Office de la Propriete Canadian CA 2414479 A1 2004/06/16

Intellectuelle Intellectual Property
du Canada Office (21) 2 41 4 479
v organisime An agency of 12 DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada CANADIAN PATENT APPLICATION
(13) A1
(22) Date de depot/Filing Date: 2002/12/16 (51) CL.Int."/Int.CI." GOBF 11/36, GO6F 3/14, GOBF 17/00

(41) Mise a la disp. pub./Open to Public Insp.: 2004/06/16 (71) Demandeur/Applicant:
IBM CANADA LIMITED-IBM CANADA LIMITEE, CA

(72) Inventeurs/Inventors:
LAUZON, DAVID M., CA;
LAU, CHRISTINA P., CA

(74) Agent: SAUNDERS, RAYMOND H.

(54) Titre : DEBOGUEUR VISUEL POUR FEUILLES DE STYLE
54) Title: A VISUAL DEBUGGER FOR STYLESHEETS

| VISUAL XSL DEBUGGER |
| 102
. |
XSL XALAN «— INSTRUCTIONS 1 ASL gﬁgﬁ\l(éGER
STYLESHEET PROCESSOR | COMPONENT
1 S 108 r—EVENTS—1|—> 2
XML T~ ~ | A
DOCUMENT ~ - |
106 T — — T~ —_ |
S -~ .y
Y T~ —~ + XSL DEBUGGER
TRANSFORMED OUTPUT T lNT‘éSREiCE
DOCUMENT 110 |
| COMPONENT
‘ 114
|
L _ _ _
(57) Abrége/Abstract:

Avisual Debugger for stylesheets assists a user of stylesheets debug the stylesheets by: allowing the user to set breakpoints on
the stylesheet; running to, and stopping at, the breakpoints; single stepping through each template rule as the rule Is fired (both
forward and backward); evaluating the template rule on the fly; showing the relationship between each template rule and the
source document that provides the data; supporting stylesheets that call external programs written In Java or JavaScript;
supporting stylesheets that include or import other stylesheets; supporting XML documents that use the "7?xml-stylesheet"
processing Instruction to include stylesheets; supporting multiple debug sessions; and allowing the user to edit the stylesheet or
source document and then allowing the debugger to be relaunched.

T e R
a0 -:::; - ~'
. H
Ao Ay ."'.

I*I] . Prven, B N o
C an ad a http:/opic.ge.ca + Ottawa-Hull K1A 0C9 - atip.://eipo.ge.ca OPIC 48 @igmr -~

| SRR RO S 2 _,\‘.s
OPIC - CIPO 191 5

10

CA 02414479 2002-12-16

ABSTRACT OF THE DISCLOSURE

A visual Debugger for stylesheets assists a user of stylesheets debug the
stylesheets by: allowing the user to set breakpoints on the stylesheet; running to, and
stopping at, the breakpoints: single stepping through each template rule as the rule is fired
(both forward and backward); evaluating the template rule on the fly; showing the
relationship between each template rule and the source document that provides the data,;
supporting stylesheets that call external programs written in Java or JavaScript; supporting
stylesheets that include or import other stylesheets; supporting XML documents that use
the "?xml-stylesheet" processing instruction to include stylesheets; supporting multiple
debug sessions; and allowing the user to edit the stylesheet or source document and then
allowing the debugger to be relaunched.

CA9-2002-0019

- Sava a0 = ItpratviaicRi e WG PR PNz v vy

10

| 5

D
(Y

CA 02414479 2002-12-16

A VISUAL DEBUGGER FOR STYLESHEETS

FIELD OF THE INVENTION

The present invention relates to working with stylesheets and, more specifically, to
a visual debugger for stylesheets.

BACKGROUND OF THE INVENTION

The World Wide Web Consortium (W3C) describes the eXtensible Stylesheet
Language (XSL) as a language for expressing stylesheets. Where a "stylesheet”, a term
extended from print publishing to online media, is a definition of the appearance of a
document. XSL consists of three parts. The first part is XSL Transformations (XSLT), a
language for transforming eXtensible Markup Language (XML) documents. The second
part is the XML Path Language (XPath), an expression language used by XSLT to access,
or to refer to, parts of an XML document. The third partis XSL Formatting Objects, an XML
vocabulary for specifying formatting semantics.

An XSL stylesheet consists of a set of elements called templates. Each template Is
surrounded by <xsl: template> tags and contains rules to apply when a specified pattern
IS matched.

Developing XSL stylesheets can be very complicated and error-prone due to the
declarative and recursive nature of the XSL language. Often it is difficult to determine, after
the application of an XSL stylesheet to an XML document, which template rule has fired
(i.e., which template rule has been used) and which pattern has been matched.

Clearly there is a need for an improved debugger to help the developer of
stylesheets to debug stylesheets under development.

SUMMARY OF THE INVENTION

A visual Debugger for stylesheets is provided to assist a user of stylesheets to

CA9-2002-0019 1

A

10

IS

CA 02414479 2002-12-16

debug the stylesheets. The debugger provides a visual environment (display) from which
a source document and a stylesheet to be applied to the source document may be
selected. During the application of the selected stylesheet to the source document, the

debugger receives events from the stylesheet processor and updates the visual
environment based on the received event.

The visual debugger may have many features including: allowing the user to set
breakpoints on the stylesheet; running to, and stopping at, the breakpoints; single stepping
through each template rule as the rule is fired (both forward and backward); evaluating the
template rule on the fly; showing the relationship between each template rule and the
source document that provides the data; supporting stylesheets that call external programs
written in Java or JavaScript; supporting stylesheets that include or import other
stylesheets; supporting XML documents that use the "?xml-stylesheet” processing
instruction to include stylesheets; supporting multiple debug sessions; and allowing the
user to edit the stylesheet or source document and then allowing the debugger to be
relaunched.

In accordance with an aspect of the present invention there is provided a computer
readable medium containing computer-executable instructions which, when performed by
a processor in a computer system, cause the computer system to provide a display of a
source document and a stylesheet to be applied to the source document, instruct a
stylesheet processor to launch application of the stylesheet to the source document,
receive a plurality of events from the stylesheet processor, where the plurality of events
relate to the application, by the stylesheet processor, of the stylesheet to the source
document and update the display based on the plurality of events.

In accordance with another aspect of the present invention there is provided a
stylesheet debugging system. The stylesheet debugging system includes a display monitor
adapted to provide a display of a source document and a stylesheet to be applied to the
source document. The stylesheet debugging system also includes a processor adapted to
instruct a stylesheet processor to launch application of the stylesheet to the source
document, receive a plurality of events from the stylesheet processor, where the plurality
of events relate to the application of the stylesheet to the source document and update the
display based on the plurality of events.

CA9-2002-0019 2

10

15

CA 02414479 2002-12-16

In accordance with another a further aspect of the present invention there Is
provided a method of providing support for stylesheet debugging. The method includes
providing a user interface including a display, the user interface adapted to receive an
indication of a source document and a stylesheet to be applied to the source document,
instructing a stylesheet processor to launch application of the stylesheet to the source
document, receiving a plurality of events from the stylesheet processor, where the plurality
of events relate to the application of the stylesheet to the source document and updating
the display based on the plurality of events. Additionally, there is provided a computer
readable medium for allowing a general purpose computer to perform this method.

Other aspects and features of the present invention will become apparent to those
of ordinary skill in the art upon review of the following description of specific embodiments
of the invention in conjunction with the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS
In the figures which illustrate example embodiments of this invention:

FIG. 1 schematically illustrates a visual debugger for stylesheets in combination with
input to, and output from, a stylesheet processor according to an embodiment of the

present invention;

FIG. 2 illustrates an stylesheet debugging system, capable of running a visual
debugger for stylesheets according to methods exemplary of the present invention;

FIG. 3 illustrates a screen shot of an exemplary realization of the stylesheet
debugger user interface component according to an embodiment of the present invention;

FIG. 4 illustrates an exemplary source xml document;

FIG. 5illustrates an exemplary xsl stylesheet for application to the exemplary source
xm| document of FIG. 4,

CA9-2002-0019 3

10

35

20)

it
N

CA 02414479 2002-12-16

FIG. 6 illustrates an exemplary XSL editor window according to an embodiment of
the present invention; and

FIG. 7 illustrates an exemplary Template Call Stack view according to an
embodiment of the present invention.

DETAILED DESCRIPTION

The developer of an XSL stylesheet (i.e., the potential user of a visual debugger for
stylesheets) has, generally, initially generated an XSL stylesheet, perhaps using an editor
optimized for editing XSL stylesheets. The developer then wishes to test (debug) the
generated XSL stylesheet. Such testing involves applying the generated XSL stylesheet
to a source XML document. The application of the generated XSL stylesheet to the source
XML document is said to "transform” the source XML document. This transformation
results in the creation of a new document, where the new document may be formatted, for
example, in the Hyper-Text Markup Language (HTML), XML or text. The new HTML, XML
or text document may then be opened in a typical Web browser, such as Microsoft®
Internet Explorer or Netscape® Navigator.

To apply an XSL stylesheet to an XML document, a "processor” application is
required. One processor known to the applicant is the "Xalan" processor. The Xalan
processoris an XSLT processor that transforms XML documents into documents formatted
as HTML, text or another XML file type. The Xalan processor implements the W3C
Recommendations for XSL Transformations (XSLT) and the XML Path Language (XPath)
(For more information on the Xalan processor, see http://xml.apache.org/xalan-j/).

Aspects of the visual debugger for stylesheets of the present invention enable a
user to visually step through an XSL transformation script (i.e., an XSLT stylesheet). While
the user steps through the script, the user may highlight transformation rules as the rules
are fired. Thus, the user may be shown the relationship between each rule and the source
document.

In overview, the challenges inherent in providing a visual debugger for stylesheets
are met by two new components, namely a "user interface" component and an "engine”

CA9-2002-0019 4

10

1S

CA 02414479 2002-12-16

component. A visual XSL Debugger 102 is logically illustrated in FIG. 1. As shown, the
visual XSL Debugger 102 includes an XSL Debugger user interface component 114 and
an XSL Debugger engine component 112. In normal operation, under control of XSL
Debugger user interface component 114, a Xalan processor 108 receives an XML
document 106 and applies an XSL stylesheet 104 to the XML document 106 to result in
a transformed outputdocument 110. The visual XSL Debugger 102 interacts with the Xalan
processor 108 in that the XSL Debugger engine component 112 receives notification of
events from the Xalan processor 108 as the XSL stylesheet 104 is applied to the XML
document 106. These events are collected and stored. The stored events are then
interpreted by the XSL Debugger engine component 112. Later, responsive to commands
received from a user interacting with the XSL Debugger user interface component 114, the
XSL Debugger engine component 112 performs a simulation of the application of the XSL
stylesheet 104 to the XML document 106, where the simulation is based on the stored and
interpreted events. During the simulation, the display presented by the XSL Debugger user
interface component 114 is updated appropriately.

The XSL Debugger engine component 112 also sends instructions to the Xalan
processor 108, for instance, indications of the source XML document 106 and the XSL
stylesheet 104 to apply to the source XML document 106. The identities of the source XML
document 106 and the XSL stylesheet 104 to apply to the source XML document 106, are
sent to the Xalan processor 108 after having been received by the XSL Debugger engine
component 112 from the XSL Debugger user interface component 114. Additionally, the
transformed output document 110 may be presented by the XSL Debugger user interface
component 114,

An XSL Debugging system 200, capable of running the visual XSL Debugger 102
according to methods exemplary of the present invention, is illustrated in FIG. 2. The XSL
Debugging system 200 includes a display monitor 202 and a central processing unit 204.
The central processing unit 204 may include hardware to network with other computers,
long term and short term memory and a processor. As is typical, connected to the central
processing unit 204 may be multiple input peripherals such as a keyboard 208 and a
mouse 210. The XSL Debugging system 200 may be loaded with a visual debugger for
stylesheets for executing methods exemplary of this invention from a software medium 206
which could be a disk, a tape, a chip or a random access memory containing a file

CA9-2002-0019 5

10

15

30

CA 02414479 2002-12-16

downloaded from a remote source.

An exemplary realization of the XSL Debugger user interface component 114 is
llustrated in FIG. 3 as an XSL Debugger perspective 300, which may be part of a larger
XSL stylesheet development application. The XSL Debugger perspective 300 is made up
of a set of "views". Advantageously, within these views, the source XSL stylesheet 104 and
the source XML document 106 of interest may be displayed side by side, the source XSL
stylesheet 104 in an XSL editor 306 and the source XML document 106 of interest in an
XML editor 308. The user may select, e.g., by a double click on a mouse within the XSL
editor 306, a location in the source XSL stylesheet 104 at which to set a breakpoint.

The set of views facilitate the debugging process. A"Sessions” View 302 shows the
debug sessions that are currently active, so that the user may switch among multiple
debug sessions. The Sessions View 302 may also be used to open the new document,
formatted in HTML, XML or text, resulting from applying an XSL stylesheet 104 under test
to a source XML document 106. At the bottom left of the Sessions View 302 is a tab 322
that allows the user to replace the Sessions View 302 with a "Navigator” View. The
Navigator View provides a hierarchical view of the resources in the Workbench (a local site
where projects with their related documents reside). Beside the tab 322 for the switch to
the Navigator View is a tab 324 to allow a switch back to the Sessions View 302. The
Sessions view 302 also includes a number of buttons in the upper left, namely a Trace
forward button 312, a Trace backward button 314, a Restart Trace button 316, Run to
breakpoint button 318, a Globe button 320 and the conventional Close Window button.

A "Current XSL Element” View 304 shows the template currently under evaluation.
As shown in FIG. 3, the Current XSL Element View 304 has column headings for Property,
XSL Expression and Actual Value so that the evaluated values of the properties of the
template may be displayed. These evaluated properties include XPath expressions such
as

substring-after (/Contact/PostalAddress/DeliverTo/text (), ' ')

or attribute values such as "@name". Along the bottom of the Current XSL Element View
304 are tabs that allow a switch to further views. The further views include a "Breakpoints”

CA9-2002-0019 6

[0

[5

CA 02414479 2002-12-16

View, a "Template Call Stacks" View and a "Tasks" View. The Breakpoints View is
designed to show a list of breakpoints that have been set. The Template Call Stacks View
Is designed to show the template call stack as a template is entered and exited. Once
breakpoints have been set, say, as above, by double clicking within the source XSL, the
user can remove breakpoints from the Breakpoints View. The Tasks View is designed to
show a list of any errors that occurred during the transformation.

The XSL Debugger engine component 112 receives and stores the events that are
fired from the Xalan processor. For example, consider the following XSL tempiate:

<xsl: template match="person">

<xsl: param name="level"/> (*)
</xsl:template>

Where a given input XML document has a node that matches "person’, itis said that
a Xalan processor using the XSL stylesheet that includes the above template finds the
match and, responsive to finding the match, "enters" the above template. When the above
template is entered, the Xalan processor fires an event. The XSL Debugger engine
component 112 receives the event, retrieves the template type from the event and
evaluates the template within the context of the transformation. For example, the XSL
instruction marked with (*) above is an ElemParam object. Evaluating this ElemParam
object will return the value for the parameter "level" that is being passed. The returned
value may be displayed in the Current XSL Element View 304 of the XSL Debugger user

interface component 114.

As will be apparent to a person skilled in the art, there are about a dozen different
kinds of XSL instructions (e.g., "for-each”, "value-of", "copy-of", etc.). The XSL Debugger
engine component 112 provides a framework to handle the evaluation of these XSL
instructions and to return the appropriate results for rendering in the XSL Debugger user
interface component 114.

To support debugging of an XSL Transformation that invokes external programs
written in languages such as Java or JavaScript, a mechanism may be provided wherein

CA9-2002-0019 /

10

15

30

CA 02414479 2002-12-16

a separate virtual machine may be created. Using the separate virtual machine, class
paths for the external programs may be set. The Xalan processor may be invoked in the
virtual machine environment and the transformation result may be returned to the XSL
Debugger user interface component 114 for displaying to the user.

In operation, the user may use the information in the views of the XSL Debugger
user interface component 114 to debug XML documents and XSL stylesheets. A single
application of a given XSL stylesheet to an XML document of interest may yield information
prompting the user to make some changes in either the XML document or the XSL
stylesheet or both. As a session may be defined by the XML document and the XSL
stylesheet or stylesheets applied to the XML document, such changes may be broadly
termed "changes in a session". After making any changes in a session, the user may right-
click the session in the Sessions view 302 and select "Relaunch”. This action will apply the
XSL stylesheet to the XML document again and allow the user to assess the impact of the
changes.

Two approaches are contemplated for initiating a session using the present XSL
Debugger. In the first approach, the user selects an XSL stylesheet and an XML document
of interest, acts to bring up a menu of options and selects an "Apply XSL" menu item. In
the second approach, the user may use a "XSL Debugging and Transformation wizard".
If the user is simply interested in quickly applying an XSL stylesheet to an XML document
to transform the XML document, the user should use the first approach. If, however, the
user is interested in providing specific information about the transformation (for example,
the location to which to write the transformed output document 110), the second approach,
using the XSL Debugging and Transformation wizard, may be preferred.

Additionally, if the user is interested in debugging any XSL stylesheets that call
external Java programs, again the XSL Debugging and Transformation wizard may be
preferred. In the wizard, a "Remote XSL Application" option may be selected so that the
user may specify a class path for the external Java program.

As stated hereinbefore, a user of the visual XSL Debugger may apply an XSL
stylesheet to an XML document and create a transformed output document, which may be
formatted in XML, HTML or text. Notably, an XSL stylesheet should only be applied to an

CA9-2002-0019 8

10

15

CA 02414479 2002-12-16

XML document and in an attempt to create an HTML document if the XSL stylesheet to be
applied is designed to provide HTML output. Otherwise, an empty or incorrect HTML
document may be created.

If the user selects only an XSL stylesheet or an XML document before selecting
"Apply XSL" from the menu of options, the visual XSL Debugger opens a wizard, prompting
the user to retrieve an XML document or an XSL stylesheet, whichever is not selecteaq,
from the Workbench or from a remote site using, for instance, the Hyper-Text Transfer
Protocol (HTTP). If the XML document or the XSL stylesheet is retrieved from a remote
site, the Uniform Resource Identifier (URI) of the XML document or the XSL stylesheet
must be specified.

If the XML document is retrieved from a remote site, only an XSL transformation will
be run on the retrieved XML document. As the retrieved XML document is not available in
the Workbench, the debugger cannot be opened on the retrieved XML document. The
retrieved XML document can only be transformed and the results displayed.

To apply an XSL stylesheet to an XML document and create a transformed output
document formatted in XML, the user of the visual XSL Debugger performs the following
steps. The steps are performed using an "XML perspective" related to the XSL Debugger
perspective 300 of FIG. 3. The purpose of the availability of different perspectives Is to
adapt the environment of the visual XSL Debugger to the task at hand. The XML
perspective and the XSL Debugger perspective 300 of FIG. 3 are similar in many ways (the
toolbar icons for fast access to XML-related wizards are identical). The perspectives differ
however in the layout of the views and the views that are visible.

If not already in the XML perspective, the user switches to the XML perspective. In
the Navigator view, the user selects an XML document and an XSL stylesheet. By right
clicking on one of the selected documents a pop-up menu of options is provided. In the
pop-up menu, “Apply XSL > As XML" is selected. Responsive to the selection, the XSL
Debugger perspective 300 is opened (see FIG. 3). Using the Sessions view 302, the user
may step through the application of the selected XSL stylesheet to the selected XML
document to perform a transformation resulting in a transformed output document
formatted in XML, ("Apply XSL > As XML" was selected). To view the transformed output

CA9-2002-0019 J

10

15

CA 02414479 2002-12-16

document, the user clicks the Globe button 320 in the Sessions view 302.

To apply an XSL stylesheet to an XML document and create a transformed output
document formatted in HTML, the above steps are followed, with exception that "Apply
XSL > As HTML" is selected from the menu rather than "Apply XSL > As XML". Similarly,
the above steps are followed to apply an XSL stylesheet to an XML document and create
a transformed output document formatted as text, with exception that "Apply XSL > As
Text" Is selected from the menu rather than "Apply XSL > As XML".

The transformed output document formatted as text, HTML or XML is automatically
saved to the location from which the XSL stylesheet was selected. In a preferred
embodiment, the transformed output document will be named
"XMLfilename XSLfilename transform” with a suffix dependent on the format of output
selected (i.e., ".txt", ".html!" or ".xml").

If the source XSL stylesheet or the source XML document are changed after the
creation of the transformed output document, and the changes are required to be reflected
in the transformed output document, the session for the selected XSL stylesheet and XML
source documents in the Sessions view 302 may be right-clicked to bring up a pop-up
menu in which may be selected "Relaunch"”. As a result of the selection of Relaunch, the
source XSL stylesheet and source XML document are reloaded, the transformation Is
stepped through and the resultant transformed output document is updated as necessary.

As an alternative to the above document-selection approach, a transformation and
debugging session may be initiated using an XSL Debugging and Transformation wizard.
As above, the method begins with a switch to the XML perspective. The user then uses the
XML perspective menu to select File > New > Other > XML > XSL Debug and Transform.
The user then selects the XSL stylesheet to be debugged. If the XSL stylesheet is not In
the Workbench, the XSL stylesheet may be imported through the use of an "Import Files”
menu item. The XML document to be transformed is then selected by the user. If the XML
document is not in the Workbench, the XML document may be imported through the use
of the "Import Files"” menu item. The user then selects a format for the transformed output
document to be XML, HTML or text.

CA9-2002-0019 10

10

15

CA 02414479 2002-12-16

If the output format is selected to be XML or HTML, the user may be Invited to
provide the XML or HTML version number. The user may also be offered an opportunity
to select a character encoding set for the output document. When a character encoding
set has been selected, the proper name of the character set will be shown in a read-only
Internet Assigned Numbers Authority (IANA) field in the transformed output document. An
opportunity may then be given to the user to specify the folder and name of the
transformed output document.

The user may select "Remote XSL Application” if the XSL stylesheets that are to be
debugged call external Java programs. If "Remote XSL Application” is selected, the user
may be prompted to provide a class path to the external Java program. The user may then
add Java Archive files and class folders as necessary to the class path and close the
wizard by clicking "Finish™.

If the XSL stylesheets that are to be debugged do not call external Java programs,
the user selects "XSL Application" and closes the wizard by clicking "Finish™.

Responsive to the closing of the wizard, the XSL Debugger perspective 300 opens.
Using the Sessions view 302, the user may step through the application of the selected
XSL stylesheet to the selected XML document to perform a transformation resulting in a
transformed output document. To view the transformed output document, the user clicks
the Globe button 320 in the Sessions view 302.

Stepping through files

The Sessions view 302 displays any sessions that have been run, i.e., any XSL
stylesheets have been applied to XML documents. Using the Sessions view 302, the user
may visually step through an XSL transformation script, highlighting the transformation
rules as the rules are fired. To step forward, the user may click the Trace forward button
312. To step backwards, the user may click the Trace backward button 314. To reset the
document, the user may click the Restart Trace button 316. To run to a breakpoint and
stop there, the user may click the Run to breakpoint button 318. To open the transformed
output document (that is, the document formatted in XML, HTML or text resulting from the
transformation) in a Web browser, the user clicks the Globe button 320.

CA9-2002-0019 11

10

[S

CA 02414479 2002-12-16

Working in the Template Call Stack view

The Template Call Stack view is designed to show the templates that are currently
in the call stack, with the first listed item being the first template called and the last listed
item being the most recent (or current) template. When a template is called, the called
template is added to the template call stack. VWhen the execution of a template is complete,
the competed template is removed from the template call stack.

The Template Call Stack view is divided into four columns titled "Name Template”,
"Match Template", "Priority" and "Mode".

A name template is a template that may be explicitly called in the XSL stylesheet.
Any time a name template (that is, <xsl: template: name>) is called, the pattern matched
by the name template will show up in the Name Template column.

A match template is a template that searches for an XPath pattern. Any time a
match template (that is, <xsl: template: match>) is called, the pattern that the match
template must match is listed the Match Template column.

If there is more than one template that could be instantiated for a node, and the
XSLT rules give each template the same priority, a priority attribute can be used to force
one template to be called ahead of the others. If a given template has the priority attribute
set, the value of the priority attribute will appear in the Prionty column.

When a template is created, a mode attribute may be specified, where the mode
attribute is given a name to describe the mode. Modes allow an element to be processed
multiple times, each time producing a different result. If a given template has a mode
attribute set, the value of the mode attribute will appear in the Mode column.

Working in the Current XSL Element view

The Current XSL Element view is divided into three columns titled Property, XSL
Expression and Actual Value.

The Property column lists any of the attributes associated with the current XSL

CA9-2002-0019 12

10

| 5

CA 02414479 2002-12-16

element.

The XSL Expression column lists the values of the attributes associated with the
current XSL element. It also contains the name of the current XSL element.

The Actual Value column contains the actual value of the XML element or attribute,
.e., the value the XML element or attribute receives by being applied to an XML document.
If a given value is very long or required to be seen in a separate viewer, the cell containing
the given value may be clicked to result in the display of an arrow button, the arrow button
may then be clicked to open a dialog that displays the entirety of the given value.

Working in the Breakpoints view

The Breakpoints view is designed to show the current breakpoints set in the input
XSL stylesheets. Breakpoints, in the exemplary embodiment, may not be set in the
Breakpoints view.

To set a breakpoint for an XSL stylesheet, the stylesheet may be opened in the XSL
editor 306, the cursor may be placed in the line where the breakpoint is required, and Ada
> Breakpoint may be selected from the pop-up menu. The input XSL stylesheet may
automatically have been opened in the XSL editor 306 when the XSL transformation was
run.

A breakpoint may be removed from a document in the Breakpoints view by right
clicking the breakpoint and selecting Remove in the resultant pop-up menu.

Defining XSL stylesheet preferences

The <xsl: stylesheet> element is the root element of nearly all XSL stylesheets. The
<xsl: transform> element may also be used. <xsl: transform> has the exact same meaning
and syntax as <xsl: stylesheet>.

To define XSL transformation preferences, the user first switches to the XML
perspective. The user then selects Window > Preferences > XML > XSL. Then the user
selects the "Use <xsl: stylesheet>" radio button if the user prefers to use <xsl: stylesheet>

CA9-2002-0019 13

hn

10

15

23

CA 02414479 2002-12-16

as the root element of the stylesheet. Alternatively, the user may select the "Use <xsl.
transform>" radio button if the user prefers to use <xsl. transform> as root element of the
stylesheet. The user may then click "Apply" and then "OK" to save the changes. If the
preferred root element is changed, the change will not affect any existing XSL stylesheets.
The change will only affect XSL stylesheets created after the change is confirmed with
clicks on "Apply" and "OK".

Defining XSL debugging preferences

To define XSL debugging preferences, the user first switches to the XML
perspective. The user then selects Window > Preferences > XML > XSL Debugging.

The "Show All Debugging Files In A Tile Editor" check box may be cleared if it is
preferred not to have the source XSL stylesheet and the source XML document "tiled" next
to each other. If this check box is selected, the source documents will be displayed
together in a single "tile" editor in the XSL Debugger perspective 300. If the check box Is
cleared, the source documents will be displayed separately in an XSL editor and an XML
editor.

The "Run Transformation And Open A Debugging Session” check box should be
cleared if it is preferred that a debugging session is automatically opened any time an XSL
transformation is run. After a transformation is run, only the transformed output document
will be opened in a Web browser.

The "XSL Remote Application" radio button should be selected if debugging is to
be performed on any XSL stylesheets that call external Java programs. This will become
the default value in a "Select XSL Launcher" page within the XSL Debugging and
Transformation wizard and the user will be prompted to specify a class path for the external

Java program.

If debugging is to be performed on XSL stylesheets that do not call external Java
programs, "XSL Application" should be selected. A Context path may be specified for
resolving URIs in <xsl: import>, <xsl: include> and document() elements. The Context path
value will be prepended to the value in the elements so the Context path can be resolved

CA9-2002-0019 14

10

15

CA 02414479 2002-12-16

both In the Workbench and the run-time environment.

As described hereinbefore, in the visual XSL Debugger preferences page (Select
Window > Preferences > XML > XSL Debugging) a Context path may be specified for
resolving URIs in <xsl: import>, <xsl. include> and document() elements.

If the XSL stylesheet under test uses the <xsl: import>, <xsi: include> or document()
function to reference other stylesheets or documents, the reference to the other
stylesheets or documents should be formatted with an awareness of the default URI
resolution mechanism. The default URI resolution mechanism may, for instance, be based
on a relative path. In which case, the user of the visual XSL Debugger should format a
pointer such that the pointer indicates a file location of the referenced stylesheet or
document relative to the file location of the XSL stylesheet containing the reference.

For example, consider a directory structure wherein XSL stylesheets named
"First.xsl" and "Second.xsl" are stored in a directory called "Project1” and an XSL
stylesheet named "Third.xsl" is stored in a subdirectory of Project1 called "Common®. If it
IS required that First.xsl references Second.xsl and Third.xsl, import statements such as
the following should be used: <xsl: import href="Second.xsl"/>; <xsl: import
href="Common/Third.xsl"/>. The default URI resolution mechanism will resolve the
Second.xsl and Third.xsl file relative to the First.xsl file by appending the href attribute
value (for example, Second.xsl) to the file location of First.xsl.

Sometimes, this resolution mechanism is not enough. For example, it may be
required to set up stylesheets so the stylesheets will work in a given run-time environment
in addition to working in the Workbench. Where an import statement such as <xsl: import
href="/MyWebProject/xsl/MyFile.xslI"/> (note the leading "/ in the href attribute) is used, the
default URI resolution mechanism may not work properly. The default URI resolution
mechanism is designed to resolve this URI relative to the current drive. That is, the default
URI resolution mechanism will resolve the import statement to something like
C:/MyWebProject/xsl/MyFile.xsl, which may not be the actual location of MyFile.xsl.

The ability to define a Context path enables work with such a stylesheet Iin the
Workbench without having to modify the stylesheet. In the Context path field, the user may

CA9-2002-0019 15

10

L5

20

25

30

CA 02414479 2002-12-16

specify a directory path to be prepended to the href attribute value during URI resolution.
For example, assuming the Ilocation for MyFile.xsl|l 1Is
"C:/eclipse/workspace/MyWebProject/xsl/MyFile.xsl", the Context path may be defined as
"'C:/eclipse/workspace”.

As discussed in conjunction with the description of the Sessions View 302
hereinbefore, the visual debugger for stylesheets of the present invention has the abiiity
to support mulitiple debugging sessions. An extension of this ability allows the debugging
of stylesheets that include or import other stylesheets. Any "supplementary” stylesheets
included by, or imported into, a given "main” stylesheet that has been opened in the visual
XSL Debugger may be opened in supplementary debugging sessions. The current context
of each of the supplementary stylesheets may be maintained by the visual XSL Debugger
while the main stylesheet is applied to a given XML document. As the supplementary
debugging sessions behave as any other debugging session, the user may step through
the supplementary stylesheets as described hereinbefore.

In addition to support for stylesheets including other stylesheets, the visual XSL
Debugger may provide support for XML documents that include stylesheets. In particular,
the "?xml-stylesheet" processing instruction may be used in a given XML document to
include a stylesheet. Upon encountering such an instruction, the visual XSL Debugger
processes the instruction, locates the stylesheet and continues as usual.

Consider an example wherein a user is creating a stylesheet to result in a display
of data found in an xml file 400 called familyTree.xml (see FIG. 4) in HTML format.

An initial attempt is illustrated in FIG. 5 as an xsl file 500 called familyTree.xsl.
However, when familyTree.xsl| 500 is run against familyTree.xml 400, the resultant HTML
page is empty. The problem may be that the person template (the code that starts with
<xsl:template match="person">) is not called or fired. Alternatively, the problem may lie in
the recursion within the person template itself (note that the person template calls itself
within the body of the template). Further, the problem could be in the XPath expression
that is used to display a person’s name. In the instruction <xsl:value-of select="name"/>,
the portion within quotes is the XPath expression. The visual Debugger for stylesheets
disclosed herein may be used by the user to assist in debugging family Tree.xs! 500.

CA9-2002-0019 16

N,

13

CA 02414479 2002-12-16

In particular, the user may launch the visual Debugger within an Application
Developer Workbench environment by right clicking an indication of the familyTree.xmi
document in the Navigator view and selecting "Apply XSL > As HTML" from the pop-up
menu. Note that the user does not have to explicitly select the stylesheet because
familyTree.xml uses the "?xml-stylesheet” processing instruction to include family Tree.xsl.
The menu selection leads to family Tree. xsl 500 being opened in an XSL editor window 600
(FIG. 6) and familyTree.xml 400 being opened in an XML editor window.

Once the visual Debugger has been launched with familyTree.xsl 500 and
familyTree.xml 400, the Xalan processor 108 (FIG. 1) is instructed by the XSL Debugger
engine component 112 to apply family Tree.xsl 500 to familyTree.xml 400. While applying
familyTree.xsl| 500 to familyTree.xml 400, the Xalan processor 108 fires multiple events.
These events are collected and interpreted by the XSL Debugger engine component 112
so the appilication of familyTree.xsl 500 to familyTree.xml 400 may be simulated for the
benefit of the user.

To identify the problem, the user may set a breakpoint on the <xsl.value-of
select="name"/> instruction within the person template. The user accomplishes this
breakpoint setting by double clicking in the margin of the XSL editor window 600 directly
in line with the corresponding instruction. The user can then click the Run to breakpoint
button 318 in the Sessions view 302 (FIG. 3). The simulation of the application of
familyTree.xsl 500 to familyTree.xml 400 is performed by the XSL Debugger engine
component 112 and stopped at the specified breakpoint. Thus, it is confirmed that the
person template does get called.

To eliminate recursion as the problem, the user may open the Template Call Stack
view by selecting the appropriate tab in the upper right hand view (shown as Current XSL
Element View 304 in FIG. 3). The user may then continue to click the Run to breakpoint
button to allow the XSL Debugger engine component 112 to continue performing the
simulation. By carefully monitoring the Template Call Stack view while the simulation is
performed, the user may verify that the call stack adds and removes the person template
appropriately. An exemplary Template Call Stack view 700 is illustrated in FIG. 7. Once
recursion has been removed as the potential problem in this way, an incorrect XPath

CA9-2002-0019 17

(2

1 ()

CA 02414479 2002-12-16

expression iIs left as the likely problem area.

The user may test or modify the XPath expression by editing familyTree.xs| 500.
The problem may, for instance, be that the expression "name" is attempting to access an
attribute and not an element in the xml document, so there is a missing "@". After editing
the stylesheet, the changes may be saved by the user by way of a right click inside the xsl
editor and the selection of save from the resulting menu. In the Sessions view, the user
may right click and select Relaunch from the resulting pop-up menu options to update the
transformation with the changes. Responsive to the relaunch, the Xalan processor 108 is
Instructed by the XSL Debugger engine component 112 to apply the edited version of
family Tree.xsl to familyTree.xml 400. As before, while performing the transformation, the
Xalan processor 108 fires events that are collected and interpreted by the XSL Debugger
engine component 112. Additionally, the Xalan processor 108 generates a newly
transformed output document. The user may then click the Globe button 320 in the
Session view to open the newly transformed output document in a Web browser to verify
that the changes indeed solved the problem.

As will be apparent to a person skilled in the art, the XSL Debugger engine
component 112 need not necessarily collect and store the events for use in performing a
simulation of the application of the selected stylesheet to the selected source file. Instead,
if the application programming interface of the stylesheet processor allows, instructions
related to the wishes expressed by the user via the XSL Debugger user interface
component 114 may be directly sent to the stylesheet processor and the display updated
responsive to reception of each event from the stylesheet processor.

Advantageously, such a visual debugger for stylesheets as disclosed herein
provides much needed assistance to those debugging stylesheets that are under

development.

Other modifications will be apparent to those skilled in the art and, therefore, the
invention is defined in the claims.

CA9-2002-0019 18

13

{9
)

CA 02414479 2002-12-16

VWhat Is claimed Is:

1. A computer readable medium containing computer-executable instructions which, when
performed by a processor in a computer system, cause said computer system to:

provide a display of a source document and a stylesheet to be applied to said
source document;

instruct a stylesheet processor to launch application of said stylesheet to said
source document;

receive a plurality of events from said stylesheet processor, where said plurality of
events relate to said application, by said stylesheet processor, of said stylesheet to

said source document; and
update said display based on said plurality of events.

2. The computer readable medium of claim 1 wherein said stylesheet is an eXtensible
Stylesheet Language (XSL) stylesheet.

3. The computer readable medium of claim 2 wherein said stylesheet processor Is an
eXtensible Stylesheet Language Transformation (XSLT) stylesheet processor.

4. The computer readable medium of claim 3 wherein said XSLT stylesheet processor is
the Xalan processor.

5. The computer readable medium of claim 1 wherein said source document is formatted
in the eXtensible Markup Language.

6. The computer readable medium of claim 1 wherein said computer-executable

instructions further cause said computer system to perform a simulation of application of
said stylesheet to said source document.

CA9-2002-0019 19

10

15

22

CA 02414479 2002-12-16

7. The computer readable medium of claim 6 wherein said display allows a user to set a
breakpoint on said stylesheet and said computer-executable instructions further cause said

computer system to stop said simulation of application of said stylesheet to said source
document.

8. The computer readable medium of claim 6 wherein, where a given one of said plurality
of events indicates a firing of atemplate rule, said computer-executable instructions further
cause said computer system to single step through said simulation as said simulation
relates to said template rule.

9. The computer readable medium of claim 1 wherein, where said event indicates a firing
of a template rule, said computer-executable instructions further cause said computer
system to evaluate said template rule.

10. The computer readable medium of claim 1 wherein said stylesheet calls an external
program and said computer-executable instructions further cause said computer system
to create a separate virtual machine to run said external program.

11. The computer readable medium of claim 10 wherein said external program is written
In Java.

12. The computer readable medium of claim 10 wherein said external program is written
in JavaScript.

13. The computer readable medium of claim 1 wherein said stylesheet is a first stylesheet,
said first stylesheet imports a second stylesheet and said computer-executable instructions
further cause said computer system to open a supplementary debugging session.

14. The computer readable medium of claim 1 wherein said stylesheet is a first stylesheet
and said source document includes an instruction referencing a second stylesheet and
said computer-executable instructions further cause said computer system 1o processes
said instruction and locate said second stylesheet.

CA9-2002-0019 20

10

15

CA 02414479 2002-12-16

15. The computer readable medium of claim 1 wherein said display includes a view
showing currently active debug sessions.

16. The computer readable medium of claim 1 wherein said display includes a user

interface related to an editor for said stylesheet and a user interface related to an editor for
sald source document.

17. The computer readable medium of claim 1 wherein said computer-executable
instructions further cause said computer system to.

receive an indication that changes have been made to said stylesheet resuilting in
an edited stylesheet; anad

instruct said stylesheet processor to apply said edited stylesheet to said source
document.

18. A stylesheet debugging system comprising:

a display monitor adapted to provide a display of a source document and a
stylesheet to be applied to said source document;

a processor adapted to:

instruct a stylesheet processor to launch application of said stylesheet to said
source document;

receive a plurality of events from said stylesheet processor, where said
plurality of events relate to said application of said stylesheet to said source

document: and

update said display based on said plurality of events.

CA9-2002-0019 21

CA 02414479 2002-12-16

19. A method of providing support for stylesheet debugging, said method comprising:

providing a user interface including a display, said user interface adapted to receive
an indication of a source document and a stylesheet to be applied to said source
S document;

instructing a stylesheet processor to launch application of said stylesheet to said
source document;

10 receiving a plurality of events from said stylesheet processor, where said plurality
of events relate to said application of said stylesheet to said source document; and

updating said display based on said plurality of events.

20. A computer readable medium containing computer-executable instructions which, when
15 performed by a processor in a computer system, cause said computer system to:

provide a user interface including a display, said user interface adapted to receive
an indication of a source document and a stylesheet to be applied to said source

document;

20 instruct a stylesheet processor to launch application of said stylesheet to said
source document;

receive a plurality of events from said stylesheet processor, where said plurality of
events relate to said application of said stylesheet to said source document; and

update said display based on said plurality of events.

CA9-2002-0019 22

‘.- .

- —

CA 02414479 2002-12-16

. +
-~ S, . - N . . \ -~ - - . .
- ' . -) " -~
- - “ N LI ! ' r -
- .
- - -~ . 1Y - - . ! ll
- . - . - . 1
- - - - ' Lo o« 'S . '
" e e m e . e —
P mee——— e —— e
" -
Lo . b] - . -
. - -
' "%
- . — - - - -
. N— —— TN e e ey e - — — — —_— Ay [— _— — gy, — — — — -
- - - a O — — - - . v - —— s e ~
- . - —— — R msams, eo . - P S
! e - -
—— — ———
r ")
| \ -
‘o - ' { A — N .
1
.. — L —— a— b -
- SV c— v - N - T NV v Gedd— w—— S -
— - W s wp—— ——
- A — Te — T ———— e — v o o —
- * —— — N A -
. - -— I -
! | 2 T b S § Y ey S ' ~ +- oy — .
i s, ' - | i ka ! ! .‘\.
- A s
— I -u'\-c-L_-.‘-_a.L-\- (U - LL'\M-.L.L..L‘
-
r - ’ | Lg . - [
p— 5 ‘e - -, +
e e Y iy 1".- 1|—-.-.. b T = ' L T S WP e Y =, B
: . » b] - .
A ' | '
. — N~ —FL ’ - N - ¥ LL,L,‘ [P — - ! l : i b ‘L' i I ;
~ —— -, [o— o e - - A N
— - N
- -~
- -
1 ey ——— — -
. } ‘ L - o e . 1 - - L .
) — - — 4 - [- i
\ | s] !) [. N ' 1 . ‘(\' . —_y — '_:‘."‘_‘ >~ L] - -y I_'- 1 v - N },H‘.\T..‘ '.\ = - b ,'!.'"t N
. - -
. P : . . L] \ . L N | P — — 1 -y . ey . " — - !] L | -
- - — -— i ‘“."k‘_.‘_‘_‘ . o - “L-F-* h.* - I_LL | . 13 \ ~ L | ') : 1 l 'A ' " l'- ' -~ r- g
N A Sy ' . - — e e k. -~ S |l - .t -—f_r'-,l [i ’LL‘ " '\,_. ! I 3 X '{ .‘ ' ;
Are—tre - e T . - e A '
o - Y
-
- - . - - o :
1) ﬁ —. .) ?A g el - e -~ 0y - . ™ - . .- " - .y . i ’
l — . ; - - . T + . pumS ey - - - - - r 'l
. . ~ i . - — vt '.-"q_.".-*-v'-.a-\-\'b- L S S, ~ - aa
- v - —— - S’ — ' : -) -
— | SR~ L — pp— - - —_] —— r_ ~— - . . ' ' 1 -
i O e T T T - e -t A - - ¢ . ! 4 : N
- — — N L T 1 '
N ~ -a — ey el
. - -
- -
. - - —_ - L] '
[, . T N . -.t_ —— -_ e L e - — - - . . - -4 e - . - . ' - - .
. " : : _) —— .
[N . I e [“ y . - -y - - =~ -
~ e s _— S L T S - re : = ' - — v - - L . : - - - i - -
T eer t . A B L ST S - T e o,) * . i . ' == !
v ———e —— — St - ———— — b e))
- - - — - A - - - e ~—h, -
N B - b —p— - ~ e w. e .-
< .
- N —— . = —_— -
- -~ -— . . —
~ - - — - — - L —— -
. —
. ® .. . Tt s e - Hd T R < oden 302 '
. . . B R ECP YL EP L L RLA T ST T P .- oo v L4 4 St oo LTS S L AL B

CA 02414479 2002-12-16

L

L Ol

lllllllll -
|
PIT “ B
Pm__,_om,w%_am_\%w o 0L LNIWND0A
vau3 pEEE 1Nd1NO AIWHOASNYYL
4399n93a 1sx | /“, - T~
| ~—
_ —
| T~
| |
ﬁ — |
chi SLINIAZ 801
sznmvn_z@oo | 40SS300Nd
MSEBrES 18X FSNOILONYLSN] NV IVX
|

0l |
4399Nn930 I1SX TVNSIA |

llll[illll

901
LN3IWNO0Aa
TNX

¥OlL

| 13JdHSI1ALS

185X

CA 02414479 2002-12-16

80¢

¢ 9Old

L

A_NA_S

\

)

FAN AN A W A W

)
ﬁ

AN_AN_/

|

L A_N_A__7/

) nand U

OLC

CA 02414479 2002-12-16

<ucszad/>
<uosizad/>
<uosiad/>
</ ApUv¥,=2weu uoszod>
</ uw¥XSTY,=2Weu uosisads>
<wdTTTUd,=sweu uosziads
<UocsIxad/>
</, ,UEPTY,=2wru uosiad>
<G OTIH,,=2WrU UosIads
<uocszad/>
</wBUBTITH, =8WrU uosiyad>
< Ausxsp,=sueu uoszads

<, ,BIPUBS, =2WrU UosSIsd>

<,03130,=2weu uosiad>
w [SX/3%2],=0dA] 193ysaTAls-Tux: >
<lu8-dlLN,=buTpodus ,Q°T,=UOTSIBA TUX:>

<luISX'o8ILATTWRY/ " =3T3y

CA 02414479 2002-12-16

<3199YUseoTA3s: TsSH/>
<@jeTdwsl:TsSX/>
<sojeTdwel-Ardde: TsX/>
</ul + [®94875,=309T35 ,T2A8T,=dweu wered-yjlTm: TSK>
<,Uo0s1ad,=3081ss sojepTdusi-A7dde: Tsx>
<-- T9A®T BY3 DUTIUSWSIOUT ‘ULSIPTTYUD 108TSS ATO9ATSINDBT ~—i>

<ATPD/>
</ PWRBU,=309T8S JO-SNTBA:TSX>

<yUS{TOASTS} P IUSPUT-3X31,=0TA3S ATD>
<-- T9AST SU3l O3 DUTIPIOIOD® JUSIPUT —--;>

</ W [OADT,,=0WEU weIrd:TSX>
<,Uo0sIad, =yolrul o3rTdwWol: TSXK>

<—=— "USIPTIUD TTE
102Tes ATaaTsanoex pue uosiad © I07 UCOTJIRPWIOIUT J0dyng --—;>
<zleTdwsi:Tsx />
<TW3Y/>
<APOQ />
<sojeTdwel-Atdde:Tsx />
</uw.:0.u4=308T8S T80T ,=3weu weied-yilTM: TSX>
<,uoszad,=1087ss sojeTdus1-AT7dde: T7sX>
<-- uosaad ToasT dol 8yl 303795 ——:>5
<ApOoC>
<TWIY>
<u/uw=UOl3RW o3eTdwal:TSX>
<-- 9I9y sutbsqgq butrssesoxd -_;>

. </wTW3Y,=poyiau Indino:Tsx>
<WWIOFSUBRIL/TISK/6661/DI0 ¢Mm MMM/ /:d]33Y,,=TSX: SUTWX WO ' Tu=UOTSISA 199USOTAIS:TSK>

<{u8-ALN,=DUTpOOUS ,(0 " T,=UOTSIDA TUX{>

XSL
STYLESHEET
104

XALAN
PROCESSOR

XML
DOCUMENT
106

TRANSFORMED OUTPUT
DOCUMENT 110

<«—|NSTRUCTIONS

| VISUAL XSL DEBUGGER

102

108 ————EVENTS——

| XSL DEBUGGER

ENGINE
COMPONENT
112

A

vy

XSL DEBUGGER
USER
INTERFACE
COMPONENT
114

-

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - abstract drawing

