Abstract: A multi-panel sterilization assembly is described that includes a barrier panel formed of permeable material having barrier properties, side wings that can include grip portions for folding or unfolding the barrier panel, and a fold protection panel. The fold protection panel and/or either or both wings may be made from a stretchable material.
MULTI-PANEL STERILIZATION ASSEMBLY WITH STRETCH COMPONENTS

RELATED APPLICATIONS

The present application claims priority to U.S. Application Serial No. 14/307,875, filed on June 18, 2014, which is incorporated herein in its entirety by reference thereto.

BACKGROUND OF THE INVENTION

The present disclosure relates in general to disposable wraps used to contain content to be sterilized and store that content aseptically until use.

Conventional disposable sterilization wrap is a flat, featureless sheet of material that may occasionally contain one or more additional layers of material for strength or absorbency. For example, U.S. Patent No. 5,635,134 to Bourne, et al. discloses a multi-ply sterilization wrap which is formed by joining one or more sheets of sterilization wrap (e.g., two separate sheets or one sheet folded over) together to form two similarly sized, superposed panels that allow convenient dual wrapping of an article. As another example, U.S. Patent Application Publication No. 2001/0036519 by Bayer discloses a two ply sterilization wrap that is formed of a single sheet of sterilization wrap material which is folded to form two similarly sized, superposed panels that are bonded to each other. As yet another example, U.S. Patent Application Publication No. 2005/0163654 by Stecklein, et al. discloses a sterilization wrap material that has a first main panel and a second panel that is smaller than the main panel. The second panel is superposed and bonded to the central portion of the main panel such that it is contained entirely within the main panel to reinforce the main panel and/or provide additional absorbency.

U.S. Patent Application Publication No. 2013/0081355 to Gaynor, et al. provides an assembly, package or system that reduces the amount of sterilization wrap material needed for the sterile processing of an instrument tray or article and eliminates the need to grasp the sterilization wrap material to unfold wrap. This assembly reduces the amount of sterilization fabric that can be used in an extended or enhanced steam or heat sterilization process, and that simplifies the task of unwrapping a sterilized instrument tray or article while reducing or avoiding the likelihood that the sterilization fabric will fold back onto itself during unwrapping. It has been found, however, that minor shifts in fold position can occur and can lead to loose folds and movement of the container within the wrap. This movement can lead to abrasion induced hole formation.

It would be useful to have a sterilization wrap that did not allow movement of the container within the wrap. It would also be useful to have a wrap that provided a visual cue that sterilant had penetrated the folded wrap.
SUMMARY OF THE DISCLOSURE

The problems described above are addressed by the present disclosure which encompasses a multi-panel sterilization assembly having stretch components. The stretch component may be, for example, the fold protection panel and/or either or both wings used to secure the multi-panel sterilization assembly. The stretch component allows the component to "correct" for less than optimal positioning of the fold protection panel against the barrier panel, allowing a greater range in placement of the panel attachment means. The stretch component holds the folds tighter around the container.

When the stretch component is made to shrink when exposed to sterilizing conditions, it desirably changes dimensions sufficiently to provide an obvious visual signal about successful sterilant penetration. The stretch component further may include an agent that changes color upon exposure to sterilizing conditions, further aiding in the provision of a visual cue.

In one particular embodiment, a flexible multi-panel sterilization assembly includes a barrier panel having a first end defining a fold protection panel, an opposing second end, opposing first and third edges, a second edge opposite the first end, and opposing first and second wings to secure portions of the first edge and the third edge to each other or to a portion of the second end after the barrier panel has been folded at or near its midpoint such that the second end is brought towards the first end, wherein at least one of the fold protection panel or wings is made from a stretchable material, wherein the barrier panel includes a first surface configured to contact and/or cover an item to be sterilized and an opposing second surface.

In another embodiment, the barrier panel can have a fourth edge, and in still another embodiment, the barrier panel can have a fifth edge. Further, the barrier panel can be configured such that a width of the second end of the barrier panel is less than a width of the first end of the barrier panel, resulting in a configuration of the fourth edge and the fifth edge that allows access to panel attachment means located on the first and second wings after the second end is brought towards the first end. In yet another embodiment, the panel attachment means can be configured to be secured to the opposing second surface of the barrier panel at the second end. In an additional embodiment, the panel attachment means can include adhesive tape, double-sided adhesive tape, cohesive materials, hook and loop fastening systems, mechanical fastening systems, snaps, clips, magnets, catches, slots and tabs, or a combination thereof.

In a further embodiment, the first and second wings can include grip portions for folding or unfolding the barrier panel.

In one more embodiment of the sterilization assembly of the pending claims, the first edge and the third edge can be separated by a distance.
In still another embodiment, the sterilization assembly can further include a pull tab system and two spaced apart pull locations. Further, the pull tab system can be positioned to be accessible during unfolding or unwrapping the item after sterilization. Additionally, the pull tab system can extend from or be joined to the second end of the barrier panel. For instance, the pull tab system can extend from or be joined to the second end of the barrier panel at the opposing second surface. In one particular embodiment, a distal end of the pull tab system can be secured to the second end of the barrier panel with an adhesive or sticker. For example, the panel attachment means can comprise a hook and loop fastening system containing hook components and loop components. Further, the hook components and the loop components can be arranged to increase engagement between the hook components and the loop components upon movement of the sterilization assembly.

In yet another embodiment, the fold protection panel can be formed from a material that is shrinkable when exposed to sterilizing conditions. Likewise, the first and second wings can be formed from a material that is shrinkable when exposed to sterilizing conditions.

In an additional embodiment, the fold protection panel can be formed from a material that changes color when exposed to sterilizing conditions. Similarly, the first and second wings can be formed from a material that changes color when exposed to sterilizing conditions.

In one more embodiment, the barrier panel can have a Frazier permeability of from about 25 cubic feet per minute to about 500 cubic feet per minute.

These and other features and advantages of the disclosure will become more apparent to one skilled in the art from the following description and claims when read in light of the accompanying drawings.

DESCRIPTION OF THE DRAWINGS

The present disclosure will be better understood by reading the Detailed Description of the Disclosure with reference to the accompanying drawing figures, in which like reference numerals denote similar structure and refer to like elements throughout, and in which:

Figures 1A through 1E are illustrations of an exemplary sequence of folding an exemplary disposable flexible multi-panel sterilization assembly including side wings and pull tabs having spaced apart pull locations, prior to sterilization.

Figure 1A illustrates the completely unfolded assembly with the content (or item) to be sterilized.

Figure 1B illustrates the folding upwardly of the bottom end of the assembly, substantially covering the item to be sterilized.
Figure 1C illustrates the folding over of the left side of the assembly, onto the folded bottom end and the item to be sterilized.

Figure 1D illustrates the folding over of the right side of the assembly, onto the folded bottom end and the item to be sterilized.

Figure 1E illustrates the folding over of the top end of the assembly, onto the folded bottom end and sides as well as the content to be sterilized, to make a package.

Figures 2A to 2E are illustrations of an exemplary sequence of unfolding an exemplary disposable flexible multi-panel sterilization assembly including side wings and pull tabs having spaced apart pull locations.

Figure 2A illustrates the package from Figure 1E after sterilization.

Figure 2B illustrates the unfolding of the top end of the assembly, revealing the folded bottom end and sides.

Figure 2C illustrates the unfolding of the right side of the assembly, revealing part of the folded bottom end.

Figure 2D illustrates the unfolding of the left side of the assembly, revealing the rest of the folded bottom end.

Figure 2E illustrates the completely unfolded assembly and the item, after sterilization.

DETAILED DESCRIPTION

As used herein, the term "disposable" refers to a product that is so inexpensive that it may economically be discarded after only a single use. Products that are "disposable" are typically intended for single use. The term "single-use" refers to a product that is intended to be used for only once and is not intended to be re-used, re-conditioned, restored or repaired after that use. These products offer advantages in clinical settings by reducing the potential for contamination or infection. In addition, these products can enhance work flow since they are not collected and assembled for reprocessing and reuse.

As used herein, the term "multi-panel sterilization assembly" or "sterilization assembly" or "assembly" refers to a flexible article composed of fabric(s) and/or flexible material(s) that is wrapped around, folded around or otherwise encloses a non-sterile article or non-sterile content prior to sterilization. A sterilization assembly has multiple panels and/or sections providing specific physical properties, functional characteristics and/or structure that provide advantages for wrapping or folding, handling, strength, sterilization, storage after sterilization, and/or unwrapping or unfolding.

As used herein, the term "nonwoven" refers to a web or fabric that has a structure of individual fibers or filaments which are interlaid, but not in an identifiable repeating manner. Nonwovens have
been, in the past, formed by a variety of processes known to those skilled in the art such as, for example, meltblowing, spunbonding and bonded carded web processes.

A typical sterilization tray with the dimensions of 10 inches (25.4 cm) by 20 inches (50.8 cm) by 5 inches tall (12.7 cm) typically requires a square piece of sterilization fabric having each side measuring 45 inches for wrapping and sterile processing. This large size piece is needed so that the corner of the fabric can be folded all the way across the top of the tray with some additional excess material so that the preparer of the tray feels confident that the contents are covered and that the piece of fabric will stay down and not spring back. Using a 45 inch, square piece of fabric means that 2025 square inches of material (approximately 13,064 square centimeters) is being used to enclose a tray with a surface area of just 700 square inches (approximately 4,516 square centimeters). In other words, this traditional method requires almost three square inches of material to cover every square inch of a tray of surgical instruments.

The multi-panel sterilization assembly includes a barrier panel formed of permeable material having barrier properties, side wings that can include grip portions for folding or unfolding the barrier panel; and a fold protection panel. The barrier panel has a first end and a second end opposite the first end, a first edge and a third edge, each such edge being generally perpendicular to the first end, and a midpoint to generally delineate the barrier panel into a content receiving region extending from approximately the first end to the midpoint and a content covering region extending from the midpoint to approximately the second end. The side wings are desirably located between the first end and the midpoint of the barrier panel and at or near the first edge and the third edge. The fold protection panel is in juxtaposed communication with the barrier panel such that after folding the content covering region and the first and third edges over the content receiving region, the fold protection panel covers them. The fold protection panel and/or either or both wings may be made from a stretchable material.

The flexible multi-panel sterilization assembly has a barrier panel made with a permeable sheet material having barrier properties, where the barrier panel includes a first surface and a second opposing surface, a first end and a second end opposite the first end, a first edge and a third edge, each such edge being generally perpendicular to the first end. The second edge is generally opposite the first end. The barrier panel has a maximum width that is the distance from the first edge to the third edge and a maximum length that is the distance from the first end to the second end. The barrier panel has a midpoint along the length and extending between the first edge and the third edge to generally delineate the barrier panel into a content receiving region extending from approximately the first end to the midpoint and a content covering region extending from the midpoint to approximately the second end.
The assembly has side wings located between the first end and the midpoint of the barrier panel and at or near the first edge and the third edge. The side wings include grip portions for folding or unfolding the barrier panel. The assembly has a fold protection panel in juxtaposed communication with the barrier panel. The fold protection panel is made with a permeable sheet material and includes a proximal end generally adjacent the first end of the barrier panel, a distal end generally opposite the proximal end and at least a first edge and a second edge extending away from the proximal end. The fold protection panel has a maximum width that is the greatest distance from the first edge to the second edge and a maximum length that is the distance from the proximal end to the distal end such that after the barrier panel has been folded at or near the barrier panel's midpoint, the barrier panel's second end is brought towards its first end and the side wing on the first edge and the side wing on the third edge are folded over the barrier panel towards or overlapping each other to form at least a partial enclosure. The distal end of the fold protection panel is configured to cover at least the first edge and the third edge of the folded barrier panel.

Referring now to Figures 1A through 1E, there is illustrated an example of a multi-panel sterilization assembly in an exemplary sequence of folding prior to sterilization. Figure 1A illustrates a multi-panel sterilization assembly 100 composed of barrier panel 102 which cooperates with the fold protection panel 108 and the panel attachment means 106 on the first surface 110 so the barrier panel 102 can be folded around the content 200 to form a package (such as the package 202 generally illustrated in Figures 1E and 2A). The barrier panel 102 is the portion of the flexible multi-panel sterilization assembly 100 that contacts and covers the content 200.

As generally illustrated in Figures 1A and 1B, the second end 118 of the barrier panel 102 is folded up at the midpoint "M" and the second edge 122 brought towards the first end 114 so part of the barrier panel 102 extends over the content 200. As shown in Figure 1B, the width of the barrier panel at the second end 118 is less than the width of the barrier panel at the first end 114. This provides a configuration of the fourth edge 126 and the fifth edge 128 that allows access to the panel attachment means 106 after the second end 118 is brought up to the first end 114.

In some embodiments of the present disclosure, a pull tab system 300 and spaced apart pull locations 500 extend from the second end 118 so that the pull tab system 300 is positioned to be accessible during the final steps of unfolding or unwrapping a wrapped package. The pull tab system 300 desirably extends from or is joined to the second end 118 of the barrier panel on the second opposing surface 112 of the barrier panel 102. It is contemplated that the pull tab system 300 may be unitary or integral with the barrier panel. The distal end (i.e., the loose end) of the pull tab system 300 is desirably secured to the barrier panel with a light adhesive or an adhesive tab or sticker such that
the pull tab system 300 does not flop around during wrapping and is in an appropriate position during unwrapping.

Figure 1C illustrates the third edge 124 of the barrier panel 102 is folded over the second end 118 (after the second end 118 is brought up to the first end 114). While not necessarily shown to scale, the third edge 124 of the barrier panel 102 after folding need not extend very far toward the middle of the assembly. Figure 1C illustrates that the side wing 400a on the third edge 124 is deployed so that the panel attachment means 106 (not visible in Figure 1C) is used to securely place the third edge against the second end 118 of the barrier panel (i.e., the content covering region).

Figure 1D shows that the first edge 120 of the barrier panel 102 is folded over the second end 118 (after the second end 118 is brought up to the first end 114). Figure 1D illustrates that the side wing 400b on the first edge 120 is deployed so that the panel attachment means 106 (not visible in Figure 1D) is used to securely place the first edge 120 against the second end 118 of the barrier panel (i.e., the content covering region). The panel attachment means 106 can include adhesive tape, double-sided adhesive tape, cohesive materials, hook and loop fastening systems, mechanical fastening systems, snaps, clips, magnets, catches, slots and tabs, or a combination thereof. Further, when the panel attachment means 106 includes a hook and loop fastening system, the panel attachment means can include hook components and loop components. In addition, the hook components and the loop components can be arranged to increase engagement between the hook components and the loop components upon movement of the sterilization assembly, as described in U.S. Patent Application Publication No. 2003/0045856 to Couture, et al., which is incorporated herein by reference. Specifically, the hook component (or loop component) can include an engagement section having a plurality of substantially non-isotropic engagement members such that the engagement section has an axis of substantially maximal engagement. The panel attachment means can also include a cooperating loop component (or hook component) arranged such that the hook component and loop component are capable of being joined by movement of the respective components together generally along an attachment direction into an overlapping and interengaging configuration. The hook component (or loop component) can be oriented so its axis of substantially maximal engagement is generally orthogonal to the attachment direction. This configuration can cause the hook component (or loop component) to become more interengaged with the cooperating loop component (or hook component) as the sterilization assembly is subjected to various forces such as, for example, the type of forces encountered by the panel attachment means after the item to be sterilized has been wrapped as described in the present invention.
As can be seen in Figure 1D, the panel attachment means 106 are positioned on the side wings 400a and 400b so they attach to the second end 118 of the barrier panel (i.e., the content covering region) between the spaced apart pull locations 500 of the pull tab system 300. Figure 1E illustrates that the first end 114 of the barrier panel 102 is folded over the second end 118. While not necessarily shown to scale, the first end 114 of the barrier panel 102 upon folding need not extend very far toward the middle of the assembly. Accordingly, it is evident that the third edge 124 and the first edge 120 generally do not overlap. Unlike conventional sterilization wrap in which the edges are intentionally overlapped, the edges 120 and 124 of the barrier panel are separated by a distance. This difference highlights the importance of the panel attachment means 106 to hold the folded edges 120 and 124 of the barrier panel 102 in place about the content. Moreover, having these edges generally exposed highlights the importance of the fold protection panel 108.

Referring again to Figures 1A, 1D and 1E, the fold protection panel 108 and the portion of the barrier panel 102 between the extremity "E" at the first end 114 of the barrier panel 102 and the pre-determined fold line 116 is folded over bringing the first end 114 over the second end 118 of the barrier panel. In some embodiments, a portion of the material adjacent the first edge 120 and the third edge 124 may be visible. With this configuration, the actual edges 120 and 124 of the barrier panel 102 are fully covered so the edges themselves are less susceptible to being accidently pulled open or breached during normal handling of the package. The fold protection panel 108 is typically secured utilizing conventional tape that is used with sterilization wrap. Desirably, the fold protection panel 108 covers the edges of the barrier panel 102 after it is folded around the content to be sterilized to form a package. The fold protection panel 108 covers these edges to prevent a worker from inadvertently opening the folded barrier panel 102. In addition, the fold protection panel 108 shields the edges from snags, pulls or other phenomenon that could impart a peel force to these edges that would cause the panel attachment means to detach. That is, the configuration of the multi-panel sterilization assembly utilizes the fold protection panel to protect exposed edges of the barrier panel after the barrier panel has been folded around content to be sterilized to form a package.

The sequence of unfolding the multi-panel sterilization assembly after it has wrapped around a tray or article and sterilized is generally the reverse of the folding sequence as generally illustrated in Figures 2A through 2E. For example, Figure 2A illustrates a package 202 ready to be unwrapped or unfolded. A conventional tape securing the fold protection panel 108 is broken and the fold protection panel 108 is pulled back to expose the side wings 400 as illustrated in Figure 2B. The side wings 400a and 400b may be pulled up and to the side (away from the center) to detach the panel attachment means 106 such that the first edge 120 and the third edge 124 are unfolded to a configuration as
generally illustrated by Figure 2D. This step may be carried out by pulling the side wings 400a and 400b simultaneously or sequentially as shown in Figure 2C. Importantly, the location/position of the side wings 400a and 400b, the ability to grip the side wings without compromising sterility, and the leverage and distribution of forces provided by the extended side wings help the fold protection panel, and the first edge 120 and the third edge 124 of the barrier panel remain in a generally flat, unfolded configuration, which keeps them from folding back up over the content 200.

As seen in Figure 2D, unfolding the side wings 400a and 400b exposes the spaced apart pull locations 500 of the pull tab system 300. Each pull location 500 is grasped at a convenient location or at the position when the pull tab system 300 is secured to the barrier panel 102 with an adhesive tab or sticker and the tab or sticker is pulled up. The pull tab system 300 and the second end 118 of the barrier panel is pulled away from the content 200 as shown in Figure 2E, resulting in complete access to the content 200. Importantly, the spaced apart pull locations 500 help the first edge 120 and the third edge 124 of the barrier panel 102 remain in a generally flat, unfolded configuration which keeps them from folding back up over the content 200.

According to the present disclosure, the barrier panel may be composed of at least one layer of a breathable nonwoven material. Desirably, the breathable nonwoven material is a laminate composed of a layer of spunbonded filaments, a layer of meltblown fibers, and a layer of spunbonded filaments - also called spunbonded-meltblown-spunbonded material. The method of making these layers is known and described in commonly assigned U.S. Patent No. 4,041,203 to Brock, et al. which is incorporated herein in its entirety by reference. The material of Brock, et al. is a three layer laminate of spunbonded-meltblown-spunbonded layers which is also commonly referred to by the acronym “SMS”. The two outer layers of SMS are a spunbonded material made from extruded polyolefin fibers, or filaments, laid down in a random pattern and then bonded to one another. The inner layer is a meltblown layer also made from extruded polyolefin fibers generally of a smaller diameter than the fibers in the spunbonded layers. As a result, the meltblown layer provides increased barrier properties due to its fine fiber structure which permits the sterilizing agent to pass through the fabric while preventing passage of bacteria and other contaminants. Conversely, the two outer spunbonded layers provide a greater portion of the strength factor in the overall laminate. The laminate may be prepared using an intermittent bond pattern that is preferably employed with the pattern being substantially regularly repeating over the surface of the laminate. The pattern is selected such that the bonds may occupy about 5-50% of the surface area of the laminate. Desirably, the bonds may occupy about 10-30% of the surface area of the laminate. Other combinations and variations of these materials are
contemplated. As a non-limiting example, the inner layer may contain two meltblown layers such that the material may be called "SMMS".

When the barrier panel is composed of or incorporates SMS material(s), the basis weight of the SMS material(s) may be from 1 ounce per square yard or "osy" which is approximately (33 grams per square meter or "gsm") to about 3 osy (100 gsm). For example, the basis weight of the SMS material(s) may be from 1.2 osy (40 gsm) to about 2 osy (67 gsm). As another example, the basis weight of the SMS material(s) may be from 1.4 osy (47 gsm) to about 1.8 osy (60 gsm). The basis weight may be determined in accordance with ASTM D3776-07. Multiple plies or layers of SMS material may be used to provide basis weights ranging from about 2 osy (67 gsm) to about 5 osy (167 gsm).

The permeability of the sheet material of the barrier panel may range from 25 to about 500 cubic feet per minute (CFM) as characterized in terms of Frazier permeability. For example, the permeability of the sheet material barrier panel may range from 50 to about 400 cubic feet per minute. As yet another example, the permeability of the sheet material of the barrier panel may range from 100 to about 300 cubic feet per minute. Alternatively and/or additionally, the permeability of the barrier panel may range from 25 to about 500 cubic feet per minute (CFM) as characterized in terms of Frazier permeability. For example, the permeability of the barrier panel may range from 50 to about 400 cubic feet per minute. As yet another example, the permeability of the barrier panel may range from 100 to about 300 cubic feet per minute. The Frazier permeability, which expresses the permeability of a material in terms of cubic feet per minute of air through a square foot of area of a surface of the material at a pressure drop of 0.5 inch of water (or 125 Pa), was determined utilizing a Frazier Air Permeability Tester available from the Frazier Precision Instrument Company and measured in accordance with Federal Test Method 5450, Standard No. 191A.

When the barrier panel is composed of or incorporates SMS material(s) that have basis weights ranging from about 1 osy (33 gsm) to about 2.6 osy (87 gsm), the permeability of the barrier panel may be lower than 25 cubic feet per minute. For example, when SMS materials having basis weights ranging from about 1 osy (33 gsm) to about 2.6 osy (87 gsm), the permeability of the barrier panel may range from about 20 cubic feet per minute to about 75 cubic feet per minute when determined generally in accordance with ISO 9237:1995 (measured with an automated air permeability machine using a 38 cm² head at a test pressure of 125 Pa, - exemplary air permeability machine is TEXTEST FX 3300 available from TEXTEST AG, Switzerland). If multiple plies or layers of SMS material are used to provide basis weights ranging from about 2 osy (67 gsm) to about 5 osy (167
gsm), the permeability of the barrier panel may range from about 10 cubic feet per minute to about 30 cubic feet per minute when determined generally in accordance with ISO 9237:1995.

As disclosed herein, one or both of the side wings 400 and/or the fold protection panel 108 may desirably be made from a stretchable material. If only one wing is made from stretchable material, it is desired that it be the last wing secured to the wrap. Furthermore, a material may be chosen that shrinks when exposed to sterilizing conditions in order to pull the wrap tighter against the content, as shown in Figures 2B through 2E, where the fold protection panel 108 and side wings 400a and 400b can exhibit shrinkage post-sterilization as compared to pre-sterilization, as shown in Figures 1A through 1D. A material may also be chosen that can provide a visual cue that the package has been sterilized. For example, a material may be chosen to change colors when exposed to sterilizing conditions to provide a visual cue that the package has been sterilized. A material having a combination of shrinkable and color change characteristics when exposed to sterilizing conditions may also be used.

Suitable stretchable materials include conventionally known elastic fibers and materials as well as composite elastic materials. Known elastic materials include those sold under the trade names Lycra®, Spandex®, Nylon®, and the like. It should be noted that while the term "elastic" is used herein, the wing stretchable material need not be elastic in the conventional sense, i.e., it need not recover immediately after being stretched and before being sterilized. It may recover prior to sterilization but should certainly recover by the time sterilization is complete.

Color change upon sterilization may be accomplished by the use of chemical additives that may be incorporated into the fibers from which the stretchable materials are made or inks that may be applied to them by known means such as ink jet printing, melt spraying, and other means. Color change indicators change color, typically from yellow to brown or colorless to black, upon sterilization. Sterilization indicator inks are commercially available from a number of sources, including Shield Sterilization and Packaging Co. Ltd of Anhui, China and Namsa® of Northwood, Ohio and are heavy metal (e.g. lead) free.

As used herein the term "composite elastic material" refers to an elastic material which may be a multicomponent material or a multilayer material in which one layer is elastic. These materials may be, for example, "neck bonded" laminates, "stretch bonded" laminates, "neck-stretch bonded" laminates and "zero strain" laminates.

"Neck bonding" refers to the process wherein an elastic member is bonded to a non-elastic member while only the non-elastic member is extended or necked so as to reduce its dimension in the direction orthogonal to the extension. "Neck bonded laminate" refers to a composite elastic material
made according to the neck bonding process, i.e.: the layers are joined together when only the non-elastic layer is in an extended condition. Such laminates usually have cross directional stretch properties. Examples of neck-bonded laminates are such as those described in U.S. Patent Nos. 5,226,992, 4,981,747, 4,965,122 and 5,336,545 to Mormon and U.S. Patent No. 5,514,470 to Haffner, et al.

Conventionally, "stretch bonding" refers to a process wherein an elastic member is bonded to another member while only the elastic member is extended at least about 25 percent of its relaxed length. "Stretch bonded laminate" refers to a composite elastic material made according to the stretch bonding process, i.e.: the layers are joined together when only the elastic layer is in an extended condition so that upon relaxing the layers, the nonelastic layer is gathered. Such laminates usually have machine directional stretch properties and may be stretched to the extent that the nonelastic material gathered between the bond locations allows the elastic material to elongate. One type of stretch bonded laminate is disclosed, for example, by U.S. Patent No. 4,720,415 to Vander Wielen, et al., in which multiple layers of the same polymer produced from multiple banks of extruders are used. Other composite elastic materials are disclosed in U.S. Patent No. 4,789,699 to Kieffer, et al., U.S. Patent No. 4,781,966 to Taylor and U.S. Patent Nos. 4,657,802 and 4,652,487 to Mormon and 4,655,760 to Mormon, et al.

"Neck-stretch bonding" generally refers to a process wherein an elastic member is bonded to another member while the elastic member is extended at least about 25 percent of its relaxed length and the other layer is a necked, non-elastic layer. "Neck-stretch bonded laminate" refers to a composite elastic material made according to the neck-stretch bonding process, i.e., the layers are joined together when both layers are in an extended condition and then allowed to relax. Such laminates usually have omni-directional stretch properties.

"Zero strain" stretch bonding generally refers to a process wherein at least two layers are bonded to one another while in an untensioned (hence zero strain) condition and wherein one of the layers is stretchable and elastomeric and the second is stretchable but not necessarily elastomeric. Such a laminate is stretched incrementally through the use of one or more pairs of meshing corrugated rolls which reduce the strain rate experienced by the web. "Zero strain stretch laminate" refers to a composite elastic material made according to the zero strain stretch bonding process, i.e.: the elastic and nonelastic layers are joined together when both layers are in an unextended condition and stretched though meshing corrugated rolls. The second layer, upon stretching of the laminate, will be at least to a degree permanently elongated so that the laminate will not return to its original undistorted condition upon release of the stretching force. This results in z-direction bulking of the laminate and
subsequent elastic extensibility in the direction of initial stretching at least up to the point of initial stretching. Examples of such laminates and their production processes may be found in U.S. Patent Nos. 5,143,679, 5,151,092, 5,167,897, and 5,196,000.

While particular embodiments of the present disclosure have been described herein; it will be apparent to those skilled in the art that alterations and modifications may be made to the described embodiments without departing from the scope of the appended claims.
WHAT IS CLAIMED IS:

1. A flexible multi-panel sterilization assembly comprising a barrier panel having a first end defining a fold protection panel, an opposing second end, opposing first and third edges, a second edge opposite the first end, and opposing first and second wings to secure portions of the first edge and the third edge to each other or to a portion of the second end after the barrier panel has been folded at or near its midpoint such that the second end is brought towards the first end, wherein at least one of the fold protection panel or wings is made from a stretchable material, wherein the barrier panel includes a first surface configured to cover or contact an item to be sterilized and an opposing second surface.

2. The sterilization assembly of claim 1, wherein the barrier panel has a fourth edge.

3. The sterilization assembly of claim 2, wherein the barrier panel has a fifth edge.

4. The sterilization assembly of claim 3, wherein the barrier panel is configured such that a width of the second end of the barrier panel is less than a width of the first end of the barrier panel, resulting in a configuration of the fourth edge and the fifth edge that allows access to panel attachment means located on the first and second wings after the second end is brought towards the first end.

5. The sterilization assembly of claim 4, wherein the panel attachment means are configured to be secured to the opposing second surface of the barrier panel at the second end.

6. The sterilization assembly of claim 5, wherein the panel attachment means comprise adhesive tape, double-sided adhesive tape, cohesive materials, hook and loop fastening systems, mechanical fastening systems, snaps, clips, magnets, catches, slots and tabs, or a combination thereof.

7. The sterilization assembly of claim 6, wherein the panel attachment means comprises a hook and loop fastening system containing hook components and loop components.

8. The sterilization assembly of claim 7, wherein the hook components and the loop components are arranged to increase engagement between the hook components and the loop components upon movement of the sterilization assembly.

9. The sterilization assembly of any of the foregoing claims, wherein the first and second wings include grip portions for folding or unfolding the barrier panel.

10. The sterilization assembly of any of the foregoing claims, wherein the first edge and the third edge are separated by a distance.

11. The sterilization assembly of any of the foregoing claims, wherein the sterilization assembly further includes a pull tab system and two spaced apart pull locations.
12. The sterilization assembly of claim 11, wherein the pull tab system is positioned to be accessible during unfolding or unwrapping the item after sterilization.

13. The sterilization assembly of claim 12, wherein the pull tab system extends from or is joined to the second end of the barrier panel.

14. The sterilization assembly of claim 12, wherein the pull tab system extends from or is joined to the second end of the barrier panel at the opposing second surface.

15. The sterilization assembly of any of the foregoing claims, wherein a distal end of the pull tab system is secured to the second end of the barrier panel with an adhesive or sticker.

16. The sterilization assembly of any of the foregoing claims, wherein the fold protection panel is formed from a material that is shrinkable when exposed to sterilizing conditions.

17. The sterilization assembly of any of the foregoing claims, wherein the first and second wings are formed from a material that is shrinkable when exposed to sterilizing conditions.

18. The sterilization assembly of any of the foregoing claims, wherein the fold protection panel is formed from a material that changes color when exposed to sterilizing conditions.

19. The sterilization assembly of any of the foregoing claims, wherein the first and second wings are formed from a material that changes color when exposed to sterilizing conditions.

20. The sterilization assembly of any of the foregoing claims, wherein the barrier panel has a Frazier permeability of from about 25 cubic feet per minute to about 500 cubic feet per minute.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. A61L2/26 A61B19/02 A61L2/28

ADD.

According to International Patent Classification (IPC) onto both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61L A61B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2011/016006 A2 (KIMBERLY CLARK Co [US]); GAYNOR MELISSA R [US]; CLARK LAUREEN C [US]; F) 10 February 2011 (2011-02-10) figures 6, 7A claims 1-5 claim 5</td>
<td>1-20</td>
</tr>
<tr>
<td>X</td>
<td>WO 2013/046187 A2 (KIMBERLY CLARK Co [US])</td>
<td>1-20</td>
</tr>
<tr>
<td></td>
<td>4 April 2013 (2013-04-04) claims 1-6, 12; figure 8B page 23, line 30 et seq.</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>WO 2013/046186 A1 (KIMBERLY CLARK Co [US])</td>
<td>1-20</td>
</tr>
<tr>
<td></td>
<td>4 April 2013 (2013-04-04) page 31, line 20; figures 7C, C</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search

9 September 2015

Date of mailing of the international search report

21/09/2015

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Fischer, Michael
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 6 006 985 A (HAWKINS MICHAEL [US]) 28 December 1999 (1999-12-28) column 7, lines 11-25; figures 11a, lib</td>
<td>1</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>wo 2011016006 A2</td>
<td>10-02-2011</td>
<td>AU 2010280348 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2767186 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102470018 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2461760 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5651694 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013500816 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20120052964 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2012108147 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011033137 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013020380 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014027499 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011016006 A2</td>
</tr>
<tr>
<td>wo 2013046187 A2</td>
<td>04-04-2013</td>
<td>AU 2012317211 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2847544 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103826663 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2760484 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014533979 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20140077158 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013081355 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013046187 A2</td>
</tr>
<tr>
<td>wo 2013046186 A1</td>
<td>04-04-2013</td>
<td>AU 2012317210 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2847542 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103889465 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2760483 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014531271 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20140077163 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013092724 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013046186 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2825622 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2670445 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014510567 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012220200 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2012104811 A</td>
</tr>
<tr>
<td>US 6006985 A</td>
<td>28-12-1999</td>
<td>NONE</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (April 2005)