发明名称：摄像器件和可携带电子器件

摘要

一种摄像器件，当控制部分根据来自 CCD 摄像机的图像信息中的亮度信号决定图像比规定值 1 暗时，在 LED 不发射光的同时控制部分把亮度信号存储在从 CCD 摄像机输出的图像信息中，然后控制 LED 按来自 LED 的规定光量控制 LED。在这时，控制部分存储在从 CCD 摄像机输出的图像信息中的亮度信号，以得到在两个亮度信号之间的亮度差。当得到的亮度差大于规定值 2 时，控制部分控制 LED 按光量 1(例如，最大光量)发射光。当得到的亮度差大于规定值 2 但不大于规定值 3 时(规定值 2 < 规定值 3)，控制部分控制 LED 按光量 2(光量 1 >光量 2)发射光。当得到的亮度差大于规定值 3 时，控制部分控制 LED 按光量 3(光量 2 >光量 3)发射光，以进行静止图像摄影操作。
1. 一种摄像器件，包括：
 一个摄像部分，用来摄像被摄物体的图像以输出图像信息；
 一个发光部分，用来照射被摄物体；
 一个释放开关，用来指令摄像部分摄影一个静止图像；及
 一个控制部分，用来根据当发光部分发光时从摄像部分输出的图像信息和当发光部分不发光时从摄像部分输出的图像信息控制在摄影静止图像时发光部分的光量。

2. 根据权利要求 1 所述的摄像器件，其特征在于，控制部分根据在从当发光部分发光时从摄像部分输出的图像信息探测的亮度与从当发光部分不发光时从摄像部分输出的图像信息探测的亮度之差，控制在摄影静止图像时发光部分的光量。

3. 根据权利要求 2 所述的摄像器件，其特征在于，当亮度差增大时，控制部分减小在摄影静止图像时发光部分的光量越多。

4. 一种摄像器件，包括：
 一个摄像部分，用来摄像被摄物体的图像以输出图像信息；
 一个发光部分，用来照射被摄物体；及
 一个控制部分，用来根据当发光部分发光时从摄像部分输出的图像信息和当发光部分不发光时从摄像部分输出的图像信息产生一个与到要摄影的物体的距离相对应的输出。

5. 根据权利要求 1 至 4 任一项所述的摄像器件，其特征在于，发光部分是 LED。

6. 一种整体装有根据权利要求 1 至 5 任一项所述的摄像器件的可携带电子器件。
摄像器件和可携电子器件

[本发明的技术领域]
本发明涉及一种摄像器件和一种诸如可携电话之类的可携电子器件，更具体地说，涉及一种摄像器件和一种诸如能够照射被摄影物体的可携电话之类的可携电子器件。

[现有技术]
当在数字静物摄影机中得到与距离相对应的信息时，有时由通过用来摄像的诸如 CCD 之类的图像传感器得到的图像信息获得图像的对比度和驱动聚焦透镜以使对比度最大和聚焦的自动聚焦系统(下文把它称作“清晰度探测系统”)。在这种情况下，由于通过使用用来摄像的图像传感器获得与到被摄影物体的距离相对应的信息，所以能简化结构。

例如，在日本专利公开 No. 184381/2000 和日本专利公开 No. 275033/2001 中公开了一种使用与用来摄像的图像传感器分离的测距传感器得到距离信息的结构。

而且，距离信息不仅用于自动聚焦，而且用来调节在频闪光摄影时的曝光量。简要地描述，当被摄影物体较长时，增大在频闪光摄影时的曝光量。当到被摄影物体的距离较短时，减小在频闪光摄影时的曝光量。

例如，在诸如装有摄像器件的可携电话之类的可携电子器件中，由于得不到至被摄影物体的距离，所以没有进行对曝光量的控制，即不控制频闪光发射时的频闪光量。

[本发明要解决的问题]
然而，在清晰度探测系统的情况下，聚焦透镜需要驱动，从而由于驱动系统的不良条件探测精度麻烦地变坏，一直占花费较多时间来得到距离信息。

而且，当把测距传感器与用来摄像的图像传感器分离地使用时，
没有不便利地简化结构。更进一步，诸如带有摄像器件的可携带电话之类的可携带电子器件没有探测到与所被摄影物体的距离相对应的信息，从而不可能控制闪光量。当至被摄影物体的距离较短时，曝光量有害地过分增大，得到发白的照片(图像)。

本发明的一个目的在于提供一种摄像器件，其中当通过使用从摄像部分输出的图像信息得到与到被摄影物体的距离相对应的信息时不需要驱动透镜。本发明的另一个目的在于，提供一种带有在频闪摄影时能够控制曝光量的摄像器件的可携带电子器件。

[用来解决问题的装置]

第一发明涉及一种摄像器件，该器件包括：一个摄像部分，用来摄像被摄影物体的图像以输出图像信息；一个发光部分，用来照射被摄影物体；一个释放开关，用来指令摄像部分摄影一个静止图像；及一个控制部分，用来在摄影静止图像时根据当发光部分发光时从摄像部分输出的图像信息和当发光部分不发光时从摄像部分输出的图像信息控制发光部分的光量。根据这样一种构造，按照根据当发光部分发光时从摄像部分输出的图像信息和当发光部分不发光时从摄像部分输出的图像信息得到的与到被摄影物体的距离相对应的信息，能控制在摄影静止图像时发光部分的光量。因而，当通过使用从摄像部分输出的图像信息得到与到被摄影物体的距离相对应的信息时不必驱动透镜，能控制摄影静止图像时的曝光量而不需要通过驱动透镜的距离测量时间，及能防止在摄影静止图像时由于透镜的不理想驱动对曝光量的控制变坏。

在第二发明中，控制部分根据在从当发光部分发光时从摄像部分输出的图像信息探测的亮度与从当发光部分不发光时从摄像部分输出的图像信息探测的亮度之差，控制在摄影静止图像时发光部分的光量。根据上述构造，除上述效果之外，按照根据在从当发光部分发光时从摄像部分输出的图像信息探测的亮度与从当发光部分不发光时从摄像部分输出的图像信息探测的亮度之差得到的与到被摄影物体的距离相对应的信息，能控制在摄影静止图像时发光部分的光量。因此，当通
过使用由摄像部分输出的图像信息得到与到被摄物体的距离相对应的信息时可能不必驱动透镜，并且能防止在摄影静止图像时由于透镜的不理想驱动对曝光量的控制变坏。

在第三发明中，当亮度差增大时，控制部分减小在摄影静止图像时发光部分的光量越多。根据这样一种构造，除上述效果之外，按照到被摄物体的距离变短并且被摄物体的反射因数变高时亮度差增大的特征，根据到被摄物体的距离或被摄物体的反射因数，能控制发光部分的光量。

第四发明涉及一种摄像器件，该器件包括：一个摄像部分，用来摄取被摄物体的图像以输出图像信息：一个发光部分，用来照射被摄物体；及一个控制部分，用来根据当发光部分发光时从摄像部分输出的图像信息和当发光部分不发光时从摄像部分输出的图像信息产生与到要摄取的物体的距离相对应的输出。根据这样一种构造，由于根据当发光部分发光时从摄像部分输出的图像信息和当发光部分不发光时从摄像部分输出的图像信息产生与到被摄物体的距离相对应的信息，所以当通过使用从摄像部分输出的图像信息得到与到被摄物体的距离相对应的信息时，透镜的驱动操作可以是多余的。

在第五发明中，发光部分是 LED。根据这种构造，能减小发光部分的尺寸，并且除上述效果之外能减小噪声。

第六发明涉及一种整体装有摄像器件的可携带电子器件。根据这样一种构造，能提供带有摄像器件的可携带电子器件，在该摄像器件中，当通过使用从摄像部分输出的图像信息得到与到被摄物体的距离相对应的信息时聚焦操作可能是多余的，并且在频闪摄影时能控制曝光度。

[本发明的优点]

根据本发明，根据当发光部分发光时从摄像部分输出的图像信息和当发光部分不发光时从摄像部分输出的图像信息，能控制在摄影静止图像时发光部分的光量。

[附图的简要描述]
图1是功能方块图，表示本发明的一个实施例。
图2是方块图，表示在图1中的CCD摄像机。
图3是主视图，表示本发明一个实施例的外观。
图4是流程图，用来解释图1的操作。
[用来执行本发明的模式]

现在，通过参照表示在附图中的一个实施例将描述用来执行本发明的模式。在该实施例中，将描述的是一个例子，其中一个作为可携带电子器件的可携带电话装有一个摄像器件。

图1表示在功能方块图中可携带电话的一种电气结构。在该图中，用作光电控制部分的控制部分1包括一个微型计算机，该微型计算机包括CPU等作为主元件，对其连接有：一个无线电通信部分2；一个声音输入和输出部分3；一个CCD摄像机4，作为一个摄像部分；一个键盘5；一个彩色LCD6，作为显示部分；一个外部器件连接接口7；一个存储器8；一个驱动电路10，用来驱动一个作为用来照射被摄影物体的发光部分的LED9；一个发光模式设置部分11，用来设置LED9的发光模式；一个释放开关12，用来输出一个用来指令开始静止图像摄影操作的释放信号；及一个操作模式设置部分13，也作电源开关。一根天线14连接到无线电通信部分2上。对于声音输入和输出部分3，连接一个麦克风15和一个接收器16。

当输入发射声音时，麦克风15把输入的发射声音从声频信号转换成电信号，以产生一个声音发射信号并且把声音发射信号输出到声音输入和输出部分3。当把声音发射信号从麦克风15供给到声音输入和输出部分3时，声音输入和输出部分3对于声音发射信号执行一个放大过程和一个A/D转换过程等，以经控制部分1把声音发射信号输出到无线电通信部分2。当把声音发射信号从声音输入和输出部分3经控制部分1供给到无线电通信部分2时，无线电通信部分2对于声音发射信号执行一个基带过程和一个无线过程等，并且从天线14发射宽带通信频带(例如，使用码分多组织连接(CDMA)系统分配给无线电通信的通信频带)的发射无线电波。
当天线 14 拦获宽带的通信频带的无线电波作为接收无线电波时，无线电通信部分 2 对于捕获的无线电波执行一个无线电过程和一个基带过程等，以产生一个声音接收信号和经控制部分 1 把声音接收信号输出到声音输入和输出部分 3。当把声音接收信号从无线电通信部分 2 经控制部分 1 供给到声音输入和输出部分 3 时，声音输入和输出部分 3 对于供给的声音接收信号执行一个 A/D 转换过程和一个放大过程等，以把声音接收信号输出到接收器 16。向其从声音输入和输出部分 3 供给声音接收信号的接收器 16，把声音接收信号从电气信号转换成声频信号，以产生一个接收声音并且输出产生的接收声音。

CCD 摄像机 4 摄像被摄影物体的图像以产生 (叫做光电信号) 与摄影图像相对应的电气图像信息，把电气图像信息输出到控制部分 1。

键盘 5 包括各类布置的键，如一个讲话开始键、一个重拨键、讲话结束键、包括 [0] 至 [9] 的数字字符键、一个 * (星号) 键、一个 # (清晰) 键及 F (功能) 键等。当操作任何键时，把与键操作相对应的键操作信号输出到控制部分 1。当把键操作信号从键盘 5 供给到控制部分 1 时，控制部分 1 译码键操作信号以完成一个与译码结果相对应的过程。

当把一个显示信号从控制部分 1 供给到 LCD 6 时，LCD 6 显示与发送的显示信号相对应的显示信息。一个外部器件 17 是具有用来摄影图像信息的功能的数字静止摄像机等，像 CCD 摄像机 4。外部器件连接接口 7 输入由外部器件 17 摄影的图像信息，并且在可携带电话 1 连接到外部器件 17 上的情况下把输入的图像信息输出到控制部分 1。显示部分不限于彩色 LCD，并且可以适当地变化到有机 EL 显示器等。

构成与控制部分 1 有关的控制装置的存储器 8 包括存储器元件，如快擦写存储器、ROM、RAM、VRAM (视频 RAM) 等，并且把可执行程序存储在 ROM 中。控制部分 1 读可执行程序，并且完成执行下面叙述的各种类型操作的过程。在存储器 8 中的快擦写存储器存储在释放开关 12 操作时从 CCD 摄像机 4 输入的图像信息和从外部器件连接接口 7 输入的图像信息。在存储器 8 中的 VRAM 存储从 CCD 摄像机 4 输入的并且显示在 LCD 6 上的图像信息或从外部器件连接接口 7
输入的图像信息。在存储器 8 中的 RAM 用于各类过程。

作为发光部分的 LED 9 是用来照射被摄影物体的 LED。在这个实施例中，采用用来施加白光的白色 LED。作为白色 LED，例如，使用由 Nichia Kagaku Kogyo Co., Ltd 生产的高亮度白色 LED (型号: NSPW510BS) 等。在图 1 中，尽管表示一个使用两个 LED 9 的例子，但可以适当地改变 LED 的数量。例如，由于照射要求的光量依据 CCD 摄像机 4 的 CCD (图像传感器) 的探测特性而不同，所以能以这样一种方式进行变化，当大量光必须用于照射时，增大 LED 9 的数量以增大光量，而当用于照射的大量光不必要时，使用单个 LED。现在，下面补充描述 LED。在最近几年，已经设计制造在约几十伏的驱动电压下以高亮度发光的 LED，并且前到到开发已经由电灯泡照射的产品且投入使用。例如，使用 LED，并且投入实际应用，作为笔型灯的发
光部分或附到工人头上的照明器。在这种连接中，发光部分不限于白色 LED，并且可以适当地改变。例如，可以采用发射希望颜色光的 LED、通过把红色、绿色和蓝色结合在一起发射白光的发光部分、
或诸如电灯泡之类的灯。当使用 LED 时，能实现紧凑形式。而且，当把白色 LED 用作发光部分时，白色光能由一个 LED 发射，从而能得到更紧凑的形式，并且比其中把红色、绿色和蓝色 LED 结合在一起发
射白光的情况，能更多地减小零件数量。

驱动电路 10 根据从控制部分 1 输出的用来指令 LED 9 的发光量
的光量控制信号 (与到被摄影物体的距离相对应的输出) 驱动 LED 9。由于从控制部分 1 输出的光量控制信号可以是用来规定白色 LED 9 的发光量的信息，所以考虑白色平衡的控制是不必要的，这与其中通过使用红色 LED、绿色 LED 和蓝色 LED 控制用来发射白色光的发光部
分的光量的情况不同。因此，能简化光量控制信号。

发光模式设置部分 11 用来设置 LED 9 的发光模式。在这个实施
例中，能设置依据被摄影物体的亮度来自动控制 LED 9 的发光量的自动发光模式、和用来禁止 LED 9 的光发射的光发射禁止模式。例如，
每一次操作切换自动发光模式和光发射禁止模式。控制部分 1 按照由
发光模式设置部分 11 设置的模式等控制 LED 9 的光发射，并且把设置模式显示在 LCD 6 上。

操作模式设置部分 13 能选择性地设置一种其中切断电源的状态（断模式）、一种其中能执行电话的发射和接收操作的状态（电话模式）、一种其中显示存储在存储器 8 中的图像信息的状态（检查模式）、一种其中能执行通过摄像机的摄影操作的状态（摄影模式）、及一种其中 LED (发光部分) 9 的光连续以规定光量（亮度）发射的状态（光模式）。例如，每一次操作切换包括断模式、电话模式、检查模式、摄影模式及光模式的模式。控制部分 1 按照由操作模式设置部分 13 设置的模式控制各种操作，并且在 LCD 6 上显示设置模式。在除断模式之外的模式中能接收电话呼叫。

图 2 是表示 CCD 摄像机 4 和控制部分 1 等的方块图。在图 2 中，作为带有一个其上由摄影透镜 401 形成被摄影物体的光学图像的光电接收表面的摄像元件的 CCD 402，是一个进行光电转换以便输出一个与光学图像相对应的模拟信号以和阵列形式转换电荷的固态摄像元件。在这个实施例中，CCD 402 用作所谓的固态图像传感器，用来把二维光学信息转换成时间序列（串行）电信号。

下面补充描述 CCD 402。CCD 402 包括：一个光电转换部分，其中以阵列形式布置多个光电转换元件；和一个电荷存储部分，用来存储光电转换元件的输出电荷；及一个电荷读取部分，用来阅读存储在规定系统中的电荷存储部分中的电荷。光电转换元件的每一个形成一个像素。在本实施例中的 CCD 402 是彩色 CCD。一般地，由于 CCD 的像素信息本身没有颜色信息，所以一个颜色滤波器（使用三基色光的基色滤波器或使用三基色颜色的互补颜色滤波器）安装在彩色 CCD 的前表面上。

一个水平和垂直驱动器 403 和一个时序发生器(TG) 404 产生一个阅读 CCD 402 必需的驱动信号。特别是，在 CCD 402 顺序规定每列的同时，它产生一个用来对于每行转换(阅读)像素信息的驱动信号，即分别产生用来串行读出像素信息的水平和垂直驱动信号。
一个样本保持电路 405 按照适于 CCD 402 的分辨率的频率用来抽样从 CCD 402 读出的时间序列信号(在该步骤中, 为模拟信号)。在抽样之后, 可以执行一种自动增益控制(AGC)。

一个模拟/数字转换器 406 把抽样信号转换成数字信号。

一个颜色过程电路 407 根据模拟/数字转换器 406 的输出产生一个亮度/颜色差多路复用信号(下文把它称为 “YUV 信号”)作为图像信息。YUV 信号的信号格式包括具有一个称作分别独立包括一个宽度信号和两个颜色差信号的“分量” 的固定长度的三个块, 并且把相应分量的长度(位数)比称作分量比。

一个 DMA 控制器 408 在颜色过程电路 407 与一个 DRAM 410 (准确地是一个 DRAM 接口 409)之间转换数据而不插入控制部分 1, 并且执行所谓的直接存储器转换(DMA: DIRECT MEMORY ACCESS)。

DRAM 接口 409 用作在 DRAM 410 与 DMA 控制器 408 之间的信号接口和作为在 DRAM 410 与控制部分 1 之间的信号接口。

图 3 是视图, 表示根据本实施例的可携带电话的外观。在图 3 中, 具有与图 1 中那些相同结构的元件用相同的标号指示。摄影透镜 401、CCD 402 和 LED 9 整体形成, 并且能够绕轴 500 转动。因而, 用户本身能通过使用 CCD 摄像机 4 摄影。以这样一种方式, 由于把 LED 用作发光部分的摄像器件整体装有可携带电话, 所以能更大地降低噪声, 能使形式更紧凑, 及比使用氙灯作为发光部分的相关技术能更多地改进设计的自由度。而且, 由于把白色 LED 用作发光部分, 所以能简化结构, 并且与例如使用红色 LED、绿色 LED 和蓝色 LED 发射白色光的相比, 能减小零件数量。

现在描述一种操作。

当在操作模式设置部分 13 中设置电话模式时, 控制部分 1 允许使用无线电通信部分 2、声音输入和输出部分 3、天线 14、麦克风 15 及接收器 16 等的可携带电话功能操作, 并且用户能把可携带电话用作普通可携带电话。
当在操作模式设置部分13中设置检查模式时，控制部分1把与存储在存储器8中的图像信息相对应的显示信号供给到LCD6，以在LCD6上显示与图像信息相对应的图像。

当由操作模式设置部分13设置光模式时，控制部分1驱动LED9以规定光量(亮度)发射光。因而，当设置光模式时，可携带电话能用作照明器件。而且，如下面描述的那样，由于用于摄影的LED(发光部分)9也用于照明，所以能简化结构。由于把LED用作发光部分，所以能实现更紧凑的结构。在光模式中，通过操作键盘5可以调节LED9的光量。

当由操作模式设置部分设置摄影模式时，控制部分1操作CCD摄像机4，以提取与由CCD摄像机4实时摄影、更新和输出的被摄影物体的图像相对应的图像信息，把图像信息经存储器8的VRAM等发送到LCD6，及把它显示在LCD6上。在检查这种状态下的LCD6的同时，用户确定组成。在这时，控制部分1识别在发光模式设置部分11中的设置。

当由发光模式设置部分11设置自动发光模式时，通过参照图4将描述操作。

当在设置自动发光模式的同时操作释放开关12时(步骤4a)，如果控制部分1决定在操作释放开关12的操作时按照包括在从CCD摄像机4输入的图像信息的亮度信号显示在LCD6上的图像比规定值1亮(在这种情况下，保证规定值1存储在存储器8中。(步骤4b)，则LED9的光不会发射以摄影静止图像(步骤4c)。明确地说，在操作释放开关12之后，立即固定存储在DRAM410中的YUV信号和经DRAM接口409提取固定的YUV信号，并且对于与固定的YUV信号相对应的图像固定LCD6的显示。控制部分例如对于提取的YUV信号应用一个JPEG编码过程，并且然后把信号存储在存储器8的快擦写存储器中。

如果控制部分1决定按照亮度信号显示在LCD6上的图像比规定值1暗(步骤4b)，则控制部分1决定边缘较暗和频闪光是必要的，并
且存储亮度信号，即当操作释放开关 12 时包含在从 CCD 摄像机 4 输入的图像信息中的亮度信号(下文把它称作“亮度信号 1”)，同时 LED (发光部分) 9 不会发射在存储器 8 的 RAM 中的光(步骤 4d)，并且控制 LED 9 以按规定光量发射光(步骤 4e)。

当 LED 9 按在存储器 8 的 RAM 中的规定光量发射光时，控制部分 1 存储包括在与由 CCD 摄像机 4 摄影的被摄影物体的图像相对应的图像信息中的亮度信号(下文把它称作“亮度信号 2”)(步骤 4f)。

当完成亮度信号 2 的存储时，控制部分 1 得到在亮度信号 1 与亮度信号 2 之间的亮度差(步骤 4g)。

将补充描述在步骤 4g 中得到的亮度差。亮度差意味着从 LED 9 施加、由被摄影物体反射和由 CCD 摄像机 4 接收的光量大于当 LED 9 不发光时由 CCD 摄像机 4 接收的光量。小亮度差意味着在当 LED 9 不发光时由 CCD 摄像机 4 接收的光量与从 LED 9 施加、由被摄影物体反射和由 CCD 摄像机 4 接收的光量之差较小。当到被摄影物体的距离较短时，减小由 CCD 摄像机 4 接收的反射光。当被摄影物体的反射因数变得较低时，减小由 CCD 摄像机 4 接收的光量。大或小亮度差等效于与到被摄影物体的距离或被摄影物体的反射因数相对应的信息。即，到被摄影物体的距离越短，亮度差越大，并且被摄影物体的反射因数越高，亮度差越大。

当得到的亮度差不大于一个规定值 2 时(步骤 4h)，控制部分 1 决定由被摄影物体反射的在步骤 4e 来自 LED 9 的光量较小和由于远程被摄影物体反射因数较小，并且向驱动电路 10 输出一个用来控制 LED 9 的光量控制信号，以从 LED 9 按光量 1(例如，最大光量)发射光(步骤 4i)。这个光量控制信号用作与到被摄影物体的距离相对应的输出和与被摄影物体的反射因数相对应的输出。

当得到的亮度差大于规定值 2 但不大于一个规定值 3 时(然而，在这种情况下，规定值 2<规定值 3<规定值 1，并且这些值预先存储在存储器 8 中。)(步骤 4j)，控制部分 1 决定到被摄影物体的距离中等和反射因数大约是中，并且向驱动电路 10 输出一个用来控制 LED 9 的光
量控制信号，以从 LED 9 按光量 2 (然而，在这种情况下，光量 1) 发射光 (步骤 4k)。

当得到的亮度差大于规定值 3 时 (步骤 4j)，控制部分 1 决定到被摄影物体的距离较短和反射因数是高，并且向驱动电路 10 输出一个用来控制 LED 9 的光量控制信号，以从 LED 9 按光量 3 (然而，在这种情况下，光量 2) 发射光 (步骤 4l)。

当控制部分 1 完成步骤 4i、4k 和 4l 的操作时，控制部分执行上述静止图像摄影操作 (步骤 4c)。明确的说，在开始 LED 9 的光发射之后，固定存储在 DRAM410 中的 YUV 信号，经 DRAM 接口 409 提取固定 YUV 信号，及对于与固定的 YUV 信号相对应的图像固定 LCD 6 的显示，控制部分例如对于提取的 YUV 信号应用一个 JPEG 编码过程，并且然后把信号存储在存储器 8 的快擦写存储器中。

当控制部分 1 完成静止图像摄影操作时，控制部分 1 切断 LED 9 (步骤 4m) 以返回步骤 4a。

作为用于光量的控制系统，当提供多个 LED 时，依据光量可以改变要接通的 LED 9 的数量，或者可以改变供给到相同 LED 的驱动电流。这些系统可以结合在一起。在其中改变供给到 LED 的驱动电流以控制来自 LED 的光量的构造的情况下，在共用 LED 中能控制光量。在其中提供多个 LED 并且改变要驱动的 LED 的数量以控制来自 LED 的光量的构造的情况下，能执行与至少 LED 数量相对应的光量，并且比单个数量的 LED 能更大地增大光量程度。

在以上描述中，尽管当允许 LED 9 发射光时，分三步控制光量，但步骤数量不限于三步，而是依据亮度差可以比三步少或多。

如上所述，按照根据当发光部分发光时从摄像部分输出的图像信息和当发光部分不发光时从摄像部分输出的图像信息得到的与到被摄影物体的距离或被摄影物体的反射因数相对应的信息，能控制在摄影静止图像时发光部分的光量。而且，按照根据从图像信息探测的亮度差得到的与被摄影物体的亮度或被摄影物体的反射因数相对应的信息，能控制在摄影静止图像时发光部分的光量。更进一步，当到被摄
影物体的距离变得较短，并且被摄影物体的反射因数变得较高时，亮度差变得较高，并因而，如果根据亮度差控制在摄影静止图像时发光部分的光量，则按照到被摄影物体的距离和被摄影物体的反射因数能控制发光部分的光量。另外，由于根据当发光部分发光时从摄像部分输出的图像信息和当发光部分不发光时从摄像部分输出的图像信息产生与到被摄影物体的距离相对应的输出，则当通过使用从摄像部分输出的图像信息得到与到被摄影物体的距离相对应的信息时，不需要驱动透镜。

而且，由于当得到与到被摄影物体的距离或被摄影物体的反射因数相对应的信息时，也使用为了决定在摄影静止图像时频闪光是否必要的图像信息，所以能把曾经探测的图像信息应用于多个过程。

而且，由于把 LED 用作用来施加光的发光部分以便照射被摄影的物体，所以发光部分的形式可以是紧凑的。因而，改进设计的自由度。更进一步，由于容易地把 LED 控制成与气管不同地接通，所以除在较暗时如通常那样在摄影图像时的频闪光之外，可以以各种方式使用 LED，例如，可以把 LED 用来照射被摄影物体，从而当周围较暗时用户能识别组成，因此增加用户的可操纵性。而且，由于诸如几百伏的电压是不必要的，作为与气管不同的驱动电压，所以能减小由高电压生成的噪声，并且比通常情形能更大地减小由噪声造成的限制。

而且，由于当得到被摄影物体的物体距离信息或反射因数信息时以及当操作释放开关时在摄影静止图像时的所谓频闪光，发光部分用作一个发光部分，所以简化结构。

当由操作模式设置部分设置摄影模式时，如果由发光模式设置部分 11 设置发光禁止模式，则控制部分 1 控制 LED 9 不发射光，并且如在上述步骤 4c 中那样进行静止图象摄影操作。

以上描述中，尽管采用把 CCD 用作摄像部分的结构，但本发明不限于此，而是可以使用诸如 CMOS 传感器之类的任何图像传感器。
而且，在以上描述中，尽管解释了其中摄像器件与作为可携带电子器件的可携带电话整体形成的例子，但可携带电子器件不限于可携带电话。例如，可以采用所谓的笔记本型个人计算机或可携带信息终端等，当本发明的摄像器件整体装有诸如可携带电话之类的用来进行无线电通信的可携带电子器件时，不需要驱动用于测距的透镜，或者可以不需要一个专用测距仪。

在以上描述中，尽管按照亮度差控制频闪光量，但由于亮度差是与到被摄影物体的距离相对应的信息，所述例子可以提供用来在光轴方向上驱动摄影透镜 401 的驱动装置，并且按照从控制部分 1 输出的亮度差可以驱动这个驱动装置，从而可以控制摄影透镜 401 和 CCD 402 聚焦。

[标号和符号的描述]
1 控制部分
4 摄像部分
9 发光部分
12 释放开关
图4

开始

操作释放开关？

是

比规定值1亮？

否

存储亮度信号1

以规定光量发射LED9的光

存储亮度信号2

得到在亮度信号1与2之间的亮度差

亮度差不大于或
等于规定值2

是

LED9按光量1发射光

否

规定值2小于
亮度差并且亮度差不大于
或等于规定值3

是

LED9按光量3发射光

否

LED9按光量2发射光

摄影静止图像

切断LED9