Abstract: An air-heating blower device for a passenger compartment of a motor vehicle comprising a body with at least one inlet opening at least one outlet opening an electrically driven axial fan rotatably mounted around its axis within the body. The fan is associated to an electric motor (M) with toroidal geometry, having an annular rotor which is rotatable within an annular stator and defining a central opening inside thereof, said fan (F) having one or more blades (B) which are carried by the rotor and each blade extending into said central opening towards a free end of the blade which terminates at a distance from the central axis of the fan, and in that the annular body of the rotor and/or the annular body of the stator define a guide tube for the airflow activated by the fan (F) over the resistive electric heater (H).
"Air-heating blower device for a motor vehicle"

Field of the invention
The present invention relates to an air-heating blower device for a passenger compartment of a motor vehicle, said device being of the type comprising a body with at least one inlet opening and at least one outlet opening, an electrically driven axial fan rotatably mounted within the body for generating a flow of air from the inlet openings to the outlet opening, and an electric heater carried by the body and adapted to heat the airflow directed towards the outlet opening.

A device of this type is for example known from document US 4,366,368 or from document JP S56 154307.

The advantage of this kind of devices is to supply in a very short time a hot flow of air adapted for example to defrost the windshield after a long stop at low temperature, without the need to wait the warm-up of the motor vehicle.

Purpose of the invention
The purpose of the invention is to achieve a device of this kind which is suitable to be easily integrated in the dashboard or in another part of the passenger compartment of the motor vehicle and which is characterized by high characteristics of efficiency, of low weight and of low size.

Summary of the invention
In order to achieve this purpose, the invention provides an air—
heating blower device for a passenger compartment of a motor vehicle having the above specified characteristics and further characterized in that said axial fan is associated with an electric motor with toroidal geometry, having an annular rotor which is rotatable within an annular stator and defining a central opening inside thereof, said fan having one or more blades which are carried by the rotor and each blade extending into said central opening towards a free end of the blade which terminates at a distance from the central axis of the fan, and in that the annular body of the rotor and/or the annular body of the stator define a guide tube for the airflow activated by the fan, and

in that said electric heater (H) comprises a heater body to which
one or more electric resistors are associated, said heater body (H) having a substantially cylindrical shape, having a heater axis substantially aligned with the axis of said fan, so as to be embedded within the airflow activated by the fan (F).

In one embodiment, said guide tube for the airflow generated by said axial fan is provided with stationary fins supporting said cylindrical heater body in a cantilevered way. Electrical machines suitable to be used in a device according to the invention were developed in recent years for use such as engines or generators. A particularly interesting solution for the purposes of the invention is illustrated in European patent EP 1 885 047B1 and in the corresponding US patent US 7,592,712B2 of the same inventor. A detailed description of an electric motor of this type is provided hereinafter.

According to a further characteristic of the invention, the conformation of said one or more blades is such as to converge the airflow towards a focus point positioned downstream the fan with reference to the flow direction. Thanks to this characteristic, the fan of the device according to the invention has a higher efficiency and provides a higher thrust.

The body of the device is intended to be positioned within a dashboard of a motor vehicle. In the preferred embodiment this body has a first inlet opening communicating with the interior of the motor vehicle, a second inlet opening communicating with a duct for supplying outside air and a swivel door for controlling communication of the two inlet openings with the fan.

In addition or alternatively, the body of the device has a first outlet opening for directing the flow of air toward a windshield and/or the passengers of the motor vehicle, a second outlet opening for directing the flow of air towards the floor of the motor vehicle and a door for controlling communication of the fan with the two outlet openings. Said first outlet opening is preferably provided with adjustable louvers.

According to a further preferred characteristic, the body of the heater has a cylindrical tubular shape and it is positioned with its axis oriented in the direction of the flow of air activated by the fan, in such a way that its inner surface and/or its outer surface are exposed to the airflow. In a second embodiment, the body of the heater is a solid
cylindrical body positioned with its axis oriented in the direction of the flow of air activated by the fan, in such a way that its outer surface is exposed to the airflow. In both cases, the outer surface of the body of the heater is preferably provided with a plurality of radially arranged longitudinal fins.

In a further embodiment, the device further comprises at least one electric Peltier-effect cooler.

According to a further characteristic, the electric motor for driving the fan, the electric heater and/or the electric cooler are connected to the battery of the electric circuit of the motor vehicle, as well as to an onboard electric generator of the motor vehicle, as well as to an electronic control unit, programmed to enable the power supply of the heater and/or the cooler as a function of the charge state of the battery and/or of the operating condition of the electric generator.

Brief description of the drawings

Further features and advantages of the present invention will become readily apparent from the following description with reference to the annexed drawings, given purely by way of non-limiting example, in which:

- figure 1 is a perspective view in transparency of a dashboard of a motor vehicle wherein are integrated two air heating blower devices according to the invention,
- figure 2 is a schematic view in cross-section of the device of the invention,
- figures 3-6 are perspective views of the device according to the invention which show different modes of operation of the device with reference to the inlet openings and the outer openings which are activated,
- figure 7 is a perspective view and at an enlarged scale of the device according to the invention with some parts removed,
- figure 7A is a similar view of the figure 7, wherein also the heater has been removed,
- figure 8 is a perspective view, partially in cross-section of an electric machine according to the prior art, which was originally studied to operate as a generator in association with a rotor driven by a flow of air, and which is instead used as motor to drive the fan in the device according
to the invention,
 - figure 9 shows a variant of figure 7,
 - figure 10 shows the principle of operation of the fan in the device
 according to the invention,
 - figure 11 shows a further variant of figure 6,
 - figure 12 is a perspective view of an embodiment of the electric
 motor unit, with the fan associated with it,
 - figure 13 is further perspective view, partially in cross-section, of
 the assembly of figure 12, and
 - figure 14 is a view in cross-section of the unit of figures 12, 13, in
 a plane containing the axis of the unit.

Detailed description of preferred embodiment

In figure 1, numeral 1 generally indicates a dashboard of a motor
vehicle (illustrated in transparency) wherein a pair of air heating blower
deVICES are incorporated, according to the present invention.

Referring also to figures 2-6, each of these devices is generally
designated with reference numeral 2 and has a hollow body 3 which, in
the illustrated embodiment, has a general double T configuration, with one
of the heads of the T (indicated with 4) rotated of 90° relative to the other,
and a central portion 5 which connects them.

The end portions of a first T head 4 define inlet openings 4a, 4b
respectively adapted to receive air from the interior of the motor vehicle
and from the external environment to the motor vehicle. The end portions
of the other T head 4 define outlet openings 4c, 4d respectively oriented to
direct the cold and/or hot flow of air generated by the device 2 towards the
windshield and/or the passengers of the motor vehicle (in the case of the
outlet opening 4c) and towards the floor of the motor vehicle (in the case of
the outlet opening 4d).

Within the body of the device there are provided two swivel doors 6,
7 (figure 2), which can have a manual control or a control by an electric
motor, these doors respectively controlling the communication of the two
inlet openings 4a, 4b and of the two outlet openings 4c, 4d with the
internal cavity of the connecting portion 5, where an axial fan F with the
associated electric motor M are provided.

The arrows in figures 3-6 show the different operational modes
which are activated by means of the swivel doors 6, 7:

Figure 3: entrance of air from the interior of the motor vehicle and exit of air towards the windshield and/or the passengers.

Figure 4: entrance of air from the interior of the motor vehicle and exit towards the floor.

Figure 5: entrance of air from the external environment and exit of air towards the windshield and/or the passengers.

Figure 6: entrance of air from the external environment and exit toward the floor.

The outlet opening 4c is provided with manually adjustable louvers 12 to direct the flow of air towards the windshield and/or the passengers of the motor vehicle.

According to a fundamental characteristic of the invention, the fan F is associated with an electric motor M with toroidal geometry having an annular rotor R (see in particular figure 8) which is rotatable within an annular stator S and defining a central opening inside thereof in which the blades B of the fan F extend. As shown in figures 7A and 8, the toroidal body of the electric motor M, defined by the annular bodies of the rotor and of the stator, constitutes a guiding and conveying tube for the flow of air activated by the fan F.

As already indicated above, electric machines adapted to be built with the toroidal configuration shown in figure 7A have already been proposed and developed in the past in other applications. Figure 8 of the attached drawings is derived from document EP 1 885 047 B1 and from corresponding document US 7,592,712 B2, of the same inventor. In the case of such documents, the electric machine is used as electric generator associated with a rotor which is put in rotation by the wind.

In figure 8 the body of the stator S and the body of the rotor R are shown in cross-section in order to show the components inside them.

Firstly, in the case of the illustrated embodiment of figure 8, the rotor R is rotatably supported within the stator S by means for providing a magnetic sustenance, which is obtained by two pairs of annular permanent magnets M_R and M_S. In figure 8, with N is indicated an annular core which is part of the stator S, constituted of ferromagnetic material, such as SMC ("Soft Magnetic Composite"), Ferrites, and Neodymium-Iron-Boron based
composites. Starting from the internal surface of the annular core N there are formed slots C adapted for receiving windings (not shown) associated with the stator S and intended to cooperate with permanent magnets carried by the rotor R. With D there are indicated the teeth defined between adjacent slots C. The rotor R includes an annular core G, which also is of ferromagnetic material, such as SMC. The rotor R further has an annular series of permanent magnets P radially outside of the core G, these magnets being arranged in such a way as to create an alternation of magnetic north and south poles intended to cooperate with the windings of the stator S to generate a rotation of the rotor R following the passage of electric current through the windings. In a variant, the rotor can be constituted by a plurality of layers of composite magnetic material positioned in such a way to create an alternation of magnetic north - south poles. In another variant the rotor R can be constituted by a plurality of permanent magnets positioned in a so called "Halbach array" configuration, which is known per se, with the purpose of decreasing weight and size of the rotor R. The blades B extend from the internal surface of the body of the rotor R.

As shown in the drawings, in the embodiment illustrated herein, the blades B do not meet each other at the center of the rotor, but they remain instead spaced from each other, in such a way as to leave a central portion of the opening inside the rotor free. However, it is instead possible to provide the blades 3A in such a way that they are joined to each other in the center of the opening.

Naturally, although the above described electric motor is considered as the most suitable to be applied in the system according to the invention, it does not represent the only possible solution. Any other kind of electric motor which has a toroidal configuration similar to that described above can be also used. The induction electric machines have a lower efficiency, but they are produced on large scale and they have the advantage of a robust and low cost technology. A better compromise in terms of cost, efficiency and safety is constituted by reluctance machines, both according to synchronous and switched reluctance technologies.

Compared to the conventional solutions, the axial flow machines have preferred characteristics in terms of efficiency and specific torque. An
electric motor with axial field comprises a rotatable rotor and generators/paths with multiple axial flows (permanent magnets, variable reluctance channels, squirrel cage elements) carried by the rotor. The axial flow generators are oriented in such a way that the magnetic flow produced by them is axially oriented at least for a substantial part. The axial flow generators are positioned around the rotor with alternate orientation of the flow direction, in such a way that the direction of the flow of adjacent segments is axially oriented at least for a substantial part, but in opposite directions. The axial flow machines can be provided with reduced or zero content of rare earth elements and they are therefore of low cost.

As shown in figure 7, the body of the stator is mounted within a frame 8 which is part of the body 3 of the device.

The frame 8 supports also an electric heater H comprising a substantially cylindrical body of the heater, wherein one or more electric resistors are associated (not shown in the drawings) and which is positioned within the body 3 of the device in such a way to be embedded within the airflow activated by the fan F. The cylindrical body H of the heater has its axis aligned with the axis of the fan F and it is supported in a cantilevered way by stationary fins protruding from the tube wall that guides the flow of air generated by the fan F.

In the embodiment of figures 7, 7A, the body of the heater has a cylindrical tubular shape and it is positioned with its internal surface and/or its external surface exposed to the flow.

In the variant of figure 9, the body of the heater is a solid cylindrical body positioned with its axis oriented in the direction of the flow of air activated by the fan, arranged in such a way that its outer surface is exposed to the air flow.

In both the variants of figure 7 and 9 the external surface of the body of the heater has a plurality of radially-arranged longitudinal fins.

In the variant of figure 11, the device further comprises at least one electric cooler. In the specific embodiment there are provided more Peltier-effect panels 10 carried by the frame 8 and positioned at the periphery of the passage of the flow of air activated by the fan F.

The electric motor M for driving the fan F, the electric heater H
and/or the electric coolers 10 are connected to the battery of the electric
circuit of the motor vehicle, to an onboard electric generator and to an
electronic control unit programmed to enable power supply to the heater
and/or to the cooler as a function of the charge state of the battery and/or
the operating condition of the electric generator.

In one embodiment, the heater is a multiple coil heater and it is
arranged to be powered either by the low voltage battery of the vehicle, or
directly by the mains supply.

In the case of application to an electrically powered motor vehicle,
one or more devices are provided according to the invention, distributed
over one or several compartments-areas of the electric vehicle, for a pre-
heating conditioning or the maintenance of a predetermined temperature
at said compartments-areas, said devices being arranged to be powered
from the electric mains supply and to be controlled by a remote control
unit.

In this last case, as reference to an application of an electric
vehicle, one or more compartments of the electric vehicle are thermally
pre-conditioned or maintained at a fixed temperature using the energy of
the electric mains supply. The pre-conditioning will be managed by a
remote control.

Referring to figure 10, in the preferred embodiment, the
conformation of the blades B is such as to converge the airflow towards a
focus point positioned downstream the fan with reference to the flow
direction. The curvature and the three-dimensional conformation of the
blade B are optimized in order to obtain the desired degree of
convergence.

Preferably, the distance between said focal point P and the median
plane Z (see figure 10) of the blade is equal to 1.8 - 2.2 the internal
diameter of said guide flow in correspondence with said median plane.

Thanks to this characteristic, the fan of the device according to the
invention presents a higher efficiency and a higher thrust.

Figures 12-14 show another embodiment of the unit of the electric
motor M with the fan F associated with it. In these figures, parts
corresponding to the previous figures are indicated with the same
reference numbers. The blades B of the fan F radially protrude towards
the interior of the ring defined by the rotor R, which is rotatable within the annular stator S. The stator S, secured to the frame 8, is provided with windings W, while the rotor carries a series of permanent magnets P.

Naturally, while the principle of the invention remains the same, the details of construction and the embodiments may widely vary with respect to what has been described and shown purely by way of example, without departing from the scope of the invention.
CLAIMS

1. Air-heating blower device (2) for a passenger compartment of a motor vehicle, said device comprising:
 - a body (3) with at least one inlet opening (4a, 4b) and at least one outlet opening (4c, 4d),
 - an electrically driven axial fan (F) rotatably mounted around its axis within the body (3) of said device for generating a flow of air from the inlet openings (4a, 4b) to the outlet openings (4c, 4d), and
 - an electric heater (H) carried by the body (3) and adapted to heat the airflow directed towards the outlet opening (4c, 4d),

characterized in that the fan (F) is associated to an electric motor (M) with toroidal geometry, having an annular rotor (R) which is rotatable within an annular stator (S) and defining a central opening inside thereof, said fan (F) having one or more blades (B) which are carried by the rotor (R) and each blade extending into said central opening towards a free end of the blade which terminates at a distance from the central axis of the fan, and in that the annular body of the rotor (R) and/or the annular body of the stator (S) define a guide tube for the airflow activated by the fan (F), and

in that said electric heater (H) comprises a heater body to which one or more electric resistors are associated, said heater body (H) having a substantially cylindrical shape, having a heater axis substantially aligned with the axis of said fan, so as to be embedded within the airflow activated by the fan (F).

2. Device according to claim 1, characterized in that said device constitutes an independent unit intended to be associated to the dashboard of a motor vehicle.

3. Device according to claim 1, characterized in that the conformation of said one or more blades (B) is such as to converge the airflow towards a focus point (P) positioned downstream the fan (F) with reference to the flow direction.

4. Device according to claim 1, characterized in that the body (3) of the device is disposed within a dashboard (1) of a motor vehicle and has a first inlet opening (4a) communicating with interior of the motor vehicle, a second inlet opening (4b) communicating with an external air supplied
duct and a swivel door (6) for controlling communication of the two inlet openings (4a, 4b) with a fan (F).

5. Device according to claim 1, characterized in that the body (3) of the device is intended to be positioned within a dashboard (1) of a motor vehicle and has a first outlet opening (4c) for directing the flow of air towards a windshield and/or the passengers of the motor vehicle, a second outlet opening (4d) for directing the flow of air towards the floor of the motor vehicle and a door (7) for controlling communication of the fan with the two outlet openings (4c, 4d).

6. Device according to claim 5, characterized in that the first outlet opening (4c) is provided with adjustable louvers (12).

7. Device according to claim 1, characterized in that said guide tube for the air flow generated by said axial fan (F) is provided with stationary fins supporting said cylindrical heater body in a cantilevered way.

8. Device according to claim 1 or 7, characterized in that the heater body (H) has a cylindrical tubular shape and is arranged in such a way that its inner surface and/or its outer surface are exposed to the airflow.

9. Device according to claim 1 or 7, characterized in that the heater body (H) is a solid cylindrical body, arranged in such a way that its outer surface is exposed to the airflow.

10. Device according to claim 8 or 9, characterized in that the outer surface of the heater body (H) has a plurality of radially-arranged longitudinal fins (9).

11. Device according to claim 1, characterized in that the device further comprises at least one electric cooler (10).

12. Device according to anyone of the previous claims, characterized in that the electric motor (M) for driving the fan, the electric heater (H) and/or the electric cooler (10) are connected to the battery of the electric circuit of the motor vehicle, to the on board electric generator and to an electronic control unit programmed to enable the power supply of the heater and/or the Peltier device has a function of the charge state of the battery and/or the operating condition of the electric generator.

13. Device according to anyone of the previous claims, characterized in that said electric heater (H) has multi-coils and it is arranged to be powered either by low voltage batteries of the vehicle, or
directly by the electric mains supply.

14. An electrically powered motor vehicle comprising one or more devices according to one or more of the previous claims, distributed over one or several compartments-areas of the electric vehicle, for a pre-heating conditioning or the maintenance of a predetermined temperature at said compartments-areas, said devices being arranged to be powered from the electric mains supply and to be controlled by a remote control unit.
INTERNATIONAL SEARCH REPORT

International application No

PCT/IB 2015/054613

A. CLASSIFICATION OF SUBJECT MATTER

INV. B60H1/00 B60H1/22 F04D25/06

ADD.

According to International Patent Classification (IPC), or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B60H F04D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>DE 24,02,942 Al (WI KSTROEM AB BERTH) 25 July 1974 (1974-07-25) page 4, paragraphs 2,3; figures 3-5</td>
<td>1-14</td>
</tr>
<tr>
<td>Y</td>
<td>CA 2 352 673 AI (PALMA FLORECIO NETO [CA]) 5 January 2003 (2003-01-05) page 5, line 1 - page 6, line 17; figures 1-8</td>
<td>1-14</td>
</tr>
<tr>
<td>Y</td>
<td>EP 1 885 047 Al (FIAT RICERCHE [IT]) 6 February 2008 (2008-02-06) paragraph [0029]; figure 6</td>
<td>1-14</td>
</tr>
</tbody>
</table>

See patent family annex.

Date of the actual completion of the international search

23 September 2015

Date of mailing of the international search report

05/10/2015

Name and mailing address of the ISA/European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk

Tel: (+31-70) 340.0404, Fax: (+31-70) 340.3016

Authorized officer

Gumbel, Andreas

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 4 904 844 A (CHAMBERLIN DALE L [US]) 27 February 1990 (1990-02-27) columns 2,3; figures 1,2</td>
<td>13,14</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>JP S56154307 A</td>
<td>28-11-1981</td>
<td>NONE</td>
</tr>
<tr>
<td>CA 2352673 A1</td>
<td>05-01-2003</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101119049 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1885047 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009001731 A1</td>
</tr>
<tr>
<td>US 4904844 A</td>
<td>27-02-1990</td>
<td>NONE</td>
</tr>
</tbody>
</table>