in memory in accor-
dance with an embodiment of the present invention;

[0029] FIG. 14 is a schematic diagram representing the
storing of cells of an incoming packet into memory in
accordance with an embodiment of the present invention;

[0030] FIG. 15 is a flowchart of a process for transferring
a packet from a port controller to a switch fabric in a switch
fabric system in accordance with an embodiment of the
present invention;

[0031] FIG. 16 is a flowchart of a process for generating
linked lists of packets queued for egress in accordance with
an embodiment of the present invention;

[0032] FIG. 17 is a schematic diagram depicting the
linking of packets stored in the packet memory to their
assigned output priority queues in accordance with an
embodiment of the present invention;

[0033] FIG. 18 is a schematic diagram illustrating an
exemplary packet stored in the packet memory illustrated in
FIG. 17 in accordance with an embodiment of the present
invention;

[0034] FIG. 19 is a schematic flow diagram illustrating a
process for processing a packet exiting a switch system via
a port controller in accordance with an embodiment of the
present invention;

[0035] FIG. 20 is a schematic block diagram of an archi-
tecture of a switch fabric component in accordance with an
embodiment of the present invention;

[0036] FIG. 21 is a flowchart of a process for sending a
datagram through a switch fabric in accordance with an
embodiment of the present invention;

[0037] FIG. 22 is a schematic block diagram of a switch
fabric comprising four 8 by 8 switch fabric components to
illustrate the implementation of switching tables for routing
packets through the switch fabric in accordance with an
embodiment of the present invention;

[0038] FIGS. 23, 24, 25, 26 are schematic illustrations of
exemplary switching tables for the switch fabric depicted in
FIG. 22 in accordance with an embodiment of the present
invention;

[0039] FIG. 27 is a flowchart for a process for processing
a packet through a switch fabric component in accordance
with an embodiment of the present invention;

[0040] FIG. 28 is a schematic diagram illustrating a
process for processing a packet through a switch fabric

US 2004/0095927 Al

component where the determination result comprises a port
bitmap in accordance with an embodiment of the present
invention;

[0041] FIG. 29 is a schematic diagram illustrating an
exemplary utilization of a port bitmap (in particular, an 8 bit
port bitmap) in a switch fabric component in accordance
with an embodiment of the present invention;

[0042] FIG. 30 is a schematic representation of an exem-
plary destination vector, an egress mask for the destination
vector and a modified destination vector in accordance with
an embodiment of the present invention;

[0043] FIG. 31 is a schematic diagram illustrating another
process for processing a packet through a switch fabric
component where the determination result comprises a des-
tination vector in accordance with an embodiment of the
present invention;

[0044] FIG. 32 is a flowchart of a process for updating a
switching table in a switch fabric in accordance with an
embodiment of the present invention;

[0045] FIG. 33 is a schematic diagram illustrating an
exemplary arrangement for back propagation of status and
control information in a switch fabric in accordance with an
embodiment of the present invention;

[0046] FIG. 34 is a flowchart of a process for updating
switching tables in a switch fabric system in accordance
with an embodiment of the present invention;

[0047] FIG. 35 is a schematic representation of a status
packet that may be utilized in the process set forth in FIG.
34 in accordance with a preferred embodiment of the present
invention;

[0048] FIG. 36 is a flowchart of a process for storing an
incoming datagram in a switch matrix of a switch fabric in
accordance with an embodiment of the present invention;

[0049] FIG. 37 is a schematic diagram illustrating the
ingress and storage of packets (i.e., datagrams) in a switch
fabric component in accordance with an embodiment of the
present invention;

[0050] FIG. 38 is a schematic diagram of a scenario
illustrating the ingress and storage of packets in a switch
fabric component having a pair of two-portion input buffers
and a two-memory-bank switch matrix in accordance with
an embodiment of the present invention;

[0051] FIG. 39 is a schematic diagram of the scenario set
forth in FIG. 38 at cycle count 23 in accordance with an
embodiment of the present invention;

[0052] FIG. 40 is a schematic diagram of the scenario set
forth in FIG. 38 at cycle count 103 in accordance with an
embodiment of the present invention;

[0053] FIG. 41 is a schematic illustration of a scenario
similar to scenario presented in FIG. 38 where trivial dual
input buffers are used instead of the dual two-portion buffers
used in FIG. 38 in accordance with an embodiment of the
present invention;

[0054] FIG. 42 is a schematic diagram illustrating
memory access size for a switch matrix memory bank in
accordance with an embodiment of the present invention;
and

May 20, 2004

[0055] FIG. 43 is a schematic diagram of a hardware
implementation of one embodiment of the present invention.

DETAILED DESCRIPTION

[0056] An Ethernet switch fabric chipset system is dis-
closed utilizing a switch fabric topology and a multiproces-
sor port controller capable of supporting wire-speed, non-
blocking, Layer 2 and Layer 3 switching of 32 Gigabit
Ethernet data streams, and which is expandable to what is
known in the art as network processor. For a basic under-
standing of switching technology, the reader is directed to:
The Switch Book: the complete guide to LAN switching
technology by Rich Seifert (John Wiley & Sons, Inc. 2000)
which is incorporated herein by reference in its entirety for
all purposes.

[0057] With the system set forth herein, determinations as
to which of the switch fabric components transient data
flows can be directed may be made sufficiently fast enough
to maximize data flow through the switch fabric system
while preventing blockage by other data flow traffic. This is
accomplished by making as much of the determination as
possible before the transient occurs and reducing the deci-
sion to consideration of simple the next switch fabric
component in the path, rather than the entire path through
the switch fabric. As part of this solution, a separate control
path may be provided in addition to the data path to provide
for sending status and control information back through the
switch fabric and to help reduce or eliminate the need for
handshaking in the control path. As another part of this
solution, a switching table may be provided inside each
switch fabric component which can be updated utilizing the
control path.

System Configuration

[0058] FIG. 1is a schematic block diagram of a multi-port
switch architecture 100 in accordance with an embodiment
of the present invention. In general, this multi-port switch
architecture 100 comprises a plurality of port controllers (32
port controllers in the illustrated embodiment) 102 intercon-
nected to one another via a switch fabric 104, and a network
control processor 106 connected to the port controllers 102
and the switch fabric 104. As illustrated in FIG. 1, the
connections (108, 110, 112 for example) between the cle-
ments are bi-directional.

[0059] With further reference to FIG. 1, in this particular
embodiment of the multi-port switch architecture 100, the
switch fabric may comprise a plurality of switch fabric
components (12 switch fabric components in the illustrated
embodiment) 104a, 1045, 104c, 104d, 104e, 104f, 104g,
1044, 104i, 104j, 104k, 104/ connected together via bi-
directional conduits (e.g., conduit 110) in what is known as
a Clos network arrangement/topology. The particular
arrangement depicted in FIG. 1 is a known as a three-stage
or layer Clos network topology having a middle stage of
switch fabric components (104¢, 104f, 104g, 104%) connect-
ing a pair of outer stages of switch fabric components (1044,
1045, 104c, 104d and 1044, 104, 104k, 104)).

[0060] With the Clos network topology for the switch
fabric 104, each outer stage switch fabric component 1044,
1045, 104c, 1044 and 104i, 104, 104k, 104/ is directly
coupled via independent conduits to each of the middle stage
switch fabric components 104e, 104f, 104g, 1044. For

US 2004/0095927 Al

example, in FIG. 1, switch fabric component 1044 has four
conduits coupling it to the four middle stage switch fabric
components 104e, 104f, 104g, 104/. Conversely, with the
Clos network topology for the switch fabric 104, each of the
middle stage switch fabric components 104¢, 104f, 104g,
1044 is directly coupled via independent conduits to each of
the outer stage switch fabric components 104a, 1045, 104c,
104d, 104i, 1045, 1044, 104/. Thus, in the embodiment
illustrated in FIG. 1, each of the middle stage switch fabric
components 104e, 104f, 104g, 104/ has a direct and inde-
pendent connection to each of the outer stage switch fabric
components 104a, 104b, 104¢, 1044, 104i, 104/, 104k, 104/.

[0061] Tt should also be noted that for purposes of a single
packet traversing the switch fabric, one may consider the
particular embodiment illustrated in FIG. 1, as having an
input stage comprising a single outer stage switch fabric
component, a middle stage comprising the middle stage
switch fabric components and an output stage comprising
the remaining outer stage switch fabric components due to
the bi-directional connectivity between the switch fabric
components.

[0062] Each outer layer switch fabric component 104a,
1045, 104c, 104d, 104, 104/, 104k, 104/ has a plurality of
the port controllers directly coupled/connected thereto. In
the embodiment illustrated in FIG. 1, each of the outer layer
switch fabric components has four port controllers coupled
to it by four conduits, one conduit (e.g., conduit 108) for
each port controller. For example, switch fabric 104a has
port controllers 102a, 102b, 102¢, 1024 coupled to it by four
separate bi-directional conduits. In one aspect of this
embodiment, the port controllers 102 may all comprise
gigabit port controllers.

[0063] A feature of the Clos network topology of the
switch fabric is that it is a non-blocking topology: there is a
path from every port controller to all of the other port
controllers not directly coupled to the same switch fabric
component through every one of the middle stage switch
fabric components 104¢, 104f, 104g, 104/. For example, the
port controllers 1024, 102b, 102¢, 102d connected to switch
fabric component 1044 are connected to the port controllers
coupled to all of the other outer stage switch fabric compo-
nents 104b, 104¢, 1044, 104i, 104j, 104k, 1041 via each of
the middle stage switch fabric components 104e, 1041, 104g,
104h.

[0064] In apreferred embodiment of the configuration 100
shown in FIG. 1, there may be 16 Gigabit Ethernet port
controllers provided to each outer stage of switch fabric
components for a total of 32 Gigabit Ethernet port control-
lers. In this preferred embodiment, maximum thruput
demand from each set of 16 Gigabit Ethernet port controllers
may be 16x2 (duplex) Gigabit Ethernet Data Streams=32
Gbps+Overhead for a maximum thruput demand in both
directions of: [(32 Gbps+Overhead)+(32 Gbps+Over-
head)]=64 Gbps+Overhead. In such a preferred embodi-
ment, each of the switch fabric components in the 32-Gi-
gabit Ethernet port configuration, may be a modified 8-Port
Crossbar Switch Fabric with a thruput capability of 16 Gbps
plus Overhead. Since the middle stage of the switch fabric
comprises contains 4 of these devices, thruput of the middle
stage may total 64 Gbps+Overhead.

[0065] FIG. 2 is a schematic block diagram of another
multi-port switch architecture 200 in accordance with an

May 20, 2004

embodiment of the present invention. In this embodiment,
the multi-port switch architecture 200 comprises four port
controllers 202a, 202b, 202¢, 202d interconnected together
via a switch fabric comprising a single switch fabric com-
ponent 204. In one aspect of such an embodiment, the port
controllers 202a, 202b, 202¢, 202d may comprise fast Eth-
ernet port controllers having a similar architecture as that of
a port controller as that as illustrated in FIG. 1.

[0066] FIG. 3 is a schematic block diagram of a gigabit
up-linking 300 in accordance with an embodiment of the
present invention. The up-linking 300 comprises first and
second port controllers 3024, 302b bi-directionally con-
nected together. In one aspect of such an embodiment, one
of the port controllers may comprises a fast Ethernet port
controller 3024 such as the type used in the multi-port switch
architecture 200 depicted in FIG. 2 and the other port
controller 302H may comprise a gigabit port controller such
as the type used in the multi-port switch architecture 100
depicted in FIG. 1.

Port Controller

[0067] Each port controller implements a technique
known as pipelining. Pipelining is an implementation tech-
nique in which multiple instructions are overlapped in
execution. A pipeline may be defined as a series of stages,
where some work is done at each stage. In general, the port
controller has a first pipeline for receiving Ethernet packets
from the physical interface (PHY), processes them, and
transmits them to the Switch Fabric. The port controller also
has a similar but less complex second pipeline for receiving
Ethernet Packets from the switch fabric and transmits them
to the physical interface (PHY).

[0068] In general, there may be at least two preferred
versions of the port controller. A first preferred version may
provide wire-speed packet processing and other port con-
troller functions, for a single (duplexed) Gigabit Ethernet
line. The second preferred version may provide the same
functionality for 8-Fast Ethernet (or Ethernet) lines. These
devices may be configured with the switch fabric to provide
wire speed Layer 2/Layer 3 switching for up to 32 Gigabit
Ethernet Lines, or up to 256 Fast Ethernet Lines.

[0069] FIG. 4 is a schematic block diagram of an archi-
tecture of a port controller 400 in accordance with an
embodiment of the present invention. The port controller
400 includes a media access control (MAC) unit 402, an
ingress direct memory access (Ingress DMA or IDMA) unit
404, a header queue 406, a packet processor unit 408, a
dynamic random access memory (DRAM) controller 410,
an output orientated scheduler 412, an interface transmitter
414, a free cell manager 416, a synchronous static random
access memory (SSRAM) controller 418, an interface
receiver 420, an egress controller 422, an egress buffer 424,
and a network interface 426. The DRAM controller 410 is
coupled to a first memory called an external packet buffer/
memory, which is preferably some sort of dynamic random
access memory such as synchronous DRAM (SDRAM).
The DRAM controller 410 controls the first memory/exter-
nal packet buffer and reads/writes data from/to the external
packet buffer. The SSRAM controller 418 is coupled to a
second memory of the port controller, preferably some sort
of synchronous static random access memory (SSRAM).

[0070] The MAC interface 402 is connectable to an Eth-
ernet physical layer interface (PHY) to receive and transmit

US 2004/0095927 Al

data packets. In one embodiment, the MAC interface 402
may comprise a Gigabit MAC with GMII interface. The
MAC interface 402 is coupled to the Ingress DMA 404 to
permit transmitting of incoming data packets received by the
MAC interface to the Ingress DMA 404.

[0071] The Ingress DMA 404 is coupled to the header
queue 406, the DRAM controller 410 and the free cell
manager 416. Upon receipt of an incoming data packet from
MAC interface 402, the Ingress DMA 404 separates the
header portion of the packet from the body portion of the
packet. The header portion of the packet is then transferred
by the Ingress DMA 404 to the header queue 406 while the
body portion of the packet is transferred to the DRAM
controller 410 for storage in the external packet buffer in a
linked list. The Ingress DMA 404 is also responsible for
defining a link to a space reserved in memory to the header
portion being processed by the packet processor 408 with
which the Ingress DMA uses to store the processed header
portion in memory after the header portion has been pro-
cessed. The Ingress DMA also is responsible for notifying
the output oriented scheduler 412 when the storage of a
packet is completed.

[0072] The header queue 406 is coupled to the packet
processor unit 408. In a preferred embodiment, the header
queue 406 stores the headers it receives from the from
Ingress DMA 404 for first in, first out (FIFO) processing by
the packet processor unit 408.

[0073] The packet processor unit 408 serves to analyzes
and processes packets. In one embodiment, the packet
processor comprises a plurality of packet processors. While
in the embodiment illustrated in FIG. 4, the packet proces-
sor unit comprises two packet processors—P, and P, 4084,
408b, which alternate in the processing of headers in the
header queue 406.

[0074] The packet processors 408 determines how to
process the header portions of incoming packets. Processing
of the header portions by the packet processor 408 includes
determining the destination of a packet by utilizing a lookup
address table, attaching an internal tag (which includes a
destination vector) to the header portion of the packet, and
then notifying the header queue 406 of the completion of
processing. The address lookup is done by accessing (via the
SSRAM controller 418) an external address table stored in
the external SSRAM (The SSRAM may also be used to store
other necessary information).

[0075] The output oriented scheduler 412 receives a noti-
fication from the Ingress DMA when a packet has been
processed. The output oriented scheduler 412 is also coupled
to the DRAM controller 410 so that the output oriented
scheduler 412 can retrieve processed packets from external
packet buffer via the DRAM controller 410. Upon retrieving
a processed packet from the packet buffer, the output ori-
entated scheduler 412 transfers the retrieved packet to the
interface transmitter 414 (or the network interface 426
depending to the defined priority) for transmission out of the
port controller 400.

[0076] The DRAM controller 410 executes a writing com-
mand to write data from the Ingress DMA 404 into the
external packet buffer. The DRAM controller 410 also
executes reads and transfers of data from the packet buffer
to the output orientated scheduler 412 upon receipt of read
commands from the output oriented scheduler 412.

May 20, 2004

[0077] The interface transmitter 414 is coupled to the
output orientated scheduler 412. The interface transmitter
has an external I/O to permit connection to another port
controller or a switch fabric component. The output orien-
tated scheduler 412 sends processed packets to the interface
transmitter 414 to permit transmission of the processed
packet by the interface transmitter 414 to a switch fabric
component or another port controller via its external I/O.

[0078] The free cell manager 416 is coupled to the Ingress
DMA 404 and the output orientated scheduler 412 and
thereby in communication with the DRAM controller 410.
The free cell manager 416 manages the external packet
buffer space and notifies the Ingress DMA 404 of available
space in memory for storing data and frees up memory space
after data (i.e., processed packets) is retrieved by the output
oriented scheduler 412.

[0079] The interface receiver 420 has an external I/O
connectable to a switch fabric component or another port
controller to permit receipt of packets from the switch fabric
component or other port controller. The egress controller
422 is coupled to the interface receiver 420. Coupled to the
egress controller 422 are the egress buffer 424 and MAC
interface 402. The egress controller 422 temporally stores
outgoing packets it received from the interface receiver in
the egress buffer 424 and then subsequently transfers the
stored packets from the egress buffer 424 to the MAC
interface 402 for transmission to the PHY.

[0080] The network interface unit 426 exchanges data
with the host processor through am external I/O or an
internal channel. The network interface unit 426 analyzes
the control packet made by the host processor, reads internal
registers and modifies the content of a lookup table. In a
preferred embodiment, every internal unit of the port con-
troller is connected to the network interface (NPI) bus so that
all of the internal units may be controlled by the host
processor via network interface unit 426.

[0081] The SSRAM controller 4018 is coupled to the
second memory (the SSRAM) and controls access to the
SSRAM. The network interface unit 4026 and the packet
processing unit 408 are coupled to SSRAM controller and
thereby access the SSRAM. The SSRAM controller 4018
arbitrates requests from network interface unit and the
packet processing unit.

Packet Processing

[0082] In the port controller 400, packets may be saved in
the packet memory/buffer according to the order they are
received. However, in a preferred embodiment of the present
invention, a more flexible packet storing arrangement may
be utilized which allows the changing the saving order
between header fields and body fields of incoming packets.

[0083] Typically, when processing a packet with an Eth-
ernet header and a TCP/IP header, only the Ethernet Field or
IP Field may be used in a conventional switch to determine
switching directions. In contrast, in the embodiment of the
switch fabric system set forth herein, both the Ethernet and
IP fields as well as the TCP fields may be used to determine
switching directions. However, with such a processing capa-
bility, such a sequential packet saving order routine may
limit the amount of information that can be acquired during
processing of a packet by being incapable (or impractical) of

US 2004/0095927 Al

providing sufficient time and/or efficiency to process the
header. By changing the saving order between header fields
and body fields, more information may be acquired during
processing and provide an extra timing margin for process-
ing header fields during saving body fields while maximiz-
ing efficiency and reducing memory overhead.

[0084] FIG. 5 is a flowchart of a process 500 for preparing
a datagram for transmission through a switch fabric in
accordance with an embodiment of the present invention. A
datagram having a header portion and a body portion is first
received in operation 502. The header portion is separated
from the body portion and then forwarded for processing in
operations 504 and 506. In operation 508, the separated
body portion is stored in a memory. After processing, the
header portion is received and stored in the memory in
operations 510 and 512.

[0085] Inan embodiment of the present invention, a space
in the memory may be reserved for storing the header
portion prior to storing the body portion in the memory with
a link to the reserved space also being generated for locating
the reserved space. As an option in such an embodiment,
storing the processed header may further include utilizing
the link to locate the reserved space and then storing the
processed header in the reserved space.

[0086] In an aspect of the present invention, the body
portion may be divided into a plurality of cells. In such an
aspect, storing the body portion in the memory may further
include sequentially storing each cell in the memory, and
generating links between the sequentially stored cells. In
another aspect of the present invention, the processed header
portion may include a destination vector indicating a desti-
nation in the switch fabric system to which the packet is to
be routed. In a preferred embodiment of such an aspect, the
destination vector may comprise 32 bits of data.

[0087] In another embodiment of the present invention,
the datagram may be assigned to an output priority queue for
subsequent transmission through the switch fabric.

[0088] FIG. 6 is a schematic representation of an illustra-
tive packet 600 in accordance with an embodiment of the
present invention. A packet may be defined as a unit of data
that is routed between an origin and a destination on a packet
switched network. A packet 600 comprises a header portion
or field (“header”) 602 and a body portion or field (“body™)
604. The header portion 602 includes control information
that is used for switching while the body 604 generally
comprises the remainder of the packet.

[0089] In the illustrative packet depicted in FIG. 6, the
header portion 602 has been processed and includes a
destination vector 606 for indicating the destination of the
packet, a source vector 608 for indicating the source of the
packet, and a length vector 610 indicating the length of the
packet (collectively, they are also known as an “internal tag”
or “internal tag field”). The header portion 602 may also
include the MAC/TCP/IP of the packet and some application
data as well.

[0090] FIG. 7 is a flowchart for a process 700 for pro-
cessing packets 600 in accordance with an embodiment of
the present invention. In operation 702, an incoming packet
is received. The incoming packet includes a header portion
and a body portion. The header portion of the packet is
separated from the body portion in operation 704. The

May 20, 2004

separated body portion is then stored in memory in operation
706. In operation 2308, the header portion processed, pref-
erably concurrent to operation 2306. In operation 2310, a
subsequent (or second) packet is received with the process
700 repeating for this second packet. Once the header
portion of the first incoming packet has been processed, the
processed header portion is then stored in the memory in
operation 712.

[0091] FIG. 8 is a first schematic flow diagram illustrating
the process 700 for processing packets set forth in FIG. 7 in
a port controller 400 in accordance with an embodiment of
the present invention. An incoming packet 600 is received
into the port controller via the MAC interface 402 which
routes the packet to the Ingress DMA 404 (sce arrow §02).
The header portion 602 of the packet is separated from the
body 604 of the packet in the Ingress DMA 404 (see
operation 704). The Ingress DMA 404 then forwards the
header portion 602 to the header queue 406 for processing
(see arrow 806) and stores the body portion 604 in memory
(“packet memory”) 804 via the DRAM controller 410 (see
arrow 808 and operation 706).

[0092] For processing of the header portion 602 (see
operation 708), the header queue 406 transfers the header
portion 602 to an available package processor in the package
processor unit 408 (see arrow 810). After the header portion
has been processed by the packet processor unit 408, the
processed header portion is returned to the header queue 406
(see arrow 812).

[0093] FIG. 9 is a second schematic flow diagram illus-
trating the process 700 for processing packets set forth in
FIG. 7 in a port controller 400 in accordance with an
embodiment of the present invention. After returning to the
header queue 406, the processed header portion is then
subsequently stored in the packet memory 804 via the
Ingress DMA 404 and DRAM controller 410 (see arrow
902).

[0094] Upon storing of the processed header portion, the
Ingress DMA 404 notifies the output orientated scheduler
412 that the packet is now ready to be transmitted and
provides the output orientated scheduler with information
for retrieving the packet from the packet memory 804 (see
arrow 904). When the output orientated scheduler 412 is
ready to transmit the packet, the output orientated scheduler
412 retrieves the packet from the packet memory 8046 and
forwards the packet to the interface transmitter 414 which
outputs the packet from the port controller 400 (see arrow
906).

[0095] FIG. 10 is a schematic diagram representing an
illustration of the processing and storing of a plurality of
incoming packets entering a port controller in accordance
with an embodiment of the present invention. In this illus-
tration, a first incoming packet 1002 is received by Ingress
DMA 404 of a port controller followed by a second packet
1004, a third packet 1008 and a fourth packet 1008. As
mentioned previously, each packet comprises a header por-
tion (10024, 10044, 1006, 10082) and body portion (10025,
10045, 10065, 1008b). As each packet is received the header
portion from the body portion by the Ingress DMA 404. The
separated body portions are then stored in the packet
memory 804 while the header portions are forwarded for
processing by the packet processor unit 408 (Note: header
queue 406 has been left out of FIG. 10 for simplification

US 2004/0095927 Al

purposes). Once each of the header portions have been
processed, they too are then stored in the packet memory
804 via the Ingress DMA 404 (Note the DRAM controller
410 has also been left out of FIG. 10 for simplification

purposes).

[0096] As illustrated in FIG. 10, the body portions and
processed header portions are stored in the packet memory
in the order that they are received by the Ingress DMA. For
example, upon receipt and separation of the header and body
portions of the first packet 1002, the first body portion 10025
is stored in memory 804 while the first header portion 10024
is transferred for processing by the packet processor unit
408. While the first header portion 10024 is being processed,
the Ingress DMA 404 receives the second packet 1004 and
separates header and body portions of the second packet.
The second body portion 1004b is then stored in memory
while the second header portion 1004a is forwarded for
processing. At this point in time, processing of the first
header portion 10024 has been completed and the processed
first header portion is transferred from processing and stored
in memory 804.

[0097] Next, while the second header portion 1004a is
being processed, the Ingress DMA receives the third packet
1006 and separates header and body portions of the third
packet. The third body portion 1006b is then stored in the
memory while the third header portion 10064 is forwarded
for processing. By this time, processing of the second header
portion 10044 has been completed and the processed second
header portion is transferred from processing and stored in
memory. As the third header portion 10064 is being pro-
cessed, the Ingress DMA receives the fourth packet 1008
and separates header and body portions of the fourth packet.
The fourth body portion 10085 is then stored in the packet
memory while the fourth header portion 10084 is forwarded
for processing. By this time, processing of the third header
portion 10064 has been completed and the processed third
header portion is transferred from processing and stored in
memory. Finally, when the fourth header portion 1008 has
been processed, it too is transferred from processing and
stored in memory.

[0098] FIG. 11 is a flowchart for a process 704 for
separating a header portion from a body portion of a packet
in accordance with an embodiment of the present invention.
In operation A4302, an incoming packet is divided into cells
as it is received. Included in the first cell of the incoming
packet is the header portion. The header portion may include
the MAC/IP/TCP header(s) as well as application data. In a
preferred embodiment, each cell may have a size of 128
bytes. In operation 1104, space is reserved in memory for the
header portion (i.e., the first cell). A pointer to the reserved
space in memory is then generated in operation 1106. The
header portion is then forwarded to for processing in opera-
tion 1108.

[0099] FIG. 12 is a flowchart for a process 706 for storing
a body portion of a packet in memory after separation from
the header portion in accordance with an embodiment of the
present invention. In operation 1202, the first received cell
of the body portion of a packet (i.e., the second cell of the
incoming packet) is stored in memory. A pointer is generated
in operation 1204 to link the cell to the space reserved for the
header portion (i.e., the space reserved for the first cell of the
packet). Each subsequently incoming cell of the incoming

May 20, 2004

packet is also stored in memory with a pointer from newly
stored cell to the previously stored cell of the packet to link
each of the stored cells together (see decision 1206 and
operations 1208 and 1210).

[0100] FIG. 13 is a flowchart for a process 712 for storing
a processed header portion of a packet in memory in
accordance with an embodiment of the present invention.
The processed header portion is received in operation 1302.
In operation 1304, the space reserved in memory for the
processed header portion is located using the pointer to the
reserved space (see operation 1204). The processed header
is then stored in the reserved space in operation 1306.

[0101] FIG. 14 is a schematic diagram representing the
storing of cells of an incoming packet into memory in
accordance with an embodiment of the present invention.
The incoming packet 1400 is divided into a plurality of cells
(Cy 1402, C, 1404, C, 1406, C, 1408, C, 1410) as it is
received by the Ingress DMA 404 (see operation 1102 of
FIG. 11). As illustrated in FIG. 14, the first cell C, 1402
contains the header portion of the packet while the remain-
ing cells C; 1404, C, 1406, C, 1408, C, 1410 contain the
body portion of the packet.

[0102] In the packet memory 1412, a space 1414 is
reserved for the first cell C, 1402 since it contains the header
and a pointer to the reserved space is generated (see opera-
tions 1104 and 1106 of FIG. 11). In one embodiment, the
size of the reserved space may be larger than the size of the
received first cell C, 1402 to provide sufficient space for any
additional data that that may be added to the header portion
during processing (see 708 of FIG. 7). A pointer 1416 to the
reserved space 1414 is then generated so that the first cell C,
1402 containing the now processed header portion can be
subsequently stored in the reserved space (see operation
1106 of FIG. 11).

[0103] Next, the second received cell C; 1404, which
contains a first segment of the body portion of the incoming
packet 1400 is stored in the packet memory 1412 (see
operation 1202 of FIG. 12) and a pointer 1418 is generated
to link the stored cell C; 1404 to the reserved space (see
operation 1204 of FIG. 12). Once the third cell C, 1406 is
received, it too may be stored in the packet memory 1412
and a pointer 1420 generated to link the stored cell C, 1406
to the previously stored cell C; 1404 (see operations 1206,
1208, and 1210 of FIG. 12). In a similar fashion, as the
fourth and fifth cells C; 1408, C, 1410 are received, they
each may be stored in the packet memory 1412 and have
pointers 1422, 1424 generated linking cell C; to cell C, and
C, to cell C; respectively. In accordance with the process set
forth in FIG. 12, since the fifth cell C, 1410 is the last cell
of the packet 1400, the fifth cell C, does contain a pointer
(see 1426).

[0104] FIG. 15 is a flowchart of a process 1500 for
transferring a packet from a port controller to a switch fabric
in a switch fabric system in accordance with an embodiment
of the present invention. Notification is received in operation
1502 indicating that a packet has been processed in the port
controller. The processed packet is assigned and linked to an
output priority queue in operations 1504 and 1506. Subse-
quently, the packet is retrieved via the link in operation 1508
and transmitted from the port controller to the switch fabric
in operation 1510.

US 2004/0095927 Al

[0105] In an aspect of the present invention, the packet
may be linked to the assigned output priority queue in a
linked list.

[0106] In an embodiment of the present invention, a
subsequently processed packet may be assigned and linked
to the same output priority queue. As an option, a pointer
may link the packet to the subsequently processed packet. In
another embodiment of the present invention, the packet
may be stored in and retrieved from a memory. As a further
option, the packet may be stored in the memory in a plurality
of linked cells.

[0107] In another aspect of the present invention, the
processed packet may include a destination vector indicating
one or more destinations for the packet accessible via the
switch fabric.

[0108] The present invention may also include a data
structure for storing the packets in the memory of a port
controller. The data structure may comprise a plurality of
queues with each queue having a head/start address associ-
ated therewith. One or more packets are stored in the
memory with each packet assigned to one of the queues. For
each queue, the start address may have a link to a first of the
packets in the queue and each packet in the queue may a link
to the next subsequent packet in the queue. In one aspect,
each packet may be stored in the memory in a plurality of
linked cells. In a preferred embodiment, a pointer links a cell
of the packet to a subsequent cell of the packet with the last
cell of the packet having a Null pointer.

[0109] FIG. 16 is a flowchart of a process 1600 for
generating linked lists of packets queued for egress in
accordance with an embodiment of the present invention. In
operation 1602, the Ingress DMA 404 notifies the output
orientated scheduler 412 that a header portion of a packet
has been processed. Subsequently, the Ingress DMA
receives back from the output orientated scheduler informa-
tion regarding to which output queue (for egress from the
port controller) the packet has been assigned in operation
1984. A pointer is generated in operation 1606 linking the
header portion now stored in the packet memory to the
assigned output queue. If the assigned queue does not have
any other packets already assigned to it, then the pointer
links the processed header portion to the start address of the
assigned queue. On the other hand if the assigned queue
does already have one or more other packets assigned to it,
then the pointer links the processed header portion to stored
header portion of another packet placed just before it in the
queue. Operations 3802, 3804, and 3806 are repeated for
each header portion processed by the port controller (see
operation 1608).

[0110] FIG. 17 is a schematic diagram depicting the
linking of packets stored in the packet memory 804 to their
assigned output priority queues in accordance with an
embodiment of the present invention. The output orientated
scheduler 412 has a plurality of output priority queues 1702,
1704, 1706, 1708 which in the illustrated embodiment
comprise four queues. In a preferred embodiment, both the
output orientated scheduler and the ingress DMA know the
start address of each queue.

[0111] Assigned to each priority queue are a plurality of
packets stored in the packet memory, with the packets
assigned to a particular queue depicted beneath the queue to

May 20, 2004

which they are assigned. Because each queue is a first-in,
first-out (FIFO), each stored packet has a next packet pointer
(“NPP”) providing a link from one packet in a particular
queue to the start of the packet following next in the same
assigned queue. Additional arrows show how each cell
points at the address where its next cell is saved. For
example, with reference to queue 01702 in FIG. 17, the first
packet 1710 stored in the packet memory assigned to queue
01702 has a pointer 1712 to the start of the stored packet
1714 next in the queue which in turn has a pointer 1716 to
the start of the stored packet 1718 third in the queue and so
on.

[0112] FIG. 18 is a schematic diagram illustrating an
exemplary packet 1710 stored in the packet memory illus-
trated in FIG. 17 in accordance with an embodiment of the
present invention. The exemplary packet 1710 is divided
into a plurality of cells with the first cell 1802 includes the
processed header portion of the packet and the remaining
cells 1804, 1806, 1808, 1810 comprising the body of the
packet. Cells 1802, 1804, 1806, 1808 cach have a next cell
pointer (“NCP”) 1812, 1814, 1816, 1818 to the start of the
next subsequent cell. Every NCP points at the next cell
except the final one of the last cell of a packet. The final NCP
can have any value but it may be considered as invalid by the
output oriented scheduler because output oriented scheduler
knows the size of the packet from internal tag information.

[0113] In one embodiment, the ingress DMA 404 is
responsible for generating the links/pointers. In a preferred
embodiment the size of a pointer may be 16 bits (2 bytes).

[0114] As mentioned previously, the first cell 1802 has the
processed header portion which includes an internal tag
which may indicate the size of the packet and the destination
port from which the packet is to be output from the switch
fabric system. Also, the first cell 1802 includes the next
packet pointer 1712 pointing to the start of next stored
packet 1714 in queue 01702.

[0115] Each queue may be a first-in, first-out (FIFO).
When the output orientated scheduler 412 is ready to
retrieve a packet assigned to one of its FIFO queues from the
packet memory, the output orientated scheduler may read the
NCP in each cell to find the next cell of the packet. In one
embodiment, the NCP of the last cell may be ignored by the
output orientated scheduler based on its knowledge of the
size of the packet it is retrieving.

[0116] FIG. 19 is a schematic flow diagram illustrating a
process for processing a packet exiting a switch system via
a port controller 400 in accordance with an embodiment of
the present invention. In this process, the packet has already
been processed prior to being received by the port controller
400. The exiting packet is first received into the port
controller by the interface receiver 420. The interface
receiver 420 forwards the packet to egress controller 422
which may then transfer the packet to the egress buffer 424.
When the egress controller is ready to send the exiting
packet out of the port controller, the egress controller 422
retrieves the packet from the egress buffer 424 and transfers
the packet to the MAC interface 402 for transmitting the
packet out of the port controller (see arrow 1904).

Switch Fabric

[0117] FIG. 20 is a schematic block diagram of an archi-
tecture of a switch fabric component 2000 in accordance

US 2004/0095927 Al

with an embodiment of the present invention. The switch
fabric component 2000 includes an interface receiver 2002,
a switch matrix 2004, an interface transmitter 2006, a central
controller 2008, a free cell manager 2010, a queue manager
2012, and an external interface 2014.

[0118] For the sake of clarity and ease of comprehension,
only one interface receiver 2002 and one interface transmit-
ter 2006 are depicted in FIG. 20. However it should be
understood, that a switch fabric component may include
more than one interface receiver and more than one interface
transmitter. For example, in the 8x8 switch fabric compo-
nents (e.g., 104a) illustrated in FIG. 1, each switch fabric
component has eight interface receivers and eight interface
transmitters. Similarly, the switch fabric component 204
illustrated in FIG. 2 includes four interface receivers and
four interface transmitters.

[0119] The interface receiver 2002 serves to receive pack-
ets. The interface receiver has an external I/O for connection
to an interface transmitter of another switch fabric compo-
nent or to an interface transmitter 4014 of a port controller.
The interface receiver is coupled to the switch matrix 2004
to permit transferring of a received packet from the interface
receiver 2002 to the switch matrix 2004. The function of the
interface receiver 2002 is similar to that of interface receiver
420 of a port controller. The interface receiver 2002 con-
figures the link through external I/O and also interacts with
central controller 2008 for control.

[0120] The switch matrix 2004 provides a data path for
packets in the switch fabric component. The switch matrix
is coupled to both the interface receiver(s) 2002 and the
interface transmitter(s) 2006. The switch matrix receives
data (i.e., packets) from the interface receivers. Each incom-
ing packets is stored in memory of the switch matrix until
the packet can be transferred to an interface transmitter 2006
for transmission out of the switch fabric component. In one
preferred embodiment, the switch matrix has 64 Kbytes of
memory.

[0121] As mentioned above, the interface transmitter 2006
is coupled to the switch matrix 2004. The interface trans-
mitter is connectable to the interface receiver of another
switch fabric component or that of a port controller via an
external I/O. The interface transmitter 2006 transmits pack-
ets from the switch matrix out of the switch fabric compo-
nent. Each interface transmitter 2006 may be connected
externally to an interface receiver of another switch fabric
component or a port controller and may configure the link
through external I/O. Each interface transmitter 2006 also
interacts with central controller 2008 for control.

[0122] The central controller 2008 is connected to and
controls every unit in the switch fabric component. The
central controller 2008 may include three components: an
ingress unit 20084, a matrix unit 20085 and an egress unit
2008c. The central controller 2008 manages the storing of
incoming packets in the memory of the switching matrix
according to free cell addresses provided by the free cell
manager 2010. The central controller 2008 also reads the
destination port from the destination vector of a packet and
stores the packet in a queue through the queue manager
2012. In addition, the central controller may generate signals
to transfer packets from the switch matrix to an interface
transmitter 2006 according to the information of the queue
manager 2012.

May 20, 2004

[0123] The free cell manager 2010 is coupled to the
central controller, and the queue manager 2012. The free cell
manager 2010 manages the free cells in the memory of the
switching matrix based on information provided via the
central controller 2008. In particular, the free cell manager
2010 maintains the information about the occupied cells and
the free cells in the switch matrix in a table and provides this
information to central controller 2008 and the queue man-
ager 2012.

[0124] The queue manager 2012 is coupled to the central
controller 2008 and the free cell manager 2010. The queue
manager 2012 receives information about incoming packets
and stores the information as a linked list by FIFO according
to output ports. The queue manager 2012 also manages the
queues of exiting packets.

[0125] The external interface 2014 is connected to the
central controller and the switch matrix. The function of the
external interface is the same as the network interface of the
port controller. The external interface exchanges control
packets with the internal channel via an external I/O, and
then analyzes these packets to maintain internal registers in
switch fabric component.

[0126] FIG. 21 is a flowchart of a process 2100 for
sending a datagram through a switch fabric in accordance
with an embodiment of the present invention. From a
received datagram, a destination vector is extracted (see
operations 2102 and 2104). The destination vector indicates
one or more destinations (i.e., Uni.-cast or multicast) of the
datagram. A port bitmap is generated for the datagram based
on the destination vector in operation 2106. The datagram is
subsequently transmitted in operation 2108 towards the
destination utilizing the port bitmap.

[0127] In an aspect of the present invention, the destina-
tion vector may comprise 32 bits of data. In another aspect
of the present invention, the port bitmap may comprise 8 bits
of data.

[0128] In an embodiment of the present invention, gener-
ating the port bitmap may further include obtaining all
destinations of the datagram from the destination vector and
then utilizing a switching table to determine through which
switch ports of the switch fabric component can the data-
gram be routed to reach the destinations. The port bitmap
may then be generated to indicate therein all of the deter-
mined switch ports through which the can the datagram be
routed to reach its intended destinations.

[0129] In another embodiment of the present invention,
transmitting the datagram may also include creating a mask
based on the port bitmap, and modifying the port bitmap
using the mask upon transmission of datagram. In such an
embodiment, modifying the port bitmap using the mask may
also include clearing the port bitmap of a data associated
with the destination that the datagram was transmitted
towards.

[0130] In a further embodiment of the present invention,
the availability of a switch port through which the datagram
may be routed to reach the destinations may also be deter-
mined. The datagram may then be transmitted through a
switch port determined to be available.

[0131] FIG. 22 is a schematic block diagram of a switch
fabric 2200 comprising four 8 by 8 switch fabric compo-

US 2004/0095927 Al

nents to illustrate the implementation of switching tables for
routing packets through the switch fabric in accordance with
an embodiment of the present invention. The underlying
principles discussed under this implementation may be
utilized with any switch fabric in accordance with the
present specification. For purposes of this discussion, is
important to remember that the switch fabric and the switch
fabric components are all bi-directional.

[0132] As illustrated in FIG. 22, the switch fabric 2200
comprises four 8 by 8 switch fabric components denoted as:
SF12202a, SF22202b, SF32202¢, and SF42202d. Each
switch fabric component has eight ports (“switch ports”).
For example, in FIG. 22, the eight switch ports of SF122024
are indicated as: 1/1, 2/1, 3/1, 4/1, 5/1, 6/1, 7/1, and 8/1
(“one-of one, two-of-one, three-of-one, . . . ” and so on). The
eight switch ports of SF2, SF3, and SF4 are similarly
denoted in FIG. 22. For example, the ports of SF22202b are
denoted using n/2, (where n is an integer between 1 and 8),
the ports of SF32202¢ are denoted using n/3, and the ports
of SF42202d are denoted using n/4 (where n is an integer
between 1 and 8).

[0133] In the illustrated switch fabric of FIG. 22, each
switch fabric component has two ports coupled to the two
adjacent switch fabric components. For example, ports 5/1
and 6/1 of SF12202a are coupled to ports 2/2 and 1/2 of
SF22202b, respectively, and ports 7/1 and 8/1 of SF122024
are coupled to ports 4/3 and 3/3 of SF32202c, respectively.

[0134] With continuing reference to FIG. 22, the switch
fabric 2200 also includes a plurality of device ports. For
purposes of this discussion, a device port may be defined as
a port of a switch fabric component which may be coupled
to an external device, (such as, for example, a port control-
ler) and are not connected to another switch fabric compo-
nent in the switch fabric. In the exemplary embodiment
illustrated in FIG. 22, the switch fabric has sixteen (16)
device ports (these are numbered 1 through 16 in FIG. 22)
with each switch fabric component having four device ports.
For example, SF12202a has device ports 1, 2, 3, and 4,
SF22202b has device ports 5, 6, 7, and 8, SF32202¢ has
device ports 9, 10, 1, and 12, and SF42202d has device ports
13, 14, 15, and 16.

Switching Tables

[0135] 1Inanembodiment of the present invention, switch-
ing tables may be utilized to help enhance flexibility of the
switch fabric. A switching table may be associated with each
switch fabric component to record which devices may be
reached through each port of a switch fabric component. In
other words, each switching table provides information as to
which ports of a particular switch fabric component may be
used (i.e., are accessible) to transmit a packet from out of the
particular switch fabric component.

[0136] FIGS. 23, 24, 25, 26 are schematic illustrations of
exemplary switching tables for the switch fabric 2200
depicted in FIG. 22 in accordance with an embodiment of
the present invention. In particular, the exemplary switching
table 2300 illustrated in FIG. 23 is for switch fabric com-
ponent SF122024, the exemplary switching table 2400 illus-
trated in FIG. 24 is for switch fabric component SF22202b,
the exemplary switching table 2500 illustrated in FIG. 25 is
for switch fabric component SF32202¢, and the exemplary
switching table 2600 illustrated in FIG. 26 is for switch
fabric component SF422024.

May 20, 2004

[0137] Each switching table may be represented as a grid
(e.g., a plurality of bitmap arrays) having a plurality of
columns 2302 for the device ports of the switch fabric and
a plurality of rows 2304 for the ports of the particular switch
fabric component. Together the columns and rows form the
bitmap arrays of the switching table. In this grid represen-
tation, a bitmap array comprises a row of boxes formed by
the columns and rows of the switching table grid. In the
boxes formed by the columns and rows of each grid are 1°s
O’s. A“1” in a box indicates that a particular device port is
accessible via the port of the particular row while a “0” in
a box indicates that a particular device port is not accessible
via the port of the particular row. Using such a representa-
tion, one can generate a bitmap a port of a switch fabric
component based on the array associated with the particular
port.

[0138] For example, with reference to FIG. 23 which
represents the switching table 2300 for switch fabric com-
ponent SF122024, one can ascertain the bitmap array for
port 1/1 by looking at the top row which is designated for
port 1/1. In this array, there is a “1” in the box under the
column for device port 1, and “0” in each of the boxes under
the rest of the columns. This indicates that only device port
1 is accessible via port 1/1 of SF12202a (i.e., a packet in SF1
whose destination is accessible via transmission through
device port 1 must be routed through port 1/1). Similarly,
referring to the row (i.e., array) which is designated for port
5/1, we see that there is a “1” in each of the boxes under the
columns for device ports 5,6, 7, 8,9, and 10, and “0” in each
of the boxes under the columns for device ports 1, 2, 3, 4,
11, 12,13, 14, 15, and 16. This indicates that device ports 5,
6,7,8,9,and 10 are accessible for a packet in SF1 via port
5/1 of SF12202aq.

[0139] It should be noted that in the exemplary illustrative
embodiment illustrated in FIGS. 22, and 23-d, the switching
tables have been generated to limit access from any port of
a switch fabric component to no more than six device ports.
This has been done to help simply understanding of the
travel of a packet through the switch fabric 2200 of FIG. 22.
It should be understood that for the switch fabric 2200 in
FIG. 22, that a port of a switch fabric component could have
access to up to twelve ports (for example, a packet in SF1
transmitted via port 5/1 could have access to device ports §
through 16 if the switching tables were so generated).

[0140] Tt should also be noted that each of the switching
tables illustrated in FIGS. 23-d have been generated in
accordance with a preferred embodiment where columns for
up to 32 device ports have been included. This preferred
embodiment of the switching tables is to help enable the use
of switching tables in the preferred embodiment of the
switch fabric illustrated in FIG. 1 which has a switch fabric
with 32 device ports with 32 port controllers connected
thereto. Because the exemplary switch fabric 2200 illus-
trated in FIG. 22 only has 16 device ports (for e.g., con-
necting 16 port controllers thereto), the boxes in columns 17
through 32 all contain “0°s” in each of the four switching
tables 23-d.

[0141] FIG. 27 is a flowchart for a process 2700 for
processing a packet through a switch fabric component in
accordance with an embodiment of the present invention. In
operation 2702, a packet is received by the switch fabric
component. A destination vector is extracted from the

US 2004/0095927 Al

received packet in operation 2704. A port bitmap is then
generated from the extracted destination vector based on the
switching table of the switch fabric component in operation
2706. In operation 2708, logic of the switch fabric compo-
nent checks to determine whether one of the ports of the
switch fabric component indicated in the port bitmap is idle.
If one of the ports indicated by the port bitmap is found to
be idle, then a mask for the identified idle port is created
based on the port bitmap in operation 2710. In operation
2712, the outgoing packet is then transmitted via the iden-
tified idle port of the switch fabric and the port bitmap is
cleared of the information relating to the port through which
the packet was just transmitted. A clearing process is also
executed on the destination vector of the outgoing packet at
the identified port to modify the destination vector of the
outgoing packet. In decision 2714, if it determined that
another destination is included in the port bitmap, then
operations 2710 and 2712 are repeated for each additional
destination.

[0142] When a packet enters a switch fabric component,
the destination vector of the packet and the switching table
of the switch fabric component are used to determine
through which ports of the switch fabric component the
packet should exit. In one embodiment, the determination
result may be stored as a linked list. In one aspect, the
determination result may comprise a port bitmap. In another
aspect, the determination result may comprise the destina-
tion vector.

[0143] FIG. 28 is a schematic diagram illustrating a
process 2800 for processing a packet through a switch fabric
component where the determination result comprises a port
bitmap in accordance with an embodiment of the present
invention. Prior to ingress into the switch fabric component,
a tag is inserted into the packet 2802 during processing of
the packet in the port controller 2804. The tag includes a
destination vector 2806 indicting one or more device ports
the packet is destined. In a preferred embodiment, the
destination vector 2806 may have a length of 32 bits (i.c., a
“32-bit destination vector”). The port controller is coupled to
a device port of the switch fabric component 2808 to permit
transfer of the packet with the inserted tag into the switch
fabric component.

[0144] Upon ingress of the packet (with inserted tag) 2802
into the into the switch fabric component 2808, the tag is
extracted to obtain the destination vector 2806. A port
bitmap 2810 is then generated based on the destination
vector 2806 and the switching table 2812 of the switch fabric
component 2808. In a preferred embodiment, the port bit-
map has a length of 8 bits (i.e., an “8-bit port bitmap™). The
packet is then stored in cells in the memory of the switch
matrix of the switch fabric component. The generated port
bitmap 2810 is used to link in a linked list 2814 the cells of
memory in which the packet is stored. The port bitmap 2810
is also stored in the linked list 2814 in the switch fabric
component 2808.

[0145] When a proper output port is determined to be
available, the packet may egress the switch fabric compo-
nent via the output port. Upon the determination of the
availability of a proper output port, the information about the
appropriate cells (including the port bitmap) is read from the
linked list 2814 to obtain the port bitmap 2810. The switch-
ing table 2812 is then used to produce a mask 2816 for the

May 20, 2004

port of egress. In a preferred embodiment, the mask 2816
has a length of 8 bits (i.e., an “8-bit mask”). Next, the mask
2816 is used to modify the port bitmap 2810 so that
information relating to the sending of the packet through the
output port is removed from the port bitmap. The modified
port bitmap 1018 is then stored in the linked list 2814. If the
modified port bitmap 2818 contains all “0” bits (i.e., no
“1°s™), then the corresponding memory cell in the switch
matrix is freed. In a preferred aspect of such an embodiment,
the linked list may include 8 bit/word by 256 word memory
for storing port bitmaps. In another preferred aspect of such
an embodiment, the switching table may include logic (i.e.,
circuits) to produce masks. In even another preferred aspect
of this embodiment, the rows of the switching table may be
exclusive with respect to one another.

[0146] As a preferred option to the process 2800 illus-
trated in FIG. 28, the destination vector may be cleared from
a packet as the packet exits an outgoing port of a switch
fabric component. A benefit to implementing such an option
may be seen in the following illustration using the switch
fabric 2200 depicted in FIG. 22: In this illustration, suppose
a packet entering the switch fabric 2200 has two destina-
tions: device port 2 in SF12202a and device port 7 in
SF22202b. FIG. 30 is a schematic representation of a
destination vector 3000 (in particular, a 32 bit destination
vector) for a packet entering SF12202 from device port 1
and having destinations of device port 2 in SF122024 and
device port 7 in SF22202b in accordance with the present
illustration.

Port Bitmap

[0147] FIG. 29 is a schematic diagram illustrating an
exemplary utilization of a port bitmap (in particular, an 8 bit
port bitmap) in a switch fabric component in accordance
with an embodiment of the present invention. This example
is based upon the exemplary switch fabric 2200 illustrated in
FIG. 22 and takes place in the switch fabric component
SF122024. In this example, a packet is received by SF1 via
a port controller coupled to device port 1 and has 2 desti-
nations: (1) device port 2 (located at SF12202a), and (2)
device port 9 (located at SF422024).

[0148] 1In SF122024, the destination vector is extracted
from the packet. As illustrated in FIG. 29, the extracted
destination vector 2902 has a “1” in bits 2 and 92904, 2906
indicating the intended destination ports of the packet
(device ports 2 and 9). Based on the information of the
extracted destination vector 2902, the switch fabric compo-
nent then uses it switching table to determine through which
of its switch ports the packet can be routed to arrive at the
packet’s intended destinations. With reference to the switch-
ing table 2300 for switch fabric component SF1 illustrated
in FIG. 23, we see that device port 2 can be accessed
through switch port 2/1 of SF1 (see the row 2/1) and device
port 9 can be accessed through switch ports 5/1 and 6/1 of
SF1 (see rows 5/1 and 6/1).

[0149] A port bitmap is a bitmap generated by a switch
fabric component based on information from the extracted
destination vector of a packet received by the switch fabric
component and information the switching table of the switch
fabric component. Preferably, the port bitmap is generated
by the central controller of a switch fabric component. The
port bitmap indicates through which of the switch ports of

US 2004/0095927 Al

the switch fabric component the packet needs to be routed
through in order for the packet to reach its intended desti-
nation(s) (i.e., device port(s)). A port bit map comprises a
plurality of bits with each bit being associated with a
corresponding switch port of the associated switch fabric
component. For example, in a switch fabric component
having four switch ports, the port bitmap for that switch
fabric has (at least) four bits, with each bit being associated
with one of the four switch ports of the switch fabric
component. As another example, in the embodiment illus-
trated in FIG. 22, each of the switch fabric components has
eight switch ports. Therefore, the port bitmaps generated for
each switch fabric component has at least eight bits, with
each of the eight bits associated with a corresponding switch
port of the respective switch fabric component. In a pre-
ferred embodiment, the port bitmap comprises eight (8) bits.

[0150] The bits of a port bitmap may each contain either
a “1” or “0”. In one embodiment, if a bit of the port bitmap
contains a “17”, then that indicates that the switch port
associated with that particular bit may serve as a port for
outputting the packet from the switch fabric component.
Conversely, if a bit of the port bitmap contains a “0”, then
that indicates that the switch port associated with that
particular bit may not serve as a port for outputting the
packet from the switch fabric component.

[0151] Returning to FIG. 29, we sce the port bitmap 2908
that may be generated by switch fabric component SF1 for
the received packet based on the extracted destination vector
2902 and the switching table 2300 of SF1. This port bitmap
2908 includes “1°s” in bits 2, 5 and 62910, 2912,2914 which
are associated with switch ports 2/1, 5/1 and 6/1 of SF1
respectively.

[0152] In the present illustration, suppose either switch
port 5/1 or 6/1 is determined to be available (i.e., idle) before
switch port 2/1. Then, in this example, the packet would first
be output via switch port 5/1 or 6/1 towards its intended
destination of device port 9 (via SF2 and then SF4). As set
forth in the flowchart illustrated in FIG. 27 and with
continuing reference to FIG. 29, a first mask 2916 is
generated based on the port bitmap and the outputting switch
port. In the present example, this first mask includes “1°s” in
bits 5 and 62918, 2920 which indicate the serviced bits of the
port bitmap when the packet is outputted via switch ports 5/1
or 6/1.

[0153] Continuing with the present example, the port
bitmap is then cleared of the served bits using the first mask
2916. In general, a clearing involves the clearing those bits
in the port bitmap containing “1°s” where the corresponding
bits of the mask also contain “1’s”. In other words, a clearing
involves the changing from “1°s” to “0°s” in the bits in the
port bitmap containing “1°s” where the corresponding bits of
the mask also contain “1’s”. For example, FIG. 29 depicts
the bits of the (modified) port bitmap 2908' after being
cleared of the serviced bits using the first mask. As illus-
trated, the modified port bitmap has only a “1” remaining in
bit 22910 and “0’s” in bits 5 and 62912, 2914 indicating that
that bit 2 has not been cleared (i.e., switch port 2/1 has not
yet been serviced) and that bit 5 and 6 have been cleared
(i.e., switch port 5/1 or 6/1 has been serviced).

[0154] Next, when switch port 2/1 is determined to be
available (i.e., idle), a second mask 2916 is generated for the
port bitmap based upon the servicing of switch port 2/1. This

May 20, 2004

mask has a “1” in bit 22922 indicating the outputting of the
packet via switch port 2/1. As the packet is then outputted
from switch port 2/1 (i.e., device port 2), the port bitmap can
be cleared using the second mask 2916. FIG. 13A shows the
modified port bitmap 2908" after being cleared by the
second mask 2916. As illustrated in FIG. 29, all of the bits
of the modified port bitmap 2908 contain “0’s” thereby
indicating that no more destinations remain in the port
bitmap for outputting the packet.

[0155] FIG. 30 is a schematic representation of an exem-
plary destination vector 3000, an egress mask 3002 for the
destination vector and a modified destination vector 3004 in
accordance with an embodiment of the present invention. As
illustrated in FIG. 30, in the present illustration, the bits for
device ports 2 and 73006, 3008 contain “1’s” thereby
indicating that the destinations of devices 2 and 7 for the
associated packet. In SF 1, the packet is transmitted out via
2/1 (i.e., device port 2) and also via 5/1 or 6/1 to SF2 (in
order to reach device port 7). Now, if the packet that was sent
to SF2 was transmitted without any modification to the
destination vector 3000, SF2 will then extract the unmodi-
fied destination vector 3000 and process the packet as if one
of the destinations from SF2 is device port 2 and therefore
send a copy of the packet back to SF1 for transmission out
through device port 2.

[0156] To cure this problem, a clearing process may be
inserted at the end of each output port of a switch fabric
component. The clearing process clears all bits of the
destination vector of an outgoing packet except for the bits
corresponding to the devices reachable through the outgoing
port. This clearing process involves the generation of an
egress mask 3002 and then using the egress mask 3002 to
modify the destination vector of the exiting packet. The
egress mask 3002 contains “1°s” in all of the bits accessible
through that particular egress port (and “0°.s” in the remain-
ing bits). Continuing with the present illustration, the packet
in SF1 can reach device port 7 from either port 5/1 or 6/1 of
SF1 (see the switching table for SF1 in FIG. 23). With
reference to the switching table for SF1 shown in FIG. 23,
we can see that the device ports that can be reached via ports
5/1 or 5/6 are device ports 5-10. Therefore, the generated
egress mask 3002 contains “1’s” in bits 5 through 10 and
“0’s” in the remaining bits as illustrated in FIG. 30. This
egress mask may then be used to modify the destination of
the packet leaving SF1 from ports 5/1 or 6/1 for SF2 by
clearing the destination vector of any “1’s” in bits not
covered by the “1°s” of the egress mask. Thus, the modified
destination vector 3004 for the present illustration depicted
in FIG. 30 has only a single “1” in the bit for device port
73010 since the “1” in the bit for device port 2 was not
“masked” by the “1’s” of the egress mask. With such a
clearing process, the modified destination vector does not
include any information that would cause SF2 to send a copy
of the packet back to SF1 for egress to device port 2. It
should be noted that in a preferred embodiment, that the
egress mask of each output port of a switch fabric compo-
nent may be the same as the associated row of the switching
table corresponding to each respective port. In one aspect of
such a preferred embodiment, each output port of a switch
fabric component may have a register which contains the
same contents as associated row of the switching table of its
respective switching component

US 2004/0095927 Al

[0157] FIG. 31 is a schematic diagram illustrating another
process 3100 for processing a packet through a switch fabric
component where the determination result comprises a des-
tination vector in accordance with an embodiment of the
present invention. Like the embodiment illustrated in FIG.
28, the tag including the destination vector (preferably, a
32-bit destination vector) is inserted into the packet 3102
during processing of the packet in the port controller
coupled to the switch fabric component prior to ingress into
the switch fabric component. Upon ingress of the packet
3102 into the into the switch fabric component, the tag is
extracted to obtain the destination vector 3104. As in the
process 2800 set forth in FIG. 28, a port bitmap 3106 is then
generated based on the destination vector 3104 and the
switching table 3108 of the switch fabric component 3100.
In a preferred embodiment, the port bitmap 3106 comprises
an 8-bit port bitmap. The generated port bitmap 3106 is used
to link in a linked list 3110 the cells of memory in which the
packet is stored. However, the 8-bit port bitmap 3106 is not
stored in the linked list 3110. Instead, the (32-bit) destination
vector 3104 is stored in the linked list 3110.

[0158] With continuing reference to FIG. 31, when a
proper output port is determined to be available for egress of
the packet, the cell information is read from the linked list
3110 and the destination vector 3104 is obtained. The
switching table is used to generate a destination mask 3112
for the egress port. Preferably, the destination mask has a
length of 32 bits (i.e., a “32 bit destination mask”). In one
aspect, the 32-bit destination mask comprises a row of the
switching table corresponding to the egress port. Next, the
destination mask 3112 is used to modify the destination
vector 3114 which is then subsequently stored in the linked
list 3110. If, like the modified port mask 2818 in FIG. 28,
the modified destination vector 3114 contains all “0” bits,
the corresponding memory cell is freed.

[0159] In a preferred aspect of such an embodiment 3100,
the linked list may include 32 bit/word by 256 word memory
for storing the destination vector 3104. In another preferred
aspect of such an embodiment, unlike the switching table
2812 of the embodiment depicted in FIG. 28, the switching
table 3108 may not need to include logic (i.e., circuits) to
produce destination masks since a destination mask is sim-
ply a row of the switching table 3108. In even another
preferred aspect of this embodiment, the rows of the switch-
ing table need not be exclusive with respect to one another.

Back Propagation

[0160] FIG. 32 is a flowchart of a process 3200 for
updating a switching table in a switch fabric in accordance
with an embodiment of the present invention. In operation
3202, one or more status packets are received by a switch
fabric component without handshaking between the trans-
mitting source(s) and the receiving switch fabric component.
Each status packet includes information relating to a status
of an output port. A switching table is then updated based on
the status information of the received status packet in
operation 3204.

[0161] In an aspect of the present invention, the status
packets may be received via paths/channels/conduits dedi-
cated for transmitting the status packets and separate from
paths dedicated for transmitting Ethernet packets through
the switch fabric system. In another aspect of the present

May 20, 2004

invention, the status packets may be received periodically
and the switching table may be updated in real time.

[0162] In an embodiment of the present invention, a
combined status packet may be generated based on the
combined status information of the received status packets.
The combined status packet may then be transmitted to other
switch fabric components. In one aspect of such an embodi-
ment, the combined status packet may be transmitted from
an outer layer switch fabric component to a middle layer
switch fabric component.

[0163] In one aspect of the present invention, the received
status packet may be generated from a port controller. In a
further aspect of the present invention, the received status
packet may be generated by a switch fabric component. In
yet another aspect of the present invention, the status packet
may comprise 32 bits of data with each bit being associated
with a port of the switch fabric component.

[0164] In one embodiment, a switch system comprising a
switch fabric port controller may utilize a handshaking
protocol to determine the path by which a packet travels
through the switch fabric to its destination port controller(s).
However, the utilization of the handshaking protocol may
lead to a reduction in the bandwidth of the switch system
because: (1) the determination of path through the switch
fabric must be performed for each incoming packet, and/or
(2) the handshaking protocol is executed using the same
channels or conduits by which the packet is propagated
through the switch fabric.

[0165] FIG. 33 is a schematic diagram illustrating an
exemplary arrangement 3300 for back propagation of status
and control information in a switch fabric in accordance
with an embodiment of the present invention. The exem-
plary switch fabric 3300 depicted in FIG. 33 comprises
twelve (12) switch fabric components (SF 1 through SF 12)
preferably arranged in the Clos network topology of the
multi-port switch architecture 100 illustrated in FIG. 1. The
exemplary switch fabric 3300 also has thirty-two (32) port
controllers (PCO1 through PC32), with four port controllers
coupled to each of outer layer switch fabric component (SF
1-4 and SF 9-12).

[0166] In the back propagation arrangement 3300, cach
port controller has a dedicated conduit (e.g., 3302) coupling
the respective port controller to its associated outer layer
switch fabric component. Similarly, each outer layer switch
fabric component (SF 1-4 and SF 9-12) has a dedicated
conduit (e.g., 3304) coupling the respective outer layer
switch fabric component to each middle layer switch fabric
component (SF 5-8). For sake of the clarity in explaining the
back propagation process from the perspective of how SF 1
receives status information from each of the port controllers,
only the dedicated conduits from the outer switch fabric
components SF 2 through 4 and SF 9 through 12 are
illustrated in FIG. 33. It should be understood that each of
the outer switch fabric components (i.e., SF 1-4 and SF
9-12) has a dedicated conduit to each of the middle switch
fabric components (i.e., SF 5-8). Each of the middle switch
fabric components (i.e., SF 5-8) has a dedicated conduit
(e.g., 3306) coupling the respective middle switch fabric
component to each of the outer switch fabric components
(ie., SF 1-4 and SF 9-12). Again, for sake of the clarity in
explaining the back propagation process with respect to how
SF 1 receives status information from each of the port

US 2004/0095927 Al

controllers, only the dedicated conduit 3306 from middle
switch fabric component SF 5 to outer switch fabric com-
ponent SF 1 is illustrated. However, it should be recognized
that an outer layer switch fabric component may be receiv-
ing status information from each of the middle layer switch
fabric components in a similar fashion as is set forth in the
illustration in FIG. 33.

[0167] With continuing reference to FIG. 33, via these
dedicated conduits (e.g., 3302, 3304, 3306), status informa-
tion about the availability of the port controllers receiving a
packet (and other control information) may be propagated
through the switch fabric. The arrow heads of the dedicated
conduits 3302, 3304, 3306 indicate the propagation of the
status information from throughout the switch system to
switch fabric component SF 1. In a preferred embodiment,
the dedicated paths may each have a bandwidth that permits
the transmission of 2 bits of information per cycle. In such
a preferred embodiment, one bit of the bandwidth may be
utilized for transmitting control information and the other bit
may be utilized to transmit status information regarding the
availability of the port controllers of the switch system.

[0168] 1t should be noted that while FIG. 33 depicts
switch fabric component SF 1 coupled to the dedicated
conduit of middle layer switch fabric component SF § to
receive status information via SF §, middle layer switch
fabric components SF 6, SF 7, and SF 8 each may have a
dedicated conduit coupled to SF 1 to provide status infor-
mation to SF 1. This redundancy may be beneficial because
it allows SF 1 to continue to receive status information about
the port controllers even if SF 5 is unable to transmit status
information to SF 1.

[0169] In general, when the output-port status is propa-
gated backward through the switch fabric, it may be merged
with the local output-port status of the switch fabric and
thereby eventually building up provided information about
the overall path status of the switch fabric. Consequently,
with such an arrangement, each component in the switch
system may keep real-time updated path status information
of the ports, and use this local information to control packet
flow without a handshaking protocol between the entry point
of the packet into the switch system and the output desti-
nation of the packet in the switch system.

[0170] FIG. 34 is a flowchart of a process 3400 for
updating switching tables in a switch fabric system in
accordance with an embodiment of the present invention. In
a preferred embodiment, the process is executed in a switch
system having back processing dedicated conduits as set
forth in the portion of the specification relating to FIG. 33.
As shown in FIG. 34, portions of the process are executed
in the port controllers of the switch fabric system while other
portions of the process are executed in the outer layer and
middle layer switch fabric components.

[0171] In operation 3402, a status packet is generated in a
port controller. The status packet includes information
which indicates the current status/availability of the port
controller for receiving outgoing packets. The generated
status packet is transmitted to the outer layer switch fabric
component associated with the port controller in operation
3404. For example, with reference to FIG. 33, port control-
lers P32-08 are associated with switch fabric component SF
2. Therefore, port controllers P32-08 transmit the status
packets they generate to switch fabric component SF 2. In

May 20, 2004

the preferred embodiment, the port controller transmits the
status packet to the associated outer layer switch fabric
component via the dedicated conduit connecting them
together (e.g., dedicated conduit 3302).

[0172] In operation 3406, the outer layer switch fabric
component receives and collects the incoming status packets
from its associated port controllers. The information from
the received status packets is then combined in a status
packet generated by the outer layer switch fabric component
in operation 3408. The combined status packet is then
transmitted to a middle layer switch fabric component in
operation 3410. Preferably, the outer layer switch fabric
component transmits the combined status packet to the
middle layer switch fabric component via the dedicated
conduit connecting them together (e.g., dedicated conduit
3304 connecting SF 2 to SF 5). The outer layer switch fabric
component also uses the information from the status packet
it receives from its port controllers to update its own
switching table (see operation 3412).

[0173] The middle layer switch fabric component receives
and collects the status packets transmitted by the outer layer
switch fabric components in operation 3414. For example,
with reference to the illustrative arrangement set forth in
FIG. 33, In operation 3416, the middle layer switch fabric
component generates a status packet that combines the status
information included in the status packets received from the
outer layer switch fabric components. For example, in the
exemplary embodiment illustrated in FIG. 33, middle layer
switch fabric component SF 5 receives status packets from
outer layer switch fabric components SF 2-SF 12, with each
of these packets having status information about the port
controllers associated with each respective switch fabric
component (e.g., the status packet from switch fabric com-
ponent SF 2 has status information about port controllers
P32-08, and so on).

[0174] In operation 3418, the status packet generated by
the middle layer switch fabric component is transmitted to a
receiving outer layer fabric component (e.g., in the example
shown in FIG. 33, switch fabric component SF 1). Prefer-
ably, the middle layer switch fabric component transmits the
combined status packet it generated to the receiving outer
layer switch fabric component via the dedicated conduit
connecting them together (e.g., dedicated conduit 3306
connecting SF 5 to SF 1). Additionally, the middle layer
switch fabric component uses the information from the
status packet it receives from the outer layer switch fabric
components (regarding the status of the port controllers) to
update its own switching table (see operation 3420).

[0175] After receiving the status packet from the middle
layer switch fabric component in operation 3422, the receiv-
ing outer layer switch fabric component (e.g., switch fabric
component SF 1 in the example set forth in FIG. 33) updates
its switching table in operation 3424 based on the status
information included in the received status packet.

[0176] Thus, under the back propagation arrangement and
procedures set forth in FIGS. 33 and 34, the dedicated
conduits may be provided to periodically and/or continually
broadcast (preferably in real time) notifications of the avail-
ability (i.e., output status) of all of device ports for receiving
and outputting packets. Additionally, this back propagation
arrangement does not necessarily need to utilize a hand-
shaking protocol in order to transmit the status information
to all of the switch fabric components.

US 2004/0095927 Al

[0177] FIG. 35 is a schematic representation of a status
packet 3500 that may be utilized in the process set forth in
FIG. 34 in accordance with a preferred embodiment of the
present invention. The status packet comprises a plurality of
bits, and in a preferred embodiment the status packet may
comprise 32 bits. Each bit of the status packet may be
associated with a particular port controller of the switch
system. For example, based on the switch system illustrated
in FIG. 33, bit 013502 of the status packet may be associ-
ated with port controller PCO1, bit 023504 of the status
packet may be associated with port controller P5, and so on.
Each bit of the status packet may be used to indicate the
availability (i.e., status) of its associated port controller for
receiving/outputting a packet sent through the switch sys-
tem.

[0178] As an illustrative example, a bit comprising a “1”
may indicate that the associated port controller is available
for receiving/outputting a packet (i.e., the status of the port
controller is “available™). Conversely, a bit comprising a “0”
may indicate that the associated port controller is not avail-
able for receiving/outputting a packet (i.e., the status of the
port controller is “unavailable”). Thus, in the exemplary
status packet 3500 set forth in FIG. 35, the “1°s” contained
in bits 01 and 023502, 3504 indicate that port controllers
PCO01 and P35 are available while the “0’s” contained in bits
09, 16, and 173506, 3508, 3510 indicate that port controllers
PC09, PC 16, PC 17 are unavailable.

Multi-Bank Buffer

[0179] FIG. 36 is a flowchart of a process 3600 for storing
an incoming datagram in a switch matrix of a switch fabric.
The switch matrix has a pair of buffers with each buffer
having a pair of portions. Data of a datagram is received in
operation 3602 and the buffer portions are sequentially filled
with the data in operation 3604. Periodically, transfer of data
is allowed from the buffers into the switch matrix in opera-
tion 3606. At each period where transfer of data is allowed
in the sequence that the buffer portions were filled, the data
in one of the buffer portions may be transferred into the
switch matrix in operation 3608.

[0180] In an aspect of the present invention, data in a
buffer portion may only be transferred into the switch matrix
if the buffer portion is filled with data or contains an end of
a datagram (i.e., the tail or last byte of the datagram). In
another aspect of the present invention, the switch matrix
may comprise a plurality of memory banks for storing the
transferred data. In such an embodiment, the memory banks
may alternate in receiving data transferred from the buffer
portions.

[0181] In a further aspect of the present invention, the
buffer portions may each have equal storage capacities for
storing received data. In a preferred embodiment, each
buffer portion has a storage capacity of 16 bytes for storing
the incoming data. In another preferred embodiment,
wherein transfer of data may be allowed every 16 cycles.

[0182] FIG. 37 is a schematic diagram illustrating the
ingress and storage of packets (i.e., datagrams)) 3702 in a
switch fabric component 3700 in accordance with an
embodiment of the present invention. As discussed previ-
ously, the switch fabric component 3700 may include a
plurality of interface receivers 3704, with the illustrated
embodiment having eight ingress receivers (e.g., such as the

May 20, 2004

switch fabric components illustrated in FIGS. 1 and 22)
which are labeled as V unit 1-9.

[0183] Each ingress receiver is connected to the switch
matrix 3706 thereby permitting transmission of an incoming
packet from the particular ingress receiver into the switch
matrix 3706. In particular, ingress receiver is coupled to an
associated set of input buffers. In one embodiment, each set
of input buffers comprises two input buffers 3708, 37100. In
one embodiment, each input buffer may have a storage
capacity of least to 16 bytes. In a preferred embodiment,
each input buffer may have a storage capacity of 32 bytes.
As a preferred option, each input buffer may be divided into
two portions (e.g., the two portions 3712, 3714 of input
buffer 3710). With such an option, it is preferred that the two
portions 3712, 3714 of each input buffer have equal data
holding capacities (e.g., in the 32 byte capacity preferred
embodiment).

[0184] The central controller 3716 controls the transfer of
data stored in the input buffers into memory 3718 of the
switch matrix. In one embodiment, the memory of the
switch matrix may comprise a plurality of memory banks
therein. As illustrated in FIG. 37, in the preferred embodi-
ment where each input buffer comprise two portions, the
memory of the switch matrix may comprise two memory
banks 3720, 3722 with each memory bank preferably being
dedicated for receiving data from one of the two portions of
each input buffer (e.g., memory bank 3720 is dedicated to
input buffer portion 3712 and memory bank 3722 is dedi-
cated to input buffer portion 3714).

[0185] FIG. 38 is a schematic diagram of a scenario
illustrating the ingress and storage of packets in a switch
fabric component 3700 having a pair of two-portion input
buffers 3708, 3710 and a two-memory-bank switch matrix
3706 in accordance with an embodiment of the present
invention. A first of the two input buffers 3708 comprises a
pair of portions (“portion A”3802 and “portion B”3804)
while the second input buffer 3710 comprises another pair of
portions (“portion C”3712 and “portion D”3714). Each
input buffer 3708, 3710 has a capacity of 32 bytes with each
portion 3712, 3714, 3802, 3804 having a capacity of 16
bytes. With reference to FIG. 38, each byte in each of the
buffers is represented by a square. A blacked square repre-
sents that the particular byte is filled with data.

[0186] The ingress receiver 3704 may transfer 1 byte of an
incoming packet it is receiving into a byte of one of the input
buffers each cycle. The ingress receiver fills the bytes of an
input buffer sequentially during this transfer of data. Also,
the central controller periodically permits access to the
memory every 16-cycle count to allow transfer of data from
a portion of an input buffer into the memory (either memory
bank 13720 or memory bank 23722). In the present scenario,
memory access is first allowed on cycle count 17 and then
allowed on cycle counts, 23, 39, 55, 71, 87, 103, 119, 135,
151, and so on. Additionally, transfer of data from the input
buffers to a memory bank only occurs if a portion of the
input buffers has been completely filled with data (i.e., 16
bytes of data) or contains the ending byte of a packet (i.e.,
the last byte of the packet).

[0187] Further, the memory banks alternate in receiving
packet data from the input buffers. For example, in a first
memory access, data may be transferred into memory bank
1, in a second memory access, data may be transferred into

US 2004/0095927 Al

memory bank 2, and in a third memory access, data may be
transferred into memory bank 3, and so on.

[0188] In the scenario presented in FIG. 38, a first incom-
ing packet 3806 having a length of 97 bytes is being
transmitted to an ingress receiver 3704 of the switch fabric
3700 followed by a space 3808 of 4 bytes which is then
followed by a second incoming packet 3810 having a length
of 97 bytes. On cycle count 1, a first byte of the first packet
is received by the ingress receiver and transferred to fill a
first byte 3812 of portion A 3802 of the first input buffer.

[0189] Atcycle 7, seven of sixteen bytes of portion A3812
are filled with the first seven bytes of data of the first packet
3806 and the central controller allows access to the memory
banks for the first time in this scenario. However, since none
of the portions of the input buffers have been completely
filled and none of them contain an ending byte of a packet,
no transfer of packet data occurs between the input buffers
and memory banks at cycle 7.

[0190] At cycle count 16, all sixteen bytes of portion A
3812 of the first input buffer are filled with the first sixteen
incoming bytes of packet 1. However, at this point, the next
memory access will not occur until cycle count 23.

[0191] FIG. 39 is a schematic diagram of the scenario set
forth in FIG. 38 at cycle count 23 in accordance with an
embodiment of the present invention. By cycle count 23,
seven more bytes of packet 1 have been transferred into
portion B 3804 of the input buffer 1. Also, as illustrated in
FIG. 39, in cycle count 23, memory access is allowed by the
central controller and since portion A of input buffer 1 has
been filled (since cycle count 16), the 16 bytes of data
contained in portion A 3802 is read and written (see arrow
3902) into memory bank 13720 and then cleared from
portion A 3802.

[0192] By the time of the next memory access at cycle
count 39, all of portion B of the input buffer 1 has been filled
with data from packet 1 (since cycle count 32) and bytes
33-39 of packet 1 have been transferred to portion C 3712
of input buffer 23710. Therefore, at cycle count 39, all of the
bytes of data in portion B are transferred (i.e., executing read
and write functions) into memory bank 23722.

[0193] At the time of the next memory access at cycle
count 55, all of portion C of input buffer 2 has been filled
with data from packet 1 (since cycle count 48) and bytes
49-55 of packet 1 have been transferred to portion D 3714
of input buffer 23710. Therefore, at cycle count 55, all of the
bytes of data in portion C are transferred (i.e., executing read
and write functions) into memory bank 13720 (since the
memory banks alternate in availability for the receipt of
data).

[0194] At the time of the next memory access at cycle
count 71, all of portion D of input buffer 2 has been filled
with data from packet 1 (since cycle count 64) and bytes
65-71 of packet 1 have been transferred to portion A 3802 of
input buffer 13708. Also at cycle count 71, all of the bytes
of data in portion D are transferred into memory bank
23722.

[0195] The next memory access occurs at cycle count 87,
at which time all of portion A of input buffer 1 has been filled
with data from packet 1 (since cycle count 80) and bytes
81-87 of packet 1 have been transferred to portion B 3804

May 20, 2004

of input buffer 13708. Also, all of the bytes of data in portion
A are transferred into memory bank 13720 at cycle count 87.

[0196] FIG. 40 is a schematic diagram of the scenario set
forth in FIG. 38 at cycle count 103 in accordance with an
embodiment of the present invention. FIG. 40 will be used
for the following discussion of what takes places in the
scenario between cycle counts 88 and cycle count 103. At
cycle count 96, all of portion B of input buffer 1 has been
filled with bytes 81-96 of packet 1. At cycle count 97, the last
byte of packet 1 (byte 97) is transferred into the first byte
4002 of portion C of input buffer B. Since byte 97 of packet
1 is the ending byte of packet 1, the central controller ends
the filling of data into of input buffer 2.

[0197] During cycles 98, 99, 100, 101, no data is received
by the ingress receiver because of the 4 byte space between
packets 1 and 2. At cycle count 102, the first byte of packet
2 is received by the ingress receiver and transferred to the
first byte of portion A of input buffer 1. It is important to
keep in mind that at this point, portion B of input buffer 1
still contains bytes 81-96 of packet 1. The incoming byte of
packet 1 received at cycle count 102 that was transferred to
input buffer 1 does not overwrite any of the data from packet
1 that is also concurrently stored in input buffer 1 since the
incoming first byte of packet 24002 is stored in portion A of
input buffer 1 while the stored bytes of packet 1 (bytes
81-96) are stored in portion B of input buffer 1.

[0198] At cycle count 103, the next memory access
occurs. Bytes 81-96 of packet 1 are transferred to memory
bank 23722 and portion B of input buffer 1 is cleared. Also
during cycle count 103, the second incoming byte 4006 of
packet 2 is transferred into portion B of input buffer 1. Byte
97 of packet 14002 still remains in portion C 4002 of input
buffer 2. At cycle count 119, the next subsequent memory
access is allowed by the central controller. At this point, byte
97 of packet 14002 is transferred into memory band 1 since
byte 97 is an ending byte of a packet. Also transferred into
memory bank 1 at cycle count 119 are the first 16 bytes of
packet 2 which had completed filled portion A at cycle count
117.

[0199] FIG. 41 is a schematic illustration of a scenario
4100 similar to scenario presented in FIG. 38 where trivial
dual input buffers 4102, 4104 are used instead of the dual
two-portion buffers used in FIG. 38 in accordance with an
embodiment of the present invention. Also, in this scenario
4100, a single bank memory 4106 is provided in the switch
matrix instead of a dual memory bank Like in the scenario
set forth in FIG. 38, each input buffer 4102, 4104 has a
capacity for holding 32 bytes with each byte represented by
a square in the respective buffer. A blacked square represents
that the particular byte is filled with data. The central
controller periodically also permits access to the memory
every 16-cycle count in this scenario P§00 (just as in the
scenario of FIG. 38) to allow transfer of data from an input
buffer into the memory bank. In this present scenario,
memory access is also first allowed on cycle count 7 and
then allowed on cycle counts, 23, 39, 55, 71, 87, 103, 119,
135, 151, and so on. Additionally in this scenario 4100,
transfer of data from the input buffers to a memory bank
only occurs if an input buffer has been completely filled with
data (i.e., 32 bytes of data) or contains the ending byte of a
packet (i.e., the last byte of the packet).

[0200] Furthermore, as in the scenario set forth in FIG. 38,
in this scenario 4100, a first incoming packet 3806 having a

US 2004/0095927 Al

length of 97 bytes is transmitted to the ingress receiver
followed by a space of 4 bytes which is then followed by a
second incoming packet having a length of 97 bytes. On
cycle count 1, a first byte of the first packet is received by
the ingress receiver and transferred to fill a byte of the first
input buffer 4102.

[0201] As problem with this arrangement when compare
to the arrangement set forth in FIG. 38 is that the trivial dual
input buffers cannot handle variably-sized incoming pack-
ets. This problem is illustrated in FIG. 41:which shows the
situation of the scenario 4100 at cycle count 102. At cycle
count 96, the first input buffer 4102 is completely filled with
bytes 65-96 of the first incoming packet. Because the first
input buffer was not filled and did not contain an ending byte
of a packet, transfer of the data in the first input butter 4102
was not allowed in the memory accesses at cycle count 71
and 87. At cycle count 97, the last byte (byte 97) 4108 of the
first incoming packet is received and transferred to the first
byte of the second input buffer 4104. However, the next
memory access will be allowed at cycle count 103. There-
fore, the data of the first packet in the first input buffer
cannot be transferred until cycle count 103.

[0202] Between cycle counts 98-101, the space between
the incoming packets occurs so no data is transferred into the
input buffers during these cycles. At cycle count 102, the
first byte 4110 of the second packet is received by the ingress
receiver and transferred into the first input buffer (according
to standard packet transfer protocols) and therefore over-
writes a byte 4112 (byte 65) of the first packet stored in the
first input buffer thereby damaging the data of the first
packet before it can be transferred into the memory bank
4106. One option to avoid the problem of damaging the data
of the first packet such a situation, is to add a third input
buffer. Another option is to use the dual two-portion input
buffers arrangement as set forth in FIG. 38. By using the
dual two-portion input buffers arrangement, a hardware
reduction of the total chip area of the switch matrix/switch
fabric component may be achieved.

[0203] FIG. 42 is a schematic diagram illustrating
memory access size for a switch matrix memory bank in
accordance with an embodiment of the present invention.
The data transmission rate (“Rx rate”) for an incoming
packet (i.e., datagram) 4202 into a input buffer 4204 may be
expressed as R (bit/sec). Access to the memory 4206 is
permitted every T(sec) period (“Access Period”) for each
input buffer (and may also be the same for each output
buffer). In accordance with an embodiment of the present
invention, a minimum memory access size for a memory is
RT (bit). In a preferred embodiment, a memory access size
sufficient to care for variably sized packets is 2RT (bit).

[0204] One embodiment of a system in accordance with
the present invention may be practiced in the context of a
computer such as an IBM compatible personal computer,
Apple Macintosh computer or UNIX based workstation. A
representative hardware environment is depicted in FIG. 43,
which illustrates a typical hardware configuration of a
workstation in accordance with an embodiment having a
central processing unit 4310, such as a microprocessor, and
a number of other units interconnected via a system bus
4312. The workstation further includes a Random Access
Memory (RAM) 4314, Read Only Memory (ROM) 4316, an
I/0 adapter 4318 for connecting peripheral devices such as

May 20, 2004

disk storage units 4320 to the bus 4312, a user interface
adapter 4322 for connecting a keyboard 4324, a mouse
4326, a speaker 4328, a microphone 4332, and/or other user
interface devices such as a touch screen (not shown) to the
bus 4312, communication adapter 4334 for connecting the
workstation to a communication network 4335 (e.g., a data
processing network) and a display adapter 4336 for con-
necting the bus 4312 to a display device 4338. The work-
station typically has resident thereon an operating system
such as the Microsoft Windows NT or Windows/95 Oper-
ating System (OS), the IBM OS/2 operating system, the
MAC OS, or UNIX operating system. Those skilled in the
art will appreciate that embodiments present invention may
also be implemented on platforms and operating systems
other than those mentioned. An embodiment may be written
using JAVA, C, and the C++ language and utilizes object
oriented programming methodology.

[0205] While various embodiments have been described
above, it should be understood that they have been presented
by way of example only, and not limitation. Thus, the
breadth and scope of a preferred embodiment should not be
limited by any of the above described exemplary embodi-
ments, but should be defined only in accordance with the
following claims and their equivalents.

What is claimed is:
1. A method for updating a switching table in a switch
fabric, comprising:

receiving at a switch fabric component one or status
packets from at least one port controller and a plurality
of other switch fabric components, wherein the status
packets are received without utilizing of a handshaking
protocol; and

updating a switching table based on the status information
of the received status packet, the switching table pro-
viding information for identifying the availability of
one or more output ports of the switch fabric compo-
nent for outputting therefrom a datagram being trans-
mitted through the switch fabric.

2. The method of claim 1, wherein the status packets are
received via paths dedicated for transmitting the status
packets and separate from paths dedicated for transmitting
Ethernet packets through the switch fabric system.

3. The method of claim 1, wherein the status packets are
received periodically and the switching table is updated in
real time.

4. The method of claim 1, further comprising: generating
a combined status packet based on the combined status
information of the received status packets, and transmitting
the combined status packet.

5. The method of claim 4, wherein the combined status
packet is transmitted from an outer layer switch fabric
component to a middle layer switch fabric component.

6. The method of claim 1, wherein the received status
packet is generated from a port controller.

7. The method of claim 1, wherein the received status
packet is generated by a switch fabric component.

8. The method of claim 1, wherein a status packet
comprises 32 bits of data.

9. A system for updating a switching table in a switch
fabric, comprising:

logic for receiving at a switch fabric component one or
status packets from at least one port controller and a

US 2004/0095927 Al

plurality of other switch fabric components, wherein
the status packets are received without utilizing of a
handshaking protocol; and

logic for updating a switching table based on the status
information of the received status packet, the switching
table providing information for identifying the avail-
ability of one or more output ports of the switch fabric
component for outputting therefrom a datagram being
transmitted through the switch fabric.

10. The system of claim 9, wherein the status packets are
received via paths dedicated for transmitting the status
packets and separate from paths dedicated for transmitting
Ethernet packets through the switch fabric system.

11. The system of claim 9, wherein the status packets are
received periodically and the switching table is updated in
real time.

12. The system of claim 9, further comprising logic for
generating a combined status packet based on the combined
status information of the received status packets, and logic
for transmitting the combined status packet.

13. The system of claim 12, wherein the combined status
packet is transmitted from an outer layer switch fabric
component to a middle layer switch fabric component.

14. The system of claim 9, wherein the received status
packet is generated from a port controller.

15. The system of claim 9, wherein the received status
packet is generated by a switch fabric component.

16. The system of claim 9, wherein a status packet
comprises 32 bits of data.

May 20, 2004

17. A computer program product for updating a switching
table in a switch fabric, comprising:

computer code for receiving at a switch fabric component
one or status packets from at least one port controller
and a plurality of other switch fabric components,
wherein the status packets are received without utiliz-
ing of a handshaking protocol; and

computer code for updating a switching table based on the
status information of the received status packet, the
switching table providing information for identifying
the availability of one or more output ports of the
switch fabric component for outputting therefrom a
datagram being transmitted through the switch fabric.

18. The computer program product of claim 17, wherein
the status packets are received via paths dedicated for
transmitting the status packets and separate from paths
dedicated for transmitting Ethernet packets through the
switch fabric computer program product.

19. The computer program product of claim 9, wherein
the status packets are received periodically and the switch-
ing table is updated in real time.

20. The computer program product of claim 9, further
comprising computer code for generating a combined status
packet based on the combined status information of the
received status packets, and computer code for transmitting
the combined status packet.

