Title: RASPBERRY EXTRACT FOR ENHANCING SKIN IMMUNITY, COMBINED PRESSURE EXTRACTION METHOD AND EXTRACT THEREFROM

Abstract: The present invention relates to an extraction method for raspberry extract which has a skin immunity enhancing effect, and the extract therefrom. The present invention overcomes the disadvantages found in known high pressure extraction methods by applying an effective, step-wise extraction process which targets raspberry extract. Further disclosed is an excellent raspberry extract which provides protection against skin aging. The present invention combines super-critical extraction with high pressure extraction at appropriate pressures which is characterized by adding ethanol at an optimum rate during the initial super-critical extraction. The present invention will find wide use in cosmetics.

 Netherlands 1977年 4월 13일 (04.04.1977)
【명세서】
【발명의 명칭】
피부 면역 증진 효과를 갖는 복분자 성분의 고압 초임계 복합 추출 방법 및 그 추출물

【기술분야】
본 발명은 손상된 피부에 대해 면역 증진 효과를 가지는 복분자 추출물을 얻기 위한 추출방법 및 그 추출물에 관한 것이다. 면역 증진 효과를 가지는 복분자 추출물을 얻기 위해, 본 발명에서는 고압 및 초임계 추출방법을 복합적으로 이용한다.

화장품 제료로서, 피부를 부드럽게 하기 위해서 피부를 조여 주는 작용을 하는 약산성 물질, 즉 젖산, 봉산, 구연산 등이 많이 사용된다. 그러나 이러한 소재들은 피부에 탄력을 주거나 윤기를 부여하여 겉으로는 피부를 부드럽게 보이게 하는 장점은 있지만, 피부의 주요 세포 간 물질간 작용하여 피부를 일시적으로 얇게 하며, 결과적으로 이렇게 얇아진 피부는 자외선 등의 침투를 용이하게 하고 피부조직의 산화를 촉진시키며 피부의 노화를 촉진시키는 경우가 있다.
이에 본 발명에서는 전연 소재인 복분자를 효과적으로 가공하여 피부 면역을 증진시킬 수 있는 성분을 효과적으로 추출하는 방법을 고안하였다.

【배경기술】
본 발명에서 대상으로 삼은 복분자(Rhus coreanaus Miquel)는 장미과에 속하고 우리나라 중부 이남의 산기슭 양지에 자라는 식물로서 높이가 2-3m 정도이며, 줄기는 흰 분으로 둘여 있고 갈고리 모양의 가시가 있는 것이 특징이다. 5-6월에 꽃이 피며 7-8월에 열매가 성숙하여 동글고 붉은색으로 익다가 나중에 흰색으로 완숙된다.
한방에서는 기운을 북돋으며 몸을 가볍게 하고 백발이 생기지 않게 하는 효능을 가진다고 알려져 있다. 또한 복분자는 면역 조절 효능이 있어 허약한 체질에 효과적으로 작용하는 한약재로서 몸을 따뜻하게 하여 신체의 회복을 돕고 피부의 색깔을 좋게 하며 오장(五臟)을 편안하게 한다. 특히 복분자의 유용 생리 활성 물질은 간과 신장에 효과적으로 작용해 이를 극복하게 한다. 생리 활성 물질의 종류

장정용지 (규칙 제91조 ISA/KR)
로서 열매에서는 sanguin H-4, gallic acid, 엷에서는 ellagic acid, quercetin, 줄기에서는 epicatechin, procyanidin B-4 등이 보고되었다. 복부는 식용으로 청

한편 피부 표면의 각질은 일정한 재생주기에 따라 각질층 바깥에서부터 탈락

이 이루어지는데, 피부의 수분이 부족하거나 각질층 내 지질합성에 이상이 생겨 생

리활성 인자들의 활성이 원활하지 못할 경우 각질이 탈락되지 않아 각질세포가, 쌓

이게 된다. 따라서 피부 표면의 각질들이 감소하였다는 것은 피부 보습 및 장벽기

능이 정상화되었다는 것을 의미하게 된다. 피부가 자외선에 심하게 노출되면 멜라

닌 색소가 피부에 파다하게 침착되어 피부 노화와 손상을 초래하게 된다. 피부에

영향을 주는 자외선의 종류는 크게 두 가지로 나눌 수 있다. UVA, UVB가 그것인데,

UVA는 315~400nm의 파장 범위를 가하며 피부 손상의 주요 원인인 멜라닌 색소 침착

을 일으킨다. UVB는 280~315nm의 파장 범위를 가며 피부 면역 반응에 영향을 미

치 홍반 및 화상을 일으킨다. 피부 노화가 진행되면 피부 두께가 약아지고, 자외선

조사에 의해 피부색의 흐변 및 면역적 안정화 등을 가져오게 되는데, 콜라겐 총의

약아짐은 외부로부터의 세균 침입 등을 막는 피부장벽의 부실을 의미한다. 따라서

최근에는 피부 면역 증진 측면에서 진피 내의 콜라겐 분해 성분을 억제하고, 콜라

겐 합성을 촉진함으로써 물리적, 면역적으로 피부장벽을 두텁게 하는 물질에 대한

관심 및 연구가 증가하고 있다.

이와 관련하여 천연물의 항염증 활성은 면역반응의 중요 기작으로, 이는 특

정한 천연 소재가 염증 반응에 관여하여 상처 치유 및 조절에 중요한 역할을 수행

하고 피부가 자외선에 의해 심하게 노출되어 노화 및 손상을 초래하는 것을 막는

기작을 의미한다.

본 발명에서는 고압 공정 및 조임계 추출 공정의 도입으로, 전술한 열매 식

물인 복부를 영과 감압 농축의 과정 없이 바로 액상으로 추출한다.

고압 공정은 최근 식품 및 항향산업에서 주목받고 있는 가공기술 분야로서

소재로 쓰이는 천연물의 보존성, 물성, 기능성을 향상시키주는 것으로, 100~1000

Mpa의 압력을 이용하여 압력매체인 물이나 오일의 압력을 순간적으로 균일하게 전

달시키는 기술이다. 천연물의 가공에 있어서 열처리는 화학변화가 많이 일어나는
데 반하여 압력 처리는 화학적으로 큰 변화를 일으키지 않는 장점이 있다. 따라서 고압 공정은 비가열처리 가공방법이므로 친연소재 내 주요 성분을 변성시키지 않아 신선감을 유지시킬 수 있는 가공기술로 평가되고 있고, 기존의 가열처리에 의한 소재의 조직감 및 풍미 저하 등을 극복할 수 있다. 그러나 고압 공정은 천연물을 그대로 용기(vessel)에 넣어 정해진 시간 동안 고압을 가해줌으로써 유용물질의 용출을 유도하는 1차 추출방법 중의 하나이기 때문에 고압 처리 외에 액기스를 얻기 위해 추가로 진행해야 하는 부분이 많아 시간적 소비가 크다. 또한 고압이라는 조건 때문에 폭발의 위험 등을 고려하여 정제된 증류수만을 용매로 사용하기 때문에 다른 용매에 대한 용해력이 낮은 편이다. 게다가 복분자와 같은 생약재는 세포벽이 견고하여, 생리활성 물질을 온전히 얻기 위해서는 기존의 가공기술과 다른 고압 공정을 도입할 필요가 있다.

물론 생약제에 작용한 고압의 높은 에너지와 압력은 보통 열수추출로 얻을 수 없는 유효생리활성 물질을 얻을 수 있게 하여 한약제에 허용된 성분들을 재평가할 수 있게 한다. 복분자의 화학 성분 추출에 가장 효율적으로 활용될 수 있는 고압 기술은 기존의 추출 방법이 가지고 있던 고에너지 저효율, 열에 의한 유효성분의 변성 및 손실, 가용성분 의존주의 추출 등의 문제점을 개선함으로써 단시간에 불순물이 적은 순도 높은 목적 성분의 추출을 가능하게 한다. 하지만 복분자와 같은 천연물에 고압을 처리하기 위해서는 고에너지가 필요하고, 고에너지의 얻기 위해서는 전력소모가 커진다. 고압을 오랜 시간 처리할수록 유효물질의 용적이 증가하는 결과로 미루어 장기간의 고압 조건을 형성하려면 고비용의 경제적 부담이 생기는 것은 필연적이다. 또한 항장품의 소재로 사용하기 위해서 별도의 유효제를 첨가해 주어야 하므로 실제 피부에 작용하는 천연물 고유의 효과가 반감되기도 한다.

한편 초압계 추출법은 추출하는 초압계 유체의 존재하에 일정한 압력과 온도에서 추출을 하는 방법으로서, 압력과 온도 변화 설정에 의해 선택적으로 추출이 가능하며, 열에 불안정한 물질 추출에 효과적으로 작용하여 천연물의 물성을 물리화학적으로 크게 변환시키지 않는다는 장점을 가지고 있다. 또한 초압계 추출법은 액체의 밀도와 기체의 확산성을 모두 지니므로 고수용의 추출이 가능하며, 추출 중료 후 용매가 잔존하지 않아 이후 농축 등의 후처리 공정이 필요 없다. 반면 이산화탄소와 같이 임계점가 낮은 용매를 사용하여 추출을 하기 때문에 정해진 압력까지 압력을 올릴 수 있어서 천연물 고유의 유효생리활성 물질의 용출량에 제한이 크다. 천연물에 초압계 추출이 적용된 사례로, 원두로부터의 탈 카페인, 담배로부
터의 탈 니코탄, 계란 난황으로부터의 탈 콜레스테롤 등이 있다. 향장산업에서 천연물에 초임계 추からない 방법을 도입할 수 있는 이유는, 천연물이 최종 제품으로 만들어 질 때 다른 생체적합성 유화제들과 안정적으로 혼합되는 특성이 있기 때문이다.

초임계 유체란 어떤 물질의 임계점 (critical point) 이상의 온도와 압력 조건에서 존재하는 유체로서 액체와 기체의 중간 특성을 보이며, 추출공정에 매우 적합한 열역학적 특성 즉, 높은 용해도, 선택성, 압축성, 감압에 따른 자발적 분리성과 낮은 표면장력과 점도, 높은 환산계수의 이동특성을 갖고 있어서 추출대상 물질의 복잡한 구조 속으로 빠르게 침투하여 원하는 성분을 효율적으로 추출할 수 있다. 특히 초임계 이산화탄소의 경우 비교적 낮은 임계압력 73.8bar과 상온 근처의 임계온도 31℃를 지니고 있어 온환경 조건에서 추출을 수행할 수 있으며 독성, 가연성, 추출 물질과의 반응성 및 부식성이 없고, 고순도의 이산화탄소를 비교적 저렴한 가격으로 구할 수 있기 때문에 초임계 유체 공정에서 가장 주목받고 있다. 다만, 최근 초임계 이산화탄소를 추출용매로 이용해서 천연물로부터 생리활성 성분을 추출하려는 많은 연구가 수행되었으나, 높은 극성을 갖는 유효성분 추출의 경우 초임계 이산화탄소의 비극성에 기인한 낮은 용해도로 인해 이들 성분의 추출이 용이 하지 않은 것으로 알려져 있다. 또한 이산화탄소를 용매로 사용하면 천연물이 기체에 가까운 확산성과 점도를 얻고 액체에 가까운 밀도를 얻게 되므로 높은 용해력이 생기지만 가해율 수 있는 압력에 제한이 크기 때문에 유용물질의 완전한 용중 유도가 어렵다.

【발명의 상세한 설명】
【기술적 과제】

천연물의 면역 활성 증진과 관련된 연구는 많이 진행되고 있지만, 복부자의 피부 면역 활성에 대한 기술이 국내외로 전무하며 이를 위한 추출방법 역시 보고된 바 없는바, 본 발명은 상기와 같은 배경에서에서 안술된 것으로, 본 발명은 복부자를 대상으로 하여 종래의 초고압 추출, 단결과 초임계 추출의 단점을 개선한 효과적인 단계적 추출공정을 적용시키는 것을 목적으로 한다.

또한 피부 노화 억제 및 보호 효과가 우수한 복부자 추출물을 제공하는 것을 목적으로 한다. 다시 말해 UV로 손상된 피부 세포의 면역 활성 증진에 대한, 단계적 공정 추출 복부자의 효과를 관찰하고 실증함으로써 UV로부터 피부 노화 억제 및 보호 효과를 가지는 복부자의 가치를 증진시키고자 한다.
이를 위해 본 발명의 발명자들은 UV로부터 손상된 피부의 면역 증진 효과를 가지는 부분자를, 기존의 추출법으로 알려진 100℃에서 열수추출한 대조군, 초임계 추출군, 고압 추출군, 단계적 고압 초임계 추출군으로 나누어 비교함으로써, 본 발명에 따라 추출된 부분자 추출물의 성능을 입증하였다.

【기술적 해결방법】
상기한 목표를 달성하기 위한 본 발명은 UV로부터 손상된 피부의 면역 증진 효과를 가지는 부분자의 단계적 추출공정 및 그 추출 방법에 관한 것으로서, 이는 기존적으로 고압 공정과 초임계 공정을 단계적으로 실시하여 유용물질의 용출이 효과적으로 증진되는 것을 특징으로 한다. 기존의 고압 추출법은 천연물의 건강한 세포벽을 깨뜨려 유용물질의 용출을 효과적으로 이루어내지만 고압 처리한 천연물이 압력에 비례하여 용해력이 상승하지 않으므로 전제, 추출, 분별, 그리고 다양한 재료의 제조공정 등 별도의 과정을 따로 진행해야 하는 결과, 시간적인 제한이 크다. 이와 반대로 기존의 초임계 추출법은 천연물에 기체에 가까운 확산성과 점도를 주고 액체에 가까운 밀도를 가지게 하므로 높은 용해력을 가지지만 CO₂ 기체를 용매로 사용하여 가해을 수 있는 압력과 온도에 제한이 큰 결과, 경제적인 범위의 압력만을 가해할 수 있으므로 유용물질의 효과적인 용출 유도가 어렵다. 따라서 본 발명에서는 고압 공정과 초임계 추출 공정을 단계적으로 실시하여 기존 부분자 추출품에서 발견하지 못했던 활성 물질을 발견하고, 피부 면역 증진 실험을 통해 고압 초임계 부분자 추출물의 피부 보호능을 가지는 항암품으로서의 개발 가능성을 밝히고자 한다.

구체적으로 본 발명은,
(1) 건조 상태의 부분자를 고압기기 전용 비닐 용기에 넣어 공기가 들어가지 않도록 밀봉하여 증류수와 함께 고압 추출 장치에 넣고 500 Mpa에서 15분 동안 고압 추출을 실행하는 단계;
(2) 위 단계를 거친 부분자 시료를, 추출조건을 압력은 1,000-2,000 psi, 온도는 30-35℃가 되도록 유지하여 3시간 동안 가압하여 초임계 추출을 하되,
추출 초기에 보조용매로서 에틸알코올(ethyl alcohol)을 추출기 내에 1ml/min의 유속으로 추출물의 중량 대비 10%까지 주입하고, 그 다음 CO₂를 추출물의 중량

정정용지 (규칙 제91조 ISA/KR)
대비 30%의 양으로 주입하며, 추출 중기에 다시 보조용매로서 에틸알코올을 1ml/min의 유속으로 추출물의 중량 대비 5~10%까지 주입하는 초임계 추출단계로 이루어지거나, 피부 면역 증진 효과를 갖는 복분자의 고압 초임계 복합 추출 방법을 특징으로 한다.

본 발명은 또한 상기 추출 방법에 의하여 추출되는, 피부 면역 증진 효과를 갖는 복분자 추출물인 것을 특징으로 한다.

앞서 살펴본 바와 같이, 높은 극성을 갖는 유효성분 추출의 경우 초임계 이산화탄소의 비극성에 기인한 낮은 용해도로 인해 이들 성분의 추출이 용이하지 않은 것으로 알려져 있는바, 본 발명에서는 이를 극복하기 위해 추출이 시작될 때에 보조용매로서 에틸알코올(ethyl alcohol)을 1ml/min의 유속으로 추출물의 중량 대비 10%까지 흘러들어가게 하였다. 이는 기존의 다른 초임계 공정과 차이를 가지는 점으로, 추출용매인 CO2보다 보조용매를 먼저 흘려들어가서 액상의 시료가 가지는 물 추출물의 극성과 CO2 고유의 극성의 차를 최소화하도록 한 것이다.

또한 추출기(Extractor)로 유입되는 초임계 추출에 사용된 가스는 열과 압력에 영향을 적게 받고 폭발성이 없는 순도 99% 이상의 CO2를 추출물의 중량 대비 30%의 양으로 사용하였으며, 추출이 끝나는 시점에도 보조용매로서 에틸알코올(ethyl alcohol)을 처음과 동일한 유속으로 추출물의 중량 대비 5~10%까지 흘려주어 잔류되어 있던 복분자 엽기들은 얻을 수 있게 함으로써 추출 효율을 높였다. 추출하는 실시에서는 이와 같이 하여 얻어진 복분자 추출물을 면역 활성 측정을 위한 분말 상태로 얻기 위해 동결건조를 한 후에 실험에 사용하였다.

【유리한 효과】

본 발명의 발명자들은 고압 및 초임계 추출 공정을 통해 복분자의 유용 성분을 용해시키고, 피부 면역과 관련된 몇 가지의 생리활성 측정을 통해 상기 공정의 특징 조건에 대한 효과적인 기능을 확인하였다. 본 발명은 자연태로부터의 피부 보호에 대한 관심이 증폭되어 피부 면역 증진 효과를 가지는 천연 항암제의 수요가 커지고 있는 상황에서, 복분자 추출물의 유용성분의 효과적인 피부 전달을 위한, 생리활성 물질의 과학 용량이라는 과제를 충족시킨다. 즉 본 발명은 천연 한약재인 복분자의 피부 면역력 상승 및 피부 주름 억제 활성을 고려해 고안된 것이
로, 본 발명에 따르면 고압 초임계 단계적 추출 공정을 통해 복분자로부터 세포 독성을 저감된 유효 성분을 얻을 수 있다. 또한 복분자에서 용출된 유용 생리 활성 물질이 피부세포에 전달되면 피부 면역 활성 증진을 위한 항장품으로서의 복분자의 가치가 크게 증진될 수 있다. 발명자들은 본 발명의 우수성을 확인하기 위하여 염증 엽제 물질로 알려진 액상의 아스피린(aspirin)과 대조함으로써 유용물질의 용출이 극단화되어 나타나는 복분자 추출물의 피부 면역 증진의 생리활성을 확인하였다. 또한 하랄루로나다아제(hyaluronidase) 엽제 활성을 정량적으로 측정함으로써 피부를 부드럽게 하고 주름 생성을 엽제하는 기능을 확인하였다.

또한 본 발명의 고압 초임계 단계적 추출은 기존의 추출 방법으로는 불가능했던 복분자 유용물질을 가량 얻을 수 있는 기술로, 고체 상태인 복분자를 고압 초임계 기술을 통해 액체 상태의 추출물로 얻을 수 있으므로 여과, 감압 농축과 같은 과정이 생략되어 시간적 경제적으로 효율적이다. 또한, 기존의 제한된 낮은 압력 조건으로 추출이 이루어지는 초임계 추출법에 대한 대안으로 도입된 500Mpa의 고압 공정은 천연물 내에서 용출이 불가능했던 유용물질들을 효과적으로 얻을 수 있게 한다. 또한 극성 유효성분에 대한 초임계 이산화탄소 추출공정의 비효율성을 극복하기 위한 방법으로, 에틸알코로라는 극성 보조용매를 초임계 이산화탄소의 첨가 전후에 흘려주어 이산화탄소의 극성과 용해성을 증대시킴으로써 추출효율을 향상시켰다.

그 외에 본 발명은 전체 처리 과정에서 가공, 화학적 처리, 가열 등에 의한 물리적 변형이 거의 발생하지 않기 때문에 열에 의하여 야기될 수 있는 물질의 특성 변화, 발생물의 추가 등의 문제를 해결할 수 있는 장점이 있다.

【도면의 간단한 설명】

도 1은 각 복분자 추출물의 CCD-986sk 세포 독성을 비교한 그래프,

도 2는 각 복분자 추출물의 첨가 후 UV를 조사하지 않았을 때 인간섬유아세포 CCD-986sk의 PGE2 생성량을 나타낸 그래프,

도 3은 각 복분자 추출물의 첨가 후 UV를 조사하였을 때 인간섬유아세포 CCD-986sk의 PGE2 생성량을 나타낸 그래프,

도 4와 5는 각각 복분자 100℃ 열수 추출물의 크로마토그램과 복분자 단계적 공정 추출물의 크로마토그램이다.
【발명의 실시를 위한 최선의 형태】
이하, 천연 한약재 소재인 복분자의 단계적 추출 공정과 그를 통한 피부 세포에서의 세포독성, 피부 면역 활성 증진 효과에 대해 실시예와 함께 설명한다.

[제1공정 : 시료 전처리 공정]
본 실험에 사용된 복분자(Rubus coreanus)는 2008년 7월에 발효산 부근에서 채취한 것을 구입하였으며 재료를 실온에서 음건시킨 후 사용하였다.

[제2공정 : 재안 공정 기술]
고압 추출은 복분자 50g을 공기가 들어가지 않도록 비닐 팩에 밀봉한 다음, 이를 증류수와 함께 고고압 추출 장치(Ilshin autoclave, Korea)에 넣고, 500Mpa의 압력으로 15분간 고압추출을 하였다. 이어 복분자 액기스를 얻기 위해 고압 추출이 끝난 복분자를 초임계 추출장치를 이용하여 단계적으로 추출하였다.
추출조건으로서 용기(vessel)부의 압력은 1,500psi, 온도는 35℃가 되도록 설정하여 유지시켰고 총 가압 시간은 시료 투여 후 3시간이었다. 추출이 시작될 때 보조용매 에틸알콜(ethyl alcohol)이 1ml/min의 유속으로 5ml까지 홌러들여갈 수 있도록 조절했다. 기존의 추출법과 다르게 보조용매 에틸알콜을 주용매인 CO2 가스 투입 전에 투입하여 액상의 복분자 시료가 가지는 극성과 CO2 고유의 극성의 차를 최소화하도록 한 것이다. 초임계 추출에 사용된 가스는 염과 압력에 영향을 적게 받고 폭발성이 없는 CO2 가스를 사용하였다. 실험에서는 순도 99% CO2를 유속 10ml/min로 홌러주며 3시간 동안 추출을 하였다.
또한 CO2 가스를 이용한 초임계 추출이 끝날 즈음에 다시 한 번 더 보조용매 에틸알콜을 1ml/min의 유속으로 5ml까지 홌러주어 내부 관에 남아있는 여액의 추출까지 완벽하게 이.cms로써 추출 효율을 높였다.
그 다음, 얻어진 복분자 액상 추출물을 동결건조를 한 후에 파우더 상태를 얻어 실험에 사용하였다.
본 발명에 따른 단계적 고압 초임계 복분자 추출물(=단계적 공정 추출물)의 생리활성을 확인하기 위해, 100℃에서 열수추출한 복분자 추출물, 초임계 복분자 추출물(전술한 본 발명의 실제 실시방법과 동일하게 초임계 추출만 시행한 것, 추출의 초기와 종기에 보조용매 에틸알콜을 홌러 넣어주지는 않은 경우), 고압 복분자
추출물(전술한 본 발명의 실험 실시방법과 동일하게 고압 추출만 시행한 경우)과 함께, 인간 피부 섬유아세포에 대한 세포독성 및 피부 면역 활성을 측정하였다.

[제3공정 : 추출물 수득 및 면역 기능 활성 평가]

본 발명에 따라 얻어진 복분자 추출물의 피부 면역 활성 증진 효과를 확인하기 위해, 100℃ 열수추출물, 초임계 추출물, 고압 추출물, 고압 초임계 추출물근, 대조군으로 설정한 아스피린(aspirin)과 비교하였다.

아스피린은 살리실산의 유도체로서 두통, 근육통, 관절통을 가라앉히는 대 효과가 좋은 순한 비마약성 진통제로 알려져 있다. 항염증 효과를 가지고 있는 약제인 아스피린과 단계적 복분자 추출물의 PGE₂의 생성을 비교하여 효과를 확인하였다. 또한 추출물의 허알루로나다아제(hyaluronidase) 활성 비교를 통해 항염증 효과를 추가로 확인하였다.

실험 1.

각각의 조건의 복분자 추출물을 0.2, 0.4, 0.6, 0.8 그리고 1.0mg/ml의 농도로 조절하여 인간 피부 섬유아세포인 CCD-986sk에 대한 세포독성을 측정하여 도 1에 나타내었다. 모든 조건 중 최고 농도인 1.0mg/ml에서 고압, 초임계 복합 공정을 처리한 추출물의 100℃에서 열수 추출한 복분자 추출물군의 추출물보다 2.1% 낮은 18.5%로 비교적 낮은 세포 독성을 나타내었다.

세포독성 실험을 통해, 500Mpa의 고압 공정 후 에틸알코올을 용매로 한 단계적 초임계 공정에 의해 복분자를 추출하였을 경우, 고압 공정 단독 추출의 경우나 초임계 공정 단독 추출의 경우보다 세포독성이 더욱 낮아지는 효과를 보임을 확인할 수 있다.

실험 2.

세포의 UV 조사는 cyclo-oxygenase(COX-2 enzyme)의 양을 크게 변화시켜 높은 수준의 PGE₂ 발현량을 나타내게 한다. 인간 섬유아세포인 CCD-986sk 세포를 10% FBS와 DMEM 배지에 현탁하여 1 X 10⁶ cells/ml로 조정한 뒤 37℃, 습도 5%의 CO₂ 인 큐베이터(incubator)에서 24시간 배양하여 사용하였다.

UV를 이용하여 인간 섬유아세포인 CCD-986sk 세포를 자극함으로써 염증과 관

정정용지 (규칙 제91조 ISA/KR)
련이 있는 PGE₂의 발현도를 측정한 결과를 도 2와 도 3에 나타내었다.

도 2는 UV를 조사하지 않은 인간심유아세포에서의 PGE₂의 발현도를 나타낸 것으로, 단계적 공정에 따른 복분자 추출물의 첨가를 통한 PGE₂의 발현도는 대조군 중 100℃ 열수추출물에 비해서도 낮게 나타났으며, 농도 의존적으로 감소하는 경향을 보여 1.0 mg/ml의 농도에서 522pg/ml로 낮은 PGE₂ 발현을 나타내었다. 항염증 약물인 아스피린과 비교했을 때 큰 차이를 보이지 않는 값이라고 할 수 있다.

도 3은 UV를 조사한 세포에서의 PEG₂ 발현도를 나타낸 것으로, 1.0 mg/ml의 농도에서 단계적 공정 추출물의 발현도는 1100pg/ml로서 대조군인 보통염수추출물의 1450pg/ml에 비해 350pg/ml 더 낮은 PGE₂ 발현을 보였다. UV 조사 조건에서도 UV 비교상 조건에서와 마찬가지로 복분자 시료 첨가를 통해 PGE₂의 발현도가 감소하였으며, 농도 의존적으로 낮아지는 경향을 나타내었다.

실시예 3.

히알루로니아세(Hyaluronidase)는, 글루쿠론산(glucuronic acid)과 글루코사민(glucosamine)이 반복하여 연결된 고분자 다당류인 히알루론산(hyaluronic acid)의 분해효소이다. 히알루론산(hyaluronic acid)은 염증 반응에 관여하여 상처 치유 및 조절에 중요한 역할을 하고 있다.

히알루로니아세(Hyaluronidase) 억제효과는, Rooster Comb에서 형성된 N-acetylglucosamine의 양을 분광광도계로 측정하여 활성을 판단하였다. 0.1M acetate buffer(pH 3.5)에 녹인 히알루로니아세(8,000 unit/mL) 50μl에 시료의 추출물을 최종농도 0.2, 0.4, 0.6, 0.8, 1.0mg/ml가 되도록 20μl씩 가하고, 효소의 활성화를 위해 12.5mM의 CaCl₂ 200μl를 혼합한 후 37℃ 온도에서 20분간 배양시켰다. 대조군은 엽상의 아스피린반을 1.0mg/ml가 되도록 넣고 20분간 배양하였다.

다음의 표 1은 복분자 단계적 공정 추출물의 히알루로니아세(hyaluronidase) 활성 저해 효과 실험 결과이다. 복분자를 이용하여 염증과 관련이 있는 히알루로니아세(hyaluronidase)의 저해효과를 측정하고 그 결과를 표 1에 나타내었다. 복분자 추출물의 각 시료는 5개의 농도로 활성을 측정하고 계산식을 통해 효소 활성을 50% 저해하는 농도를 구하여 IC₅₀으로 나타내었다.
복분자의 모든 추출물의 IC₅₀의 값이 아스피린 대조군보다 대체적으로 높게 나타난 것을 확인할 수 있다. 고압 초임계 단계적 공정 추출물이 보통염수추출물을보다 90.83μg/ml 낮게 나타난 것으로 미루어 보아 단계적 복합 공정을 도입한 복분자의 추출물이 더 높은 피부 염증 저해 활성을 가지고 있음을 알 수 있다. 반면, 초임계 단독 추출물과 고압 단독 추출물의 활성을 비교했을 때 고압 공정을 통한 추출물의 허알로니다아제(hyaluronidase) 활성 저해가 29.95 μg/ml 낮게 나타났다. 이로써 초임계와 고압 공정을 단독으로 처리하였을 때보다 단계적 공정을 도입하였을 때 월등히 효과가 커지는 것을 확인하였다.

표 1. 복분자의 허알로니다아제(hyaluronidase) 저해 활성

<table>
<thead>
<tr>
<th>Samples</th>
<th>IC₅₀ (μg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>보통염수추출물</td>
<td>244.38</td>
</tr>
<tr>
<td>초임계추출물</td>
<td>250.16</td>
</tr>
<tr>
<td>고압추출물</td>
<td>200.21</td>
</tr>
<tr>
<td>단계적공정추출물</td>
<td>153.59</td>
</tr>
<tr>
<td>Aspirin</td>
<td>30.51</td>
</tr>
</tbody>
</table>

실시예 4.
복분자 단계적 공정 추출물을 HPLC 분석용 증류수(water)에 녹여 0.45μm 막 필터(filter)로 여과하여 300ppm의 농도로 측정하였다. HPLC 기기는 Waters(High Performance Liquid Chromatograph, USA)를 사용하였다.

단계적 복합공정에 의한 복분자 추출물을 정성적인 분석법인 HPLC를 이용하여 측정하여 본 결과, 도 4 및 5와 같이 고압 초임계 공정을 병행한 추출물에서 피크(peak)가 다양하고 많이 검출되는 것을 관찰할 수 있었다. 피크의 면적이나 분포에서의 이와 같은 차이는, 앞서의 실험에서 고압 초임계 단계적 공정 추출물이 보통 추출물에 비해 피부 면역 증진 효과에서 더 좋은 생리활성도를 보였다는 것들을 증명하는 결과라고 할 수 있다. 특히 복분자 보통 추출물에서 검출되지 않았던 단계적 공정 추출물의 8배체, 10배체 피크는 한약재 연구사에서 기초 자료로 이용될 수 있을 것으로 사료된다.
【산업상 이용가능성】

본 발명은 피부 면역 촉진 효과를 가지는 천연 항병품의 생산에 이용되고 응용될 수 있다.
【청구의 범위】
【청구항 1】
(1) 건조 상태의 복분자를 고압기기 전용 비닐 용기에 넣어 공기가 들어가지 않도록 밀봉하여 증류수와 함께 고압 추출 장치에 넣고 500 Mpa에서 15분 동안 고압 추출을 실행하는 단계;

(2) 위 단계를 거친 복분자 시료를, 추출조건을 압력은 1,000-2,000 psi, 온도는 30~35°C가 되도록 유지하여 3시간 동안 가압하여 초압계 추출을 하되,
추출 초기에 보조용매로서 에틸알코올(ethyl alcohol)을 추출기 내에 1ml/min의 유속으로 추출물의 중량 대비 10%까지 주입하고, 그 다음 CO2를 추출물의 중량 대비 30%의 양으로 주입하며, 추출 종기에 다시 보조용매로서 에틸알코올을 1ml/min의 유속으로 추출물의 중량 대비 5~10%까지 주입하는 초압계 추출단계;로 이루어지는,

피부 면역 증진 효과를 갖는 복분자의 고압 초압계 복합 추출 방법.
【청구항 2】
제1항의 추출 방법에 의하여 추출되는 것을 특징으로 하는,
피부 면역 증진 효과를 갖는 복분자 추출물.
【도면】

[도 1]

[도 2]

정정용지 (규칙 제91조 ISA/KR)
A. CLASSIFICATION OF SUBJECT MATTER

A61K 36/73(2006.01)i, A61P 17/00(2006.01)i, A61P 37/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A61K 36/73; A23L 1/212; A23L 1/29; A61K 8/97

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility models: IPC as above
Japanese Utility models and applications for Utility models: IPC as above

Electronic data base consulted during the international search (name of database and, where practicable, search terms used)
eKOMPASS (KIPO internal) & Keywords: Rubus coreanus Miquel, ultra high pressure, supercritical

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>KR 10-0815256 B1 (CHARMZIONE CO., LTD.) 19 March 2008 Example 1</td>
<td>1-2</td>
</tr>
</tbody>
</table>

See patent family annex.

Further documents are listed in the continuation of Box C.

Date of the actual completion of the international search
27 AUGUST 2010 (27.08.2010)

Date of mailing of the international search report
30 AUGUST 2010 (30.08.2010)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
Government Complex-Daejeon, 139 Seomsu-ro, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140

Authorized officer

Telephone No.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 10-0650016 B1</td>
<td>28.11.2006</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>KR 10-2004-0008270 A</td>
<td>31.01.2004</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>KR 10-0815256 B1</td>
<td>19.03.2008</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>
A. 발명이 속하는 기술분야(국제특허분류(IPC))

_A61K 36/73(2006.01)i, A61P 17/00(2006.01)i, A61P 37/00(2006.01)i_

B. 조사된 문헌

조사된 최소문헌(국제특허분류를 기재)
_A61K 36/73; A23L 1/212; A23L 1/29; A61K 8/97_

조사된 기술분야에 속하는 최소문헌 이외의 문헌
한국등록실용신안공보 및 한국공개실용신안공보: 조사된 최소문헌과 동일된 IPC 
일본등록실용신안공보 및 일본공개실용신안공보: 조사된 최소문헌과 동일된 IPC

국제조사에 이용된 전산 데이터베이스(데이터베이스의 명칭 및 검색어(해당하는 경우))
eKompass(특허청 내부 검색시스템) 

C. 관련 문헌

<table>
<thead>
<tr>
<th>카테고리(*)</th>
<th>인용문헌명 및 관련 구절(해당하는 경우)의 기재</th>
<th>관련 청구항</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>정향숙 Hyang Suk Jeong 의 6명, Korean J. Medicinal Crop Sci., v.17, no.5, 32 1-327 (30 October 2009)</td>
<td>1-2</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-0815256 B1 (주식회사 창존) 2008.03.19</td>
<td>1-2</td>
</tr>
</tbody>
</table>

* 인용된 문헌의 특별 카테고리:

“A” 특별히 관련이 없는 것으로 보이는 일반적인 기술수준을 정의한 문헌

“E” 국제출원일보다 빠른 출원일 또는 우선임을 가지거나 국제출원일 이후 에 공개된 출원일 또는 특히 문헌

“L” 우선권 주장자에 의문을 제기하는 문헌 또는 다른 인용문헌의 공개일 또는 다른 특별한 이유(이용을 명시)를 바탕하기 위하여 인용된 문헌

“O” 구두 개시, 사용, 선서 또는 기타 수단을 언급하고 있는 문헌

“P” 우선일 이후에 공개되었으나 국제출원일 이전에 공개된 문헌

“T” 국제출원일 또는 우선일에 후에 공개된 문헌으로, 출원과 상응하지 않으며 발명의 기초가 되는 원리나 이론을 이해하기 위해 인용된 문헌

“X” 특별한 관련이 있는 문헌, 해당 문헌 하나만으로 정구일 발명의 신규성 또는 진보성이 없는 것으로 본다

“Y” 특별한 관련이 있는 문헌, 해당 문헌이 하나 이상의 다른 문헌과 조합하는 경우로 그 조합이 당연한 경우 정구일 발명은 진보성이 없는 것으로 본다

“&” 동일한 대응특허문헌에 속하는 문헌

국제조사의 실시 완료일
2010.08.27(27.08.2010)

대한민국 특허청
(302-701) 대전광역시 서구 선사로139, 정부대전청사
전화번호 82-42-472-7140

부속 PCT/ISA/210 (두 번째 용지) (2009년 7월)
<table>
<thead>
<tr>
<th>국제조사보고서에서 인용된 특허문헌</th>
<th>공개일</th>
<th>대응특허문헌</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 10-0650016 B1</td>
<td>2006.11.28</td>
<td>없음</td>
<td></td>
</tr>
<tr>
<td>KR 10-2004-0008270 A</td>
<td>2004.01.31</td>
<td>없음</td>
<td></td>
</tr>
<tr>
<td>KR 10-0815256 B1</td>
<td>2008.03.19</td>
<td>없음</td>
<td></td>
</tr>
</tbody>
</table>