

[54] METHOD AND APPARATUS FOR DRYING LUMBER

[76] Inventor: Donald A. Runciman, 15221-15th St., Seattle, Wash. 98148

[22] Filed: June 28, 1972

[21] Appl. No.: 267,132

[52] U.S. Cl. 34/9.5, 34/13.8, 34/13.4, 34/48, 34/DIG. 19, 432/66

[51] Int. Cl. F26b 3/04

[58] Field of Search 34/9.5, 13.8, 13.4, 34/14, 16.5, 15, 77, 78, 100, 196, DIG. 19, 48, 201, 212, 216, 217; 832/1, 2, 6, 9, 14, 23, 66, 126, 187

[56] References Cited

UNITED STATES PATENTS

3,685,959	8/1972	Dunn, Jr. et al.	34/9.5
2,543,618	2/1951	Wood	34/212
2,860,070	11/1958	McDonald	34/9.5
3,510,954	5/1970	Dunn, Jr.	34/78
3,205,589	9/1965	Fies et al.	34/9.5
2,423,020	6/1947	Haun	34/9.5
1,328,506	1/1920	Fish, Jr.	34/9.5

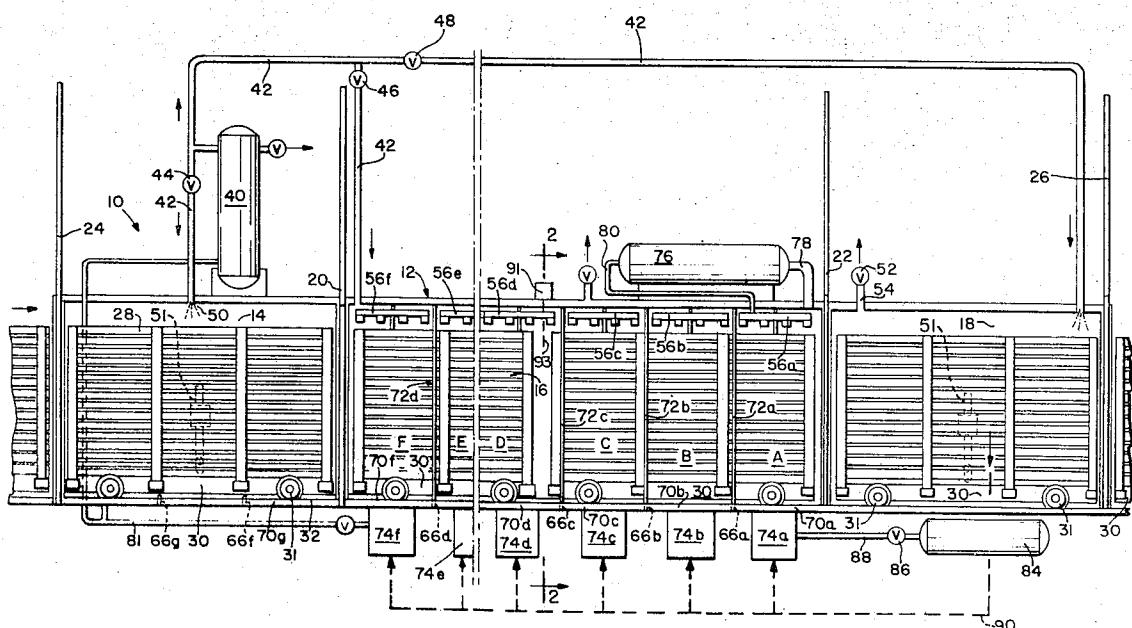
FOREIGN PATENTS OR APPLICATIONS

684,915 4/1964 Canada 34/13.8

Primary Examiner—John J. Camby

Assistant Examiner—Henry C. Yuen

Attorney—John O. Graybeal, James R. Uhlir et al.


[57] ABSTRACT

A method and apparatus for drying stacked lumber by solvent extraction, said apparatus including an elongate chamber through which stacked batches of lumber to be dried are moved. The elongate chamber includes a

first compartment in which a stacked batch of lumber is steamed. A second longitudinally adjacent compartment wherein a liquid mixture of a solvent and water near its boiling point wets the stacked lumber in the presence of a vapor mixture of steam and solvent such that the solvent in the liquid phase replaces water within the lumber. As the stacked lumber is moved through this second compartment both the liquid and vapor phases in contact with the lumber have progressively greater solvent contents. The wetting liquid flows progressively through a series of weirs counter the direction of lumber movement, while the vapor moves between the stacked lumber in the direction opposite liquid flow and in this manner, the solvent drying the lumber is itself distilled within the chamber. A condenser adjacent the exit end of the second compartment withdraws vapor having a high solvent content from the compartment and returns solvent condensed therefrom to the dry wood end of the compartment where it is again used to wet the lumber. A third compartment is provided longitudinally adjacent the second compartment wherein the stacked lumber is subjected to steam or a steam and air combination to remove a desired percentage of solvent in the wood to produce substantially dry lumber.

A method of drying lumber by solvent extraction including the steps of steam conditioning wood for drying; wetting the lumber to be dried with a substantially closed chamber with a water-solvent liquid mixture maintained at or near its boiling point; increasing the solvent content of the liquid mixture such that solvent replaces substantially all of the moisture in said lumber; simultaneously distilling the solvent within the substantially closed chamber; and raising the temperature of the lumber to drive off the solvent therein to produce substantially dry lumber.

23 Claims, 6 Drawing Figures

PATENTED SEP 11 1973

3,757,428

SHEET 1 OF 2

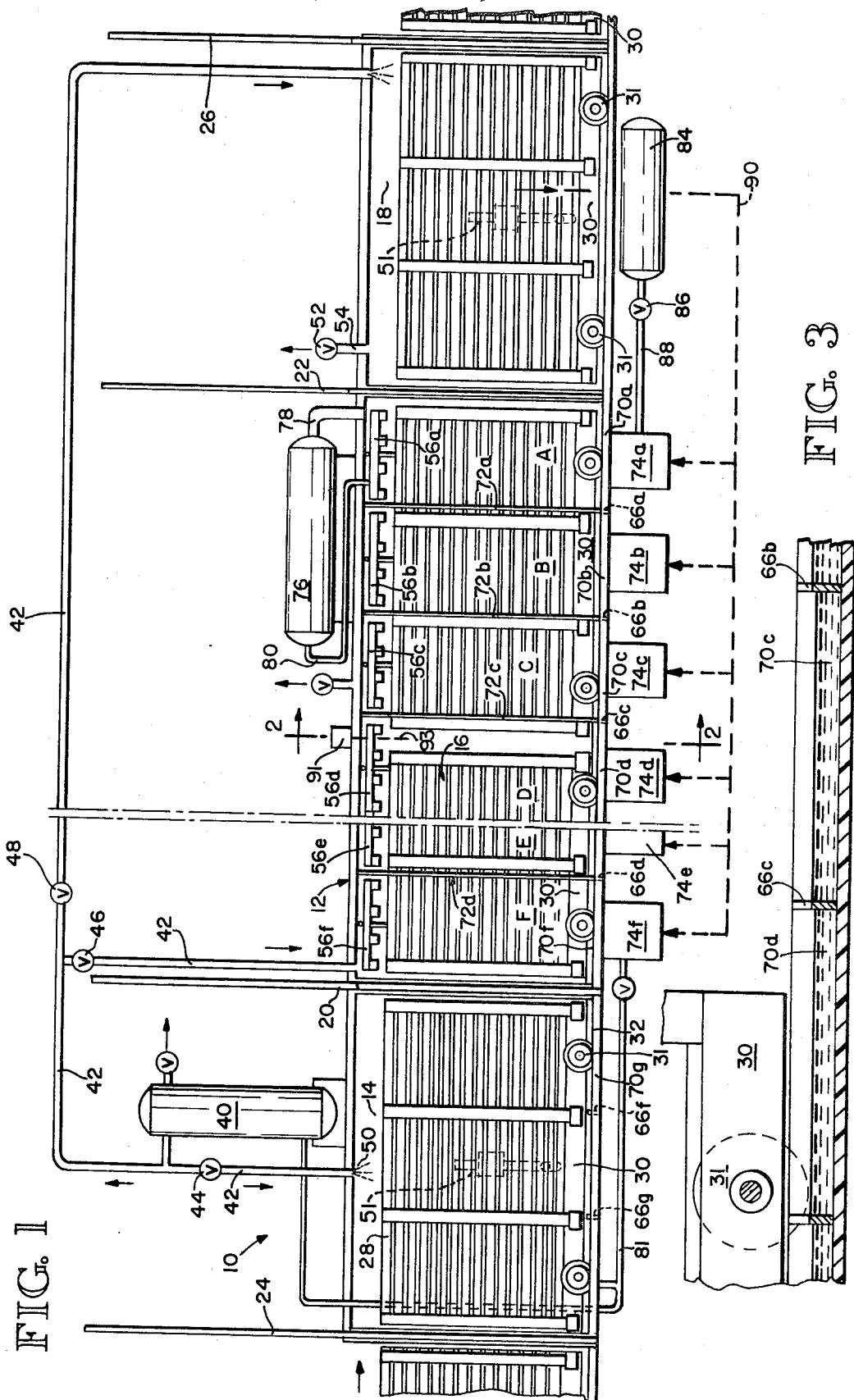


FIG. 2

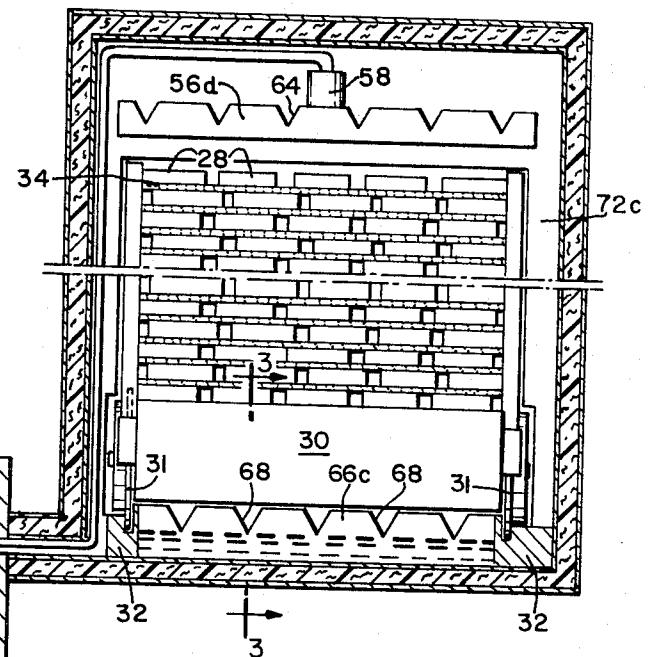


FIG. 6

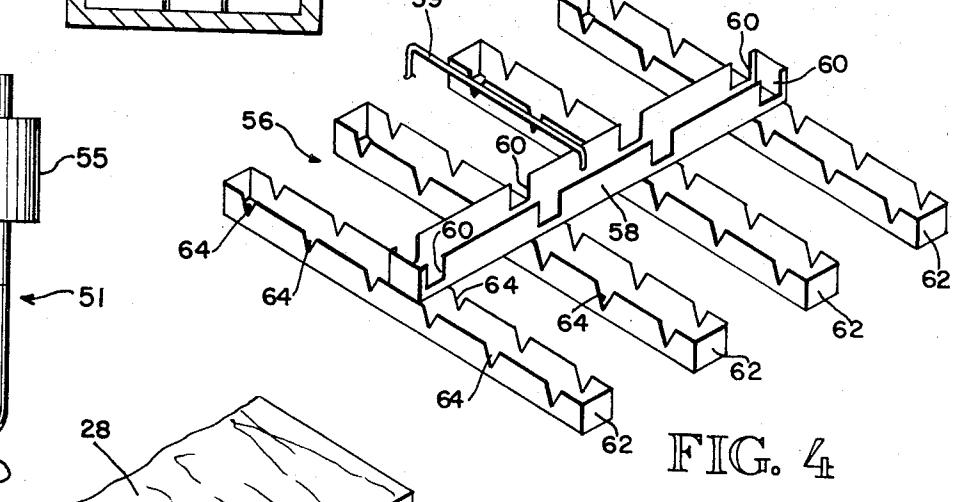


FIG. 4

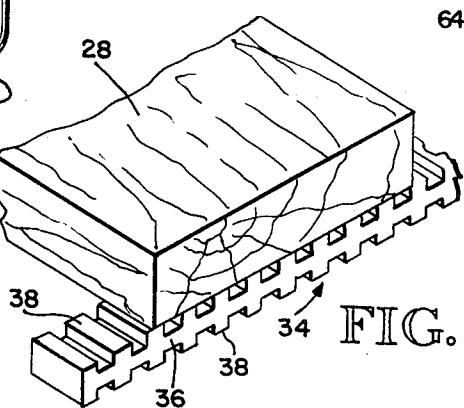


FIG. 5

METHOD AND APPARATUS FOR DRYING LUMBER

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates, in general, to a method and apparatus for drying lumber, and in particular, to a method and apparatus for drying lumber rapidly by solvent extraction without a separate solvent distillation unit.

2. Description of the Prior Art

In general, it is known that lumber may be dried by heating it in an immiscible solvent maintained at a temperature above the boiling point of water until all the water within the lumber boils off. It is also known that when wet wood is placed in continuous contact with a solvent which is miscible with water, the solvent will remove the water from the wood even if the solvent is used cold or at any other temperature below the boiling point of water. Alcohol is a common example of such a solvent and this principle has long been used in the seasoning and treating of green wood.

While the use of solvent to extract moisture from lumber is known per se, most prior processes have submerged the wood to be dried in a series of tanks containing solvent. The solvent is circulated through the tanks until the moisture content of the wood has been reduced to a desired level and the wood is then removed from the tanks and the solvent stripped therefrom by conventional means. The solvent-water liquid mixture remaining in the tanks is passed through a conventional distillation column where water is separated from the solvent and the dry solvent returned to the tanks. The construction cost of a conventional distillation column is substantial, and this factor has generally prevented commercial acceptance of these processes.

One known method of drying lumber developed by the Western Pine Association comprises the steps of standing lumber on end in a closed drying chamber and continuously wetting the lumber with hot acetone until the desired water removal is accomplished. The acetone, containing both water and the pitch from the wood, is continuously drained from the extractor and recirculated through a storage tank and heater back to the spray head. When the water content of the mixture becomes too great, some of the mixture is drawn off from the storage tank and distilled to separate the water and the extractives and to recover pure acetone. After the spray is shut off, heated air is passed over the lumber to complete drying and remove the acetone. Finally, an inert gas is introduced into the extractor to reduce the fire hazard and increase acetone recovery. Again the need for a separate distillation column has limited commercial acceptance of this process.

U.S. Pat. No. 2,860,070 discloses a wood drying process employing the commercial dry cleaning solvent perchloroethylene. The wood is placed horizontally in a closed chamber and submerged in the solvent which is then heated until an azeotropic mixture of water and the solvent boil off. Vapors are collected in a condenser, separated, and the solvent returned to the closed chamber. Since the solvent is not miscible in water, the drying phenomenon is similar to known boiling-in-oil processes, such as that disclosed in U.S. Pat. No. 3,205,589 for example.

One problem to which the instant invention has particular application is that of drying redwood timber.

Most redwood lumber must be dried to a moisture content of between 8 percent and 10 percent prior to its final utilization, and since redwood is a slow drying species, requiring the longest drying time of any commercial soft wood species, this represents a major problem in the industry. A good discussion of some of the problems involved in the drying of redwood is found in U.S. Pat. No. 3,309,778 which discloses a method of drying redwood including freezing the wood prior to 10 drying.

A method of solvent drying redwood using methanol has been described in an article titled "Solvent Drying of California Redwood," published at pp 297 et seq. of the July, 1965 issue of *Forest Products Journal*. In the 15 described process, lumber to be dried was inserted in a closed extractor and methanol was distributed over each board. Periodically a portion of solvent mixture in the extractor was removed and distilled and fresh solvent added. When a desired moisture content of the lumber was reached, the solvent was drained from the extractor and the solvent removed from the lumber by air circulation and steaming. Again, this process requires relatively expensive separate distillation equipment to purify the methanol, while disclosing a vapor sealed chamber which is costly to construct and cannot be loaded or unloaded with lumber without shutting down the drying process or risking a serious explosion.

BRIEF SUMMARY OF THE INVENTION

The instant invention relates to a method of drying lumber by solvent extraction, including passing the lumber through a drying chamber wherein a liquid mixture of solvent and water containing progressively lesser amounts of water and greater amounts of solvent is sprayed over the lumber as it passes there-through such that the solvent replaces water within the lumber. The liquid mixture flows from the dry wood exit end of the chamber toward the wet wood entrance end. Simultaneously, steam enters the drying chamber at its wet wood entrance end and moves through the chamber causing solvent in the liquid mixture to vaporize. At the dry wood exit end of the chamber, the vapor phase, which has a high solvent content, is condensed and the condensate employed to again wet the stacked lumber. The solvent is thus continually distilled within the wood 40 drying chamber itself. When the solvent has replaced a desired amount of the water within the lumber, the lumber is heated by steam to drive off the solvent, thus producing substantially dry lumber.

One apparatus for drying lumber in the disclosed manner includes an elongated chamber having a first compartment wherein the lumber to be dried is steamed, a longitudinally spaced second compartment wherein the lumber is wet by a liquid mixture of solvent and water in the presence of steam such that the solvent replaces the water in the lumber, and a longitudinally spaced third chamber wherein the solvent which has replaced the water in the lumber is removed by heating. Each of the compartments include end positioned sealable doors so that lumber may be moved through the elongate chamber while maintaining relatively constant conditions within the second wood drying compartment while further minimizing the entrance of air into the wood drying compartment or the escape of vapor from the wood drying compartment to the air to reduce the hazard of explosion. The second compartment includes a plurality of solvent distribution

means spaced along its top portion to distribute solvent over the lumber to be dried. Basins are arranged below each solvent distributor to catch liquid runoff from the lumber, and these basins are arranged so that liquid flows from basin to basin from the dry wood exit end of the second compartment toward the entrance end of the elongate chamber and thence to a reboiler. The solvent-water mixture employed to wet the lumber is continually maintained at its boiling point and sumps are associated with each basin so that the solvent-water mixture is recirculated to the overhead distributor.

It is an object of the present invention, therefore, to provide a method and apparatus for drying lumber by solvent extraction which does not require the construction of a separate distillation column to purify the solvent.

Another object of the present invention is to provide a method and apparatus for solvent drying lumber wherein the solvent is continually distilled within the drying chamber itself.

Still another object of the present invention is to provide a method and apparatus for drying lumber including a single elongate chamber through which lumber may be moved for drying.

One more object is to provide apparatus for drying lumber which may be easily automated thus reducing operational manpower requirements.

Still another object is to provide apparatus for drying lumber by solvent extraction which requires the use of a relatively small amount of solvent at any one time as compared with known immersion techniques.

One more object is to provide a method and apparatus for drying lumber using methanol as a solvent which is safe from fire and explosion.

Still another object is to provide a method and apparatus for drying all types of lumber, but which is particularly useful for drying difficult to dry woods such as redwood.

One more object is to provide an apparatus for drying lumber which is in effect a packed distillation column lying on its side wherein the wood to be dried functions as the packing for the column.

Another object is to provide a method and apparatus for rapidly drying lumber which produces high quality dried lumber.

Other and additional advantages will be apparent from the following description taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagrammatic view of a typical lumber drying apparatus made according to the instant invention.

FIG. 2 is a section taken along line 2—2 of FIG. 1.

FIG. 3 is a section view taken along line 3—3 of FIG. 2.

FIG. 4 is a perspective view of a typical solvent distribution apparatus useful in the instant invention.

FIG. 5 is a partial perspective view of a typical spacer used to hold pieces of lumber to be dried at a distance from each other.

FIG. 6 is a partial side elevation view of a typical air vent for use in the end compartments of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Referring initially to FIG. 1, an apparatus indicated

generally by the index number 10 for drying lumber by solvent extraction and made according to the teachings of the instant invention is disclosed. As shown, apparatus 10 includes an elongate chamber 12 comprising a first compartment 14, a second compartment 16, and a third compartment 18 separated from each other by sealable doors 20 and 22 which, as shown, are movable vertically in tracks to allow the second compartment to be sealed with respect to the first and third longitudinally spaced compartments in elongate chamber 12. Overhead sealable doors 24 and 26 are shown similarly mounted on the entrance and exit ends of elongate chamber 12 to allow the first and third compartments to be sealed with respect to the atmosphere. Seals of varying types, including inflatable seals which employ controlled air pressure to expand the seal, may be mounted on all of the doors to reduce degradation of the temperature and vapor conditions within the apparatus during lumber drying.

20 Pieces of wet lumber 28 to be dried are stacked on a conveying apparatus such as cart 30 including pairs of wheels 31 which run on tracks 32 which extend longitudinally through chamber 12. Carts 30 are preferably constructed of wood, stainless steel, or some other material which will not be damaged by prolonged contact with the solvent and solvent laden vapor within the drying chamber. In one embodiment of the instant wood drying apparatus, carts 30 may be 20 feet long, 4 feet wide and have side supports 8 feet high, while 25 chamber 12 is approximately 120 feet long but of similar cross-section such that six carts loaded with lumber may be within the chamber at one time. Chamber dimensions, including its length, may be varied depending on the volume and average condition of lumber to be treated, for instance the chamber may be constructed 20 feet wide such that lumber carts having 20 foot long pieces of lumber stacked crosswise thereon may be moved through the chamber in a high volume operation. Treatment time within the chamber for each 30 cart load of lumber may vary between 3 and 6 days depending on the type and condition of the lumber treated and other known factors. If longer drying times are needed for very wet wood, the chamber may be lengthened thereby increasing the length of time the wood is treated therein.

Chamber 12 may be laid horizontally in a horseshoe or circular shape depending on space requirements and it is also contemplated that the chamber could be disposed vertically, thereby eliminating the need for the plurality of solvent pumps described hereafter with reference to the horizontal unit, but requiring elevator apparatus capable of lifting the wood to be dried therethrough. Forms of conventional horizontal conveying apparatus other than that illustrated, may be used with the apparatus disclosed in FIG. 1, including continuous belt conveyors, for example. While a motive apparatus for the carts 30 has not been illustrated, it will be understood that they may be moved through elongate structure 12 by any conventional means such as a continuous tugger chain or cable or the like.

55 FIG. 5 illustrates one type of spacer 34 positionable between the pieces of lumber 28 as they are stacked on carts 30 to maintain vapor circulation gaps therebetween. Spacer 34 may include a central spine portion 36 and oppositely disposed space ribs 38 as shown, or any other similarly functioning shape. In the illustrated embodiment, spacer 34 may be $\frac{1}{8}$ inch high, $1\frac{1}{2}$ inches

wide and 48 inches long such that when it is positioned transverse cart 30 it substantially spans the width of the cart. As will be more completely described hereafter, heated vapor travels longitudinally through the spaces between the stacked lumber from the wet wood input end of compartment 16 toward the dry wood exit end of the compartment to assist in solvent wetting of all surfaces of the stacked lumber. It will be understood that the lumber is stacked on the carts such that the treating liquid may flow over and around all sides of each piece.

In one mode of operation, compartment 16 is filled with four carts 30 of lumber stacked with spacers 34 between individual pieces while compartment 18 houses a single cart load of lumber. Initially, doors 20, 22 and 26 are closed and sealed while door 24 is opened to allow a cart of wet lumber to be moved into the compartment 14 to the position shown in FIG. 1. Reboiler or steam generator 40 of a conventional type operates slightly over atmospheric pressure and is interconnected by means of steam carrying conduits 42 to each of the compartments 14, 16 and 18. Steam may be directed to one or more of the compartments as desired during operation by opening or closing valves mounted along the conduits 42. For example, with doors 20, 22 and 26 sealed and door 24 opened, valve 44 is closed while valves 46 and 48 are opened such that steam is directed from reboiler 40 to both of the compartments 16 and 18. When the wet stacked lumber is moved into compartment 14, door 24 is closed and sealed, door 20 raised, and valve 46 closed while valve 44 is opened to direct steam directly into compartment 14 through orifice 50.

Air vent 51 is shown in FIG. 1 mounted on the side of compartment 14 and is more completely disclosed in FIG. 6. As steam enters the top of chamber 14, the cold air therein is pushed out tube 53 near the bottom of the compartment. When the cold air has been substantially exhausted from the compartment and steam begins to be forced out pipe 53, the steam is condensed in condenser 55, filling the neck 57 of tube 53 until the differential pressure is sufficient to stop the flow of steam therethrough. A similar air vent 51 is also shown in FIG. 1 to be mounted on compartment 18 to operate in a similar manner when cold air is driven therefrom after the closing of door 26.

As described more completely hereafter, the steam overflows compartment 14 into compartment 16 and moves between the lumber stacked on the carts therein toward the dry wood exit end of the compartment at door 22. As the steam moves through compartment 16 it is progressively cooled by contact with boiling solvent wetting the lumber. The steam or vapor phase, as it is more properly called, takes on a progressively greater vaporized solvent content as it moves toward the dry wood exit end of compartment 16, while the solvent or liquid phase flowing from the dry wood end of the compartment toward the wet wood entrance end takes on a progressively greater water content. Further, as the solvent flows toward the wet wood entrance end of compartment 16, it encounters a vapor phase having a progressively higher temperature such that progressively greater amounts of solvent are vaporized, which vaporized solvent, as mentioned above, is driven toward the dry wood exit end of the compartment. In this manner it will be understood that the compartment 16 continually distills the solvent employed to replace the

water within the lumber, thus eliminating the need for the separate distillation column found generally in the prior art.

The steam entering compartment 14 is heated by reboiler 40 to approximately 212°, and the steam treatment of the cart load of wet lumber within chamber 14 performs the multiple function of cleaning the lumber of sawdust and dirt which may have accumulated thereon, raising its temperature to near 212°, and opening the pores of the wood thereby conditioning it for the subsequent portion of the drying treatment carried out in compartment 16. In operation, all of the lumber carts within chamber 12 will be moved one cart position forward toward dry wood exit door 26 after a uniform time interval. The length of the time interval between movements is controlled by the solvent wetting operations carried on in compartment 16 wherein the moisture in the lumber is replaced by solvent such that a cart load of stacked lumber leaving compartment 16 will have reached a desired minimal moisture content prior to solvent stripping in compartment 18.

At the expiration of one treating interval, valve 48 is closed and door 26 opened while door 22 remains sealed such that the cart of dried lumber within compartment 18 may be removed. The solvent removal process in compartment 18 may be controlled such that the lumber leaving chamber 12 has a water content of between 8 percent and 10 percent and a solvent content of approximately 2 percent. Door 26 is then closed and sealed and valve 48 opened to refill chamber 18 with steam. During refilling of compartment 18 with steam, valve 52 on exhaust pipe 54 extending from compartment 18 is initially opened to allow the air within the chamber 18 to be substantially exhausted, at which time valve 52 is closed. Door 22 is then opened and the five remaining carts of stacked lumber are moved forward one cart length such that a cart is positioned within compartment 18 while compartment 14 is emptied. Doors 20 and 22 are then closed, valve 46 opened, valve 44 closed, and door 24 raised to allow a new cart of wet lumber to be moved into the chamber as previously described. With the new cart load of wet lumber within chamber 14, door 24 is closed, and valve 44 opened to allow steam to replace the air within chamber 14. When a steam atmosphere and temperature of near 212°F. is obtained within compartment 14, door 20 is opened and valve 46 closed thus producing the general treating arrangement wherein all doors but door 20 are closed and sealed and wherein steam is fed directly into compartments 14 and 18.

Referring now to FIG. 2, solvent distributing weir 56d is shown mounted at the top of compartment 16 above the stacked lumber. It will be understood that compartment 16 includes a plurality of such weirs 56a-56f similarly mounted and spaced longitudinally along the top portion of the compartment. FIG. 4 more completely discloses the construction of a typical distributing weir, including a first main distributing trough 58 into which solvent is fed through pipe 59 running from one of a plurality of sumps at the bottom of the compartment. Trough 58 includes a plurality of spaced openings 60 through which the solvent drains into a plurality of transversely oriented troughs 62 each of which include a number of spaced solvent distributing notches 64 through which solvent flows onto the stacked lumber therebelow. The size and trough and notch arrangement of weirs 56 may be varied to

achieve maximum spreading of the solvent over the lumber so that a substantial portion of the lumber is wet directly by the solvent, but direct wetting of all surfaces of the lumber is not necessary since the vapor phase composed of steam and solvent passing the unwetted lumber also tends to condense thereon thus wetting every exposed surface of the stacked lumber.

A conventional spray system comprising pipes having a plurality of spray nozzles positioned around the stacked lumber may be used in place of the illustrated weir trough distributors. However, since higher pumping pressures are required for spray nozzles, and sawdust or other particulate matter tends to plug the nozzles, spraying the boiling solvent presents economic and operational problems which need not be considered when using a weir trough distribution system of the type commonly used in packed distillation columns.

As is best seen in FIG. 2, a flow barrier or weir 66c including laterally spaced notches 68 is mounted on the bottom of compartments 16. FIG. 1 discloses a plurality of weirs 66a-66g spaced on the bottoms of compartments 14 and 16 to define catch basins 70 in which the liquid dripping from the stacked lumber is caught. The liquid fills the catch basins 70 to a depth regulated by the notches in weirs 66 and then overflows through the notches into the next adjacent basin toward the wet wood entrance end of the chamber. The flow from basin to basin may be induced by sloping the floor of the elongate chamber a slight amount such as 2 inches over the length of the entire chamber, or progressively lowering the bottoms of the notches 68 in the weirs all illustrated in FIG. 3.

Again as seen in FIG. 2, baffle 72c is positioned within compartment 16 above weir 66c such that it substantially fills the cross sectional area of compartment 16 except for an opening through which carts 30 and their loads of stacked lumber may be moved. FIG. 1 discloses that similarly shaped baffles 72a-72d are positioned above each of the weirs in compartment 16 and are thus located between each of the longitudinally spaced weir trough distributors 56a-56f. The baffles 72 snugly surrounds the carts and their loads of stacked lumber and thus prevent the rapid passage of the vapor phase from the wet wood end of compartment 16 to its dry wood end except through the longitudinal spaces between the individual pieces of the stacked lumber. In one embodiment, baffles 72 may be constructed of plastic strips stiffened with wire to allow a degree of flexibility should a baffle be contacted by one of the pieces of lumber stacked on a cart, however, it will be understood that a variety of other materials might also be satisfactorily used to accomplish a similar purpose.

The baffles define a series of subcompartments A-F within compartment 16, each of which subcompartments includes a weir trough solvent distributor 56, a catch basin 70 and a sump 74 including a pump 82 for pumping the solvent at its boiling temperature from the bottom of each subcompartment through pipe 59 to the weir trough distributor spaced thereabove. Sumps 74 may have a depth of from 2 to 3 feet to provide a positive head for pumps 82 thus allowing the solvent within the sump to be pumped at its boiling temperature to the weir trough distributor thereabove without having the boiling liquid flash to the vapor state. The recirculation rate of solvent should be such that the top surface of the stacked lumber is continuously flooded with the solvent running onto the pieces of lumber stacked

therebelow. A seal-less immersible centrifugal pump of a type commercially available may be satisfactorily used to pump the boiling solvent. The sumps reduce the amount of solvent needed within the system as well as reducing the required weight of the entire drying chamber.

FIG. 2 illustrates one mode of constructing chamber 12 wherein an inner sheet metal wall is spaced from an outer surface of tar paper or the like by approximately three inches of fiberglass insulation. It will be understood that the sheet metal walls are appropriately stiffened to withstand the slight pressure head which may be developed within the chamber during operation. The floor of the chamber as well as the walls and ceiling thereof may be constructed in this manner to provide a well insulated but extremely inexpensive structure. Other like materials may also be substituted therefor within the scope of this invention.

Condenser 76, which may be of any suitably sized commercially available type, is connected to a sub-chamber A located at the dry wood exit end of compartment 16 by means of conduit 78 through which the vapor phase which has been driven to this subcompartment is drawn off. Conduit 80 is illustrated returning the condensed vapor phase at a temperature near its boiling point to weir trough distributor 56a.

In operation of the disclosed apparatus to continuously dry lumber and using methanol as a solvent, steam at near 212°F. flows from reboiler 40 through orifice 50 into compartment 14. As the steam fills compartment 14, it overflows into compartment 16 where it moves between the spaced lumber mounted on the longitudinally aligned carts through the successive sub-compartments F to A in chamber 16 toward the dry wood exit end thereof. Simultaneously, substantially pure methanol from condenser 76 is fed at near its boiling temperature of 148°F. to weir trough distributor 56a. The boiling solvent is distributed over and wets the stacked lumber within subchamber A, and then drains into basin 70a and associated sump 74a where it is pumped back to weir trough distributor 56a. When basin 70a is filled, the solvent flows through the notches in weir 66a into the next adjacent basin 70b where it is again circulated over the stacked lumber in subcompartment B. As the boiling solvent at near 148°F. runs over the stacked lumber in the presence of the vapor phase which has migrated through the subcompartments F-A from chamber 14, the solvent tends to condense a portion of the higher temperature water vapor in the vapor phase thus causing the solvent to take on water as it flows toward the wet wood entrance end of compartment 16. Simultaneously, the high temperature water vapor in the vapor phase vaporizes a portion of the boiling solvent thereby causing the vapor phase to take on a progressively greater percentage of solvent as it moves toward subcompartment A where it is withdrawn and condensed. The vapor phase within each of the subchambers is a mixture of water and solvent at its boiling point tending toward heat and mass equilibrium, while the liquid phase employed to wet the stacked lumber in each of the subcompartments is a water and boiling liquid solvent mixture which is also tending toward heat and mass equilibrium. It will thus be understood that the entire drying chamber is designed to approach and be maintained at the boiling point of the phase mixture at any point therein.

For example, in subcompartment F at the wet wood entrance end of compartment 16, the liquid and vapor phases may consist of over 98 percent water and less than 2 percent methanol, thus having a boiling point of approximately 205°F. On the other hand, the composition of the liquid and vapor phases in subcompartment A at the dry wood exit end of compartment 16, may consist of over 95 percent methanol and less than 5 percent water, for example, and thus have a boiling point of approximately 149°F. Subcompartments E through B are filled with liquid-vapor phases having progressively greater proportions of methanol and lesser proportions of water at progressively lower temperatures running between the 195°F. temperature in subchamber F progressively downward to the 149°F. temperature in subchamber A. As the lumber is moved toward the dry wood exit end of compartment 16, the progressively more concentrated solvent liquid and vapor phases encountered cause the solvent to progressively replace a greater portion of the water within the lumber, until when the stacked lumber is ready for removal into compartment 18, substantially all of the water in the lumber has been replaced by methanol. It will be understood that in this process, water is removed from the lumber as a liquid, not a vapor, thus further adding to the water content of the liquid phase within compartment 16 as it flows toward the wet wood entrance end thereof.

It has been calculated that in order to obtain a moisture content blow 10 percent after solvent stripping in compartment 18, the methanol returned to compartment 16 by the condenser 76 should be 98 percent by wt. methanol. This may be accomplished by maintaining the amount of methanol in the system high enough to produce this purity level. The length of compartment 16 is important in this context, because if the compartment is too short the concentration of the liquid mixture pumped to the reboiler may exceed the relatively low methanol level necessary for economic operation, i.e., for minimal methanol loss in the reboiler. It is estimated that ideally the concentration should be less than 0.2 percent by wt. methanol, but higher methanol concentrations could be tolerated and still maintain economic operation. The effect of a short chamber may be partly overcome by increasing the amount of steam pumped from the reboiler to compartment 14, although this would also increase operating cost to some extent as well as increasing the reflux ratio, overflow/product, of compartment 16. Ideally, it is estimated that the heat input to the reboiler should be such that four times as much methanol is condensed by the condenser 76 as is carried out to compartment 18 in the lumber. This ratio approximates the reflux ratio in a normal distillation column.

Since the methanol content of the liquid phase is quite small by the time it is drawn off from either sump 74f by conduit 81 as illustrated in FIG. 1 or drawn off at the wet wood entrance end of compartment 14, and pumped to reboiler 40, the amount of methanol boiled off and lost is small. To make up for this solvent loss, and for the solvent carried out of the system by the dried lumber, solvent storage container 84 including valve 86 is interconnected with sump 74a by means of conduit 88. Water soluble extractives from the wood, as well as liquid borne debris may be removed from the liquid by skimming or a like process in the reboiler. Chemicals extracted from the lumber by the methanol

may be topped off at any desired point within compartment 16 if desired or they may be allowed to remain within the system. If not removed, the methanol extractives are washed into the basins 70 and carried toward the wet wood entrance end of the compartment with the liquid phase. As the water content of the liquid phase increases, the chonical extractives precipitate out of the liquid phase and are either again deposited on the lumber where they are carried with the lumber toward the dry wood exit end of the compartment or carried in the liquid phase to the reboiler where they may be skimmed. Non-condensables carried by the vapor phase to the condenser 76 may be vented to the atmosphere.

A thermocouple 91 having a sensor 93 within compartment 16 is illustrated to show one means for monitoring the temperature within the wood drying chamber during operation. It will be understood that similar temperature sensing devices could also be positioned within each of the subcompartments of compartment 16. Means may also be provided at intervals within the chamber 12 to allow the specific gravity of the liquid phase to be measured. Variations in specific gravity may be related to the rate of water removal from the lumber within the chamber and this information is useful for determining the length of treatment times.

When a cart load of stacked lumber has moved through compartment 16 and substantially all of the water therein has been removed and replaced by solvent, the cart is moved into compartment 18 in the manner described heretofore. The stacked lumber is steamed in this compartment to remove the solvent from the lumber, thus leaving the lumber with a desired water content which may be between 8 percent and 10 percent, for example. The dried lumber may then be removed from the elongate chamber.

During the steaming operation in compartment 18, it will be understood that the solvent driven off of the wood mixes with the steam to create a mixture composed of varying proportions of solvent and water during different stages of the solvent removal. A pump and conduit system illustrated by dotted line 90 and having interconnections with the various subcompartments A-F in compartment 16 may be used to direct the mixture removed from chamber 18 to a subcompartment having a like mixture of solvent and water. In this manner, the heat in compartment 18 may be reused rather than merely exhausted to the atmosphere thereby improving operating efficiency. A monitoring and valve switching system may be used to measure the solvent content of the mixture withdrawn from chamber 18 and direct it to the appropriate subchamber A-F.

The disclosed apparatus, is thus useful for carrying out a method of drying lumber wherein stacked lumber is first heated by steam and then treated with boiling solvent-water mixtures having progressively greater solvent contents in the presence of a similarly constituted vapor such that the water within the lumber is progressively replaced by solvent. Simultaneously with this treatment, and within the treating chamber, the solvent is continually distilled thereby eliminating the need for a separate distilling column. When substantially all of the water within the lumber has been replaced by solvent, the lumber is stripped of solvent by steaming to produce substantially dry lumber in a relatively short time.

The invention may be embodied in other specific forms without departing from the spirit or central characteristics thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore to be embraced therein.

What is claimed is:

1. A method of drying lumber of solvent extraction comprising the steps of:

conveying said lumber within a substantially closed chamber;

wetting said lumber with a boiling liquid mixture of solvent and water in the presence of a vapor mixture of solvent and water such that said solvent replaces a portion of the water in said lumber;

progressively increasing the solvent content in said liquid and vapor mixtures to replace substantially all of the water in said lumber; and

stripping said lumber to remove the solvent therein to produce substantially dry lumber.

2. The method of claim 1 including the step of simultaneously distilling said solvent within said closed chamber.

3. A method of drying wet lumber by solvent extraction comprising the steps of:

steaming said lumber to raise its temperature to near the boiling point of water;

wetting said lumber with a boiling liquid mixture of water and a minor amount of solvent in the presence of a vapor mixture of water and solvent to cause said solvent to replace a minor portion of the water in said lumber;

progressively increasing the amount of solvent in said liquid and vapor mixtures till said solvent comprises a major portion of said mixtures while maintaining said liquid mixture at its boiling point to cause said solvent to replace a major portion of the water in said lumber; and

heating said lumber to raise its temperature above the boiling point of said solvent to clean said lumber.

4. A method of drying stacked wet lumber in a methanol distillation column having a relatively cold end wherein liquid methanol at its boiling temperature enters said column and a hot end wherein steam enters said column, including the steps of:

conveying said stacked lumber into the hot end of said distillation column such that said lumber substantially fills the cross sectional area of said column and acts as the packing therefor;

steaming said lumber;

wetting the surface areas of said stacked lumber with a boiling liquid mixture of water and a small amount of methanol in the presence of said steam to replace a small portion of the water in said wood with methanol;

moving said stacked lumber progressively from said hot end toward said cold end of said distillation column while continually wetting said lumber with a boiling liquid mixture of water and methanol in the presence of a steam and methanol vapor mixture; increasing the methanol content of said lumber wetting mixtures as said lumber moves toward said

5 cold end of said column to replace substantially all of the water in said wood with methanol; and removing said stacked lumber from the relatively cold end of said distillation column and stripping the methanol from said lumber to produce substantially dry lumber.

5. The method of claim 4 including the step of distilling said methanol within said column as said stacked lumber moves toward the relatively cold end of said 10 column.

6. The method of claim 4 including the step of withdrawing and condensing the vapor mixture from the cold end of said column to produce substantially pure methanol.

7. A method of drying wet lumber by solvent extraction comprising the steps of:

moving said wet lumber into a first end of a sealable longitudinal chamber and sealing said chamber; directing steam into said chamber at its first end such that said steam surrounds said lumber and migrates toward the second end of said chamber;

directing a boiling liquid solvent having a boiling point below 212°F. into said chamber at its second end in a manner such that said solvent wets said lumber and is progressively distilled by contact with said steam as it flows toward said first end;

progressively moving said lumber from said first end toward said second end to allow said solvent to replace the water within said lumber; and steaming said lumber to strip substantially all of said solvent therefrom to produce substantially dry lumber.

8. The method of drying wet lumber of claim 7 including the steps of:

30 withdrawing liquid from the first end of said longitudinal chamber; reboiling said liquid to produce steam; and directing said steam into said first end of said chamber.

9. The method of drying wet lumber of claim 7 including the steps of:

35 withdrawing vapor from the second end of said longitudinal chamber; condensing said vapor to produce substantially pure, boiling solvent; and directing said boiling solvent into the second end of said chamber.

10. The method of drying lumber of claim 9 including the step of adding additional solvent to said boiling solvent leaving said condenser to make up for solvent losses.

50 40 45 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9

said steam such that said solvent replaces water within said lumber as said lumber moves toward said exit end; and

means stripping said lumber to remove said solvent therefrom to produce substantially dry lumber.

13. The apparatus of claim 12 wherein said elongate chamber includes baffle means spaced therealong to snugly surround said lumber such that said steam moves from said entrance end toward said exit end between said stacked pieces of lumber.

14. The apparatus of claim 13 including spacer means inserted between said pieces of stacked lumber to form passageways through which said steam travels from said entrance end to said exit end of said chamber.

15. The apparatus of claim 12 wherein said elongate chamber includes substantially airtight outer doors at said entrance and exit ends and substantially airtight inner doors spaced from said outer doors to define heating compartments at each longitudinal end of said chamber.

16. The apparatus of claim 12 wherein said means wetting said lumber with solvent include solvent distribution means spacedly mounted along the top of said elongate chamber, a sump associated with each of said solvent distribution means and positioned therebelow to catch solvent running off said lumber; and, pump means associated with each of said sumps to recirculate solvent from said sump to said solvent distribution means thereabove.

17. The apparatus of claim 12 wherein the means directing solvent into the exit end of said chamber includes condenser means withdrawing solvent vapor from said chamber, condensing it to liquid and returning said liquid solvent to said chamber.

18. Apparatus for drying stacked lumber by solvent extraction including:

an elongate sealable chamber having a cross-section sized to closely surround stacked lumber positioned therein;

stacked lumber conveying means within said elongate chamber moving said lumber from the entrance end of said chamber to its exit end;

a first compartment within said elongate chamber po-

5

10

20

30

35

45

50

60

65

sitioned adjacent said entrance end; means steaming said stacked lumber within said first compartment;

a second compartment within said elongate chamber adjacent said first compartment wherein said stacked lumber is wet by progressively stronger boiling liquid mixtures of solvent and water in the presence of like proportioned vapor mixtures of solvent and water such that said solvent replaces water within said lumber; and

a third compartment adjacent said exit end of said chamber wherein said stacked lumber is heated to drive off the solvent within said lumber to produce substantially dry lumber.

19. The apparatus of claim 18 including means holding said stacked pieces of lumber at a spaced distance from each other such that steam from first compartment flows between said pieces of stacked lumber through said second compartment toward said third compartment.

20. The apparatus of claim 18 including door means positioned at each end of said compartments such that each of said compartments may be separately sealed.

21. The apparatus of claim 18 wherein the means wetting said stacked lumber within said second compartment includes a plurality of weir trough distributors spacedly mounted along the top of said compartment; sump means positioned below each of said weir trough distributors to catch solvent runoff from said lumber; and pump means recirculating solvent from said sumps to said weir trough distributors.

22. The apparatus of claim 21 including baffle means surrounding said stacked lumber between each of said weir trough distributor means such that steam from said first compartment means flows toward the exit end of said second compartment means between said stacked lumber.

23. The apparatus of claim 22 including condenser means withdrawing vapor from adjacent the exit end of said second compartment and returning condensed liquid solvent to said weir trough distributor means adjacent said exit end.

* * * * *

55

60

65

UNITED STATES PATENT OFFICE
CERTIFICATE OF CORRECTION

Patent No. 3,757,428

Dated September 11, 1973

Inventor(s) DONALD A. RUNCIMAN

It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

In the Abstract, third line from the end, change "close" to -- closed --.

Column 1, line 45, change "contant" to -- content --.

Column 2, line 19, change "of" to -- in --.

Column 3, line 11, change "sitributor" to -- distributor --.

Column 5, line 46, change "afte" to -- after --; line 59, change "grater" to -- greater --; and, line 65, change "wxit" to -- exit --.

Column 6, line 16, change "in" to -- is --.

Column 7, line 41, change "rough" to -- trough --.

Column 9, line 1, change "subqompartment" to -- subcompartment --; and, line 30, change "blow" to -- below --.

Column 10, line 50, change "oprerating" to -- operating --.

Column 11, line 67, change "mixtures" to -- mixture --.

Column 12, line 3, change "solc" to -- cold --.

Column 14, line 17, before "first" insert -- said --.

Signed and sealed this 25th day of December 1973.

(SEAL)

Attest:

EDWARD M. FLETCHER, JR.
Attesting Officer

RENE D. TEGTMEYER
Acting Commissioner of Patents