(54) 发明名称

车辆座椅和包括车辆座椅的多用途机动车辆

(57) 摘要

本发明涉及一种车辆座椅 (1)，尤其是多用途机动车辆座椅 (1A)，包括座椅部件 (2)，靠背 (3) 以及支撑装置 (25)，其中所述靠背 (3) 包括下靠背部件 (16) 和上靠背部件 (17)，所述上靠背部件 (17) 安装成通过所述支撑装置 (25) 相对所述下靠背部件 (16) 可移动。其中，所述支撑装置 (25) 包括导轮设备 (26, 126, 226, 326, 426, 526)，所述上靠背部件 (17) 设置成通过所述导轮设备 (26, 126, 226, 326, 426, 526) 相对所述下靠背部件 (16) 沿着位移曲线 (27) 可横向移动，从而使得所述上靠背部件 (17) 至少部分安装成可移动地通过所述下靠背部件 (16) 的侧边 (4A, 4B)。
权利要求书

1. 一种车辆座椅（1），尤其是多用途机动车辆座椅（1A），包括座椅部件（2）、靠背（3）
以及支撑装置（25），其中所述靠背（3）包括下靠背部件（16）和上靠背部件（17），所述上靠
背部件（17）安装成通过所述支撑装置（25）相对所述下靠背部件（16）可移动，其特征在
于，所述支撑装置（25）包括导轮设备（26、126、226、326、426、526），所述上靠背部件
（17）设置成通过所述导轮设备（26、126、226、326、426、526）相对所述下靠背部件（16）
沿着位移曲线（27）横向移动，从而使得所述上靠背部件（17）至少部分安装成可移动地通过所述
下靠背部件（16）的侧边（4A、4B）。

2. 根据权利要求1所述的车辆座椅（1），其特征在于，所述导轮设备（26、126、226、326、
426、526）构造成使得所述上靠背部件（17）在横向移动过程中额外围绕至少一部分所述位
移曲线（27）旋转和/或围绕以一定角度延伸至所述位移曲线的横贯轴（25）旋转，所述横贯
轴（25）优选为横贯于所述位移曲线（27）。

3. 根据权利要求1或2所述的车辆座椅（1），其特征在于，所述导轮设备（26、126、226、
326、426、526）至少部分设置成螺旋形。

4. 根据权利要求1至3中任一项所述的车辆座椅（1），其特征在于，所述导轮设备
（26、126、226、326、426、526）包括一个位于一个之上且彼此间隔一定距离的两个导向元
件（36、37、236、237、336、337、436、437、536、636、736、836、936、1036、1136），且所述两个导
向元件（36、37、236、237、336、337、436、437、536、636、736、836、936、1036、1136）中的一
个导向元件在所述位移曲线（27）的路径上与所述两个导向元件（36、37、236、237、336、337、
436、437、536、636、736、836、936、1036、1136）中的另一个导向元件定位不同。

5. 根据权利要求1至4中任一项所述的车辆座椅（1），其特征在于，所述导轮设备
（26、126、226、326、426、526）包括用于引导导向元件（36、37、236、237、336、337、436、437、536、
636、736、836、936、1036、1136）的滚子元件组件（378、478、578、678、778、878、978、1078、
1178），所述滚子元件组件（378、478、578、678、778、878、978、1078、1178）包括一个或多个
定位轴承滚子元件（267、367、467、567）和一个或多个浮动轴承滚子元件（268、368、468）。

6. 根据权利要求1至5中任一项所述的车辆座椅（1），其特征在于，所述导轮设备
（26、126、226、326、426、526）包括用于引导导向元件（36、37、236、237、336、337、436、437、536、
636、736、836、936、1036、1136）的滚子元件组件（378、478、578、678、778、878、978、1078、
1178），所述滚子元件组件（378、478、578、678、778、878、978、1078、1178）包括两个定位轴
承滚子元件（267、367、467、567）和至少一个浮动轴承滚子元件（268、368、468）或包括两
个浮动轴承滚子元件（268、368、468）和至少一个定位轴承滚子元件（267、367、467、567）。

7. 根据权利要求1至6中任一项所述的车辆座椅（1），其特征在于，所述两个所述浮
动轴承滚子元件（268、368）设置成通过共用的弹簧元件，尤其是弹簧片元件（273、373、473）相
对至少一个定位轴承滚子元件（267、367）拉紧。

8. 根据权利要求1至7中任一项所述的车辆座椅（1），其特征在于，所述导轮设备
（526）包括用来代替滚动轴承滚子元件的（268、368、468）的滚动轴承滑动元件（590）。

9. 根据权利要求1至8中任一项所述的车辆座椅（1），其特征在于，所述导轮设备
（26、126、226、326、426、526）包括至少一个滚子元件对，所述滚子元件对包括固定滚子元
件和相对所述固定滚子元件可移动的滚子元件，所述可移动的滚子元件尤其安装成弹簧拉紧的。

10. 根据权利要求1至9中任一项所述的车辆座椅（1），其特征在于，所述导轮设备
（26，126，226，326，426，526）包括滚子支撑装置（260，360，460，560），至少两个相互隔开的导向路径（263，264，363，364，463，464）的滚子元件组件（378，478，578，678，778，878，978，1078，1178）和/或滚子元件对（261，262，265，266，361，362，461，462）安装在所述滚子支撑装置（260，360，460，560）上以引导至少两个并排设置且彼此间隔一定距离的导向元件（36，37，236，237，336，337，436，437，536，537，636，736，836，936，1036，1136）。

11. 根据权利要求1至10中任一项所述的车辆座椅（1），其特征在于，所述导轨设备（26，126，226，326，426，526）包括至少两个相互隔开的并用于引导至少两个并排设置且彼此间隔一定距离的导向元件（36，37，236，237，336，337，436，437，536，636，736，836，936，1036，1136）的导向路径（263，264，363，364，463，464）；两个彼此间隔一定距离的导向路径（263，264，363，364，463，464）中，其中一个导向路径（263，264，363，364，463，464）的至少一个滚子元件（367，368，467，468）的导向面（383，384，483，484）与另一个导向路径（263，264，363，364，463，464）的至少一个滚子元件（379，479）的导向面在空间（385，495）上朝向不同。

12. 根据权利要求1至11中任一项所述的车辆座椅（1），其特征在于，用于引导第一导向元件（336，436）的滚子元件（367，368，467，468）的旋转轴（369，372，469，472）和用于引导另一导向元件（337，437）的滚子元件（379，479）的至少一个旋转轴（382，482）在空间（385，495）上朝向不同，尤其是在空间（385，495）上的朝向相互垂直。

13. 多用途机动车（6），尤其是农用多用途机动车，包括至少一个车辆座椅（1），其特征在于，所述车辆座椅（1）为权利要求1-12中任一项所述的车辆座椅（1）
车辆座椅和包括车辆座椅的多用途机动车辆

技术领域
[0001] 本发明涉及车辆座椅，尤其涉及多用途机动车辆座椅。该车辆座椅包括座椅部件、靠背部件以及支撑装置（holding device），其中，该靠背部件包括下靠背部件和上靠背部件，该上靠背部件通过该支撑装置相对于下靠背部件可移动地安装。
[0002] 本发明还涉及包括至少一个座椅的多用途机动车辆，尤其是农用多用途机动车辆。

背景技术
[0003] 各种各样传统的车辆座椅，尤其是用于多用途机动车辆的车辆座椅，特别是用于农用多用途机动车辆的车辆座椅是在现有技术中广为人知的。
[0004] 尤其是对于这些农用多用途机动车辆的司机们来说，他们在利用这些农用多用途机动车辆及与其连接的工作装备工作的过程中，经常采用横向或后向的工作坐姿，这不同于正常的朝向前方（换句话说沿相当长时间的行进方向）的车辆座椅的坐姿，例如，司机们采用横向或后向的工作坐姿以便能够更好地接触并驾驶位于车厢内侧后方的操作元件或者能相当长时间地、更好地观察连接在该车辆多用途车辆后方的工作装备。
[0005] 为了给处于这种横向或后向的工作坐姿的司机提供驾驶位于后侧的操作元件的简便操作途径，或者仅为了使其能更好地观看或观察车辆座椅后方的后操作区，专利DE3046049A1中公开了一种车辆座椅。在该车辆座椅中，靠背至少分成了两部分。因此，相应的，靠背包括上靠背部件和下靠背部件，至少该上靠背部件可绕垂直轴旋转。由于上靠背组件可以围绕该垂直轴旋转，所以该司机在任何时候都能够转动它/她的躯干或上半身以便例如接触位于车辆座椅后方的操作元件。就这一点而言，由于上靠背组件可以围绕该垂直轴旋转，所以该司机确实能够毫不费力地通过下靠背组件向前伸出。然而，采用该技术方案，处于这种横向或后向的地工作坐姿的司机的上半身得不到有力地支撑，或根本没有支撑。由此，上靠背部件不能对司机起到足够地支撑。
[0006] 在另一个更新的技术方案中，司机们可以通过旋转适配器使得整个车辆座椅（换句话说，整个刚性座椅结构大致包括座椅部件和靠背）间歇性地围绕设定的竖直旋转轴旋转，以便其能够接触到车厢内的后方空间或者观察车厢外的后方空间。因此，座椅部件作为整体的靠背保持固定。因此，车辆座椅上的任何部件，例如多功能扶手，都可以与车辆座椅一起旋转。然而，结果是，仍然不能方便地操作设置成随后可退回到车厢侧面的操作杆。
[0007] 尤其是，为了能够继续可靠地操作农用多用途机动车辆的踏板，最后的技术方案使得司机不得不将自己转至车辆座椅的舒服的座垫轮廓外。继而，这会导致压力点，并进而使得特别是司机的臀部及大腿区域不舒服。
[0008] 具体地，靠垫轮廓一般形成可以尽可能地为处于朝前的车辆座椅的坐姿的司机提供支撑，而且并不会使他/她丧失驾驶过程中运动所需的必要自由度。为了不妨碍肩部/手臂区域的运动自由度，靠背的靠垫的上部区域中必须不能过于与人体适配（contour）。
然而，为了确保为司机提供良好地支撑并由此充分地减轻载荷，所有驾驶位中的支撑面都应该尽可能地大。由于前述原因，例如良好地运动所需的自由度，尽可能大的支撑面只能在一些条件下实现，因此导致其实现不能让人满意，这是由于司机在两个完全不同的驾驶位之间交替移动。

[0009] 另一主要缺陷是，因为即使在观察后部的操作设备的时候仍然需要通过踏板和方向盘来安全地控制多用途机动车辆，所以旋转适配器可能的旋转范围受到了限制。为了满足这些需求，司机经常不得不在相当长时间内采用不舒服的姿势，这必然会导致他/她的整个身体发生危险的扭曲。此外，科学研究证明：尤其是当有振动作用时，特别是当身体没有得到很好地支撑时，这类不舒服的姿势会损坏身体结构。进一步确定的是，通过靠背提供的良好地支撑可以大大地减少脊柱上的载荷。

发明内容

[0010] 本发明的目的在于为司机提升座椅的舒适度，特别是当他在该驾驶位时不采用这类不舒服的姿势时，对他的安全也能够可靠地驾驶车辆。用于多用途机动车辆，尤其是安全地驾驶该车辆。此外，本发明的另一目的在于：当司机采用这类不舒服的姿势时，可以避免其产生提前疲劳。

[0011] 本发明的目的是通过车辆座椅，尤其是多用途机动车辆座椅来实现。该车辆座椅包括座椅部位、靠背部位以及支撑装置，其中，该靠背部位包括下靠背部位和上靠背部位。该上靠背部位通过该支撑装置相对于该下靠背部位可移动地安装。该车辆座椅的特征在于该支撑装置包括导轮设备。上靠背部位通过导轮设备相对于该下靠背部位沿着移动曲线可横向移动地安装，从而使上靠背部位安装成至少部分可移动地通过该下靠背部位的侧边。

[0012] 本发明的导轮设备特别适用于确保上靠背部件低损耗且持久无隙 (play-free) 的安装；通过该安装甚至可以接收并传递强大的支撑力。这对于强力的冲击载荷尤为重要。其中，该强大的冲击载荷尤其在用于农用目的的多用途机动车辆中经常发生。

[0013] 尤其是，如果多用途机动车辆座椅具备这类导轮设备，则处于后向的不舒服的姿势的司机可以得到非常好地支撑，而靠背的上靠背部位不会妨碍司机驾驶位于该座椅后方的操作元件或观察该由多用途机动车辆拖拽的工作装备。

[0014] 与从现有技术中得知的技术方案相反的是，凭借上靠背部件，当处于横向或后向的不舒服姿势时，司机的躯干可以得到有利地、额外地支撑，尤其是使得司机的身体结构或躯干结构得到有利的缓解，从而避免其产生提前疲劳并由此提高了工作效率。

[0015] 凭借根据本发明的导轮设备，可以以极其简单构造将上靠背部件从位于该下靠背部件正上方且较佳位于该靠背的中心位置处的停靠位置移动至位于该靠背侧边的支撑位置上，以便在那儿为司机的躯干提供额外的支撑。

[0016] 为了能够实现导轮设备的大范围的效果，上述设备可以以各种各样的方式来构造，如下面更详细地描述。

[0017] 在本发明的含义内，用语“座椅部件”表示车辆座椅中用于放置司机臀部的区域。由此，座椅部件通过座椅部件缓冲元件形成了相应的座椅表面。

[0018] 因此，用语“靠背”描述了车辆座椅中用于当司机坐在座椅部件上时通过他/她的背部来支撑其自身的区域。因此，靠背从该座椅部件的后端向上延伸至通过该座椅部件。
[0019] 因此，该靠背分成了上靠背部件和下靠背部件，上靠背部件安装成通过导轮设备可相对下靠背部件及座椅部件成可线性移动。
[0020] 下靠背部件较佳以与座椅部件相对固定的方式设置在车辆座椅上。然而，这并不是必要条件。由此，下靠背部件构成了靠背中与座椅部件相对固定的部分。
[0021] 由此，上靠背部件构成了靠背中相对座椅部件至少横向移动的部件。
[0022] 为此设置了支撑装置，该支撑装置理想上直接连接到下靠背部件上，以便能够使该上靠背部件能相对下靠背部件沿着假设位移曲线移动。然而，通过配置这种类型的车辆座椅，该支撑装置也可以设置在靠背的其他区域中或设置在车辆座椅的框架上。可选择地，该支撑装置也可以设置在相应的多用途机动车的车体侧边，以便使该上靠背部件安装成能相对于下靠背部件以这种方式可线性位移。
[0023] 在任何情况下，通过在本发明含义内的上靠背部件，在座椅部件和靠背的外侧设置额外司机躯干支撑装置，以使为处于相对于横向或后向的工作坐姿的不舒服的姿势中的司机提供支撑。
[0024] 因此，采用根据本发明引导的上靠背部件可以实现座椅舒适性方面的相当大的提升。
[0025] 另一方面，司机也可以进一步避免产生疲劳，尤其是当他/她不得不长时间用眼睛监控多用途机动车后方区域时。尤其是采用这种方式，事故风险明显下降且由此提高了工作安全性。
[0026] 在此结合的上靠背部件与司机躯干支撑装置至少部分临时设置在相对车辆座椅自由的支撑区域中，该支撑区域与靠背上半部区域等高且横向偏离靠背的中心，从而使坐在车辆座椅中的、处于横向或后向工作坐姿的司机至少在与他/她的肩部和/或胸部区域等高的位置上受到靠背的横向偏心的支撑，该额外司机躯干支撑装置设置成通过移动设备在相对车辆座椅自由的支撑区域中从停靠位置移动至额外支撑位置。
[0027] 在这种情况下，该移动设备为导轮设备。
[0028] 优选地，当采用不舒服的姿势，尤其是上述的横向或后向工作坐姿时，通过按此种方式设置的司机躯干支撑装置可以极大地减轻司机身上的荷重。尽管优选仅在需要时设置额外司机躯干支撑装置，但该额外司机躯干支撑装置是可得到的。此外，例如在朝前的驾驶位置中，由于额外司机躯干支撑装置仍保持在停止位置或其原来的位置上，所以该额外司机躯干支撑装置不会造成干涉。
[0029] 优选地，额外司机躯干支撑装置及上靠背部件可设置成使得坐在车辆座椅上并处于横向或后向工作坐姿的司机至少在与他/她的肩部和/或胸部区域的等高的位置上受到靠背的横向偏心的支撑。
[0030] 在本发明的含义内，用语“额外司机躯干支撑装置”描述了一种用于坐在车辆座椅上并处于不舒服姿势的司机提供额外的躯干支撑的装置。通过本申请所公开的上靠背部件可以以极其简单的方式来实现该额外司机躯干支撑装置的构造示例，从而使得对于这类构造配置，这两个用语是同义词。
[0031] 在本申请中，用语“躯干”描述的是解剖学上人体的中心区域，且该躯干包括人体的胸腹部、背部以及骨盆。
[0032] 由此，优选地，假设该额外司机躯干支撑装置包括用于接触司机背部和/或肩部
区域的接触面，该接触面的形状优选为符合人体工程学的，以便能与人体解剖学模型极好地匹配。这就意味着，司机须频繁地使用这类额外躯干支撑件。同时，由于环境经常非常艰苦，特别是当使用农用车辆在田地里工作时，通过这类接触面可以避免司机身体受到伤害，因此，司机对任何能定向支撑躯干支撑件都心存感激。

【0033】然而，不仅此种形状的接触面是有利的。而且，还必须放置该接触面以便其在空间中具有正确地朝向。如与上靠背部件相关的细节描述所描述的，在极其简单地构造且非常有效地方式中，也可能使用现有的导轮设备。

【0034】在本发明的含义内，用语“相对车辆座椅自由（be free from）的躯干支撑区域”描述的是车辆座椅中固定的车辆座椅支撑装置不能合理地固定设置的区域，这是由于他们在正常驾驶位置上对司机产生了巨大的破坏作用。

【0035】因此，一方面，现有的相对车辆座椅自由的躯干支撑区域大致位于靠背的上三分之一处，换句话说，位于靠背高度的一半以上，并经常位于司机的直接横向或各个后向观察区域中。该躯干支撑区域可以进一步地延伸至上三分之一以上。这就意味着，该相对车辆座椅自由的躯干支撑区域绝对需要至少在前向驾驶位置处保持自由状态。因此，它不应该与传统的支撑区域相混淆。另一方面，本发明含义内的相对车辆座椅自由的躯干支撑区域位于偏离靠背中心的位置处，这就意味着，它不能与传统的支撑区域相混淆，其中该传统的支撑中设置有头部支撑件。这是因为相对车辆座椅自由的躯干支撑装置额外地设置在靠背的前方或靠背缓冲元件的前方及其侧边。因此，可相对车辆座椅自由的躯干支撑区域设置在车辆座椅的座椅部件的侧边并位于其上方。

【0036】此处，描述“横向或后向工作坐姿”涉及一种司机上身旋转的不舒服的姿势，以便能够观察后面的工区，尤其是农用车多用途车辆后面的工区。

【0037】在这点上，应该注意的是，优选地，根据本发明的车辆座椅不仅供司机使用。而且，几乎任何应用领域上都可以使用根据本发明的车辆座椅。在这些领域中，额外躯干支撑件至少将临时设置在该车辆座椅的附近。

【0038】如果移动设备包括用于使额外司机躯干支撑装置平移的构件，则该额外司机躯干支撑装置可以从停靠位置很平稳地移动至额外躯干支撑装置上，通常情况如相对于上靠背部件的导轮设备也是这样。

【0039】优选地，提供特别有利的变形结构，以将导轮设备设置成在横向移动过程中，上靠背部件围绕移动曲线和/或围绕横轴于该移动曲线的横贯轴额外地旋转。

【0040】不仅通过上靠背部件沿着移动曲线横向线性移动至通过下靠背部件的至少一个侧边来实现司机躯干的支撑，还可以通过上靠背部件额外地围绕移动轴旋转，从而导致上靠背部件向后倾斜来实现司机躯干的支撑，也就是说，尤其是用于司机躯干的支撑面非常好地定位在相对车辆自由的支撑区域内。

【0041】该支撑面优选设置靠背缓冲部件，这些靠背缓冲部件相应地设置在上靠背部件上，由此，这些靠背缓冲部件与上靠背部件一起作线性移动。

【0042】相应地，可以理解，不仅上靠背部件，还有下靠背部件，每个都具有对靠背整体起缓冲作用的缓冲部件，这些缓冲部件相应地设置成相对彼此可移动。

【0043】作为替换或新增地，上靠背部件在其横向移动过程中围绕横贯于移动轴进行延伸的横贯轴旋转，这就意味着上靠背部件可以进一步相对上靠背部件的横向延伸围绕该横贯
轴向下倾斜，也意味着可以进一步提升司机的支撑舒适度。

当上靠背部件位于其靠停位置时，上靠背部件的横向延伸大致与车辆的横向延伸平衡。

该横贯轴主要设置成横贯于移动曲线的水平轴。

因此，理想地，移动曲线可以沿沿横贯于车辆座椅固有的基本就坐方向的方向延伸，该基本就坐方向通常沿车辆的纵向延伸方向延伸。由此，该上靠背部件可以移动至车辆座椅的横向区域中，并且铰接在必要时重新定位，从而使司机将他/她的肩部/手臂区域转动或弯曲达到下靠背部件。此时该上靠背部件之前仍然设置在其靠停位置上，尽管如此，移动至支撑位置的上靠背部件仍然能在司机上背部区域中为其提供支撑。

移动曲线可以是设置在一个或多个部件或组件外侧的物理轴部件或假想轴。由此，如果将移动曲线设置成横贯于车辆座椅的基本就坐方向进行延伸，这是有益的。

此处，移动曲线理想上沿着基本移动方向延伸，上靠背部件沿该主要移动方向横向移动至通过下靠背部件的侧边。

如果导轮设备至少部分构造为螺旋形，则上靠背部件的上述运动次序可以以及其简单的构造方式来实现。

例如，为此，导轮设备包括一个或多个导向元件，这些导向元件围绕移动曲线成螺旋形延伸，换句话说呈螺纹状，从而使得在相应的线性移动过程中，上靠背部件可以围绕该移动曲线以简单的构造方式旋转。

由此，优选地，根据这种情况下线性移动，上靠背部件围绕移动曲线可旋转地安装。

例如，在本发明的含义内，用语“导向元件”涉及安装在滚子本体上的伸长的导轮导向元件。清楚地是，可以设置两个以上的这类导向元件，也就是说提高线性导轮元件的稳定性，然而，这相应地增加了结构的复杂性。

可以理解，这类螺旋形导向元件有各种构造示例，以便将至少部分导向元件构造成螺旋形。例如，具有导向槽和/或导向轴的这类导向元件沿着移动曲线将其本身扭曲。

在实际测试中已发现，如果导向装置包括一个位于一个之上且彼此间隔一定距离的两个导向元件，且一个导向元件在移动曲线的路径上不同于另一导向元件定位，那么支撑装置特别是其导向设备可以承受非常大的司机躯干支撑力。

换句话说，在所述移动曲线的方向上，一个导向元件至少部分设置在与另一导向元件不同的位置上。

因此，第一导向元件构成第一弯曲路径，且第二导向元件构成了第二弯曲路径，优选地，上述路径至少部分设置成具有相对彼此变化的轴向偏移。由此，两个导向元件相对彼此以变化的轴向偏移固定设置。结果，两个弯曲路径至少部分区域相对彼此倾斜（skew）设置。

如果并排设置且彼此间隔一定距离的两个导向元件相对彼此按这类级数（progression）分别设置或定向，这些两个导向元件之间的轴向偏移可以以极其简单的构造方式来实现，也就是说上靠背部件在横向移动过程中可以相对移动曲线倾斜。

例如，分别使用相应的气缸元件或液压缸元件以便通过空气作用或液压作用来实现上靠背部件的这类线性移动。
然而，如果手动实现移动，可选在一个或多个弹簧元件的辅助机械作用下实现移动，则可以实现与该导向元件相关的极其简单的构造。

为了能够确保导向元件与滚子元件之间非常好的间隙补偿（play compensation），则优选假设该导轮设备包括用于引导导轮元件的滚子元件组件。导轮元件具有一个或多个定位轴承滚子元件和一个或多个浮动轴承滚子元件。

此处，这类滚子元件组件几乎可以由任何数量的、几乎以任何方式相对彼此定位的滚子元件，该滚子元件与相应的导向元件相互作用。

以下通过例子解释这类滚子元件组件。

如果导轮设备包括用于引导导轮元件的滚子元件组件，且该子弹元件具有两个定位轴承滚子元件和至少一个浮动轴承滚子元件，则以非常简单地构造的方式实现导向元件的良好地引导，反之亦然。

在实际测试中已发现，通过两个定位轴承滚子元件以及单个浮动轴承滚子元件或仅使用一个定位轴承滚子元件和两个浮动轴承滚子元件可以以充分无隙的方式引导导向元件。

每个导向元件至少设置三个滚子元件的滚子元件组件，是有利的。

可以理解，浮动轴承滚子元件可以以各种方式相对一个或多个定位轴承滚子元件拉紧。优选地，如果两个浮动轴承滚子元件设置成通过共用的弹簧元件相对至少一个定位轴承滚子元件拉紧，则可以减少线性导向元件的结构。

此处，各种构造的弹性元件适用于构造合适的浮动轴承滚子元件的拉紧件，其中用于拉紧浮动轴承滚子元件的弹簧元件已经证明为成功的构造上非常简单的型式。

更优先地，导轮设备包括至少一个具有固定滚子元件和相对固定滚子元件可移动的滚子元件的滚子元件对。

此处，定位轴承滚子元件为定点旋转（stationary but rotatable）的滚子元件，浮动轴承滚子元件为可移动的滚子元件。因此，此处这些用语是同义词。

因此，可移动的滚子元件最佳安装有弹簧拉紧件，从而确保导向元件的无隙引导。

由此，可以通过此类滚子元件对，使用导向设备以特别无隙的方式在本发明含义内导轮设备的起始位置和结束位置之间来引导导向元件。

如果导轮设备包括至少一个滚子支撑装置，则可以进一步减少导轮设备的结构复杂性，相互间隔一定距离的至少两个导向路径的滚子元件组件和/或滚子元件对安装在滚子支撑装置上，以便引导至少两个并排设置且间隔一定距离的导向元件。

例如，导轮设备的滚子支撑装置被构造成；至少两个滚子元件对安装成沿移动轴相对彼此间隔一定距离。如果导轮设备包括至少两个相互间隔一定距离的并用于引导至少两个并排设置且间隔一定距离的导向元件的导向路径，则可以进一步使得滚子元件组件多样化，相互间隔一定距离的两个导向路径中的一个的至少一个滚子元件的导向面与相互间隔一定距离的两个导向路径中的另一个的至少一个滚子元件导向面在空间上的朝向不同。

例如，第一滚子元件或多个第一滚子元件竖直定位以按照单个或多个导向面引导第一导向元件，同时，另一滚子元件或多个另外的滚子元件大致水平定位以按照导向面引导另一导向元件。

在这点上，优选地，用于引导第一导向元件的滚子元件的旋转轴和用于引导另一
导向元件的滚子元件的至少一个旋转轴设置成在空间上相对彼此朝向不同，换句话说，延伸方向并不相互平行。

[0076] 例如，另一导向元件仅通过单个滚子元件来引导，该单个滚子元件相对第一导向元件的朝向不同与第一滚子元件。

[0077] 可以理解，在空间上朝向不同的旋转轴之间可以设置不同的角度。优选地，这些旋转轴设置成在空间上相互垂直。

[0078] 尤其是，这些旋转轴也可以设置成相对彼此歪斜。

[0079] 可以理解，根据设置在导轮设备上的要求，滑动元件可以额外用于代替单个滚子元件以便能够实现想要的导向性能或导向效果。

[0080] 想象上，由此，移动滚子元件可以由相应的移动滑动元件来代替，这是因为滑动元件可以以简单地构造方式，尤其是按照弹簧拉紧件，安装在导轮设备上或尤其是安装在设置的导轮设备的滚子支撑装置上。

[0081] 在这一方面，导轮设备提供了供选择的变形构造，该导轮设备可以包括浮动轴承/滑动元件来代替定位轴承滑动元件或代替浮动轴承滚子元件。

[0082] 可以理解，相应的导向元件可以以任何想要的构造的方式设置且分布在导轮设备上。

[0083] 对应于导向元件的此种方式构造的滚子元件可以以任何想要的构造的以及排列设置导轮设备上。

[0084] 如果导轮设备包括设置在上靠背部件内部的棒状和/或管状的导向元件，则导轮设备可以以非常紧凑的构造的方式组合至车辆座椅中。

[0085] 想象上，这些棒状和/或管状导向元件完全整合到上靠背部件中。然而，通过相应的构造，它们也可以仅部分设置在上靠背部件中。

[0086] 在任何情况下，上靠背部件通过这些棒状和/或管状导向元件沿着移动曲线移动，从而使上靠背部件至少部分移动到相对车辆座椅自由的支撑区域中。

[0087] 优选地，该杆状和/或管状元件设置在上靠背部件内部，从而使他们能与上靠背部件一起移动以便构成至少部分移动曲线。结果，可以确保的是，在移动过程中，杆状元件和/或管状元件可以与上靠背部件一起完全移动至可相对车辆座椅自由的躯干支撑区域中，从而使得下靠背部件的上方，靠背的上部区域中，车辆座椅上可以形成相对组件自由的区域。

[0088] 为了能够可靠地引导这种导向元件，如果导轮设备包括设置在下靠背部件上的滚子元件，就是有利的，其中，在滚子元件上沿横向贯穿的轴线即坐方向引导该杆状和/或管状导向元件。

[0089] 在这一点上，应该注意的是，这类滚子元件不是必须与下靠背部件连接。而且，采用相应的配置，它们也可以设置在靠背的其他区域中或设置在位于车辆座椅旁边的框架上等等。

[0090] 优选地，这些滚子元件以固定的方式设置在下靠背部件上，从而使得支撑装置可以构造成极其简单构造或为支撑装置配置导轮设备。

[0091] 进一步地，优选地构造提供的导轮设备具有移动曲线，该移动曲线至少弯曲一次，较佳重复弯曲。
例如，仅弯曲一次的移动曲线已足够使上靠背部件移动至支撑位置上，该支撑位置位于上靠背部件的中心停靠位置的下方、上方、前方或后方。

然而，如果该移动曲线重复弯曲，上靠背部件将沿着移动曲线在空间位置上经历多种变化，例如使它绕障碍物弯曲等等。

例如，为了能够包围任何其他可能出现在上靠背部件的中心停靠位置与额外支撑位置之间的路径上的障碍物，优选该导向元件包括重复弯曲的移动曲线即可。

可以理解，作为整体的上靠背部件仅配置有靠背本身的上子区域。

然而，上靠背部件可以仅是靠背缓冲元件，凭借导向元件，该靠背缓冲元件沿着移动曲线至少朝向下靠背部件的侧边横向线性移动。尤其是，靠背缓冲元件的框架 (frame) 或枢体 (frame) 相对座椅部件固定设置，从而使得仅有靠背缓冲元件从中心停靠位置移动至额外偏心支撑位置上。

在任何情况下，在上靠背部件包括靠背缓冲元件的实施例中，通过该靠背缓冲元件构成了上述的支撑面。

进一步地，上靠背部件可以额外地沿其横向延伸方向上分开，从而使得靠背部件并不是整体沿着移动曲线移动，而是仅有上半靠背部件移动，通过垂直间隙将该第一上半靠背部件与第二上半靠背部件从空间上分开。

在任何情况下，仍然优选的变形中提供了一种延伸至通过靠背的靠背部件，该靠背部件具有在就坐方向上置于靠背部件前方的靠背缓冲元件。第一靠背缓冲元件为在横向与座椅部件相对固定设置的下靠背缓冲元件，另一靠背缓冲元件设置在上靠背部件区域中且位于第一靠背缓冲元件的上方。上靠背部件用作额外司机躯干支撑装置，该额外司机躯干支撑装置设置在座椅部件和靠背的外侧。该额外司机躯干支撑装置至少部分地设置在相对车辆座椅自由的支撑区域中，该支撑区域与上靠背部件区域等高且横向偏离靠背中心，从而使得坐在车辆座椅中并处于横或后向工作坐姿的司机至少在与他/她的肩部和/或腰部等高的位置上得到靠背的横向偏心的支撑。该额外司机躯干支撑装置通过移动设备在可相对车辆座椅自由的支撑区域中从中心停靠位置移动至额外支撑位置。

在这种情况下，如前述所述的，移动设备为导轨设备。

本发明的目的还可以通过多用途机动车辆，尤其是农用多用途机动车辆来实现。该多用途机动车辆包括至少一个车辆座椅，该多用途机动车辆或农用多用途机动车辆根据本申请公开的一个技术特征的车辆座椅或根据本申请公开的一个技术特征的组合的车辆座椅。

如果多用途机动车辆，尤其是农用多用途机动车辆包括根据本发明的车辆座椅，则在工作运行过程中，尤其是当在田地或未铺设的路面上驾驶时特别为司机提供额外的躯干支撑。这就意味着如前面所述的详细描述所述的，司机得到更好的保护。

附图说明

结合附图和以下描述对本发明的其他优点、目标和性能予以解释，附图中通过示例示出和描述了使用不同构造的导轨设备的车辆座椅。

就这一点而言，单个附图中设有等同结构的组件或车辆座椅的区域采用相同的结构标记，这些组件或区域并不是必须要在所有附图中进行标号或描述的。因此，只有明显变化
的组件或区域，尤其是实例示出的两个可能的导轮设备设置有新的标号。

[0105] 导轮设备可以构成线性导轮设备，且移动曲线可以构成线性移动轴。

[0106] 附图中：

[0107] 图 1a 和 1b 分别为正常操作条件下的多用途机动车辆座椅的示例性透视图和示例性后视图，在此有人坐在该座椅上，在该正常操作条件下，上靠背部件设置在下靠背部件上方中设置的停靠位置上。

[0108] 图 2a 和 2b 分别为特殊支持操作条件下的多用途机动车辆座椅的另一示例性透视图和后视图，在此有人坐在该座椅上，在该特殊支持操作条件下，上靠背部件横向移动至偏离下靠背部件中心的支撑位置上。

[0109] 图 3 为上靠背部件的第一可能导轮设备在起始位置处的第一示例性细节图，在该起始位置处，其中两个弯曲导向元件一个位于另一个之上且彼此间隔一定距离地安装在滚子元件支撑器上，且至少部分沿相对彼此相互垂直的方向延伸。

[0110] 图 4 为第一可能导轮设备在横向移动的侧边位置（第一中点位置）处的第二示例性细节图，在该侧边点，与滚子元件支撑器等高处的位置处，两个导向元件出现了第一轴向偏移。

[0111] 图 5 为第一可能导轮设备在进一步横向移动的侧边位置（第二中点位置）处的进一步示例性细节图，在该进一步横向移动的侧边点，与滚子元件支撑器等高处的位置处，两个导向元件出现了更大的轴向偏移。

[0112] 图 6 为第一可能导轮设备在结束位置处的最终示例性细节图，在该结束位置处，与滚子元件支撑器等高处的位置处，两个导向元件出现了最大的轴向偏移。

[0113] 图 7 为第二可能导轮设备在起始位置处的示例性细节图，在该起始位置处，一个位于另一个之上且彼此间隔一定距离，并至少部分沿相对彼此垂直的方向延伸的两个导向元件呈现多次弯曲。

[0114] 图 8 为图 7 中的导轮设备在结束位置处的进一步示例性细节图，在该结束位置处，上靠背部件位于支撑位置上。

[0115] 图 9 为第三可能导轮设备的示例性主视图，该导轮设备包括安装有四个滚子元件对的滚子装置；

[0116] 图 10 为图 9 中滚子装置的示例性平面图；

[0117] 图 11 为图 9 中滚子装置沿图 9 中 A-A 线的示例性剖视图；

[0118] 图 12 为第四可能导轮设备的示例性正视图，该导轮设备包括安装有两个滚子元件对和单个滚子元件的滚子装置；

[0119] 图 13 为图 12 中的滚子装置的示例性平面图；

[0120] 图 14 为图 12 和图 13 中的滚子装置沿图 12 中 A-A 线的示例性剖视图；

[0121] 图 15 为第五可能导轮设备的示例性主视图，该导轮设备具有滚子装置，该滚子装置包括由两个固定的滚子元件、相对固固定滚子元件可移动的滚子元件以及单个具有不同朝向的滚子元件组成的滚子元件组件（arrangement）；

[0122] 图 16 为图 15 中滚子装置的示例性平面图；

[0123] 图 17 为图 15 和图 16 中的滚子装置沿图 15 中 A-A 线的示例性剖视图；

[0124] 图 18 为第六可能导轮设备的示例性主视图，该导轮设备具有由滚子和滑动元件
导向的导向元件；
[0125] 图 19 为图 18 中的滚子装置的示意图；
[0126] 图 20 为滚子元件组件的示意图，该滚子元件组件在安装导向元件的安装点上有三个滚子元件；
[0127] 图 21 为另一滚子元件组件的示意图，该滚子元件组件在安装导向元件的安装点上有四个圆柱滚子元件；
[0128] 图 22 为另一滚子元件组件的示意图，该滚子元件组件在安装导向元件的安装点上有三个圆柱滚子元件；
[0129] 图 23 为再一个滚子元件组件的示意图，该滚子元件组件在安装架料的导向元件的安装点上有四个圆柱滚子元件；
[0130] 图 24 为供选择的滚子元件组件的示意图，该滚子元件组件在安装U型轮廓的第一导向元件的安装点上有四个圆柱滚子元件；以及
[0131] 图 25 为再一滚子元件组件的示意图，该滚子元件组件在安装另一U型轮廓的导向元件的安装点上有四个圆柱滚子元件。
[0132] 标号清单
[0133] 1 车辆座椅
[0134] 1A 多用途车辆座椅
[0135] 2 座椅部件
[0136] 3 靠背
[0137] 4 右侧边
[0138] 5 扶手
[0139] 6 多用途机动车辆
[0140] 7 基本就坐方向
[0141] 10 座椅缓冲元件
[0142] 11 座椅部件表面
[0143] 15 总高度
[0144] 16 下靠背部件
[0145] 17 上靠背部件
[0146] 18 下部缓冲元件
[0147] 19 第一外侧区
[0148] 20 第二外侧区
[0149] 21 与人体适配的下部表面
[0150] 22 上部缓冲部件
[0151] 23 光滑表面
[0152] 25 支撑装置
[0153] 25A 第一支撑支架元件
[0154] 25B 第二支撑支架元件
[0155] 25C 支撑板元件
[0156] 26 导轮设备
[0157] 26A 壳体元件
[0158] 26B 第一端
[0159] 26C 第二端
[0160] 27 假想移动曲线
[0161] 28 中心停靠位置
[0162] 29 偏心支撑位置
[0163] 30 起始位置
[0164] 31 垂直中心轴
[0165] 32 结束位置
[0166] 33 第一倾斜方向
[0167] 34 横贯轴
[0168] 35 第二倾斜方向
[0169] 36 第一导向元件
[0170] 37 第二导向元件
[0171] 38 管状元件
[0172] 39 剖视图
[0173] 40 支撑装置
[0174] 41 支撑金属薄片元件
[0175] 42 第一滚子元件支撑器
[0176] 43 第二滚子元件支撑器
[0177] 44 第三滚子元件支撑器
[0178] 45 移动方向
[0179] 50 共用竖直面
[0180] 51 竖直平行面
[0181] 52 第一轴向偏移
[0182] 53 第一倾斜角
[0183] 54 第一中间位置
[0184] 55 更大的轴向偏移
[0185] 56 第二中间位置
[0186] 57 更大的倾斜角
[0187] 58 最大的轴向偏移
[0188] 59 最大的倾斜角
[0189] 70 司机躯干支撑装置
[0190] 126 第二可能线性导向设备
[0191] 126B 第一端
[0192] 126C 第二端
[0193] 180 第一圆杆元件
[0194] 181 第二圆杆元件
[0195] 226 第三可能线性导向设备
[0196] 226B 第一端
[0197] 226C 第二端
[0198] 225 支撑装置
[0199] 225C 支撑板元件
[0200] 236 第一导向元件
[0201] 237 第二导向元件
[0202] 240 支撑装置
[0203] 241 支撑薄片金属元件
[0204] 260 滚子支撑装置
[0205] 261 第一滚子元件对
[0206] 262 第二滚子元件对
[0207] 263 第一导向路径
[0208] 264 第二导向路径
[0209] 265 第三滚子元件对
[0210] 266 第四滚子元件对
[0211] 267 定位轴承滚子元件
[0212] 268 浮动轴承滚子元件
[0213] 269 旋转元件的固定轴
[0214] 271 槽
[0215] 272 旋转元件的移动轴
[0216] 273 弹簧片元件
[0217] 274 张紧网（tension web）
[0218] 275 法兰元件
[0219] 276 固体壳
[0220] 277 固体板段
[0221] 325 支撑装置
[0222] 325C 支撑板元件
[0223] 326 第四可能导轮设备
[0224] 336 第一导向元件
[0225] 337 第二导向元件
[0226] 338 支撑装置
[0227] 341 支撑金属片元件
[0228] 360 滚子支撑装置
[0229] 361 第一滚子元件对
[0230] 362 第二滚子元件对
[0231] 363 第一导向路径
[0232] 364 第二导向路径
[0233] 367 定位轴承滚子元件
[0234] 368 浮动轴承滚子元件
[0235] 369 旋转元件的固定轴
[0236] 371 槽
[0237] 372 旋转元件的移动轴
[0238] 373 弹簧片元件
[0239] 374 张紧网元件
[0240] 375 法兰元件
[0241] 376 壳体
[0242] 376A 下壳体部件
[0243] 378 滚子元件组件
[0244] 379 单个滚子元件
[0245] 382 旋转元件的另一固定轴
[0246] 383 第一导向面
[0247] 384 另一导向面
[0248] 385 空间
[0249] 425 支撑装置
[0250] 425C 支撑板元件
[0251] 426 第五可能线性导轮设备
[0252] 426B 第一端
[0253] 426C 第二端
[0254] 436 第一导向元件
[0255] 437 第二导向元件
[0256] 438 U型管状元件
[0257] 438A 第一管状元件臂
[0258] 438B 第二管状元件臂
[0259] 438C U型尖端
[0260] 440 支撑装置
[0261] 441 支撑金属薄片元件
[0262] 467 定位轴承滚子元件
[0263] 468 浮动轴承滚子元件
[0264] 469 旋转元件的固定轴
[0265] 471 槽
[0266] 472 旋转元件的移动轴
[0267] 473 弹簧片元件
[0268] 474 张紧网元件
[0269] 475 法兰元件
[0270] 476 固体壳体
[0271] 478 滚子元件组件
[0272] 479 单个滚子元件
[0273] 482 旋转轴的另一固定轴
具体实施方式
图 1 至图 8 中所示的车辆座椅 1 为多用途机动车辆座椅 1A。该多用途机动车辆座椅 1A 包括座椅部件 2、靠背 3、扶手 5，该扶手 5 进一步设置在靠背 3 的右侧边 4A 上。

多用途机动车辆座椅 1A 的座椅部件 2 通过下车辆座椅部件（未示出）与多用途机动车辆 6 的车体（未示出）连接。

多用途机动车辆 6 定义了车辆纵向延伸 X，车辆横向延伸 Y 以及车辆竖向延伸 Z，这些方向延伸也可以用于指明多用途机动车辆座椅 1A 的方位。

因此，使用纵向延伸 X 可以定义靠背 3 的“前方”或“后方”的位置或位置上的变化。

在车辆横向延伸 Y 的辅助下可以定义相对靠背 3 的“横向”或“朝侧边”的位置或位置上的变化。

相应地，使用车辆竖向延伸 Z 可以定义相对于靠背 3 的“向上”或“向下”的位置或位置上的变化。

因此，多用途机动车辆座椅 1A 在多用途机动车辆 6 中设置成使得该多用途机动车辆座椅 1A 的基准（primary）坐姿方向 7 大致与车辆纵向延伸 X 相平行。

座椅部件 2 包括座椅部件缓冲元件 10，该座椅部件缓冲元件 10 构成了座椅部件 2 的实际座椅部件表面 11。

靠背 3 的形状都是相似的，靠背 3 在其总高度 15 上细分成下靠背部件 16 和上靠背部件 17。总高度 15 大致沿着车辆竖向延伸 Z 的方向延伸。

因此，下靠背部件 16 包括下部缓冲元件 18。该下部缓冲元件 18 具有外侧区（outer cheek region）19、20，这样使得作为整体的下靠背部件 16 形成了具有与人体高度相配的（highly contoured）下部表面 21。

相应地，上靠背部件 17 包括上部缓冲元件 22，但是上部缓冲元件 22 形成了光滑的上部表面 23。

多用途机动车辆座椅 1A 还包括支撑装置 25（向上看图 2a 和图 2b），通过该支撑装置 25 使得上靠背部件 17 相对于下靠背部件 16 可移动地安装在靠背 3 上。

按此种方式构造的支撑装置 25 包括根据本发明的导轮设备 26（向上看图 3）。该导轮设备 26 的构造使得上靠背部件 17 沿着假想移动曲线 27 横向线性移动至通过下靠背部件 16 或靠背 3 的至少一个侧边 4，同时，下靠背部件 16 相对座椅部件 2 固定设置。

因此，上靠背部件 17 构成了靠背 3 中可相对座椅部件 2 横向移动的部分，同时下靠背部件 16 构成了靠背 3 中可相对座椅部件 2 固定的部分。

结果，上靠背部件 17 可以沿着移动曲线 27 移出或滑出中心停靠位置 28（参见图 1a，1b，1c，3，7）并移动至偏心支撑位置 29 上（参见图 2a，2b，6，8）。

清楚的是，由于总高度 15 沿着车辆纵向延伸 Z 的方向延伸，上靠背部件 17 至少在中心停靠位置 28 上完全越过下靠背部件 16。换句话说，上靠背部件 17 位于下靠背部件 16 的上方，从而使得司机在这种正常操作条件下沿基本就坐方向 7 舒服地坐在多用途机动车辆座椅 1A 上。
[0328] 因此，假想移动曲线 27 沿着横跨于基本就坐方向 7 或车辆纵向 X 的方向进行延伸。由此，该假想移动曲线 27 大致沿着车辆横向延伸 Y 的方向延伸。
[0329] 在上靠背部件 17 的中心停靠位置 28 处，导轮设备 26 或其相应的组件均位于起始位置 30（分别参见图 3 和图 7）处。
[0330] 由于一方面上靠背部件 17 且另一方面导轮设备 26 均相对靠背 3 与垂直中心轴 31 居中设置，所以就分别限定了该中心停靠位置 28 和起始位置 30。垂直中心轴 31 大致沿车辆纵向延伸 Z 的方向延伸。由此，该中心停靠位置 28 居中设置在两侧边 4A 和 4B 之间。
[0331] 相对于上靠背部件 17 的偏心支撑位置 29，导轮设备 26 位于横向偏心结束位置 32（尤其是，参见图 2a、图 2b 和图 6）处。该横向偏心结束位置 32 位于与垂直中心轴 31 靠近的右侧，并由此至少部分位于与下靠背部件 16 的右侧边 4A 靠近的右侧。
[0332] 可以理解的是，对于以此种方式构造的导轮设备 26，横向偏心结束位置 32 也可以设置在垂直中心轴 31 的左侧，并由此还可以至少部分设置在下靠背部件 16 的左侧壁 4B 的左侧。
[0333] 在该实施例中，导轮设备 26 完全容纳在上靠背部件 17 的内部或至少部分由上靠背部件 17 所遮盖，因此，导轮设备 26 并未明确地显示在图 1a、图 1b、图 2a 和图 2b 中。
[0334] 凭借根据本发明的导轮设备 26，当上靠背部件 17 沿着假想位移曲线 27 移动时，上靠背部件 17 也可以在上靠背部件 17 沿着横向移动至通过该上靠背部件 16 的右侧边 4A，还可以相对靠背 3 向后倾斜或向下倾斜。
[0335] 在这个实施例中，上靠背部件 17 在横向移动过程中可以额外地沿着第一倾斜方向 33 围绕假想移动曲线 27 旋转和/或沿着第二倾斜方向 35 沿着横贯轴 34 旋转，该横贯轴 34 沿着横贯于移动曲线 27 的方向延伸。
[0336] 导轮设备 26 至少部分成螺旋形设置，以便以简单的构造实现上靠背部件 17 的位置上的倾斜变化多样化，从而使得导轮设备 26 紧凑地、理想上完全地整合到上靠背部件 17 中。
[0337] 在这个特别的第一实施例中，由于导轮设备 26 包括两个并排设置且相互间隔的、并以振荡部件 38（此处仅以实例标号）的形式出现的导向元件 36 和 37，所以以简单的结构形式实现了螺旋形构造的导轮设备 26 的效果。如果这两个导向元件 36 和 37 并不是相互平行的分段延伸，则该两个导向元件 36 和 37 至少部分相对彼此歪斜设置。
[0338] 换句话说，位于导轮设备 26 的壳体元件 26A 中（尤其是向上看图 3）的导向元件 36 和 37 中的一者相对于另一者位于位移曲线 27 的不同路径上。
[0339] 在这个实施例中，导向元件 36 和 37 设置成在导轮设备 26 的第一端部 26B 以相互平行的方式延伸，同时，从图 3 至图 6 的上部分附图中的单个剖视图 39 中可以清楚地看出，导向元件 36 和 37 设置成在朝向第二端 26C 延伸时相对彼此歪斜。
[0340] 因此，两个导向元件 36 和 37 限定了假想的移动曲线 27，此处的移动曲线 27 被想象成在两个导向元件 36 和 37 之间延伸。
[0341] 因此，以弯曲的方式构造该导向元件 36 和 37，从而使得假想移动曲线 27 弯曲一次，也就是说，当上靠背部件 17 沿着弯曲一次的假想移动曲线 27 移动时，该上靠背部件 17 沿着弯曲路径移动。
[0342] 除了两个导向元件 36 和 37 之外，导轮设备 26 还包括与多用途机动车辆座椅 1A
的支撑装置 25 连接的支撑装置 40。

[0343] 更准确地说，该支撑装置 40 与支撑板元件 25C 连接以便其固定。

[0344] 在这个实施例中，该支撑装置 40 由图 Δ 形状的支撑金属薄片元件 41 连接。继而，图中的支撑元件支撑器 42、43 和 44 均与该支撑金属薄片元件 41 连接（参见图 9 和图 10）。因此，图 Δ 形状的支撑金属薄片元件 41 实质上是连接到支撑板元件 25C，较佳以焊接的方式连接。基于螺纹连接、铆钉连接等等的连接也可以是可替代地等同连接方式。

[0346] 在这个示例性实例中，支撑装置 40 与支撑装置 25 刚性连接。同样地，三个滚子元件支撑器 42、43 和 44 均固定安装在支撑装置 40 的支撑金属薄片元件 41 上以便其固定。总的来说，这就使得上靠背部件 17 相对下靠背部件 16 具有可靠且持久的连接。

[0347] 凭借图 Δ 形状的支撑金属薄片元件 41，支撑装置 40 整体结构更加紧凑，并且第一导向元件 36 可以仅在第一滚子元件支撑器 42 上移动，而第二导向元件 37 可以在第二滚子元件支撑器 43 和第三滚子元件支撑器 44 上移动，从而使得两个导向元件 36 和 37 均可在根据本发明的移动方向 45 上沿着假想的移动曲线 27 滚动。

[0348] 优选地，这些滚子元件支撑器 42、43 和 44 的设置使得通过支撑装置 40 的支撑金属薄片元件 41 和设置在下靠背部件 16 上的支撑装置 25 将这些滚子元件支撑器 42、43 和 44 设置在下靠背部件 16 上；并且在这些滚子元件支撑器 42、43 和 44 上，沿假想移动曲线 27 的方向以横贯于基本就坐方向 7 方式同时引导该构造成管状元件的导向元件 36 和 37。

[0349] 图 3 中，导轮设备 26 仍然位于起始位置 30（见图 1a、图 1b）处，其中，在该起始位置 30 处，上靠背部件 17 位于中心暂停位置 28 处。在与支撑装置 40 等高的图 3 的上部剖视图 39 中可以特别清楚地看出，两个导向元件 36 和 37 一起相互平行且居中设置在到导轮设备 26 的第一端部 268 区域的垂直面 50 中。由此，上靠背部件 17 尚未设置成本发明含义内的向后倾斜或向下倾斜。

[0350] 然而，在支撑装置 40 处的图 4 的上部剖视图 39 中可以特别清楚地看出，在两个导向元件 36 和 37 进一步朝向导轮设备 26 的第二端 26C 前进时，第一导向元件 36 已不再与第二导向元件 37 一起居中设置在共用的垂直面 50 中，而是居中设置在垂直平行面 51 中，从而使得两个导向元件 36 与 37 之间出现第一轴向偏移 52。

[0351] 由于两个导向元件 36 和 37 均固定安装在壳体元件 26A 中，这就带来以下效果；当上靠背部件 17 在移动方向 45 上离假想移动曲线 27 沿横向移动时，上靠背部件 17 在第一倾斜方向 33（见图 2a 和图 2b）上向后倾斜成第一倾斜角 53。同时，在图示的第一中间位置 54 处，由于多少有些倾斜设置的支撑装置 40 以及导向元件 36 和 37 的弯曲（见图 2a 和图 2b），上靠背部件 17 在第二倾斜方向 35 上横绕横轴 34 向下倾斜。

[0352] 例如，如具有相当大的轴向偏移 55 的图 5 中清楚地阐述地，由于在朝向第二端部 26C 前进的过程中两个导向元件 36 和 37 之间的轴向偏移持续增大，所以当上靠背部件 17 朝向其偏心支撑位置 29 进一步移动或当导轮设备 26 移动至其结束位置 32（见图 6）处时，这种效果得到了加强。

[0353] 相应地，在该第二中间位置 56 处，第一倾斜角 53 增大至更大的倾斜角 57（见图 5 中剖视图 39），并且这种增大还会继续，直到两个导向元件 36 和 37 通过相应的滚子元件支撑器 42、43 和 44 沿移动方向 45 移动至第二端部 26C 上，同时导轮设备 26 最终位于其结
束位置 32 持有上靠背部件 17 最终位于其偏心支撑位置 29 处为止。

[0354] 在束位置 32 处，利用该最大的轴向偏移 58 及相应地最大倾斜角 59 使得上靠背部件 17 能够完全用作额外的支撑面，还用作最大限度滑出并相应定位的司机驱动支撑装置 70。

[0355] 尤其是，一旦上靠背部件 17 完全移动到其偏心支撑位置 29（参见图 2a、2b 和图 6），该上靠背部件 17 就可以完全用作额外司机驱动支撑装置 70，相应地增大了司机座椅的舒适度。

[0356] 然而，关于第一示例性实例，该两个导向元件 36 和 37 仍然具有单次弯曲，并且与图 3 至图 4 中详细描述的第一导轮设备 26 关联的管状元件 38 的形式出现。在该另一实施例中，图 7 和图 8 中所示的供替换的导轮设备 126 中的杆状元件 180 和 181 具有多次弯曲，从而使得上靠背部件 17 可以随着多次弯曲的假想移动曲线（这里未明确示出）移动。结果，优选地，在中心停靠位置 28（参见图 7）与偏心支撑位置 29（参见图 8）之间的移动过程中，上靠背部件 17 也可以随意地包围障碍物（未示出）。

[0357] 另外，图 7 和图 8 中所示的多用途机动车辆 1A 与前面图 1 和图 6 中所描述的结构对应，所以符号参考相关的描述以避免重复。

[0358] 涉及图 9 至图 11 中所示的第三实施例，第三可能导轮设备包括滚子装置 260。该滚子装置 260 上安装有用于界定第一导向元件 236 的第一导向路径 263 的第一滚子元件对 261、262，以及用于限定第二导向元件 237 的第二导向路径 264 的第三滚子元件对 265 和第四滚子元件对 266。

[0359] 滚子支撑装置 260（滚子装置 260）为支撑装置 240 的一个组成部分，该滚子支撑装置 260 通过支撑金属薄片元件 241 连接至多用途机动车辆座椅 1A（尤其参见图 1a、图 1b、图 2a 和图 2b）的支撑装置 225（图中未详细描述）的支撑板元件 225C 上。

[0360] 在该第三实施例中，每个滚子元件对 261, 262, 265 和 266 均由定位轴承滚子元件 267 和浮动轴承滚子元件 268 组成。该定位轴承滚子元件 267 可定点旋转地安装在滚子支撑装置 260 中，浮动轴承元件 268 相应地相对固定滚子元件 267 可移动地安装在滚子支撑装置 260 中。

[0361] 相应地，固定滚子元件 267 与定位轴承滚子元件 267 的含义相同，可移动滚子元件 268 与浮动轴承滚子元件 268 的含义相同。

[0362] 然而，由此，固定轴承滚子元件 267 包括固定设置在滚子支撑装置 260 中的旋转轴 269，每个浮动轴承滚子元件 268 具有位于槽 271 中的可移动的旋转轴 272。

[0363] 各个槽 271 形成在滚子支撑装置 260 中，从而使得浮动轴承滚子元件 268 可以相对各自关联的定位轴承滚子元件 267 移动，进而使得相应的导向元件 236 或 237 仍然可以在不使用滚子元件对 261, 262 和 265, 266 的情况下继续引导。

[0364] 此外，浮动轴承滚子元件 268 相应地由弹簧拉紧（spring-braced），尤其是通过单独弹簧元件 273 拉紧，其中，单独弹簧元件 273 安装成相对两个张紧网 274 以及可移动的旋转元件 272 的轴拉紧的。

[0365] 在每种情况下通过法兰元件 275（即通过实例标记）使得第一导向元件 236 和第二导向元件 237 在第三可能导轮设备 226 的第一端 226B 和第二端 226C 处相互刚性连接，上靠背部件 17 通过螺钉连接至这些法兰元件 275 上（尤其参见图 1a、图 1b、图 2a 和图 2b）。
并且由此与两个导向元件 236 和 237 刚性连接。

[0366] 滚子支撑装置 260 还包括坚固的外壳 276, 外壳 276 通过螺钉与单个固体板元件 277(仅通过实例标记）连接在一起。

[0367] 图 12 所示的第四可能导轮设备 326 的第四实施例中，第四可能导轮设备 326 包括供替换的滚子支撑装置 360, 滚子支撑装置 360 进而通过法兰连接至支撑装置 340 的支撑金属薄片元件 341, 支撑金属薄片元件 341 设置在支撑装置 325（未给出详细的描述）的支撑板元件 325C 上。

[0368] 进而，第四可能导轮设备 326 包括第一导向元件 336 和第二导向元件 337，两者通过法兰元件 375 在其相应的端部上相互刚性连接。

[0369] 这些导向元件 336、337 通过滚子元件组件 378 在滚子支撑装置 260 上线性滚动地引导。

[0370] 在另一实施例中，滚子元件组件 378 由两个滚子元件对 361 和 362 组成，通过该滚子元件对 361 和 362 引导第一导向元件 336 在导轮设备 326 上移动。

[0371] 与之相反的是，仅通过单个滚子元件 379 引导第二导向元件 337 在滚子支撑装置 360 上移动。

[0372] 两个滚子元件对 361 和 362 每个都由定位轴承滚子元件 367 和浮动轴承滚子元件 368 组成，相关的固定滚子元件可旋转地固定在滚子支撑装置 360 的壳体 367 中旋转元件的固定轴 369 上。然而，两个相应的可移动的滚子元件每个均可通过壳体 376 内的旋转元件 372 的移动轴沿着槽 371 可移动地安装。

[0373] 还在第四实施例中，滚子元件对 361 和 362 的两个浮动轴承滚子元件 268 再次通过单个弹簧片元件 373 设置，该弹簧片元件 373 设置成在张紧元件 374 与两个旋转元件的可移动轴 372 之间拉紧。

[0374] 因此，张紧元件 374 空间上设置在两个旋转元件的可移动轴 372 之间，从而使得单个弹簧片元件 373 可以相应的由这三点实现偏置（biased）。

[0375] 单个滚子元件 379 通过另一旋转元件的定点旋转轴 382 固定在壳体 376 的壳体部件 376A 中。

[0376] 因此，另一旋转元件的固定轴 382 设置成与旋转元件的固定轴 369 相垂直，而且还与旋转元件的移动轴 372 相垂直，也就是说构成第一导向路径 363 的导向面 383 和第二导向路径 364 的另一导向面 384 在空间 385 中相对彼此设置或定位在不同位置。

[0377] 图 15 至 17 所示第五实施例阐述了第五可能导轮设备 426，该第五可能导轮设备 426 包括不同构造的滚子支撑装置 460，该滚子支撑装置 460 安装有选择的滚子元件组件 478，该滚子元件组件 478 一方面由两个定位轴承滚子元件 467 和一个浮动轴承滚子元件 468 组成，另一方面还包括单个滚子元件 479。

[0378] 滚子支撑装置 460 与线性导轮设备 426 的支撑装置 440 的支撑金属薄片元件 441 法兰连接。进而，如其他实施例中所重复描述的，该支撑装置 440 设置在支撑装置 425 的支撑板元件 425C 上，且支撑装置 425 直接连接到靠背 3（参见图 1a、图 1b、图 2a 和图 2b）的下靠背组件 16 上。

[0379] 因此，两个定位轴承滚子元件 467 和浮动轴承滚子元件 468 形成了第一导向元件 436 的第一导向路径 463。为此，仅由单个滚子元件 478 形成了第二导向元件 437 的第二导
向路径464，也就是说，总的来说导轮设备具有更细长的结构。

在该第五实施例中，两个导向元件436, 437均形成U型管状元件438，U型管状元件438的两个管状元件臂438A和438B在线性导轨设备426的第二端426C的区域中，在U型的尖端438C上相互不可拆卸地连接（unrelesably）。

进而在线性导轨设备426的第一端426B处，U型管状元件438的两个管状元件臂438A和438B通过法兰元件（未示出）（参见图9和图12的实例）刚性且可拆卸地连接。

在该实施例中，U型管状元件438的两个管状部件臂438A和438B形成有第一弯曲部486A、第二弯曲部486B和第三弯曲部486C，并在U型管状元件438的尖端438C上形成第四弯曲部486D。

可以理解，这类弯曲部486A, 486B, 486C也可以设置在导向元件436和437上，且该导向元件436和437并不通过尖端438C相互连接（参见图7和图8）。

尤其是，通过呈现在两个管状元件臂438A和438B的端部的三处弯曲部486A, 486B和486C使得上靠背部件17（参见图1a、图1b、图2a和图2b）可以沿着重复折弯或弯曲的移动曲线27移动，从而使上靠背部件17从其中心部位29移动至其偏心支撑位置29上时，位于靠背3侧边的其他元件或组件也可以弯曲，反之亦然。

因此，通过两个定位轴承滚子元件467及浮动轴承滚子元件468安装该第一管状元件臂438A；同时，仅通过单个滚子元件479引导或安装该第二管状元件438B。两个定位轴承滚子元件467每个均通过固定设置在滚子支撑装置460的壳体467中的旋转元件的轴469可旋转地固定安装。因此，浮动轴承滚子元件468通过壳体467中的旋转元件的移动轴472安装在槽471中。旋转元件的移动轴472由弹簧片元件473拉紧。为此，弹簧片元件相应地夹紧在旋转元件的移动轴472与分别位于旋转元件的移动轴472的两侧的两个张紧带474之间。

在线性导轨设备426的第二端426B处，该两个管状元件臂438A和438B通过法兰元件475相互刚性且可拆卸地连接（参见图16）。

从图17中可以清楚地看出，旋转元件的固定轴469与旋转元件的移动轴472在空间485中朝向不同；且在空间485中，旋转元件的固定轴469和旋转元件的移动轴472均与单个滚子元件479的旋转元件的另一固定轴482的朝向不同。尤其是，从图17中可以清楚地看出，旋转元件的另一固定轴482垂直于旋转元件的轴469和472。结果，由定位轴承滚子元件和浮动轴承滚子元件限定的第一导向面483同样设置成与由线性导轨设备426上的单个滚子元件479限定的另一导向面484在空间485中朝向不同。

图18和19所示的第六实施例中，通过额外滑动元件590实施第六可能线性导轨设备526的滚子元件组件578与导向元件536之间的间隙补偿（play compensation）。导向元件536通过额外滑动元件590沿按压方向511持续地按压在滚子元件组件578的定位轴承滚子元件567上。

因此，定位轴承滚子元件567安装在线性导轨设备526的滚子支撑装置560上。同样地，额外滑动元件590以弹簧承载的形式安装在该滚子支撑装置560中，为此，额外滑动元件590设置在可移动地伸缩销元件592上。沿按压方向591拉紧整个伸缩销元件592的伸缩弹簧元件592并示出。

在该第五可能线性导轨设备526中，导向元件536由金属薄片结构组成，该金属薄
片结构包括滑动槽 593，额外滑动元件 590 设置在该滑动槽 593 中。导向元件 536 还包括沿着导向元件 536 的纵向延伸方向延伸的伸长材料 548。借助于该伸长材料 548 引导该伸缩销元件 592 通过导向元件 536，从而使得额外滑动元件 590 位于且安装在滑动槽 593 中，滑动槽 593 从滚子支撑装置 560 的方向上通过导向元件 536。

[0392] 图 20 至图 25 显示了另外多种可能的导轮设备几何结构以及可能滚子元件的几何结构及排列，以及安装的滚子元件的数量。

[0393] 图 20 中所示的导向元件 636 为固体材料制成的圆棒。由具有相同地凹陷形成的三个滚子元件（未分开标号）滚子元件组件 678 引导该导向元件 636。

[0394] 假设图 21 所示的导向元件 736 由固体材料圆棒、总数为四个球面滚子元件的不同滚子元件组件 778 组成，则四个球面滚子元件围绕导向元件 736 同心设置。因此，四个球面滚子元件中的两个形成了第一个滚子元件 761 对且其直径大于四个球面滚子元件中的其他两个的直径。具有相同直径的球面滚子元件相互之间相对设置。另两个球面滚子元件构成了第二滚子元件对 762。

[0395] 根据图 22 的实施例，导向元件 836 再次由圆棒固体材料组成，该导向元件 836 通过三个球面滚子元件（未分开标号）安装和引导。三个球面滚子元件围绕圆的导向元件 836 同心设置，且这三个球面滚子元件都具有相同的直径。由此，导向元件 836 通过由三个同样的球面滚子元件组成的滚子元件组件 878 来引导和安装。

[0396] 图 23 所示的导向元件 936 为矩形固体材料棒，该导向元件 936 通过由两个滚子元件对 961 和 962 组成的滚子元件组件 978 来安装，两个滚子元件对 961 和 962 包括总数为四个的球面滚子元件（未分开标号）。因此，四个球面滚子元件中的两个还具有相同的直径，但每种情况下，这两个球面滚子元件在位置上彼此相对设置以用作滚子元件对 961 或 962。

[0397] 图 24 所示的导向元件 1036 构成为 U 型，且通过具有两个滚子元件对 1061 和 1062 的不同的滚子元件组件 1078 来引导和安装，进而，该滚子元件组件 1078 包括四个球面滚子元件（未分开标号）。因此，四个球面滚子元件中的两个是相同的（滚子元件对 1061），且四个球面滚子元件中的两个还具有不同的结构（滚子元件对 1162）。不同的球面滚子元件中的一个设置在导向元件 1036 内部，并相应地至少部分由导向元件 1036 的三个侧壁包围。也就是说，该滚子元件组件 1078 具有非常紧凑的结构。

[0398] 如图 25 所示的实施例中，导向元件 1136 再构造出 U 型，然而，滚子元件组件 1178 的球面滚子元件设置成完全周向分布在导向元件上。因此，滚子元件组件 1178 再次由两个滚子元件对 1161 和 1162 组成，相应的滚子元件对 1161 或 1162 的单个球面滚子元件的构造相同。

[0399] 可以理解，上述实施例仅为本发明的车辆座椅或导轮设备及其组件的第一配置。因此，本发明的配置不限于这些实施例中。

[0400] 要求本申请文件中公开的所有技术特征对本发明而言都是必不可少的，只要与现有技术相比，它们单独或其结合都是新颖的。
图 7
图17

图18
图 19

图 20

图 21

图 22