wo 2014/145160 A1 |[IN I N0FV 00O O R O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/145160 A1

18 September 2014 (18.09.2014) WIPO I PCT
(51) International Patent Classification: (74) Agent: CICCOZZI, John, L.; 4000 Legato Road, Suite
GO6F 9/30 (2006.01) GOG6F 9/38 (2006.01) 310, Fairfax, VA 22033 (US).
(21) International Application Number: (81) Designated States (uniess otherwise indicated, for every
PCT/US2014/029876 kind of national protection available). AE, AG, AL, AM,
(22) Imternational Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
g : BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
14 March 2014 (14.03.2014) DO, DZ. EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(25) Filing Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
. KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, MF,
(26) Publication Language: English MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(30) Priority Data: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
13/841,576 15 March 2013 (15.03.2013) Us SC, SD, SE, SG, SK, SL, SM, ST, SV, 8Y, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
(71) Applicant: QUALCOMM INCORPORATED [US/US]; ZW.
Attn: International IP Administration, 5775 Morehouse . o
Drive, San Diego, CA 92121 (US). (84) Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(72) Inventors: STREETT, Daren, Eugene; 5775 Morehouse GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

Drive, San Diego, CA 92121 (US). STEMPEL, Brian,
Michael; 5775 Morehouse Drive, San Diego, CA 92121
(US). SPEIER, Thomas, Philip; 5775 Morehouse Drive,
San Diego, CA 92121 (US). SMITH, Rodney, Wayne,
5775 Morehouse Drive, San Diego, CA 92121 (US).
MCILVAINE, Michael, Scott; 5775 Morehouse Drive,
San Diego, CA 92121 (US). DOCKSER, Kenneth, Alan;
5775 Morehouse Drive, San Diego, CA 92121 (US).
DIEFFENDERFER, James, Norris; 5775 Morehouse
Drive, San Diego, CA 92121 (US).

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

[Continued on next page]

(54) Title: OPTIMIZING PERFORMANCE FOR CONTEXT-DEPENDENT INSTRUCTIONS

304B
304»\\‘ l

306

310

304C

FIG.3

(57) Abstract: A processor includes a queue for storing instructions processed within the context of a current value of a register
field, where for some embodiments the instruction is undefined or defined, depending upon the register field at time of processing.
After a write instruction (an instruction that writes to the register tield) executes, the queue is searched for any entries that contain
instructions that depend upon the executed write instruction. Each such entry stores the value of the register field at the time the in -
struction in the entry was processed. If such an entry is found in the queue and its stored value of the register tield does not match
the value that the write instruction wrote to the register field, then the processor flushes the pipeline and restarts at a state so as to
correctly execute the instruction.



WO 2014/145160 A1 AT 00T 000 0O A AR

— as to the applicant's entitlement to claim the priority of Published:
the earlier application (Rule 4.17(iii)) —  with international search report (Art. 21(3))




WO 2014/145160 PCT/US2014/029876

[0001]

[0002]

[0003]

[0004]

[0005]

[0006]

OPTIMIZING PERFORMANCE FOR CONTEXT-DEPENDENT
INSTRUCTIONS

Field of Disclosure
The present invention relates to microprocessors, and more particularly to optimizing
performance of microprocessors when processing instructions whose behavior is

context-dependent.

Background

The instruction sets for some modern microprocessor architectures include instructions
whose behavior is context-dependent (for example, floating point vector instructions). A
vector instruction (or operation) operates on one or more data vectors to provide a
result, where the result may also be a vector. A vector instruction may also be termed a
SIMD (Single Instruction Multiple Data) operation.

It is desirable for microprocessors with pipelined and out-of-order execution

architectures to implement context-dependent instructions with high performance.

SUMMARY

Embodiments of the invention are directed to systems and methods for optimizing
performance for vectored floating point instructions, and more generally for optimizing
the performance of instructions dependent upon a write instruction to one or more
register fields, where the one or more register fields determine a context for the
instruction.

In an embodiment, a method includes processing an instruction within a context
determined by a current value of a register field, the instruction dependent upon a write
instruction, the write instruction to write a configuration value to the register field, the
instruction processed before the write instruction executes; storing the instruction in an
entry in a queue; storing in the entry the current value of the register field; searching the
queue for the entry after the write instruction executes; and comparing the current value
stored in the entry with the configuration value after the write instruction executes.

In another embodiment, a processor includes a register having a field; a queue; a
pipeline; and a controller. The controller is configured to cause the pipeline to process

an instruction within a context determined by a current value of the register field, where



WO 2014/145160 PCT/US2014/029876

[0007]

[0008]

[0009]

[0010]
[0011]

[0012]

the instruction is dependent upon the write instruction, where the write instruction is to
write a configuration value to the register field; store the vector instruction in an entry in
the queue; store in the entry the current value of the register field; search the queue for
the entry after the pipeline executes the write instruction; and compare the current value
stored in the entry with the configuration value after the pipeline executes the write
instruction

In another embodiment, a method includes means for processing an instruction within a
context determined by a current value of a register field, the write instruction to write a
configuration value to the register field, the instruction processed before the write
instruction executes; means for storing the instruction in an entry in a queue; means for
storing in the entry the current value of the register field; means for searching the queue
for the entry after the write instruction executes; and means for comparing the current
value stored in the entry with the configuration value after the write instruction
executes.

In another embodiment, a non-transitory computer-readable medium has instructions
stored thereon which cause a controller, when executing the instructions to perform a
method comprising: processing an instruction within a context determined by a current
value of a register field, the instruction dependent upon a write instruction, the write
instruction to write a configuration value to the register field, the instruction processed
before the write instruction executes; storing the instruction in an entry in a queue;
storing in the entry the current value of the register field; searching the queue for the
entry after the write instruction executes; and comparing the current value stored in the

entry with the configuration value after the write instruction executes.

BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings are presented to aid in the description of embodiments of
the invention and are provided solely for illustration of the embodiments and not
limitation thereof.
Figure 1 is an abstraction of a processor according to an embodiment.
Figure 2A illustrates a method of checking and repairing context according to an
embodiment.
Figure 2B illustrates a method of checking and repairing context according to another

embodiment.



WO 2014/145160 PCT/US2014/029876

[0013]

[0014]

[0015]

[0016]

[0017]

Figure 3 illustrates a communication system in which embodiments may find

application.

DETAILED DESCRIPTION
Aspects of the invention are disclosed in the following description and related drawings
directed to specific embodiments of the invention. Alternate embodiments may be
devised without departing from the scope of the invention. Additionally, well-known
elements of the invention will not be described in detail or will be omitted so as not to
obscure the relevant details of the invention.
The word “exemplary” is used herein to mean “serving as an example, instance, or
illustration.” Any embodiment described herein as “exemplary” is not necessarily to be
construed as preferred or advantageous over other embodiments. Likewise, the term
“embodiments of the invention” does not require that all embodiments of the invention
include the discussed feature, advantage or mode of operation.
The terminology used herein is for the purpose of describing particular embodiments
only and is not intended to be limiting of embodiments of the invention. As used herein,
the singular forms "a", "an" and "the" are intended to include the plural forms as well,
unless the context clearly indicates otherwise. It will be further understood that the
terms "comprises”, "comprising”, "includes" and/or "including", when used herein,
specify the presence of stated features, integers, steps, operations, elements, and/or
components, but do not preclude the presence or addition of one or more other features,
integers, steps, operations, elements, components, and/or groups thereof.
Further, many embodiments are described in terms of sequences of actions to be
performed by, for example, elements of a computing device. It will be recognized that
various actions described herein can be performed by specific circuits (e.g., application
specific integrated circuits (ASICs)), by program instructions being executed by one or
more processors, or by a combination of both. Additionally, these sequence of actions
described herein can be considered to be embodied entirely within any form of
computer readable storage medium having stored therein a corresponding set of
computer instructions that upon execution would cause an associated processor to
perform the functionality described herein. Thus, the various aspects of the invention
may be embodied in a number of different forms, all of which have been contemplated

to be within the scope of the claimed subject matter. In addition, for each of the



WO 2014/145160 PCT/US2014/029876

[0018]

[0019]

[0020]

[0021]

embodiments described herein, the corresponding form of any such embodiments may
be described herein as, for example, “logic configured to” perform the described action.

To facilitate in describing the embodiment, reference is first made to an abstraction of a
processor 100 illustrated in Figure 1, where for simplicity not all functional units
conventionally found in a processor are shown. The processor 100 in which
embodiments find applications may have a superscalar, out-of-order architecture,
although this is not a requirement. However, it is assumed that the processor 100
illustrated in Figure 1 has the capability to speculatively execute or process instructions,
and to properly recover if a speculative execution or processing is found to be incorrect.
For example, many processors have the capability to speculatively execute a branch
instruction by predicting the target address of the branch instruction, and to properly
recover and execute the correct instruction flow if the predicted target address is found
later to be incorrect.

Shown in Figure 1 is a pipeline 102 comprising an instruction fetch stage 104, an
instruction decode stage 106, a register rename stage 108, and an instruction queue and
dispatch stage 110. In practice, there may be more stages in a pipeline, such as for
example various stages for writing results to memory locations or architected registers
when an instruction commits (retires), but for simplicity only four stages are illustrated
in the pipeline 102. A controller 112 controls the actions in the pipeline 102. (Here, the
terms commit and retire are used as synonyms, so to say that an instruction commits
may also be taken to mean that the instruction retires.)

Instructions and data are retrieved from and written to memory storage, comprising
various caches and off-chip memory that may be considered part of a memory
hierarchy. A functional block labeled 114 abstracts this memory hierarchy, and for ease
of discussion one or more memory functional units may simply be referred to as the
memory hierarchy 114. Some of the memory making up the memory hierarchy 114 may
be integrated with the controller 112 or other functional units, and may be referred to as
non-transitory computer-readable storage media. For some embodiments, the memory
hierarchy 114 may include stored instructions by which the controller 112 or other
functional units may carry out various actions as described herein.

Other functional units illustrated in Figure 1 are a physical register file 116, a set of
execution units 118, and a reorder buffer 120. The reorder buffer 120 facilitates out-of-

order execution and for some embodiments may be implemented as a circular buffer,



WO 2014/145160 PCT/US2014/029876

[0022]

[0023]

[0024]

[0025]

where instructions enter the buffer when they enter the instruction queue and dispatch
stage 110, and exit the reorder buffer 120 when they commit (retire). The instructions
commit in the order in which they enter the reorder buffer 120.

Another buffer, labeled as the speculative instruction information queue (SIIQ) 122, is
used to store instructions that are processed early in the pipeline 102 within a
speculatively predicted context, along with various register values and perhaps state
information that may be needed to restore the state of the processor 100 if an in-flight
instruction that was speculatively processed is later found not to be part of the correct
instruction flow, and therefore should not commit. This buffer is referred to as a
speculative instruction information queue and is discussed in more detail later.

Vector processing is an important capability in many signal processing applications,
such as voice or image processing. A vector processing instruction is sometimes
referred to as a SIMD (Single Instruction Multiple Data) instruction, where a single
instruction operates on multiple data. A vector may be considered a range of memory
locations with a constant stride between consecutive elements. In another view, a vector
may be considered a range of register locations with a constant stride between
consecutive elements. For example, for an array of physical registers {R;, [ =
0,1,2,..,15}, a vector may consist of the register locations R{(i), i =0, 2,4, ...,14}
where the stride is two.

In a load-store architected processor, the elements of a vector are loaded into registers
with a load instruction before being operated on according to a vector instruction. For
example, a vector add instruction may add the values in a first set of source registers to
the values in a second set of source registers and write the results to a set of destination
registers. As a specific example, the values in a first set of source registers {RX(i) i =
0,1, 2,3} may be added to the values in a second set of source registers {RY (i) i =
0,1,2,3} with the results written into a set of destination registers {RZ(i) i =
0,1, 2,3}, where for each i = 0,1, 2, 3, the value of register RZ(i) is the sum of the
values in registers RX (i) and RY (i). In this specific example, the length of the vector is
four and the stride is one.

The source register and destination register files utilized in vector processing may be
viewed as physical registers encompassed by the functional unit 116, or as other

physical register files not explicitly shown in Figure 1.



WO 2014/145160 PCT/US2014/029876

[0026]

[0027]

[0028]

[0029]

[0030]

The vector length, stride, and various other parameters consumed by vector instructions
are stored in one or more control registers. An example of such a control register is
labeled 124 in Figure 1, and referred to as the FPSCR (Floating Point Status and Control
Register) 124. An instruction to write (copy) the parameters to the FPSCR 124 is
inserted in a block of code before (in program order) the vector instructions that rely
upon the needed parameters. There is then a dependency of these vector instructions
upon the write instruction to the FPSCR 124.

In particular, some instruction sets for a vector capable processor include a write
instruction that writes to one or more fields in the FPSCR 124 that configure the
behavior of vector instructions based upon the values in these fields. Stride or length
fields are exemplary fields that may be included in the FPSCR124, but other fields may
also be included. These one or more fields are labeled 125 in Figure 1. For ease of
discussion, and without loss of generality, we refer to 125 as a field, although it may
span more than one bit, and more than one field of the FPSCR 124.

For example, a non-zero value written to the field 125 may define a context in which
vector instruction execution is an undefined instruction, resulting in the processor 100
executing an interrupt handler if a vector instruction execution is attempted. For some
embodiments, only a proper subset of the set of vector instructions becomes undefined
if the field 125 is set to a non-zero value. That is, for some embodiments there may be
some vector instructions that ignore the field 125 in the FPSCR 124.

For ease of discussion, a write instruction will refer to an instruction that writes to the
field 125 in the FPSCR 124, and the field 125 is referred to as a configuration field or a
configuration value.

It may happen that when a write instruction and a dependent instruction such as a vector
instruction are both in the pipeline 102, the operands for the vector instruction are
available before the write instruction can write to the configuration field 125. For
example, the value that the write instruction is to write to the configuration field 125
may be the result of another instruction that has not yet completed execution when the
dependent vector instruction is ready to execute. To avoid a dependency hazard, some
prior art processors may implement context synchronizing whereby all vector
instructions subsequent (in program order) to the write instruction are not executed until
the write instruction commits. Some other prior art processors may introduce a hold

when decoding a vector instruction until all prior (in program order) write instructions



WO 2014/145160 PCT/US2014/029876

[0031]

[0032]

[0033]

[0034]

have committed. However, such methods may degrade performance and cause pipeline
bubbles.

To improve performance, embodiments perform speculative processing and execution
of dependent instructions. In this embodiment, the dependent instructions are vector
instructions but those having skill in the art will understand that other types of
dependent instructions are within the scope of the present disclosure, including but not
limited to instructions with a configurable privilege or security dependency or
instructions that access particular architectural registers. More particularly,
embodiments begin processing a vector instruction within a context determined by the
current values of the FPSCR 124. If a write instruction has not yet committed and is in
flight, but a later (in program order) dependent vector instruction is available to begin
processing, then that dependent vector instruction is processed based upon the present
state of the FPSCR 124 at its time of processing.

When a vector instruction dependent upon a write instruction is processed, it may
happen that the present context of the FPSCR 124 (i.e., the value of the configuration
field 125) at the time of processing the vector instruction is not the correct context. For
example, it may be that the present context is such that the vector instruction is
processed as undefined, but the vector instruction should in fact be processed as defined
if the current context was correct. Alternatively, it may happen that the present context
of the FPSCR 124 at the time of processing the vector instruction is such that the vector
instruction is defined, and yet vector instruction should be undefined when processed in
the correct context.

Accordingly, if it is determined that a vector instruction was processed in an incorrect
context (context here referring to the value of the configuration field 125 when the
pipeline 102 begins processing the vector instruction), then embodiments should
perform a recovery procedure so that eventually the vector instruction will be processed
and executed in the correct context.

To facilitate the recovery process, embodiments make use of the speculative instruction
information queue 122. This queue may have the same structure as a branch instruction
queue (BIQ), and for some embodiments the speculative instruction information queue
122 may be the BIQ itself, but where vector instructions are also queued in addition to
branch instructions. For some embodiments state information, including but not limited

to the address of the instruction Vopp 127 and any other non-context-dependent



WO 2014/145160 PCT/US2014/029876

[0035]

[0036]

[0037]

information required to resume execution at a desired fetch address, may also be
included to help put the processor 100 into the correct state during a recovery process.
Although the embodiments could be described by referring to the functional unit 122 as
a BIQ, it is useful to use a different term so as not to limit the structure to a BIQ, and
therefore the queue is referred to as a speculative instruction information queue.

In the example embodiment illustrated in Figure 1, the instruction VMSR labeled 126 in
the reorder buffer 120 denotes an instruction to write a value to the configuration field
125 in the FPSCR 124. (The VMSR terminology is taken from the ARM instruction set,
where it can represent an instruction for transferring contents from the system register to
the FPSCR. This terminology is borrowed merely for convenience, and the
embodiments may find applications in many different architectures and instruction sets.)
A subsequent instruction Vopp in the reorder buffer 120, labeled 127, denotes a vector
instruction dependent upon the instruction VMSR 126. The arrow labeled 128
represents this dependency.

When the pipeline 102 begins processing the instruction Vopp 127, it is placed in the
speculative instruction information queue 122. The arrow labeled 130 denotes the
placement into the speculative instruction information queue 122, shown as an entry
labeled 132. The entry 132 comprises two parts, the part labeled 132a includes the
vector instruction and a context field 133, and the part labeled 132b includes state
information. Some embodiments may not include the state information. For some
embodiments that store the state information in an entry, such as for example the entry
132, the state information is used to return the processor 100 to a correct state during a
recovery process when it is determined that a vector instruction was processed in an
incorrect context. The context field 133 in the entry 132 indicates the context in which
the associated instruction Vopp 127 for the entry 132 was processed. When a vector
instruction associated with an entry commits or is flushed, then that entry is removed
from the speculative instruction information queue 122.

At some point in time while a write instruction (“write” referring to a write to the
FPSCR 124) is in flight, a determination is made as to whether any dependent vector
instructions were processed in an incorrect context. For example, if there are no
intervening write instructions between the instruction VMSR 126 and the instruction

Vopp 127, then the instruction Vopp 127 may be dependent upon the instruction VMSR



WO 2014/145160 PCT/US2014/029876

[0038]

[0039]

[0040]

[0041]

126 and care should be taken to make sure that it was processed in the correct context
before the instruction Vopp 127 retires.

For some embodiments, a determination for correct context is made when a write
instruction commits. Continuing with the example illustrated in Figure 1, when the
instruction VMSR 126 is at the top (or head) of the reorder buffer 120 and is ready to
commit, the value that the instruction VMSR 126 wrote to the configuration field 125 is
compared with the context field for each entry in the speculative instruction information
queue 122 having a dependent in-flight vector instruction. For example, the value of the
context field 133 is compared with the value for the configuration field 125 that is
resultant from the instruction VMSR 126 to determine whether the instruction Vopp 127
in the entry 132 was processed in the correct context. A vector instruction in the
speculative instruction information queue 122 is dependent upon the instruction VMSR
126 if there are no intervening write instructions.

For some embodiments, for the case in which the instruction VMSR 126 is ready to
commit but a dependent vector instruction in the speculative instruction information
queue 122 is found to have been processed in an incorrect context, the instruction
VMSR 126 is retired (which implies that all instructions ahead of the instruction VMSR
126 have also retired), all instructions are flushed from the pipeline and the reorder
buffer 120, and the program counter 134 is loaded with the address of the instruction
immediately subsequent in program order to the instruction VMSR 126. In this case,
state information need not be stored in the speculative instruction information queue
122 because all of the architected registers are in the correct state when the instruction
VMSR 126 retires and program control begins with the next in-order instruction.

Some embodiments may not wait for the instruction VMSR 126 to reach the top of the
reorder buffer 120 before searching the speculative instruction information queue 122
for dependent vector instructions that may have been processed in an incorrect context.
For example, for some embodiments, when the instruction VMSR 126 executes (here,
execution of the instruction VMSR 126 means that the value it is to write to the FPSCR
124 is known), the speculative instruction information queue 122 is searched for
incorrectly processed dependent vector instructions even though the instruction VMSR
126 may not be ready to commit.

In another embodiment, when an instruction in the SIIQ 122 such as instruction Vopp

127 is ready to retire (for example, is either ready to commit or to take an undefined



WO 2014/145160 PCT/US2014/029876

[0042]

[0043]

[0044]

10

interrupt), the instruction Vopp 127 compares the context field 133 against the
architectural context in the configuration field 125. If the context field 133 and the
configuration field 125 match, the instruction Vopp 127 retires in a conventional
manner. However, if the context field 133 and the configuration field 125 do not match,
a recovery procedure is performed. For instance, the pipeline and reorder buffer are
flushed of both the dependent instruction Vopp 127 and all instructions following the
dependent instruction, and the program counter 134 is set to fetch dependent instruction
Vopp 127, and state information 132b is used to restore the correct state.

In some embodiments, it may not be necessary to wait until instruction Vopp 127 is
ready to retire to perform the described check. If there are no pending possible updates
(whether by an instruction such as instruction VMSR 126 or otherwise) to the
configuration field 125 prior to instruction Vopp 127 being ready to retire, the
instruction Vopp 127 may compare the configuration field 125 with the context field
133 and perform the recovery procedure if necessary without waiting until instruction
Vopp 127 is ready to retire.

The speculative instruction information queue 122 may also be used to store branch
instructions and associated state information so that the processor 100 may recover from
an incorrectly executed branch instruction. This is the reason for including the entry 136
in Figure 1. (The entry 136 may comprise other information than state information, but
for ease of discussion the entry 136 is not described in detail because it is well known in
the art.) In this case, the speculative instruction information queue 122 includes the
functionality of a BIQ, as discussed previously. However, embodiments may not
include the functionality of a BIQ in the speculative instruction information queue 122,
but may employ another physical buffer for the BIQ separate from the physical buffer
used to implement the speculative instruction information queue 122.

Figure 2A illustrates a method employed by one or more embodiments discussed above.
As indicated in box 202, context-dependent instructions (such as a vector instruction)
are processed and are placed in the speculative instruction information queue 122. A
context-dependent instruction is processed although a prior (in program order) write
instruction has not executed, where the write instruction is an instruction that writes a
value to the configuration field 125. The instruction is processed within the context
determined by the value of the configuration field 125 at the time the instruction is

processed.



WO 2014/145160 PCT/US2014/029876

[0045]

[0046]

[0047]

[0048]

[0049]

11

An instruction is stored in the speculative instruction information queue 122 as part of
an entry, where the entry also comprises a context field with a value equal to the value
of the configuration field 125 when the instruction was processed.

After execution of a write instruction that writes to the configuration field 125 (box
204), the speculative instruction information queue 122 is searched for an entry having
an instruction dependent upon that write instruction (box 206). This search may be
performed before the write instruction is at the head of the reorder buffer 120, or it may
be performed when the write instruction reaches the head of the reorder buffer 120 and
commits.

If no such entry is found, then no special action is taken and the pipeline proceeds
conventionally, as indicated in the determination 208 and the oval 210 in Figure 2A.
However, if an entry is found containing an instruction dependent upon the write
instruction, then in the determination 211 the value of the context field 133 is compared
with the configuration field value associated with the write instruction to determine if
the instruction was processed in the correct context. If the instruction was processed in
the correct context, then the process flow returns to the oval 210 to indicate that no
special action is taken.

However, if the instruction was processed in an incorrect context, then various actions
are taken for the processor 100 to properly recover from processing the instruction in
the incorrect context, as indicated in the box 212. In the box 212, all in-flight
instructions are flushed from the pipeline 102 and the reorder buffer 120, and the
program counter 134 is set so that the instruction immediately following (in program
order) the write instruction is fetched.

Figure 2B illustrates a method employed by another of the embodiments discussed
above. As indicated in box 202, context-dependent instructions (such as a vector
instruction) are processed and are placed in the speculative instruction information
queue 122. A context-dependent instruction is processed although a prior (in program
order) write instruction has not executed, where the write instruction is an instruction
that writes a value to the configuration field 125. The instruction is processed within the
context determined by the value of the configuration field 125 at the time the instruction

is processed.



WO 2014/145160 PCT/US2014/029876

[0050]

[0051]

[0052]

[0053]

[0054]

[0055]

12

An instruction is stored in the speculative instruction information queue 122 as part of
an entry, where the entry also comprises a context field with a value equal to the value
of the configuration field 125 when the instruction was processed.

The check for whether the context in which the context-dependent instruction was
executed is correct may be performed in two different ways. In one embodiment in box
224, when the context-dependent instruction is ready to retire the method continues to
box 211 to perform the check. In another embodiment, in box 226 the context-
dependent instruction checks to determine whether there are any possible pending
updates to the configuration value 125 (whether by an instruction such as instruction
VMSR 126 or otherwise). If there are pending possible updates, the method returns to
box 226 to wait. If there are no pending possible updates, the method continues to box
211 to perform the check.

In box 211, the value of the context field 133 is compared with the configuration field
value associated with the write instruction to determine if the instruction was processed
in the correct context. If the instruction was processed in the correct context, then the
process flow returns to the oval 210 to indicate that no special action is taken.

However, if the instruction was processed in an incorrect context, then various actions
are taken for the processor 100 to properly recover from processing the instruction in
the incorrect context, as indicated in the box 214. In the box 214, the instruction and all
in-flight instructions immediately following (in program order) the instruction are
flushed from the pipeline 102 and the reorder buffer 120, and the program counter 134
is set so that the instruction is the next instruction to be fetched, and the state
information stored in the entry with the instruction is used to restore the state of the
processor 100 to the correct state for processing the instruction.

In some embodiments, the controller 112 may carry out the methods of Figs. 2A or 2B
by executing firmware or instructions stored in a non-transitory computer-readable
medium, such as the memory hierarchy 114.

Figure 3 illustrates a wireless communication system in which embodiments may find
application. Figure 3 illustrates a wireless communication network 302 comprising base
stations 304A, 304B, and 304C. Figure 3 shows a communication device, labeled 306,
which may be a mobile cellular communication device such as a so-called smart phone,
a tablet, or some other kind of communication device suitable for a cellular phone

network, such as a computer or computer system. The communication device 306 need



WO 2014/145160 PCT/US2014/029876

[0056]

[0057]

[0058]

[0059]

13

not be mobile. In the particular example of Figure 3, the communication device 306 is
located within the cell associated with the base station 304C. Arrows 308 and 310
pictorially represent the uplink channel and the downlink channel, respectively, by
which the communication device 306 communicates with the base station 304C.
Embodiments may be used in data processing systems associated with the
communication device 306, or with the base station 304C, or both, for example. Figure
3 illustrates only one application among many in which the embodiments described
herein may be employed

Embodiments have been described in the context of vector instructions and their
dependency upon one or more fields in the FPSCR 124. However, embodiments are not
limited to vector instructions, and may find application to other types of instructions that
depend upon one or more fields in a register for their context. For example,
embodiments may find application in processor architectures in which there may be a
large span in the pipeline between the generation of a resource and its dependent
consumption, relatively rare updates to the dependency-generating state, and high
performance demands for dependency-consuming instructions. As such, the
embodiments described may be viewed as a type of prediction scheme, where a state
defining the context of the dependent instruction is predicted not to change between the
time that the state is consumed by the dependent instruction and the time that the
dependent instruction commits. Changes to the state then cause a misprediction. This is
similar to but distinct from branch prediction techniques, in that the dependency does
not involve either conditionality or a target, and involves non-branch instructions.

Those of skill in the art will appreciate that information and signals may be represented
using any of a variety of different technologies and techniques. For example, data,
instructions, commands, information, signals, bits, symbols, and chips that may be
referenced throughout the above description may be represented by voltages, currents,
electromagnetic waves, magnetic fields or particles, optical fields or particles, or any
combination thereof.

Further, those of skill in the art will appreciate that the various illustrative logical
blocks, modules, circuits, and algorithm steps described in connection with the
embodiments disclosed herein may be implemented as electronic hardware, computer
software, or combinations of both. To clearly illustrate this interchangeability of

hardware and software, various illustrative components, blocks, modules, circuits, and



WO 2014/145160 PCT/US2014/029876

[0060]

[0061]

[0062]

14

steps have been described above generally in terms of their functionality. Whether such
functionality is implemented as hardware or software depends upon the particular
application and design constraints imposed on the overall system. Skilled artisans may
implement the described functionality in varying ways for each particular application,
but such implementation decisions should not be interpreted as causing a departure from
the scope of the present invention.

The methods, sequences and/or algorithms described in connection with the
embodiments disclosed herein may be embodied directly in hardware, in a software
module executed by a processor, or in a combination of the two. A software module
may reside in RAM memory, flash memory, ROM memory, EPROM memory,
EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other
form of storage medium known in the art. An exemplary storage medium is coupled to
the processor such that the processor can read information from, and write information
to, the storage medium. In the alternative, the storage medium may be integral to the
processor.

Accordingly, an embodiment of the invention can include a computer readable media
embodying a method as described above. Accordingly, the invention is not limited to
illustrated examples and any means for performing the functionality described herein
are included in embodiments of the invention.

While the foregoing disclosure shows illustrative embodiments of the invention, it
should be noted that various changes and modifications could be made herein without
departing from the scope of the invention as defined by the appended claims. The
functions, steps and/or actions of the method claims in accordance with the
embodiments of the invention described herein need not be performed in any particular
order. Furthermore, although elements of the invention may be described or claimed in
the singular, the plural is contemplated unless limitation to the singular is explicitly

stated.



WO 2014/145160 PCT/US2014/029876

15

CLAIMS
WHAT IS CLAIMED IS:

1. A method comprising:

processing an instruction within a context determined by a current value of a
register field, the instruction dependent upon a write instruction, the write instruction to
write a configuration value to the register field, the instruction processed before the
write instruction executes;

storing the instruction in an entry in a queue;

storing in the entry the current value of the register field;

searching the queue for the entry after the write instruction executes; and

comparing the current value stored in the entry with the configuration value after

the write instruction executes.

2. The method of claim 1, further comprising:
provided the current value stored in the entry does not match the configuration
value, flushing a pipeline of all in-flight instructions, and setting a program counter to

an address of a next instruction in program order after the write instruction.

3. The method of claim 2, processing the instruction further comprising:
processing the instruction as defined if the current value is a first value; and

processing the instruction as undefined if the current value is not the first value.

4. The method of claim 1, further comprising:

provided the current value stored in the entry does not match the configuration
value, flushing a pipeline of the instruction and all in-flight instructions following the
instruction in program order, and setting a program counter to an address of the

instruction.



WO 2014/145160 PCT/US2014/029876

16

5. The method of claim 4, further comprising:

storing in the entry a state information of a processor, the state information at a
time when the instruction is processed; and

provided the current value stored in the entry does not match the configuration
value, retrieving the state information from the entry, and restoring the processor to a

state indicated by the state information.

6. The method of claim 1, wherein the instruction is a vector instruction.
7. The method of claim 1, wherein the register field comprises one or more fields.
8. The method of claim 1, processing the instruction further comprising:

processing the instruction as defined if the current value is a first value; and

processing the instruction as undefined if the current value is not the first value.

0. The method of claim 1, further comprising:

removing the entry from the queue when the instruction commits.

10. A processor comprising:
a register having a field;
a queue;
a pipeline;
a controller configured to:
cause the pipeline to process an instruction within a context determined
by a current value of the register field before the pipeline executes a write instruction,
the instruction dependent upon the write instruction, the write instruction to write a
configuration value to the register field;
store the instruction in an entry in the queue;
store in the entry the current value of the register field;
search the queue for the entry after the pipeline executes the write
instruction; and
compare the current value stored in the entry with the configuration value

after the pipeline executes the write instruction.



WO 2014/145160 PCT/US2014/029876

17

11. The processor of claim 10, further comprising:
a program counter;
the controller further configured to, provided the current value stored in the entry
does not match the configuration value:
flush the pipeline of all in-flight instructions; and
set the program counter to an address of a next instruction in program

order after the write instruction.

12. The processor of claim 11, the controller further configured to cause the pipeline
to:
execute the instruction as defined if the current value is a first value; and

execute the instruction as undefined if the current value is not the first value.

13. The processor of claim 10, further comprising a program counter, the controller
configured to, provided the current value stored in the entry does not match the
configuration value:

flush the pipeline of the instruction and all in-flight instructions following in
program order the instruction; and

set the program counter to an address of the instruction.

14. The processor of claim 13, the controller configured to:

store in the entry a state information of a processor, the state information at a
time when the pipeline processes the instruction;

provided the current value stored in the entry does not match the configuration
value, retrieve the state information from the entry, and restore the processor to a state

indicated by the state information.

15. The processor of claim 13, the controller configured to cause the pipeline to:
execute the instruction as defined if the current value is a first value; and

execute the instruction as undefined if the current value is not the first value.



WO 2014/145160 PCT/US2014/029876

18

16. The processor of claim 10, the controller configured to cause the pipeline to:
execute the instruction as defined if the current value is a first value; and

execute the instruction as undefined if the current value is not the first value.

17. The processor of claim 10, the controller configured to remove the entry from

the queue when the pipeline commits the instruction.

18. The processor of claim 10, wherein the instruction is a vector instruction.
19. The processor of claim 10, wherein the register field comprises one or more
fields.

20. A method comprising:

means for processing an instruction within a context determined by a current
value of a register field, the instruction dependent upon a write instruction, the write
instruction to write a configuration value to the register field, the instruction processed
before the write instruction executes;

means for storing the instruction in an entry in a queue;

means for storing in the entry the current value of the register field;

means for searching the queue for the entry after the write instruction executes;
and

means for comparing the current value stored in the entry with the configuration

value after the write instruction executes.

21. The method of claim 20, further comprising:

provided the current value stored in the entry does not match the configuration
value, means for flushing a pipeline of all in-flight instructions, and means for setting a
program counter to an address of a next instruction in program order after the write

instruction.



WO 2014/145160 PCT/US2014/029876

19

22. The method of claim 20, further comprising:

provided the current value stored in the entry does not match the configuration
value, means for flushing a pipeline of the instruction and all in-flight instructions
following in program order the instruction, and means for setting the program counter to

an address of the instruction.

23. The method of claim 22, further comprising:

means for storing in the entry a state information of a processor, the state
information at a time when the instruction is processed; and

provided the current value stored in the entry does not match the configuration
value, means for retrieving the state information from the entry, and means for restoring

the processor to a state indicated by the state information.

24. The method of claim 20, the means for processing the instruction further
comprising:

means for processing the instruction as defined if the current value is a first
value; and

means for processing the instruction as undefined if the current value is not the

first value value.

25. The method of claim 20, further comprising:

means for removing the entry from the queue when the instruction commits.

26. The method of claim 20, the register field comprising one or more fields.

27. The method of claim 20, wherein the instruction is a vector instruction.



WO 2014/145160 PCT/US2014/029876

20

28. A non-transitory computer-readable medium having instructions stored thereon
to cause a controller to perform a method comprising:

processing a instruction within a context determined by a current value of a
register field, the instruction dependent upon a write instruction, the write instruction to
write a configuration value to the register field, the instruction processed before the
write instruction executes;

storing the instruction in an entry in a queue;

storing in the entry the current value of the register field;

searching the queue for the entry after the write instruction executes; and

comparing the current value stored in the entry with the configuration value after

the write instruction executes.

29. The non-transitory computer-readable medium of claim 28, the method further
comprising:

provided the current value stored in the entry does not match the configuration
value, flushing a pipeline of all in-flight instructions, and setting a program counter to

an address of a next instruction in program order after the write instruction.

30. The non-transitory computer-readable medium of claim 28, the process further
comprising:

provided the current value stored in the entry does not match the configuration
value, flushing a pipeline of the instruction and all in-flight instructions following in
program order the instruction, and setting the program counter to an address of the

instruction.

31. The non-transitory computer-readable medium of claim 30, the method further
comprising:

storing in the entry a state information of a processor, the state information at a
time when the instruction is processed; and

provided the current value stored in the entry does not match the configuration
value, retrieving the state information from the entry, and restoring the processor to a

state indicated by the state information.



WO 2014/145160 PCT/US2014/029876

21

32. The non-transitory computer-readable medium of claim 28, processing the
instruction further comprising:
processing the instruction as defined if the current value is a first value; and

processing the instruction as undefined if the current value is not the first value.

33. The non-transitory computer-readable medium of claim 28, the method further
comprising:

removing the entry from the queue when the instruction commits.

34. The non-transitory computer-readable medium of claim 28, the register field

comprising one or more fields.

35. The non-transitory computer-readable medium of claim 28, wherein the

instruction is a vector instruction.



PCT/US2014/029876

WO 2014/145160

1/4

mmﬁ
__»| uoneuuoyuy oeyg || ddo N =243 [ "DI4
o6 qze1-’ vzl
uonewioyuy eS| youerg
C Ayoredatyg
9tl K10WaN
771 9neng) uoneuLIOJu]
uononnsuy 2AneMoadg b1~
L ddo A ml ||||||||||||| 1
_
21 _ yoredsi(y _
Q71 “ pue anang) uonoNISuy _
~  suma o _
/
9¢1 I9[[013U0)) |__ SUrBUSY 1018130y "
0t ropng 11 _ - |
IopI0dY | 801 _
_ apooeg _
Tl I uononIsu| |
] _ ) _
ADSdd _ 201 _
vz1- _ U019 _
I UOnONNSUJ |
s 5d | - ! |
uonndAXy —J _ vOI1 _
911~ vel _ |
g1~ 214 1215130y [BOIS AU o T T T T T T T T T

00T



WO 2014/145160 PCT/US2014/029876

2/4
/202
Process context-dependent instructions
and store the context-dependent
instructions in queue as entries with
current context and state information

204

Write instruction executes

/206

Search queue for instructions dependent
upon the write instruction

Vs 210
Proceed
conventionally

Dependent
instruction found

Yes

Correct context

/212

1) Flush entire pipeline
and reorder buffer

2) Set PC to fetch next instruction
after write instruction

FIG. 2A



WO 2014/145160 PCT/US2014/029876

3/4
/202
Process context-dependent instructions
and store the context-dependent
instructions in queue as entries with
current context and state information

Yes—
226
e ___XY__ C224 Y ____ 3
| Context-dependent instruction I | Any possible pending updates
| ready to retire I | to the configuration value? |

e e e e e e e —— —— ——— — — e ——— —— —— —— — — —

Proceed
conventionally
Yes T

Correct context

f214
1) Flush pipeline and reorder
buffer of dependent
instruction and all in-flight
instructions following
dependent instruction
2) Set PC to fetch dependent
instruction and use
state information to restore
processor to correct state

FIG. 2B




WO 2014/145160 PCT/US2014/029876

4/4

/02
Pl
1

o
=
|
N==
Y )
SN




INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/029876

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/30 GO6F9/38
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2010/205406 Al (HOOKER RODNEY E [US] ET 1-35
AL) 12 August 2010 (2010-08-12)
paragraph [0006]; figures 1,3

AL) 11 June 2002 (2002-06-11)
the whole document

paragraph [0005]

paragraph [0017] - paragraph [0020]
paragraph [0026] - paragraph [0032]
paragraph [0036] - paragraph [0046]

paragraph [0018] - paragraph [0025]

A US 6 405 305 B1 (MEIER STEPHAN G [US] ET 1-35

A US 2012/226891 Al (ESTLICK MICHAEL D [US] 1-35
ET AL) 6 September 2012 (2012-09-06)

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

4 June 2014

Date of mailing of the international search report

13/06/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Moraiti, Marina

Form PCT/ISA/210 (second sheet) (April 2005)




INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2014/029876
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2010205406 Al 12-08-2010  CN 101776989 A 14-07-2010
CN 103488464 A 01-01-2014
W 201030613 A 16-08-2010
W 201342230 A 16-10-2013
US 2010205406 Al 12-08-2010
US 6405305 Bl 11-06-2002  NONE

Form PCT/ISA/210 (patent family annex) (April 2005)




	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - wo-search-report
	Page 29 - wo-search-report

