WO 2005/114375 A1 |0 00000 0 00O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

1 December 2005 (01.12.2005) PCT WO 2005/114375 Al
(51) International Patent Classification’: GOGF 3/14 (74) Agent: JAWORSKI, Richard, F.; Cooper & Dunham
LLP, 1185 Avenue of the Americas, New York, NY 10036
(21) International Application Number: (US)
PCT/US2005/017791 ’

(22) International Filing Date: 19 May 2005 (19.05.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/573,142 21 May 2004 (21.05.2004) US

(71) Applicant (for all designated States except US): COM-
PUTER ASSOCIATES THINK, INC. [US/US]; One
Corporate AssociateS Plaza, Islandia, NY 11749 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): GODWIN, Mark
[GB/GB]; 25 Lammas Close, Staines, Middlesex TW18
4XT (GB).

(81)

(84)

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
7ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

[Continued on next page]

(54) Title: SYSTEMS AND METHODS FOR TRACKING SCREEN UPDATES

Insert Data Scan “Dirty”
Into Region
Processing
Queue
T 830 ™ s44
Read Packets Send
from Request
Processing
Queue
I Ssm T 846
Place Ref. in Request
Update Marker
Queue
- 534 ™ 548
'
Discard Read Packet
Update out of
Packets ‘Network
; ~ S36 Quene
Process
Packets and
place Nott
Packets in otify
Network Update
Quene ~ 38 Thread
1) 856
Read Packets
from Update
Queue Transmit Scan “Dirty”
~ Packet Region and
540 Request
Updates
Discard 54 58
Packets i
™S g4

(57) Abstract: A method of capturing a screen includes
monitoring screen changes on a first display system
and inserting information into a queue, the information
including a first type of information and a second type of
information, reading the information from the queue and
maintaining a dirty region describing areas of the screen
which have been changed, wherein areas affected by
the first type of information are added to the dirty region
and areas affected by the second type of information are
subtracted from the dirty region.

WO 2005/114375 A1 [0 00000 000000

FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, — before the expiration of the time limit for amending the
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, claims and to be republished in the event of receipt of
GQ, GW, ML, MR, NE, SN, TD, TG). amendments

For two-letter codes and other abbreviations, refer to the "Guid-
Published: ance Notes on Codes and Abbreviations" appearing at the begin-
— with international search report ning of each regular issue of the PCT Gazette.

WO 2005/114375 PCT/US2005/017791

SYSTEMS AND METHODS FOR TRACKING SCREEN UPDATES

Reference to Related Application

The present disclosure is based on and claims the benefit of Provisional application Serial
No. 60/573,142 filed May 21, 2004, the entire contents of which are herein incorporated by
reference.

BACKGROUND OF THE DISCLOSURE

1. Field of the Disclosure
The present disclosure relates generally to screen updates and in particular, to systems

and methods for tracking screen updates.

2. Description of the Related Art

The enterprise IT environment has become more geographically dispersed and the
number of remote users of such resources has increased. The need for remotely managing and
supporting these resources has become more and more important. Remote managémeﬁt can
include accessing remote services such as network applications, transferring files among servers
and workstations, administering servers, viewing or taking control of distributed desktops to help
users with problems, etc.

Remote control as used herein refers to viewing, transferring and running files on a
remote personal computer (PC) as well as systems designed specifically for enterprise
management, offering centralized systems, policy, user/group, and access control management
and providing session information and other administrative features, etc.

Remote control of resources allows single point administration of multiple servers,
management of remote servers (e.g., Windows NT servers), etc. In addition, help desk personnel
can be in a better position to address and resolve issues by viewing and controlling a remote

user’s machine. These are just a few of the benefits of remote control of system resources.

WO 2005/114375 PCT/US2005/017791

A screen capture subsystem of a remote control/screen recording system includes remote
control/screen recording software (RC Software). A screen capture subsystem is responsible for
serializing screen changes on one computer (the Host) into a data-stream, for later decoding and
re-display by a rendering subsystem (the Viewer). There are two main techniques used when
implementing screen capture.

Remote Control (RC) applications reproduce the view of a computer’s screen (the Host),
on a second computer (the Viewer). The Viewer computer can control the Host computer using
an input device such as keyboard, mouse, etc., as if the viewer were physically present to operate
the host computer.

Screen Capture (SC) applications record screen activity into a file, which can later be
played back, usually through a special player application. Remote control applications usually
include a recording system for recording screen activity. Accordingly, screen capture
applications provide a sub-set of RC application features.

The present disclosure relates to functions common to both RC and SC applications.
Accordingly, as used herein, the term RC may be used to refer to both RC and SC systems.
Unless otherwise specified, the term Viewer, as used herein, may be used to refer to both Viewer
and Replayer components.

A Video Data Capture (VDC) system is a key component of RC. The VDC system is
responsible for capturing the changing Host screen image into a serialized data stream, so that it
can be reproduced on the Viewer. The VDC system has several end-user requirements. For
example, the Viewer should accurately depict the view of the Host screen, with no artifacts. In
addition, the serialized data stream should be small enough to be sent in real-time over slow
networks. For example, the data bandwidth should scale to the available network bandwidth, to
give better performance over fast networks, while still retaining usability at very restricted
bandwidths. The Viewer should also reflect an up-to-date image of the Host screen at all times,
with as little latency as possible. The Host machine should also be able to function normally

when it is being viewed. Therefore, the VDC system should not consume a large proportion of

WO 2005/114375 PCT/US2005/017791

the Host’s CPU and meinory resources.

The VDC system also has several architectural requirements. For example, any low-level
OS dependent video cabture components should be kept as simple as possible to ensure
robustness, as program errors in low-level components can be catastrophic to the system.
Therefore, heavy processing of captured video data should be performed in a detached user-mode
process. In addition, the data stream from the VDC component should be platform independent,
simplifying porting of the Viewer components to new platforms. The VDC component should
also be as platform-independent as possible. Accordingly, the host-side processing of the low-
level captured data should be platform independent. |

There are several approaches to implementing a VDC system. These include relatively
simple approaches to relatively complicated approaches. Examples of these approaches include
Screen Copy, Polled Delta Copy, Updated Delta Copy; and Drawing Primitive Serialization. The
benefits and drawbacks of each of these approaches will be briefly described below.

In a screen copy approach, complete bitmap images of the screen are captured at close
intervals, using normal operating system drawiﬁg calls, and compressed into the data stream. The
Viewer can reproduce the Host’s screen by drawing the captured images in turn. This is a
relatively simple approach. However, this approach is not generally used in practice, since it
does have substantial drawbacks. For example, the screen copy approach has huge bandwidth
requirements and high latency.

In a polled screen deltas approach, a complete bitmap image of the screen is Initially
captured, and compressed into the data stream. This image is also stored in memory on the host
machine. At close intervals, new complete images of the screen are captured. These are
compared with the previous image, and the areas which have changed (known as deltas) are
compressed into the data stream. The Viewer can reproduce the Host’s screen by drawing the
delta images in turn. Howéver, the change comparison is CPU intensive. Accordingly, an
inefficient algorithm is generally used to detect changes. Usually, the captured image is split into

small tiles, (e.g. 64*64 pixels) which are compared either by memory comparison or checksum.

WO 2005/114375 PCT/US2005/017791

If atile is seen to differ,r the entire tile is sent. Advantages of the polled screen approach include
being able to use a relatively simple video protocol; it is relatively simple to develop & port,
using normal OS calls énd Data bandwidth can be easily limited to avoid falling behind, reducing
the difference between typical and worst-case drawing scenarios. Disadvantages of the approach
include relatively high bandwidth requirements for typical drawing operations, poor performance
for screen to screen copies, high latency and high Host CPU and memory resource utilization.
The polled screen deltas approach is often used in RC applications where the application is
restricted to normal operating system drawing calls. An example of its use is KDE Desktop
Sharing.

In an updated delta copy approach, all drawing operations on the Host machine that
modify the state of the screen are monitored by the VDC component and, used to maintain a data
structure representing the screen region affected by thé sum of all drawing operations. This
region (known as the dirty region) is read periodically from the screen as bitmap images, which
are serialized into the data stream. The dirty region is then emptied, pending more drawing
operations. Because there are no CPU intensive delta comparison calculations, it is possible to
read the updated screen images much faster. There is also less bandwidth wastage, because the
dirty screen region is a perfect representation of the delta images that need to be sent. The
Viewer can reproduce the Host’s screen by drawing the delta images in turn. The resulting image
is effectively a snapshot of the captured screen after multiple drawing operations have taken
place. Advantages of the updated delta copy approach include the use of a simple video protocol
which allows development of “thin” portable Viewer applications, it is reasonably easy to
develop, although low-level OS hooks may be required and data bandwidth can be easily limited
to avoid falling behind, reducing the difference between typical and worst-case drawing
scenarios. Disadvantages of the updated delta copy approach include high bandwidth
requirements for typical drawing operations and unacceptable performance for screen to screen
copies. Figure 1A shows an implementation of the updated delta copy approach. Figure 2A isa

flow chart for describing the updated delta copy approach.

WO 2005/114375 PCT/US2005/017791

The video capture driver 12, running as part of the OS display subsystem 10, monitors all
drawing operations that affect the screen (Step S2). The video capture driver 12 then inserts data
packets into the processing queue 14 describing areas of the screen that have been modified by
each operation (Step S4). The processing thread 16, running as part of the Host, reads packets
out of the processing queue as fast as it can (Step S6). The screen area affected by each packet is
used to meﬁntain a Dirty region 18, which describes the areas of the screen which have been
changed since they were last sent to the Viewer 20 (Step S8). That is, the area affected by each
packet in the processing queue 14 is added to the Dirty region 18 and the packet is then discarded
(Step S10). When there are no more packets remaining in the Processing queue 14, the
Processing thread 16 scans through the Dirty region 18 from top to bottom, breaking the region
down into small rectangles (Step S12). For each rectangle in the dirty region 18, a bitmap for the
corresponding area is read directly from the screen of display system 10, through normal OS
drawing calls (Step S14). The returned bitmap image undergoes normal video data processing
(color reduction, etc.) and is sent, via a blocking send to the connected Viewer 20 on the
network. The rectangle is then subtracted from the Dirty region (Step S18). The process then
returns to Step S8. When the Dirty region 18 is empty, and there are no packets in the processing
queue 14, processing is paused. This system has drawbacks such as unnecessary overdraw (e.g.,
the same data is sent more than once) because packets may be waiting in the processing queue 14
while the processing thread 16 is reading data from the screen.

Another approach is a drawing primitive serialization approach. All drawing operations
on the Host machine that modify the state of the screen are captured by the VDC component.
These operations are captured as a series of relatively primitive graphics operations, e.g. drawing
shapes, image (bitmap) copies, text drawing, screen to screen transfers, etc. Complex instructions
for reproducing these drawing operatibns are serialized into the data stream. When the drawing
operations are reproduced by the Viewer component, the result is an exact replica of the captured
screen. Advantages of this approach include very low bandwidth (i.e. data size) requirements for

most drawing operations and excellent best-case performance. Disadvantages of this approach

WO 2005/114375 PCT/US2005/017791

include decoding of capfured video data requires a powerful viewer machine, the video data
protocol is tied to OS architecture, hindering portaBility and it requires high-bandwidth in worst-
case scenarios. The Viewer’s representation of screen can also fall behind if the network medium
does not proy}de sufficient bandwidth, as drawing operations cannot be easily discarded without
causing corruption at the viewer. However, complex and CPU intensive algorithms can be
employed to safely limit serialized data bandwidth.

An example of this approach is shown in Fig. 1B and will be described by reference to the
flow chart shown in Fig. 2B. The video capture driver 13, running as part of the OS display
subsystem 11, monitors all drawing operations that affect the screen (Step S20), and inserts data
packets into the processing queue 15, containing instructions on how to repeat these drawing
operations (Step S22). The processing thread 17, running as part of the Host process, reads
packets as fast as it can from the processing queue 15 (Step S24). Each video packet goes
through bitmap color reduction, font substitution, and overdraw processing (Step S25). Packets
are then placed into Network queue 19, awaiting dispatch over the network (Step S26). The
network dispatch thread 21 then reads packets out of the network queue, and sends them over the
network (not shown), limited in speed by the network medium (Step S27). Overdraw.
processing, whereby previous drawing packets that are still waiting for dispatch over the network
are discarded, if the screen region affected by the drawing packet would be completely redrawn
by the sum of the drawing packets that follow it can be performed. This processing prevents the
viewer from falling behind when the network bandwidth becomes the bottleneck in the video
capture pipeline. However, a downside of this approach is that this process is CPU intensive.

The most commonly used method of video capture for advanced remote control
applications is the “Drawing Primitive Serialization” approach. The main drawback of this
method is that it is tied very closely tothe operating system drawing architecture, both in terms
of implementation and video data protocoi. Porting an existing VDC system of this type to a
new platform is inefficient, and requires one of two approaches to be effective. The first

approach is extending the existing protocol to support each new OS graphics architecture.

WO 2005/114375 PCT/US2005/017791

However, this compromises Viewer interoperability between platforms, making Viewers very
hard to develop on each platform. - The second approach is shoe-horning new platform
implementations into the existing protocol. However, this is both time consuming, and is at the
expense of reproduction accuracy at the Viewer. In addition, while porting the Host component
in this way would be at best feasible, the Viewer component would be extremely hard to port to
other platflorms.

One of the better alternatives described above is the “Updated Delta Copy” method.
However, this method performs significantly worse than some existing implementations. One of
the major downfalls of this approach is that it performs very poorly for screen to screen copies
and very simple drawing operations, which are used frequently in every day computing
operations. For instance, to read this document you will be constantly scrolling down the page.
This operation involves several screen to screen copies. The “Drawing Primitive Serialization”
method handles such operations with ease, but the “Updated Screen Deltas” approach treats the
entire scrolled area as an updated screen area, which needs to be serialized in bitmap form. Even
with compression, this can result in several megabytes of data. Therefore, an improved system

for performing screen updates is desirable.
SUMMARY

A method of capturing a screen comprising monitoring screen changes on a first display
system and inserting information into a queue, the information including a first type of
information and a second type of information, reading the information from the queue and
maintaining a dirty region describing areas of the screen which have been changed, wherein areas
affected by the first type of information are added to the dirty region and areas affected by the
second type of information are subtracted from the dirty region. '

A system for capturing a screen comprising a monitoring unit for monitoring screen

changes on a first display system and inserting information into a queue, the information

WO 2005/114375 PCT/US2005/017791

including a first type of information and a second type of information, a reading unit for reading
the information from the queue and a maintaining unit for maintaining a dirty region describing
areas of the screen whicﬁ have been changed, wherein areas affected by the first type of
information are added to the dirty region and areas affected by the second type of information are
subtracted from the dirty region.

A computer recording medium including computer executable code for capturing a
screen, comprising code for monitoring screen changes on a first display system and inserting
information into a queue, the information including a first type of information and a second type
of information, code for reading the information from the queue and code for maintaining a d1rty
region describing areas of the screen which have been changed, wherein areas affected by the
first type of information are added to the dirty region and areas affected by the second type of

information are subtracted from the dirty region.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the present disclosure and many of the attendant
advantages thereof will be readily obtained as the same becomes better understood by reference
to the following detailed description when conside;ed in connection with the accompanying

drawings, wherein:

Figure 1A is a block diagram for describing an updated delta copy approach for updating
a viewer display;

Figure 1B is a block diagram for describing a drawing primitive serialization approach for
updating a viewer display;

Figure 2A is a flow chart for further describing the approach depicted in Fig. 1A;

Figure 3 is a block diagram for describing a hybrid approach for updating a viewer

display according to an embodiment of the present disclosure; .

WO 2005/114375 PCT/US2005/017791

Figure 4 is a flow chart for describing the hybrid approach for updating a viewer display
according to an embodiment of the present disclosﬁre;

Figure 5 is a block diagram for describing video data capture in more detail;

Figure 6 is a flow chart for describing the processing thread according to an embodiment
of the present disclosure;

Figﬁre 7 is a flow chart for describing the update thread according to an embodiment of
the present disclosure;

Figure 8 depicts ways of processing packets of data according to an embodiment of the
present disclosure;

Figure 9 is a flow diagram for describing update and processing threads combined,
according to an embodiment of the present disclosure; and

Figure 10 is a block diagram of a system capable of implementing embodiments of the

present disclosure.

DETAILED DESCRIPTION

The present disclosure provides tools in the form of methodologies, apparatuses and
systems. The tools may be embodied in one or more computer programs stored on a computer
readable medium or program storage device and/or transmitted via a computer network or other
transmission medium.

In describing preferred embodiments of the present disclosure illustrated in the drawings,
specific terminology is employed for sake of clarity. However, the present disclosure is not
intended to be limited to the specific terminology so selected and it is to be understood that each
specific element includes all technical equivalents which operate in a similar manner.

Embodiments of the present disclosure describe hybrids of the “Drawing Primitive

Serialization” and “Updated Delta Copy” approaches. This approach extends the Updated Delta

WO 2005/114375 PCT/US2005/017791

Copy system to allow céﬂain simple drawing operations, including screen to screen copies, to be
included in the captured data. The remaining screen updates are used to maintain a dirty region,
as with the original “Upﬁated Delta Copy” system. The embodiments of the present disclosure
mitigate major disadvantages of both of the individual methods they are based on. For example,
the high bandwidth requirement for typical drawing operations is improved because simple
drawing operations are serialized as tiny drawing commands, rather than images. the
unacceptable performance for screen to screen copies is remedied with the inclusion of screen to
screen drawing command support and decoding of captured video data does not require a |
powerful viewer machine, because of the simplification in Vidéo data protocol, and the ease of
bandwidth limitation. In addition, video data protocol is no longer tied to OS architecture, as the
simple drawing commands supported are universal and the bandwidth requirements in worst-case
scenarios are reasonable, and the data bandwidth can bé easily limited

Screen-to-screen drawing operations cannot simply be interspersed with screen updates.
The reason for this is that the Viewer’s screen representation could become corrupted, since it is
possible for screen updates to be missed. This is because screen-to-screen copy operations
modify the previous dirty region. Accordingly, the embodiments of the present disclosure
enforce synchronization of screen update processing to avoid screen corruption.

An embodiment of the present disclosure will be described by reference to Figs. 3 and 4.
Figure 3 shows a block diagram for describing the flow of data. The system shown in Figure 3
includes OS display system 22, video capture driver 24, processing queue 26, processing thread
28, update queue 30, update thread 34, network queue 38 and network dispatch thread 36.

Video capture driver 24 inserts serialized data packets into the processing queue 26 (Step
S30). That is, screen drawing on OS display system 22 is serialized into various types of
packets. For example, packets can include packets describing areas of the screen that have been
- modified (Dirty packets), simple drawing primitives (e.g. solid rectangle fills) (Obliterating
packets), Screen to screen copy operations (Copy packets) and other miscellaneous packets (e.g.

mouse cursor messages, etc.) In addition, the video capture driver 24 inserts Bitmap packets

10

WO 2005/114375 PCT/US2005/017791

describing screen areas into the processing queue 26, requested by the Update thread 32 as will
be explained later below (these are also classified és Obliterating packets). The Processing
tlﬁead 28 then'reads packets out of the processing queue 26 as fast as it can (Step S32).
Processing thread 28 places a reference to all Dirty, Obliterating and» Copy packets in the Update
queue 30 (Step S34). Dirty packets are then discarded by the Processing thread (Step S36). The
remaining packets undergo normal video data processing (color reduction, etc.) and are placed in
the Network queue 38 (Step S38), awaiting dispatch. Update thread 32 reads packets of the
Update queue as fast as it can, and processes each packet (Step S40). The screen area affected by
each packet is used to maintain a Dirty region, which describes the areas of the screen which
have been changed since they were last sent to the Viewer. Areas of the Dirty region affected by
Dirty packets add to the Dirty region, while those areas of the Dirty region affected by
Obliterating packets subtract from the Dirty region. Copy packets are processed with a multiple-
step region algorithm to update the dirty region correctly. Once each packet is processed, the
reference to the packet is discarded (Step S42). When there are no more packets remaining in the
Update queue 30, the Update thread 32 scans through the Dirty region, if non-empty, from top to
bottom, breaking the region down into small rectangles (Step S44). This scanning can be
interrupted by new packets arriving in the Update queue 30. For each rectangle in the Dirty
region 34, a request for a Bitmap packet for the corresponding area of the screen is sent to the
Video Capture driver 24 (Step S46). This request can take the form of a drawing operation, so
that it is interlocked with all other drawing operations on the system (Only 1 thread can draw at
any time). The Bitmap data is not returned directly to the Update thread 32, but is placed in the
processing queue 26. When the processing reaches the bottom of the Dirty region 34, or after a
sufficient amount of data has been requested, the Update thread 32 requests a special Marker

- packet from the Video capture driver 24 (Step S48). The Update thread 32 then stops the
scanning of the Dirty region 34, until it receives a Marker packet through the Update queue 30.
This prevents the update thread 32 from requesting information faster than it can be processed,

and from re-requesting the same area of the screen. The Network Dispatch thread 36 reads

11

WO 2005/114375 PCT/US2005/017791

packets out of the Network queue 38 (Step S50), and transmits them over the network to a
cpnnected Viewer system (Step S54). The speed of this data transmission is limited by the
network bandwidth. When the Dispatch thread 36 retrieves a Marker packet from thé network
queue 38 (Yes, Step S52), it does not send the packet to the Viewer over the network. Instead,
Dispatch thread 36 notifies the Update thread 32 by inserting the Marker packet into the Update
queue 30 (Step S56). The Update thread 32 will then begin scanning the Dirty region 34 and
requesting updates again, if the Dirty region 34 is not empty (Step S58).

It is possible to combine the Processing and Update threads into a single thread. This
would remove the need for the Update queue 30 and would reduce processing overhead.
However, this removes the ability to lower the priority of the Update processing, to allow quicker
pass through of ordinary drawing (e.g., Obliterating) packets, which could be used to reduce
latency.

The following is a more detailed description of various components of embodiments of
the present disclosure.

As shown in Figure 5, video data capture is performed in a low-level Operating System
display subsystem 50. This may be a privileged OS component. Accordingly, the data undergoes
very little manipulation at this stage, to reduce complexity. The Video Capture driver 52 passes
captured data as video packets to a video capture component in the Host process 58. According
to an embodiment of the present disclosure, a shared circular buffer 56 of video packets is stored
in shared memory, mapped between both the OS display subsystem 50 and the Host process 58.
The host process 58 reads the video packets out of circular buffer 56, and into an unlimited
Processing queue 60. When the Video Capture Driver 52 is capturing video data, it can generate
data very quickly. Accordingly, if the limited circular buffer 56 fills up, video data will be lost.
This is a situation that is unacceptable in most situations. Accordingly, a dedicated video capture
thread is used to retrieve the video data from the circular buffer 56. Shared synchronization
objects are used to enforce thread-safe access to the circular buffer 56. Of course, the technique

for retrieving captured data from the Video Capture Driver 52 is not limited to embodiments

12

WO 2005/114375 PCT/US2005/017791

described herein. For example, other techniques, such as FIFO pipes, or internal network
connections could be used. According to embodiments of the present disclosure, the Host process
58 and OS display subsystem 50 are separate entities. For example, none of the processing in the
Graphics processing stage takes place in the OS display subsystem 50. Video capture driver 52
breaks down complex drawing commands into a sequence of simpler commands and outputs one
or more video packets for each drawing operation that it intercepts.

Screen drawing can be serialized into several packet types, including Obliterating packets
(simple drawing operations), Copy packets (screen to screen copy operations), Dirty packets
(packets indicating an area of the screen which has been updated by a drawing operation), Mafker
packets (Special markers, requested by the graphics processing component) and Miscellaneous
packets (Mouse pointer and screen dimension information.) Each type of packet will be
described in more detail below. |

Obliterating packets contain instructions for reproducing simple drawing operations, such
as solid rectangle fills and image copies. Each Obliterating packet also contains a Target region,
which describes the exact area of the screen that is affected by this operation. To reduce
complexity, the target region can be limited to a single rectangle, or a number of rectangles.
Obliterating packets contain drawing operations the resuits of which are not dependent on the
current contents of the frame buffer at their Target region. That is, the contents of the target
region are obliterated by the drawing operation. Operations whose results do depend on the
current frame buffer contents (e.g., semi-transparent fills), cannot be represented as Obliterating
packets. Obliterating packets may be restricted to very simple drawing operations, fo reduce
complexity in graphics processing, and in the Viewer component. Therefore, non-rectangular
solid area fills may be represented as several smaller rectangular fills, which when combined
produce the same net result. Conversely, Obliterating packets may also be more’complex,‘
increasing the required complexity of the graphics processing components. This potentially
reduces bandwidth requirements, by eliminating the need for additional Dirty packets. If the more

complex packets are utilized, they should follow the above-described rule that the resulting state

13

WO 2005/114375 PCT/US2005/017791

of the Target region of an Obliterating packet should be independent the original contents of
screen. An example of a complex Obliterating packet could be drawing text over a solid
background, with a certain font and style. It should be noted that text drawn with no background
fill cannot be represented in this way, as the precise Target region would be too complicated to
calculate.

Thé graphics processing stage may send frequent requests for specific screen regions to
the video capture driver 52. These requests come in the form of user-defined OS drawing calls.
As a response to such a request, the video capture driver 52 outputs an Obliterating packet
describing an image copy of the image data already present in the requested region, to that same
requested region. These péckets are indistinguishable from packets generated from a real image
copy drawing operation, (e.g. copying an in-memory image onto the screen).

Copy packets define a rectangular screen region which is to be copied to another part of
the screen. The target region is completely replaced with the copied data. The source region
remains unchanged, apart from any part of the source region that overlaps with the target region.
To reduce processing complexity, Copy packets can be restricted to rectangular regions, with
more complex copy operations being broken down into these simpler operations. However, care
should be taken to output these packets in the correct order if the source and target regions
overlap, or video corruption may occur at the viewer.

Dirty packets are produced as a result of complicated drawing operations, which cannot
simply be represented as a series of less complex operations. Examples of drawing operations
that would produce such packets are complex path fills and semi-transparent image copies. A
Dirty packet details a region of the screen that has been affected by a drawing operation. To
reduce complexity, the region the packet describes may cover more of the screen than the actual
region affected by the drawing operation (i.e., a superset of the affected region). This can be
helpful if a precise region calculation is too costly in terms of processing time. However, the

dirty region should never be a subset of the affected region, or screen corruption will occur on the

14

WO 2005/114375 PCT/US2005/017791

viewer. For example, a circular affected region, of diameter 10 pixels, could be represented by a
10x10 square dirty region, completely covering the circle.

As described abéve, a dedicated thread in the Video capture component 54 reads captured
packets from the circular packet buffer 56. When the video capture driver 52 is capturing data,
packets can be generated at an extremely high rate. Each of these packets incurs a processing
overhead as they move through each subsequent stage processing stage. Accordingly, the video
capture component 54 can bunch similaripackets together into small chunks of packets, which
can be safely processed as a single unit. However, only Obliterating and Dirty packets may be'
bunched together. In addition, packets can only be bunched together with other packets of the '
same type. This bunching does not change the order of any packets. The chunks can then be
placed onto a queue, ready for processing in the processing thread. Packet chunks are reference
counted. When all references to a packet chunk have béen released, the packet chunk is deleted
automatically. It should be noted that the dedicated capture thread is an enhancement to increase
robustness of the video capture system under high system load. According to another
embodiment of the present disclosure, the dedicated capture thread and the processing queue 60
can be removed. In this case, the Processing thread can be utilized to retrieve the captured video
data directly from the video capture driver 52.

Processing thread 28 performs multiple tasks including caching and color reduction
processing. Processing thread 28 takes packet chﬁnks from the processing queue 26 (Step S60),
blocking if there are none available. If the packet chunk contains Obliterating, Copy or Dirty
packets (No, Step S62), the packet is placed onto the Update queue 30 (Step S64). A
determination is made whether the Packet chunk contains Dirty packets (Step S66). The Update
queue 30 now holds a new reference to the packet, so that the packet chunk will persist, even if
the Processing thread 28 releases it. Ifit is determined that the packet chunk contains Dirty
packets (Yes, Step S66), since Dirty packets do not need to be sent to the Viewer machine, they
are discarded by the processing thread 28, at this stage (Step S72). It should be noted that

Marker packets are not placed onto the Update queue 30 at this stage. The remaining packets

15

WO 2005/114375 PCT/US2005/017791

then undergo normal caching and color reduction steps (Step S68), before being added to the
network queue 38 (Step S70).

The Update thread 32 will now be described by reference to Figure 7. The Update thread
32 runs in a loop until it exits when video capture is stopped. The Update thread 32 has primarily
two distinct tasks: processing packets from the Update queue 30; and processing the Dirty region
34, to 1‘eqllést screen updates from the Video Capture driver 24.

A determination is made whether the Update queue 30 is empty. If the update queue is
not empty (No, Step S72), a packet chunk is retrieved from the Update queue 30 (Step S74). It
should be noted that if packets are available in the Update queue 30, the Update thread 32
processes these first, before performing any of its other duties. That is, the Update queue is
considered a higher priority than the Dirty region processing. A determination is made whether
the packet is a Marker packet (Step S76). The Update thread 32 uses Marker packets to prevent
flooding the Viewer connection with data faster than it can be sent. When the Update thread 32
wants to synchronize with the Viewer co’nnection, it requests a marker packet from the Video
Capture driver 24. This packet is fed through the video capture pipeline until it reaches the point
at which it would be sent to the Viewer. It is then finally delivered to the Update thread 32,
through the Update queue 30, and is not sent to the Viewer. If the packet is a Marker packet, the
Marker packet is discarded (Step S88). The Marker packet is no longer pending. If the packet is
not a Marker packet (No, Step S76), the Dirty region 34 is updated according to the chunk (Step
S78). When it is determined that Update queue 30 is empty (Yes, Step S72), it is determined
whether a Marker packet is pending or the Dirty region is empty (Step S80). If a Marker packet
1s pending or the Dirty region is empty (Yes, Step S90), the thread waits for data in the update
queue (Step S90) and the process returns. If a Marker packet is not pending or if the Dirty region
is not empty (No, Step S80), the next section of the Dirty region 34 is processed (Step S82). A
determination is then made whether the requested data size has exceeded its limit (Step S84). If
it has not (No, Step S84), the process returns. Ifit has exceed its limit (Yes, Step S84), a Marker
packet is requested (Step S86) so that the Marker packet is now pending.

16

WO 2005/114375 PCT/US2005/017791

When there are no packét chunks waiting to be processed in the Update queue, and the Dirty
region 1s empty, o‘r a Marker packet request is pending the Update thread is idle.

The processing of packet chunks will now be described by reference to Fig. 8. The
following descriptions are represented partially iri pseudo code, where code indentation indicates
functional blocks. The processing relies on multiple region operations. A regionis a rectangle,'
polygon, or ellipse (or a combination of two or more of these shapes). Applications can combine
regions together, and compare them. Regions can be combined using four operations including
AND, Difference, OR and exclusive OR operations as shown in Fig. 8. Regions can also be
copied and offset by a vector. In the following pseudo-code, DirtyRegion is the Dirty region 3:4
maintained by the Update thread 32, TargetRegion is the Target region affected by the current
packet chunk, SourceRegion is the source region of a Copy packet (e.g., the area of the screen
that will be copied to the TargetRegion) and TempRegion is a temporary region, used for
intermediate calculations. TargetOrigin and SourceOrigin are the origins (top-left corners) of the

Source & Target regions

Each packet chunk is processed as follows:

IF Packet is Obliterating
DirtyRegion = DirtyRegion — TargetRegion
ELSE IF Packet is Dirty
DirtyRegion = DirtyRegion | TargetRegion
ELSE IF Packet is Screen to Screen Copy
' TempRegion = SourceRegion & DirtyRegion;
Offset TempRegion by vector (TargetOrigin - SourceOrigin);
DirtyRegion -= TargetRegion;
DirtyRegion |= TempRegion;

Processing of the Dirty region starts from the last position in the Dirty region, working
from top to bottom, breaking a section of the Dirty Region into Rectangles. This section is then

excluded (subtracted) from the Dirty region. Each rectangle is requested from the Video capture

17

WO 2005/114375 PCT/US2005/017791

driver 24, using a user-defined drawing call. If the Dirty region processing reaches the bottom of
the Dirty region 34, or if the total area requested frém the Video capture driver since the last
Marker packet was received exceeds a configured limit, a Marker packet will be requested.
Processing the Dirty region 34 to generate rectangle requests can be approached in several ways.
The algorithm used to break down the Dirty region 34 does not need to be exact, as long as the
union of thé rectangles requested completely covers the Dirty region. That is, the requested
region may be a superset of the dirty region, but not a subset.

According to another embodiment of the present disclosure, the task of processing the
Update queue 30 can be moved into the Processing thread 28, thereby avoiding the need for the
Update queue 30. In this embodiment, the Processing thread 28 updates the Dirty region 34
according to each packet chunk. The Update thread 32 would then only be responsible for
processing the Dirty region to request screen updates. One possible limitation of this approach is
that it would require all thread access of the Dirty region 34 to be serialized, which may hinder
performance as region operations are relatively CPU intensive. Therefore, according to another
embodiment of the present disclosure, better performance can be achieved by combining the
Processing thread 28 and the Update thread 32 completely, as will be described below.

According to this embodiment of the present disclosure, the tasks of the Update thread 32
and the Processing thread 28 are combined into a single thread, as shown by the flow diagram
depicted in Figure 9. This removes the need for the Update queue 30. The main difference with
this embodiment is that the Network dispatch thread 36 is now given the task of inserting Marker
packets back into the Processing thread 28 when they arrive at the head of the Network queue 38.
The Processing thread 28 should then ignore the Marker packet on its first pass through the
processing thread, for example by means of a pass counter in the packet. Figure 9 is a flow chart
for describing this embodiment of the present disclosure.

A determination is made whether the Processing queue 26 is empty (Step S90). If it is
not empty (No, Step S90), a packet chunk is retrieved from the processing queue 26 (Step S92).

A determination is then made whether the packet chunk is a second pass of a Marker packet

18

WO 2005/114375 PCT/US2005/017791

(Step S94). Ifitisthe second pass (Yes, Step S94), the Marker packet is discarded and the
Marker packet is no longer pending (Step S110). Ifit is not the second pass (No, Step S94), the
Dirty region 34 is updatéd according to the chunk (if applicable) (Step S96). Other processing
can then be performed, adding the packet to the Network queue 38 or discarding the packet if it is
a Dirty packet (Step S98). If the Processing queue is empty (Yes, Step S90), a determination is
made whether a Marker packet is pending or the Dirty region is empty (Step S 100). If a Marker
packet is pending or the Dirty region is empty (Yes, Step S100), the process waits for data in the
processing queue (Step S108). If a Marker packet is not pending or the Dirty region is not empty
(No, Step S100), the next section of the Dirty region is processed (Step S102). If the requesteci
data size has exceeded its limit (Yes, Step S104), a Market packet is requested so that the Marker
packet is now pending (Step S106). If the requested data size has not exceeded its limit (No,
Step S104), the process returns. |

Other types of packets can be used. For example, a new packet type, known Update .
packets can be added. These packets are an extension to Dirty packets, and contain a superset of
the information a Dirty packet contains. In addition, they may also contain complex drawing
instructions, which can optionally be sent to the Viewer machine, thus avoiding Dirty region
processing, and potentially reducing the required network bandwidth. Drawing operations
represented by Update packets can have results that do depend on the existing contents of their
Target region. That is, the target region does not Have to be completely obliterated by the
drawing command. As with Dirty packets, the Target region for each Update packet can be a
superset of the actual affected region. For example, complex drawing operations that can not be
represented by Obliterating packets (e.g., text drawing with a transparent background), can often
be represented as Update packets. Update packets are optional, and are employed to reduce the
bandwidth requirements, when connected to a fully-featured viewer machine, capable of
- rendering more complex drawing operations. These Update packets are supported in the
combined Processing and Update thread system, explained above. During graphics processing,

these Update packets undergo Dirty region processing. If the intersection of the packet’s Target

19

WO 2005/114375 PCT/US2005/017791

region and the current Dirty region is an empty region, then the packet can be sent to the Viewer
machine. Otherwise it is processed as a Dirty packet, and the extra drawing information is
discarded. In addition, if a viewer is unable to render an Update packet, as established during
connection negotiation, or if the network connection is too heavily loaded, these Updéte packets
can also be. processed immediately as Dirty packets, regardless of the state of the Dirty region.

Multiple Viewer connections can be supported by adding additional network dispatch
queues and threads for each viewer. The only additional consideration is that Marker packets
should only be added to the Update queue, or returned to the Processing queue for the second
pass (if applicable) once all of the Network dispatcil threads have processed the pénding marker
packet. This can be achieved with reference counting.

The embodiments of the present disclosure allow easier porting to new platforms. The
embodiments of the present disclosure also allow thin-client Viewer components to be easily
developed for web-browsers (Java) and low-performance computing devices, such as Smart-
phones and PDAs.

Fig. 10 shows an example of a computer system which may implement the methods and
systems of the present disclosure. The systems and methods of the present disclosure may be
implemented in the form of a software application running on a computer system, for example, a
mainframe, personal computer (PC), handheld computer, servet, etc. The software application
may be stored on a recording media locally accessible by the computer systefn and accessible via
a hard wired or wireless connection to a network, for example, a local area network, or the
Internet.

The computer system referred to generally as system 1000 may include, for example, a
central processing unit (CPU) 1001, random access memory (RAM) 1004, a printer interface
1010, a display unit 1011, a local area network (LAN) data transmission controller 1005, a LAN
interface 1006, a network controller 1003, an internal bus 1002, and one or more input devices
1009, for example, a keyboard, mouse etc. As shown, the system 1000 may be connected to a

data storage device, for example, a hard disk, 1008 via a link 1007.

20

WO 2005/114375 PCT/US2005/017791

The present disclosure may be conveniently implemented using one or more conventional
general purpose digital computers and/or servers programmed according to the teachings of the
present specification. Appropriate software coding can readily be prepared by skilledA
programmers based on the teachings of the present disclosure. The present disclosure may also
be implemented by the preparation of application specific integrated circuits or by
interconnec':ting an appropriate network of conventional component circuits.

Numerous additional modifications and variations of the present disclosure are possible
in view of the above-teachings. It is therefore to be understood that within the scope of the
appended claims, the present disclosure may be practiced other than as specifically described

herein.

21

WO 2005/114375 PCT/US2005/017791

What is Claimed is:

1. A method of capturing a screen, comprising:

monitoring screen changes on a first display system and inserting information into a
queue, the information including a first type of information and a second type of information;

reading the information from the queue; and

maintaining a dirty region describing areas of the screen which have been changed,
wherein areas affected by the first type of information are added to the dirty region and areas

affected by the second type of information are subtracted from the dirty region.

2. The method of claim 1, wherein the information inserted into the queue comprises

serialized information.

3. The method of claim 2, wherein the serialized information comprises serialized data

packets.
4. The method of claim 1, wherein the first type of information comprises dirty packets
describing areas of the screen that have been modified and the second type of information

comprises obliterating packets.

5. The method of ¢laim 4, wherein the information further comprises a third type of

information.

6. The method of claim 5, wherein the third type of information comprises copy packets

describing screen to screen copy operations.

22

WO 2005/114375 PCT/US2005/017791

7. The method of claim 6, further comprising:
’ scanning through the dirty region and breaking the dirty region down into a
plurality of smaller areas (, wherein the smaller areas comprise rectangular areas);
for each of the smaller areas, requesting a bitmap packet for a corresponding area
of the screen and placing the bitmap packet into the queue;
| requesting a marker packet be placed into the queue when a predetermined event
occurs; and

stopping scanning of the dirty region when the predetermined event occurs.

8. The method of claim 7, wherein the predetermined event comprises at least one of
completion of scanning though the dirty region and a predetermined amount of information

having been requested.

9. The method of claim 8, further comprising retrieving packets out of the queue and

transmitting the read packets to a second display system until a marker packet is retrieved.

10. The method of claim 9, wherein when the marker packet is retrieved the marker

packet is discarded and scanning of the dirty region is restarted.

11. A system for capturing a screen, comprising:

a monitoring unit for mbnitoring screen changes on a first display system and inserting
information into a queue, the information including a first type of information and a second type
of information; 7

a reading unit for reading the information from the queue; and

a maintaining unit for maintaining a dirty region describing areas of the screen which
have been changed, wherein areas affected by the first type of information are added to the dirty

region and areas affected by the second type of information are subtracted from the dirty region.

23

WO 2005/114375 PCT/US2005/017791

12. The system of claim 11, wherein the information inserted into the queue comprises

serialized information.

13. The system of claim 12, wherein the serialized information comprises serialized data

packets.

14. The system of claim 11, wherein the first type of information compriseé dirty
packets describing areas of the screen that have been modified and the second type of

information comprises obliterating packets.

15. The system of claim 14, wherein the information further comprises a third type of

information.

16. The system of claim 15, wherein the third type of information comprises copy

packets describing screen to screen copy operations.

17. The system of claim 16, further comprising:

a scanning unit for scanning through the dirty region and breaking the dirty region
down into a plurality of smaller areas;

a unit that for each of the smaller areas, requests a bitmap packet for a -
corresponding area of the screen and placing the bitmap packet into the queue;

a requesting unit for requesting a marker packet be placed into the queue when a
predetermined event occurs; and »

a stopping unit for stopping scanning of the dirty region when the predetermined

event occurs.

24

WO 2005/114375 PCT/US2005/017791

18. The system of claim 17, wherein the predetermined event comprises at least one of
completion of scanning though the dirty region and a predetermined amount of information

having been requested.

19. The system of claim 18, further comprising a retrieving unit for retrieving packets
out of the queue and transmitting the read packets to a second display system until a marker

packet is retrieved.

20. The system of claim 19, wherein when the marker packet is retrieved the marker

packet is discarded and scanning of the dirty region is restarted.

21. A computer recording medium including computer executable code for capturing a
screen, comprising:

code for monitoring screen changes on a first display system and inserting information
into a queue, the information including a first type of information and a second type of
information,; |

code for reading the information from the queue; and

code for maintaining a dirty region describing areas of the screen which have been
changed; wherein areas affected by the first type of information are added to the dirty region and

areas affected by the second type of information are subtracted from the dirty region.

22. The computer recording medium of claim 21, wherein the information inserted into

the queue comprises serialized information.

23. The computer recording medium of claim 22, wherein the serialized information

comprises serialized data packets.

25

WO 2005/114375 PCT/US2005/017791

24. The computer recording medium of claim2 1, wherein the first type of information
comprises dirty packets describing areas of the screen that have been modified and the second

type of information comprises obliterating packets.

25. The computer recording medium of claim 24, wherein the information further

comprises a third type of information.

26. The computer recording medium of claim 25, wherein the third type of ‘informatioln

comprises copy packets describing screen to screen copy operations.

27. The computer fecording medium of claim 26, further comprising:

code for scanning through the dirty region and breaking the dirty region down into
a plurality of smaller areas;

code, for each of the smaller areas, for requesting a bitmap packet for a
corresponding area of the screen and placing the bitmap packet into the queue;

code for requesting a marker packet be placed into the queue when a
predetermined event occurs; and

code for stopping scanning of the dirty region when the predetermined event

occurs.

28. The computer recording medium of claim 27, wherein the predetermined event
comprises at least one of completion of scanning though the dirty region and a predetermined

amount of information having been requested.

29. The computer recording medium of claim 28, further comprising code for retrieving
packets out of the queue and code for transmitting the read packets to a second display system

until a marker packet is retrieved.

26

WO 2005/114375 PCT/US2005/017791

30. The computer recording medium of claim 29, wherein when the marker packet is

retrieved the marker packet is discarded and scanning of the dirty region is restarted.

27

WO 2005/114375 PCT/US2005/017791

1/12
Fig. 1A

12
Video
Capture
Processing / ' Driver
Queue AN 10
OS Dependent Display
. 14 System
‘CDirty9,
Region
Processing j N
Thread 18
N6
A
Viewer
20

SUBSTITUTE SHEET (RULE 26)

WO 2005/114375 PCT/US2005/017791

2/12
Fig. 1B

13
Video
: Capture
Processing / Driver
Queue .
OS Display
AN 15 System N
11
y
Processing
Thread
N 17
A
Network Network
Queue » Dispatch
Thread
N 19 N\ 21

SUBSTITUTE SHEET (RULE 26)

WO 2005/114375

Fig. 2A

y

3/12

l

Monitor Screen Drawing

v

Data Packets into Processing Queue

v

Read Packets Out of Processing Queue

'

Maintain “Dirty” Region

|

Discard Packets

v

Scan “Dirty” Region

v

Read Bitmap from Screen

v

Process and Send Data to Viewer

v

Subtract Rectangle

S2

S4

S6

S8

S10

S12

Si4

S16

S18

PCT/US2005/017791

SUBSTITUTE SHEET (RULE 26)

WO 2005/114375

Fig. 2B

4/12

l

Monitor Screen Drawing

v

Data Packets into Processing Queue

y

Read Packets Out of Processing Queue

v

Process Video Packets

v

Place Packets into Network Queue

v

Read Packets Out of Network Queue

v

™~ S20
™~ S22

g4

S25

526

S27

PCT/US2005/017791

SUBSTITUTE SHEET (RULE 26)

WO 2005/114375

PCT/US2005/017791
Fig. 3
24
Video
Capture
Processing / Driver
Queue N
’ OS Display 22
26 System
Processing Update Update “Dirty”
Thread > Queue »| Thread «—>» Region
\\‘28 N30 ‘ N3 N
34
Network Queue Network
»/ Dispatch
Thread
N3g] N 36
To Viewer

SUBSTITUTE SHEET (RULE 26)

WO 2005/114375

Fig. 4
!

Insert Data
Into
Processing
Queue

™ §30

y

from
Processing
Queue

Read Packets

™~ 832

y

Place Ref. in
Update
Queue

34

!

Discard
Update
Packets

v

™ 836

Process
Packets and
place
Packets in
Network
Queue

™ g38

v

Read Packets
from Update
Queue

A

Discard
Packets

™ 840

PCT/US2005/017791
y
Scan “Dirty”
Region
™ s44
y
Send
Request
™ 846
y
Request
Marker
T
y
Read Packet -
- out of
Network
Queue
™850
Notify
Yes Update
Thread
- ™ 556
S52
No
y
Transmit Scan “Dirty”
Packet Region and
Request
Updates
~ S54 ™~ S58

™42

l

SUBSTITUTE SHEET (RULE 26)

WO 2005/114375 PCT/US2005/017791

7/12
Fig. 5

OS Display Subsystem
< Video Capture Driver
52
50
Shared
Circular
Buffer ‘ \ Video Host Processes
I/ Capture
Component \\ 54
J L .
Processing Queue :> P(r}gsep gf:g
Stage
\ 56 \\ \\
60 .62 N\

58

SUBSTITUTE SHEET (RULE 26)

WO 2005/114375 PCT/US2005/017791

8/12
Fig. 6

Retrieve Packet
Chunk from
Processing Queue

A 4

S60

Is Chunk
Type Yes
Misc./Marker

Add new
reference to chunk
to update queue

S64

Is Chunk

Type
Dirty?

Release Yes
Reference
to Chunk

A

\872 S66
Additional
caching & color
reduction
processing N
7 S68

Add Chunk to Network Dispatch Queue

S70

SUBSTITUTE SHEET (RULE 26)

WO 2005/114375 PCT/US2005/017791

9/12
Fig. 7

Retrieve Packet IJIS i;(a Marker Packet
Chunk from Update P alrc ‘:; Request is no Longer >
Queue acket: Pending
N S74 N s88
Update Dirty Region
According to Chunk »
N S78
Is a Marker - -
Packet Pending Wait for Data in
or the Dirty Update Queue —>
Region Empty?
N 590

Has Requested
Data Size
Exceeded

Limit?

Process the Next
Section of the Dirty
Region

N 582

Request a Marker Packet. Marker Packet is Now Pending

N S86

SUBSTITUTE SHEET (RULE 26)

WO 2005/114375 PCT/US2005/017791

10/12
Fig. 8

AND (&)

Difference (-)

XOR (%

‘»

SUBSTITUTE SHEET (RULE 26)

WO 2005/114375

PCT/US2005/017791
Is the
Yes Processing -
Queue M
Empty?
S90
Retrieve Packet PIS itlsl2r;(d Marker Packet
Chunk from a;s katr'; er Request is no Longer >
Processing Queue acket! Pending
N $92 N\ S110
Update Dirty Region !
According to Chunk,
if Applicable
+ N S96
Other Processing, then Add Packet to
Network Dispatch Queue or Discard if Dirty >
Packet
N 598
Is a Marker - ;
Packet Pending Wait for Data in
or the Dirty Processing Queue >
Region Empty?
N S108
Has Requested
Process the Next Data Size No
Section of the Dirty Exceeded >
Region Limit?
N
5102 $104
Request a Marker Packet. Marker Packet is Now Pending

\SIO6

SUBSTITUTE SHEET (RULE 26)

WO 2005/114375 PCT/US2005/017791

12/12
Fig. 10

1000
CPU , N ‘ | Network To
Controller PSTN
01— 1003
LAN Data
Memory [WMo | Transmission |¢—» LAN
= Controller Interface
1004
CHdD Input D -\1005 1>06
ar nput Devices
1008 — — 1007 T~ 1009
Printer oIl < »| Display Unit To
Interface ’ LAN
1010~ ~ 002 TT~—1o11

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

interfiienal Application No

PCT/US2005/017791

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 GO6F3/14

According to International Patent Classification (JPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 5 913 920 A (ADAMS ET AL) 1-6,
22 June 1999 (1999-06-22) 11-16,

21-26

column 4, lines 40-65
column 7, 1ine 47 - column 8, line 14
column 8, Tine 32 - column 9, Tine 36
column 9, Tine 55 - column 10, Tine 14

X EP 0 590 817 A (INTERNATIONAL BUSINESS 1-6,
MACHINES CORPORATION) 11-16,
6 April 1994 (1994-04-06) 21-26
column 1, 1ine 48 - column 2, line 17
column 5, Tines 6-26

A US 2002/159517 Al (OKAMOTO KAZUO ET AL) 1-30
31 October 2002 (2002-10-31)
paragraphs ‘0021! - €0023!

D Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance

"E* earlier document but published on or afterthe international aye
filing date

invention

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the

document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
L document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Fax: (+31-70) 340-3016

which is cited to establish the publication date of another *v* document of parti . ; ; ;
’ particular relevance; the claimed invention
Citation or other special reason (as specified) cannot be considered to involve an inventive step when the
*O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu—
other means ments, such combination being obvious to a person skilled
P document published prior to the international filing date but in the art.
later than the priority date claimed *&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the intemational search report
27 September 2005 11/10/2005
Name and mailing address of the ISA Authorized officer

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fulcheri, A
b

Form PCT/ISA/210 (second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

ormation on patent family members

Inter nal Application No

PCT/US2005/017791

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 5913920 A 22-06-1999 NONE

EP 0590817 A 06-04-1994 AT 176338 T 15-02-1999
DE 69323260 D1 11-03-1999
DE 69323260 T2 26-08-1999
GB 2270581 A 16-03-1994
JP 3216059 B2 09-10-2001
JP 6161957 A 10-06-1994
KR 122857 B1 21-11-1997

US 2002159517 Al 31-10-2002 JP 2002325253 A 08-11-2002

Form PCT/ISA/210 (patent family annex) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

