METHOD FOR OPTIMIZING A USER EQUIPMENT PDN (PACKET DATA NETWORK) CONNECTION

The invention concerns a method for optimizing a UE PDN (Packet Data Network) connection when said UE enters a VPLMN (Visited PLMN) characterized by automatically allocating a default bearer to said UE in said VPLMN during Tracking Area Update procedure. The method according to the invention is preferably but not exclusively used for allowing a local breakout of user plane or control plane traffic when the UE is roaming between several PLMNs.
DESCRIPTION

METHOD FOR OPTIMIZING A USER EQUIPMENT
PDN (PACKET DATA NETWORK) CONNECTION

TECHNICAL FIELD:
The invention pertains to telecommunication field and concerns a method for optimizing a UE PDN (Packet Data Network) connection when said UE enters a VPLMN (Visited PLMN).

The invention concerns also a User Equipment adapted for implementing said method.

BACKGROUND ART:
In EPS (Evolved Packet System), E-UTRAN (Evolved Universal Terrestrial Radio Access Network) capable terminals are allocated a default bearer during the attach procedure. This default bearer provides always-on IP connectivity to a PDN (Packet Data Network). If these terminals attach to their Home PLMN, then they will be allocated a default bearer to access a PDN in Home PLMN.

Fig. 1 illustrates a UE (User Equipment) 2 attached to a HPLMN in a Network architecture comprising a (Mobility Management Entity) MME 4, a Home Serving Gateway 6, and a (Evolved Universal Terrestrial Radio Access Network access network) E-UTRAN 8. The MME is connected to a HSS and the Home Serving Gateway 6 is connected to a PDN Gateway 12 of said HPLMN. The PDN Gateway 12 connects the UE 2 to an operator IP service 14 such as IMS or PSS.

A default bearer 16 is established in Home PLMN in order to allow the UE 2 to access to said operator IP services 18.

Fig. 2 illustrates the case where the UE 2 roams from its HPLMN to a VPLMN.
In this situation, the UE 2 connects to the PDN Gateway 12 and to a PDN Gateway Visited PLMN 20 through a Visited Serving Gateway 22.

A default bearer to visited PDN 24 is established in the VPLMN in order to allow the UE 2 to Visited operator IP services 26. According to the current 3GPP recommendations, one possibility to establish connectivity to the PDN different from default PDN is to use procedure for UE requested PDN connectivity as described below with reference to figure 3 describing current state of the art for a UE roaming in a Visited PLMN and asking for extra PDN connectivity further to the Tracking Area Update procedure. It is assumed that this can be the procedure used for local breakout, as described in 3GPP document S2-074760.

When the UE 2 moves to a new Tracking Area, it sends a TAU Request (step 30) to an eNodeB 32. This eNodeB 32 transmits (step 34) said TAU Request to a new MME 36. The new MME 36 sends (step 38) a Context Request to the old MME 40 which responds (step 42) to the new MME 36 by a Context Response.

After authentication of the UE 2 (step 44), the new MME 36 transmits (step 48) a Context Acknowledge to the old MME 40.

At step 50, the new MME 36 transmits a Create Bearer Request to a new serving Gateway 52 which transmits (step 54) an Update Bearer Request to a PDN Gateway 56 in Home PLMN. The PDN Gateway 56 transmits an Update Bearer Request (step 56) to the new serving Gateway 52. Said new serving Gateway 52 transmits a Create Bearer Response (step 58) to the new MME 36.

The later transmits an Update Location (step 60) to a HSS 62 (Home Subscriber Server).

At step 64, the HSS 62 transmits a Cancel Location message to the old MME 40.
At step 66, the old MME 40 responds to the HSS 62 by a Cancel Location ack.

At step 68, the HSS 62 transmits to new MME 36 a request Insert Subscriber Data (IMS, subscriber data).

At step 70, the new MME 36 transmits to HSS 62 a request Insert Subscriber Data Ack.

At step 72, the HSS 62 transmits to the new MME 36 an Update Location Ack.

At step 74, the old MME 40 transmits to the old serving Gateway 76 a Delete Bearer Request.

At step 78, the old serving Gateway 76 transmits to the old MME 40 a Delete Bearer Response.

At step 80, the new MME 36 transmits to the UE 2 a TAU (Tracking Area Update Accept).

At step 82, the UE 2 transmits to the new MME 36 a TAU complete message.

At step 90, the UE 2 requests the setting of a new PDN connection in the VPLMN and sends, at step 92, a PDN connectivity request to the new MME 36.

At step 94, the new MME 36 transmits to the new serving gateway 52 a Create Default Bearer Request.

At step 96, new serving gateway 52 transmits to a PDN Gateway 98 in the VPLMN a Create Default Bearer Request.

At step 98, the PDN Gateway may interact with the PCRF (Policy and Charging Rule Function) to get the default PCC (Policy, Control and Charging) rules for the UE.

At step 100, the PDN Gateway 98 transmits to the new serving gateway 52 a Create Default Bearer Response.
At step 102, the new serving gateway 52 transmits to the new MME 36 a Create Bearer Response.

The new MME 36 transmits, at step 104, a Bearer Setup Request to the eNodeB 32.

At step 106, the eNodeB 32 transmits to the UE 2 a Radio Bearer Establishment Request.

At step 108, the UE 2 transmits to the eNodeB 32, a Bearer Setup Response.

At step 110, the eNodeB 32 transmits to the new MME 36 a Bearer Setup Response.

The new MME 36 transmits, at step 112, to the new serving gateway 52, an Update Bearer Request.

As can be seen in figure 3, the PDN connectivity to a new PDN can be established by the UE 2 in order to do local breakout, but this requires an explicit standalone procedure (steps 90 to 112).

However, using this procedure would mean that it is up to the UE (User Equipment) to setup this PDN connectivity when the UE roams in a Visited PLMN. In addition, it is not described in current 3GPP specification how and when the connection to a PDN in Visited PLMN is performed while maintaining a connection to a PDN in Home PLMN.

An object of the present invention is to provide means for establishing the connectivity to a PDN in Visited PLMN as soon as the UE enters this Visited PLMN from another PLMN. This last PLMN can be Home PLMN or another Visited PLMN.

DISCLOSURE OF THE INVENTION:

The object of the invention is achieved by a method for optimizing a UE PDN (Packet Data Network) connection when said UE enters a VPLMN (Visited PLMN).
characterized by automatically allocating a default bearer to said UE in said VPLMN during Tracking Area Update procedure.

The method according to the invention is preferably but not exclusively used for allowing a local breakout of user plane or control plane traffic when the UE is roaming between several PLMNs.

This allows for example to access the internet, or perform emergency calls using a PDN Gateway in the Visited PLMN, while keeping traffic to default Home PDN sent to PDN Gateway (PDN GW) in Home PLMN. The visited PDN could also be used for some IMS (IP Multimedia core network Subsystem) services, like voice or video, which could benefit from connectivity to a local PDN. The usage of local breakout depends on the Home operator policies and the user's subscription.

In a first embodiment of the method according to the invention, the allocation of said default bearer to the UE in the VPLMN is under the control of Home PLMN.

In a second embodiment of the method according to the invention, the allocation of a default bearer to the UE in the VPLMN is initiated by the UE.

In this embodiment, the UE adds PDN address allocation parameter to the Tracking Area Update Request message.

PDN address and a list of APNs to which the UE is allowed to access are added to the Tracking Area Update Accept message received by the UE in response to said Tracking Area Update request message.

According to another feature of the invention, the UE indicates to an MME (Mobility Management Entity) in Visited PLMN that a default bearer in VPLMN is required via a new flag "extra-default-bearer-request" in the Tracking Area Update request message.

The allocation of said default bearer to the UE in the VPLMN is triggered by said MME upon reception of an extra-default-bearer-request in
Tracking Area Update request.

In an alternative variant, the allocation of said default bearer to the UE in the VPLMN is triggered by said MME upon reception of indication whether additional default bearer can be established in the VPLMN and a list of APNs to which the UE is allowed to access, said indication and said list being contained in a Subscription Data.

The invention is implemented by means of a User equipment comprising means for triggering automatic allocation of a default bearer during Tracking Area Update procedure upon entering a VPLMN (Visited PLMN).

Said User Equipment further comprises means for adding PDN address allocation parameter to the Tracking Area Update Request message, and means for generating a new flag "extra-default-bearer-request" in the Tracking Area Update request message to indicate to an MME (Mobility Management Entity) in said Visited PLMN that a default bearer is required, based on pre-configured policies in the UE.

The method according to the invention is used in a Wireless telecommunication network comprising a plurality of base stations, a Home Subscriber Server (HSS), a plurality of Mobility Management Entities (MMEs), a plurality of User Equipments (UEs), wherein said Home Subscriber Server (HSS) comprises means for storing indication whether additional default bearer can be established in a VPLMN visited by said UEs, and a list of APNs to which said UEs are allowed to access and means for transmitting said indication and said list of APNs to the Mobility Management Entity (MME) for automatically allocating a default bearer to said UEs in said VPLMN during Tracking Area Update procedure.

Said Mobility Management Entity (MME) comprises means for adding PDN address allocation parameter to a Tracking Area Update Accept message for automatically allocating a default bearer to said UE in said VPLMN during
said Tracking Area Update procedure.

BRIEF DESCRIPTION OF THE DRAWINGS:

Other features and advantages of the invention will appear from the following description taken as a non-limiting example with reference to the following drawings in which:

Fig. 1 shows default bearer established in Home PLMN,
Fig. 2 shows default bearer established in a Visited PLMN,
Fig. 3 describes current state of the art for a UE roaming in a Visited PLMN and asking for extra PDN connectivity further to the Tracking Area Update procedure,
Fig. 4 describes a Tracking Area Update procedure according to a first embodiment of the invention,
Fig. 5 describes a Tracking Area Update procedure according to a second embodiment of the invention.

BEST MODE FOR CARRYING OUT THE INVENTION:

For the purpose of clarity of the following description, identical features and steps in the drawings illustrating the prior art and those illustrating the present invention will be given the same reference numbers.

Referring now to figure 4, when the UE 2 moves to a new Tracking Area, it sends a TAU Request (step 200), containing PDN address allocation to an eNodeB 32.

In this case, the method comprises the following steps:

- step 210 for the creation of the default bearer between the new MME (Mobility Management Entity) in Visited PLMN and the new serving GW (Gateway) in Visited PLMN,
- step 212 for the creation of the default bearer between the new
serving GW and the PDN GW in Visited PLMN,
- step 214 for possible interaction with PCRF to get the default PCC rules for the UE,
- step 216 for the response between PDN GW in Visited PLMN and serving GW in Visited PLMN,
- step 218 for the response between the serving GW in Visited PLMN and the MME in Visited PLMN.

The request for the creation of a default bearer towards a PDN Gateway in Visited PLMN is included in the Tracking Area Update procedure. It is to be noted that PDN address allocation is included in the Tracking Area Update request message in order to indicate whether it requests the allocation of an IP address during the Tracking Area Update procedure or whether IETF (Internet Engineering Task Force) based IP address allocation mechanisms would be used, and which IP version IPv4 or IPv6 is supported by the UE 2.

Furthermore, in step 68, the subscription data transmitted by the HSS 62 to the new MME 36 contains useful information for the MME for the additional default bearer: information whether additional default bearer can be established in VPLMN, and also a list of all APNs the UE is allowed to access.

Lastly, step 80 is modified as follows: flag extra-default-bearer indicates whether an additional default bearer was established during Tracking Area Update procedure. In case a default bearer was established, APN and PDN Address assigned to the UE 2 are sent from the new MME 36 to the UE 2 in Tracking Area Update Accept message 202 in order to provide the UE 2 with PDN connection information, and EPS bearer identity for the new default bearer is also included in the message.

Alternatively, the flag extra-default-bearer could be removed and the UE 2 would only rely on the presence of APN, PDN Address and EPS bearer
identity parameters to conclude whether an additional default bearer was established.

Fig. 5 describes a second embodiment of the invention in which new optional steps are proposed including:

- step 230 for the creation of the default bearer between the new MME 36 (Mobility Management Entity) in Visited PLMN and the new serving Gateway 52 in Visited PLMN,
- step 232 for the creation of the default bearer between the new serving Gateway 52 and the PDN Gateway in Visited PLMN,
- step 234 for possible interaction with PCRF to get the default PCC rules for the UE,
- step 236 for the response between PDN Gateway in Visited PLMN and serving GW 52 in Visited PLMN,
- step 238 for the response between the serving GW in Visited PLMN and the MME in Visited PLMN.

Furthermore, Step 30 is modified as follows: PDN address allocation is included in the Tracking Area Update request message in order to indicate whether it requests the allocation of an IP address during the Tracking Area Update procedure or whether IETF based IP address allocation mechanisms would be used.

In step 68, the subscription data from the HSS 62 contains useful information for the new MME 36 for the additional default bearer: information whether additional default bearer can be established in VPLMN, and also a list of all APNs the UE is allowed to access.

Lastly, step 80 is modified as follows: flag extra-default-bearer indicates whether an additional default bearer was established during Tracking Area Update procedure. In case a default bearer was established, APN and PDN Address assigned to the UE 2 are sent from the new MME 36 to the UE 2 in
Tracking Area Update Accept message in order to provide the UE2 with PDN connection information, and EPS bearer identity for the new default bearer is also included in the message.

Alternatively, the flag extra-default-bearer could be removed and the UE2 would only rely on the presence of APN, PDN Address and EPS bearer identity parameters to conclude whether an additional default bearer was established.

In another embodiment of the invention, parameters extra-default-bearer-request and PDN address allocation from message Tracking Area Update Request are included in an ESM (EPS session management) message and parameters extra-default-bearer, PDN address information, APN and EPS bearer identity from message Tracking Area Update Accept are included in an ESM message.

This application is based upon and claims the benefit of priority from European patent application No. 08102858.1, filed on March 21, 2008, the disclosure of which is incorporated herein in its entirety by reference.
CLAIMS

1. Method for optimizing a UE PDN (Packet Data Network) connection when said UE enters a VPLMN (Visited PLMN) characterized by automatically allocating a default bearer to said UE in said VPLMN during Tracking Area Update procedure.

2. Method according to claim 1 wherein the allocation of said default bearer to the UE in the VPLMN is under the control of Home PLMN.

3. Method according to claim 2 wherein said allocation of a default bearer to the UE in the VPLMN is initiated by the UE.

4. Method according to claim 3 wherein said UE adds PDN address allocation parameter to the Tracking Area Update Request message.

5. Method according to claim 3 wherein said UE indicates to an MME (Mobility Management Entity) in Visited PLMN that a default bearer in VPLMN is required via a new flag "extra-default-bearer-request" added to the Tracking Area Update request message.

6. Method according to claims 4 and 5 wherein parameters extra-default-bearer-request and PDN address allocation from message Tracking Area Update Request are included in an ESM (EPS session management) message.

7. Method according to claim 5 wherein PDN address and a list of APNs to which the UE is allowed to access are added to the Tracking Area Update
Accept message received by the UE in response to said Tracking Area Update request message.

8. Method according to claims 4 and 5 wherein parameters

5 extra-default-bearer, PDN address information, APN and EPS bearer identity from message Tracking Area Update Accept are included in an ESM message.

9. Method according to claim 4 wherein the allocation of said default bearer to the UE in the VPLMN is triggered by said MME upon reception of indication

10 whether additional default bearer can be established in the VPLMN and a list of APNs to which the UE is allowed to access, said indication and said list being contained in a Subscription Data.

10. Method according to claim 5, wherein the allocation of said default bearer

15 to the UE in the VPLMN is triggered by said MME upon reception of an extra-default-bearer-request in Tracking Area Update request.

11. User equipment characterized in that it comprises means for triggering automatic allocation of a default bearer during Tracking Area Update procedure

20 upon entering a VPLMN (Visited PLMN).

12. User equipment according to claim 11 further comprising means for adding PDN address allocation parameter to the Tracking Area Update Request message.

13. User equipment according to claim 11 further comprising means for generating a new flag "extra-default-bearer-request" in the Tracking Area Update request message to indicate to an MME (Mobility Management Entity) in
said Visited PLMN that a default bearer is required.

14. Mobility Management Entity (MME) adapted for optimizing a UE PDN (Packet Data Network) connection when said UE enters a VPLMN (Visited PLMN), characterized in that it comprises means for adding PDN address allocation parameter to a Tracking Area Update Accept message to automatically allocate a default bearer to said UE in said VPLMN during said Tracking Area Update procedure.

15. Home Subscriber Server (HSS) adapted for optimizing a UE PDN (Packet Data Network) connection when said UE enters a VPLMN (Visited PLMN) characterized in that it comprises means for storing indication whether additional default bearer can be established in the VPLMN and a list of APNs to which the UE is allowed to access and means for transmitting said indication and said list of APNs to a Mobility Management Entity (MME) in a wireless telecommunication Network.

16. Wireless telecommunication network comprising a plurality of base stations, a Home Subscriber Server (HSS), a plurality of Mobility Management Entities (MMEs), a plurality of User Equipments (UEs), characterized in that said Home Subscriber Server (HSS) comprises means for storing indication whether additional default bearer can be established in a VPLMN visited by said UEs, and a list of APNs to which said UEs are allowed to access and means for transmitting said indication and said list of APNs to the Mobility Management Entity (MME) for automatically allocating a default bearer to said UEs in said VPLMN during Tracking Area Update procedure.

17. Wireless telecommunication network according to claim 15 wherein said
Mobility Management Entity (MME) comprises means for adding PDN address allocation parameter to a Tracking Area Update Accept message for automatically allocating a default bearer to said UE in said VPLMN during said Tracking Area Update procedure.
FIG. 3
FIG. 4
INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2009/054366

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl. H04W8/22 (2009.01) i, H04W60/04 (2009.01) i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl. H04W8/22, H04W60/04

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

- Published examined utility model applications of Japan 1922 1994
- Published unexamined utility model applications of Japan 1971-2009
- Registered utility model specifications of Japan 1994-2009
- Published registered utility model applications of Japan 1994-2009

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Samsung, 3GPP TSG-sa WG2 Meeting #63 S2-081477, 2008.02</td>
<td>1-17</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

- * Special categories of cited documents:
 - 'A' document defining the general state of the art which is not considered to be of particular relevance
 - 'E' earlier application or patent but published on or after the international filing date
 - 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - 'O' document referring to an oral disclosure, use, exhibition or other means
 - 'P' document published prior to the international filing date but later than the priority date claimed

- **I** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- **X** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- **Y** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- **G** document member of the same patent family

Date of the actual completion of the international search: 03.04.2009

Date of mailing of the international search report: 14.04.2009

Name and mailing address of the ISA/JP

Japan Patent Office
3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan

Authorized officer

Tomita takashi
Telephone No. +81-3-3581-1 101 Ext. 3534

Form PCT/ISA/210 (second sheet) (April 2007)