Abstract:
The present invention relates to stable oral pharmaceutical compositions sitagliptin base and processes for the preparation thereof.
PHARMACEUTICAL COMPOSITIONS OF SITAGLIPTIN

FIELD OF THE INVENTION

The present invention relates to stable oral pharmaceutical compositions of sitagliptin base and processes for the preparation thereof.

BACKGROUND OF THE INVENTION

Sitagliptin dihydrogen phosphate monohydrate of Formula A, an orally-active inhibitor of the dipeptidyl peptidase-4 (DPP-4) enzyme, chemically designated as 7-[(3R)-3-amino-1-oxo-4-(2,4,5-trifluorophenyl)butyl]-5,6,7,8-tetrahydro-3-(trifluoromethyl)-1, 2, 4-triazolo[4,3-a]pyrazine phosphate (1:1) monohydrate, is indicated as an adjunct therapy to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus.

[Formula A]

U.S. Patent No. 6,699,871 (hereinafter "the '871 patent"), in particular Example 7, discloses a process for the preparation of a sitagliptin hydrochloride salt. A list of pharmaceutically acceptable salts is generally disclosed in this patent.

PCT Publication No. WO 2005/030127 discloses a process for the preparation of sitagliptin dihydrogenphosphate anhydrate Form IV. It also discloses a process for the preparation of sitagliptin dihydrogen phosphate
anhydrate Form I by heating sitagliptin dihydrogenphosphate anhydrate Form IV at a temperature above 140°C for about 1 hour.

PCT Publication No. WO 2005/020920 discloses a process for the preparation of crystalline anhydrate Form I, crystalline desolvated anhydrate Form II, crystalline anhydrate Form III, and a crystalline ethanol solvate of sitagliptin dihydrogen phosphate. It also discloses a process for the preparation of a mixture of sitagliptin dihydrogen phosphate anhydrate Form I and anhydrate Form III.

PCT Publication No. WO 2009/120746 discloses processes for the preparation of a crystalline form of sitagliptin phosphate, characterized by a powder XRD pattern with peaks at about 4.7, 13.5, 17.7, 18.3, and 23.7 ±0.2° 2Θ.

PCT Publication No. WO 2010/032264 discloses a process for the preparation of crystalline Form 3 of sitagliptin, a crystalline form of dibenzoyl-L-tartaric acid salt of sitagliptin, an amorphous form of sitagliptin and a crystalline form of sitagliptin phosphate.

PCT Publication No. WO 2010/000469 discloses a process for the preparation of sitagliptin hydrochloride Form I, sitagliptin hydrochloride Form II, sitagliptin fumarate Form I, sitagliptin fumarate Form II, sitagliptin maleate, sitagliptin succinate Form I, sitagliptin succinate Form II, sitagliptin succinate Form III, sitagliptin lactate, sitagliptin glycolate, sitagliptin maleate Form I, sitagliptin maleate Form II, crystalline sitagliptin citrate, amorphous sitagliptin citrate, sitagliptin mesylate Form I and sitagliptin mesylate Form II.

U.S. Patent No. 7,326,708 discloses crystalline sitagliptin dihydrogenphosphate monohydrate and a process for its preparation. It also discloses that the crystalline dihydrogenphosphate salt of the present invention exhibits pharmaceutic advantages over the free base and the previously disclosed hydrochloride salt.

The film-coated tablets Januvia® are being marketed by Merck in the USA. The Januvia® tablet contains 32.13, 64.25, or 128.5 mg of sitagliptin phosphate monohydrate, which is equivalent to 25, 50, or 100 mg, respectively, of free base.

In the pharmaceutical industry, there is a constant need to work on identifying different pharmaceutical compositions that positively affect the drug’s
dissolution profile, bioavailability, bioequivalence, stability, etc., which all play important roles in determining a drug's market acceptance and success.

In the case of sitagliptin too, there is a need for the development of pharmaceutical compositions with improved solubility, stability, excellent storage and handling stabilities, bioavailability, etc.

We have found that stable pharmaceutical compositions can be prepared even by using sitagliptin base as an active pharmaceutical ingredient.

SUMMARY OF THE INVENTION:

In one general aspect there is provided a stable pharmaceutical composition comprising sitagliptin and at least one beneficial agent, wherein the composition is a bioequivalent composition to Januvia® and shows similar rate and extent of absorption to those of Januvia®, the currently marketed product of sitagliptin phosphate monohydrate in USA.

In another general aspect there is provided a stable pharmaceutical composition comprising sitagliptin and at least one beneficial agent selected from a complexing agent, a pH modifying agent, a solubilizing compound, a stabilizing compound, a permeability enhancing compound, or a combination thereof.

In another general aspect there is provided a stable pharmaceutical composition comprising sitagliptin and alginic acid as a beneficial agent.

In another general aspect there is provided a stable pharmaceutical composition of sitagliptin wherein a solid dispersion of sitagliptin is prepared.

In another general aspect there is provided a stable pharmaceutical composition comprising sitagliptin and at least one beneficial agent, wherein the sitagliptin is micronized.

In another general aspect there is provided a stable pharmaceutical composition comprising sitagliptin, at least one beneficial agent and one or more pharmaceutically acceptable excipients, wherein said composition retains at least about 90% of the potency of sitagliptin in the pharmaceutical composition after
storing the composition at 40° C and 75% relative humidity at least for three months.

Embodiments of the pharmaceutical composition may include one or more of the following features. For example, the pharmaceutical composition may further include one or more pharmaceutically acceptable excipients. The pharmaceutically acceptable excipients may include one or more diluents, binders, disintegrants, glidants, lubricants, sweeteners/ taste masking agents, compression aids, colorants, flavors and the like.

In still another aspect there is provided a stable pharmaceutical composition of sitagliptin, wherein the composition is made up of admixing and/ or granulating sitagliptin with at least one beneficial agent and one or more pharmaceutically acceptable excipients and processing the mixture to provide a final dosage form.

In still another aspect there is provided a stable pharmaceutical composition of sitagliptin, wherein the composition is made up of preparing a homogeneous melt by mixing sitagliptin with a suitable binder, cooling the melt, milling and sizing to obtain granules, blending the granules with at least one beneficial agent and one or more pharmaceutically acceptable excipients; and compressing the blend to obtain tablets.

In another general aspect there is provided a stable pharmaceutical composition comprising sitagliptin and at least one beneficial agent, wherein the composition provides an in-vivo plasma profile for sitagliptin comprising a mean of Cmax from about 900 ng/ mL to about 1000 ng/ml, a mean of AUC from about 8000 ng*hr/mL to about 9000 ng*hr/mL; and a mean of Tmax at least about 2 hours.

In another general aspect there is provided a method of treating type 2 diabetes mellitus in a patient comprising administering to said subject a stable pharmaceutical composition comprising sitagliptin, at least one beneficial agent and one or more pharmaceutically acceptable excipients.
The details of one or more embodiments of the present invention are set forth in the description below. Other features, objects and advantages of the invention will be apparent from the description.

DETAILED DESCRIPTION OF THE INVENTION:

The inventors have surprisingly found that when a beneficial agent as described herein is used in formulating the composition of sitagliptin, the resulting composition demonstrates suitable dissolution profile which is ideal for oral delivery. Moreover, the composition was also found to be physico-chemically stable as well as possessing improved formulation characteristics. The compositions of the invention have potential to exhibit comparable in vivo performance to those of Januvia®; the marketed tablet dosage form of sitagliptin phosphate monohydrate in USA. The composition as per the current invention is a bioequivalent composition, wherein the rate and extent of absorption is similar to those of Januvia®.

We have also surprisingly found that a solid dispersion of sitagliptin exhibits enhanced stability under accelerated conditions, thus providing a viable solid dispersion product that eliminates the problems related to stability and bioavailability.

Sitagliptin used in the invention is in its base form. The sitagliptin base as per the invention may be in an amorphous or in any suitable crystalline form. Sitagliptin used in the preparation of the pharmaceutical composition may be in a micronized form such that it has an average particle size diameter (D50) below 25 microns, preferably below 15 microns, more preferably below 10 microns and most preferably below 5 microns. The micronized sitagliptin may have a D90 below 100 microns, preferably below 50 microns, more preferably below 35 microns.

The term "beneficial agent" used herein, includes but is not limited to a complexing agent, a solubilizing compound, a pH modifying agent, a stabilizing compound, a permeability enhancing compound, or a combination thereof. These
agents are used to increase the solubility of sitagliptin in base form. The use of this beneficial agent also provides storage stability to the final composition.

The term "complexing agent" that is represented by, but not limited to, cyclodextrins, including cyclodextrin derivatives, such as a-cyclodextrins, β-cyclodextrins, γ-cyclodextrins, hydroxypropyl -P-cyclodextrin, and sulfobutyl ethyl β-cyclodextrin. The highly soluble complex of sitagliptin and cyclodextrin is prepared by mixing sitagliptin and cyclodextrin together in the presence of water. The concentration of cyclodextrin is preferably high to facilitate the formation of sitagliptin-enhancer complex. In the case when the complexing agent is hydroxypropyl-p-cyclodextrin, the concentration of the hydroxypropyl- β-cyclodextrin solution used for mixing with sitagliptin is greater than 2%, preferably greater than 20%, and more preferably at least about 40%. The amount of sitagliptin is determined by a desired ratio of hydroxypropyl -P-cyclodextrin to sitagliptin, which is preferably less than 20:1, and more preferably less than 5:1.

The mixing time of the complex solution is from about one hour to about 48 hours and preferably from about 5 hours to about 24 hours. The addition of hydroxypropyl-p-cyclodextrin and sitagliptin can be incremental to reduce the viscosity of the complex solution and to achieve better complexation.

The term "pH modifying agent" that is represented by, but not limited to a pharmaceutically acceptable organic or inorganic acid substance. Examples thereof include but are not limited to a carbomer, acid anhydride, alginic acid, a latent acid such as glucono-d-lactone, organic acids that contain one or more acidic groups, preferably compounds containing acidic groups selected from carboxylic and sulfonic acid groups, more preferably those which are solid at ambient temperature, and most preferably those which have two or more acidic groups, mono, di- or polybasic carboxylic acids and mono, di or tri-sulfonic acids such as sorbic acid adipic acid, malonic acid, glutaric acid, maleic acid or fumaric acid. Other examples include water-soluble aryl carboxylic acids containing up to 20 carbon atoms or substituted carboxylic acids, for example hydroxy substituted monocarboxylic acids such as gluconic acid, solid forms of lactic acid, glycolic
acid or ascorbic acid; hydroxy substituted dicarboxylic acids such as malic acid, tartaric acid, tartronic acid or mucic acid; tri-carboxylic acids, for example citric acid; or amino acids with an acidic side chain, such as glutamic acid, L-cysteine hydrochloride or aspartic acid. The pH modifying agent may include inorganic acidic substance like concentrated hydrochloric acid (HCl), phosphoric acid, boric acid, sulfuric acid. A pH modifying agent is employed in the embodiments of the present invention to shift the pH within and in the vicinity of the sitagliptin composition to more acidic conditions. The use of solid acids or pharmaceutical acceptable salts thereof as pH modifying agent is particularly convenient for the manufacture of compositions according to the embodiments of the present-invention. The pH modifying agent used in the composition may provide the pH from 3 to 8, preferably around 5 to the composition.

The term "solubilizing compound" that is represented by, but not limited to surfactants; hydrocolloids such as cellulose derivatives (e.g. hydroxypropyl methyl cellulose, hydroxypropyl cellulose, hydroxy! methyl cellulose); polymers such as N-vinyl-2-pyrrolidone, polyvinyl pyrrolidone; copolymers such as copolymer of vinylpyrrolidone (VP) and vinylacetate (VA).

Suitable "surfactants" used for preparing a pharmaceutical composition of sitagliptin may include one or more of cationic, anionic, non-ionic, zwitterionic surfactants or mixtures thereof.

Suitable cationic surfactants may include one or more of quaternary ammonium compounds, such as benzalkonium chloride, cetyl trimethyl ammonium bromide and dodecyl dimethyl ammonium bromide, hexadecyl (cetyl) trimethylammonium bromide, dodecyl pyridinium chloride, lauryl dimethyl benzyl ammonium chloride, acyl carnitine hydrochlorides, alkyl pyridinium halides, dodecylamine hydrochloride and the like.

Suitable anionic surfactants may include one or more of salts of aliphatic monoesters of sulfuric acid and soaps, such as potassium laurate; sodium dodecyl sulfate; alkyl polyoxyethylene sulfates; sodium alginates; sodium lauryl sulfate and sodium heptadecyl sulfate; sulfonated aromatic agents such as alkyl benzene
sulfonic acids and salts thereof, such as triciclylbenzene sulfonic acid and the sodium and amino salts of dodecylbenzene sulfonic acid; alkyl naphthalene sulfonates, such as sodium butynaphthalene sulfonate, sulfosuccinates such as sodium dioctyl sulfosuccinate and N-acyl-N-alkyl fatty acid taurates; sulfated polyoxyethylated alcohols; sulfated oils; dioctyl sodium sulfosuccinate, phosphatidyl choline, phosphatidyl glycerol, phosphatidyl inosine, phosphatidylserine, phosphatidic acid and their salts, glyceryl esters, sodium carboxymethylcellulose, cholic acid and other bile acids (e.g., cholic acid, deoxycholic acid, glycocholic acid, taurocholic acid, glycodeoxycholic acid), a pharmaceutically acceptable salts thereof and the like.

Suitable non-ionic surfactants may include one or more of polyoxyethylene fatty alcohol ethers (Macrogol and Brij), polyoxyethylene sorbitan fatty acid esters (Polysorbates), polyoxyethylene fatty acid esters (Myrij), sorbitan esters (Span), glycerol monostearate, polyethylene glycols, polypropylene glycols, cetyl alcohol, cetostearyl alcohol, stearyl alcohol, aryl alkyl polyether alcohols, polyoxyethylene-polyoxypropylene copolymers (poloxomers), polaxamenes, methylcellulose, hydroxypropylcellulose, hydroxy propylcellulose, hydroxy propylmethylcellulose, noncrystalline cellulose, polyvinyl alcohol, and polyvinylpyrrolidone. In a preferred form of the invention the nonionic surfactant is a polyoxyethylene and polyoxypropylene copolymer and preferably a block copolymer of propylene glycol and ethylene glycol. Such polymers are sold under the tradename Poloxamer also sometimes referred to as Pluronic.

Suitable zwitterionic surfactants may include one or more of alkyl betaines, alkyl amidopropyl betaines, alkyl sulfobetaines, alkyl glycimates, alkyl carboxyglycimates, alkyl amphopropionates, alkyl amidopropyl hydroxysultaines, acyl taurates and acyl glutamates wherein the alkyl and acyl groups have from 8 to 18 carbon atoms such as cocamidopropyl betaine, sodium cocoamphoacetate, cocamidopropyl hydroxy sulfate, and sodium cocamphopropionate and the like.

Suitable "stabilizing compound" which may be employed in the invention include, but is not limited to, various organic and inorganic pharmaceutical
excipients. Such excipients include various polymers, low molecular weight oligomers and natural products. Representative examples of useful surface stabilizers include hydroxypropylmethylcelluloses, hydroxypropylcellulloses, polyvinylpyrrolidones, dioctylsulfosuccinate, gelatin, casein, lecithin (phosphatides), dextran, gum acacia, cholesterol, tragacanth, polyoxyethylene alkyl ethers (e.g., macrogol ethers such as cetomacrogol 1000), polyoxyethylene castor oil derivatives, polyethylene glycols (e.g., Carbowax 3550 and 934 (Union Carbide)), polyoxyethylene stearates, carboxymethylcellulose calcium, carboxymethylcellulose sodium, methylcelluloses, hydroxyethylcelluloses, hydroxypropylmethylcellulose phthalate, magnesium aluminium silicate, triethanolamine, polyvinyl alcohols (PVA), PEG-derivatized phospholipids, PEG-derivatized sterols, PEG-derivatized cholesterol derivatives, PEG-derivatized vitamin A, PEG-derivatized vitamin E, and the like.

Suitable "permeability enhancing compound", which promotes absorption of the drug from the gastrointestinal tract, is preferably a bile acid or an alkali metal salt thereof selected from the group of cholic acid, chenodeoxycholic acid, taurocholic acid, taurochenodeoxycholic acid, glycocholic acid, glycochenochocholic acid, lithocholic acid, taurolithocholic acid, ursodeoxycholic acid, deoxycholic acid, glycodeloxycholic acid, taurodeoxycholic acid, 3-beta-monohydroxycholic acid, 3-alpha-hydroxy-12-ketochocholic acid, 3-beta-hydroxy-12-ketochocholic acid, and 12-alpha-3-beta-dihydrochocholic acid.

Advantageously, the beneficial agents in the composition of the present-invention have been found to enhance the wettability and thus, the speed and extent of release and absorption of sitagliptin from the composition. The amount of this beneficial agent in the pharmaceutical composition ranges from about 0.01 % to about 50% w/w of the composition, preferably about 0.1% to about 25%, most preferably about 1 % to about 20% by weight of the composition.

The term "bioavailability" refers to an extent to which—and sometimes rate at which—the active moiety (drug or metabolite) enters systemic circulation, thereby gaining access to the site of action.
One of the embodiments of the present invention covers a solid dispersion of sitagliptin and one or more pharmaceutically acceptable carriers. There exists mainly two methods of preparing a "solid dispersion": the "solvent" approach, based on the solubilization of the components (active principle and carriers) in a common solvent, followed by evaporation of the solvent; the "molten" approach which includes melting the components (active principle and carriers) at high temperature and then in cooling the mixture in order to allow solidification.

The pharmaceutically acceptable carrier used in solid dispersion is preferably a polymeric carrier, and more preferably is at least one from the group consisting of gelatins, ovalbumin, soybean proteins, gum arabic, non-sucrose fatty acid esters, starches, modified starches, cellulose, methylcellulose (MC), ethylcellulose (EC), hydroxyethylcellulose (HEC), hydroxypropylcellulose (HPC), hydroxypropylmethylcellulose (HPMC), polyacrylic acid, polyethylene glycol (PEG), polyethylene oxides, polyoxymethylene derivatives, polymethacrylates, polyvinyl pyrrolidone (PVP), polyvinyl acetate (PVAc), PVP-vinylacetate-copolymer (PVP-VA), Kollidon® VA 64 (a vinylpyrrolidone-vinyl acetate copolymer), lactose, sorbitol, mannitol, maltitol, saccharose, isomalt, cyclodextrins such as α-cyclodextrins, β-cyclodextrins, γ-cyclodextrins, hydroxypropyl-cyclodextrins, hydroxypropyl-iS-cyclodextrin (HP-β-CD), sodium carboxymethyl cellulose, sodium alginate, xanthan gum, locust bean gum, chitosan, cross-linked high amylase starch, cross-linked polyacrylic acid (carbopol), or a mixture thereof.

In a preferred embodiment, the polymeric carrier suitable for the preparation of a solid dispersion of sitagliptin is HP-β-CD.

The amount of sitagliptin in the solid dispersion of the present invention ranges from about 0.1% to about 95% by weight relative to the total weight of the solid dispersion. In a preferred embodiment, the amount of sitagliptin ranges from about 1% to about 70%, more preferably from about 10% to about 50% by weight relative to the total weight of the solid dispersion. The amorphous solid dispersion of sitagliptin of the present invention is stable during storage.
Pharmaceutically acceptable excipients for use in the pharmaceutical composition may comprise one or more diluents, binders, disintegrants, glidants, lubricants, sweeteners/taste masking agents, compression aids, colorants and flavors.

Suitable diluents or bulking agents which include, but are not limited to, saccharides, including monosaccharides, disaccharides, polysaccharides and sugar alcohols such as arabinose, lactose, dextrose, sucrose, fructose, maltose, mannitol, erythritol, sorbitol, xylitol, lactitol, and other bulking agents such as powdered cellulose, microcrystalline cellulose, starch, dibasic calcium phosphate, tribasic calcium phosphate, calcium carbonate, dextrose, kaolin, magnesium carbonate, magnesium oxide, purified sugar and derivatives thereof.

Suitable binders, which include, but are not limited to, methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, carbomers, dextrin, ethyl cellulose, methylcellulose, shellac, zein, gelatin, polymethacrylates, polyvinylpyrrolidone, starch, pregelatinized starch, polyvinyl alcohol, tragacanth, sodium alginate, gums, synthetic resins, silicic acid, hydrophilic polymers and the like.

Suitable disintegrants which include, but are not limited to, croscarmellose sodium, crospovidone, sodium starch glycolate, corn starch, potato starch, maize starch and modified starches like pregelatinized starch, calcium silicates, low-substituted hydroxypropylcellulose and the like.

Suitable lubricants and glidants which include, but are not limited to, talc, metallic stearates such as magnesium stearate, calcium stearate, zinc stearate; colloidal silicon dioxide, finely divided silicon dioxide, stearic acid, hydrogenated vegetable oil, glyceryl palmitostearate, glyceryl monostearate, glyceryl behenate, polyethylene glycols, powdered cellulose, starch, sodium stearyl fumarate, sodium benzoate, mineral oil, magnesium trisilicate, kaolin; and the like. It would be appreciated that a person skilled in the art is cognizant of the fact that lubricant, glidant or anti-tacking agent may be used interchangeably. The
lubricant, glidant or anti-tacking agent may be present in an amount ranging from 0.1 % to 10 % w/w of the composition.

Suitable taste masking agents may include one or more of polymers, sweeteners and flavors. Most preferred polymers include one or more of cellulose acetate, polymethacrylates, hydroxypropylmethylcellulose, hydroxypropyl cellulose, hydroxylethyl cellulose; and the like. Suitable sweeteners that may be used, comprises saccharides such as sucrose, dextrose, glucose, maltose, dextrins, D-tagatose, trehalose, dried invert sugar, fructose, levulose, galactose, corn syrup solids, and the like, alone or in combination. Other examples of sweeteners comprise sodium saccharin; aspartame; sugarless sweeteners including polyhydric alcohols such as sorbitol, mannitol, xylitol, glycerol, hydrogenated starch hydrolysates, maltitol, isomaltitol, erythritol, lactitol and the like, alone or in combination. Suitable flavors that may be used, comprise cinnamon, wintergreen, eucalyptus, spearmint, peppermint, menthol, anise as well as fruit flavors such as apple, pear, peach, strawberry, cherry, apricot, orange, watermelon, banana and the like; bean-derived flavors, such as coffee, cocoa and the like or mixtures thereof.

The pharmaceutical composition of sitagliptin may be developed in the form of tablets, capsules, powders, pellets, granules, microspheres, minitablets or any suitable solid unit forms known to person skilled in the art; mouth dissolving tablets; dispersible tablets; effervescent tablets; trilayer tablets; inlay tablets. The preferred dosage forms are tablets and capsules filled with pellets, granules or minitablets as these are more convenient and easier to administer.

In one embodiment, there is provided a stable pharmaceutical composition of sitagliptin comprising sitagliptin, at least one beneficial agent and one or more pharmaceutically acceptable excipients, wherein said composition retains at least about 90% of the potency of sitagliptin in the pharmaceutical composition after storing the composition at 40° C and 75% relative humidity for at least three months.
The pharmaceutical composition of sitagliptin may be manufactured by using various granulation techniques known to the person skilled in the art, such as, but not limited to direct compression, wet granulation, dry granulation, hot melt granulation, hot melt extrusion, fluidized bed granulation, extrusion, and solvent evaporation.

The components of the pharmaceutical composition defined hereinbefore can be brought together into a suitable composition for oral administration according to standard practice and procedures well known in the art of pharmaceutical science using conventional formulation and manufacturing techniques.

In an embodiment, sitagliptin composition may be prepared by granulating the admixture of sitagliptin and a beneficial agent optionally with one or more pharmaceutical excipients. The resulting granules may be compressed to form tablets or filled in hard gelatin capsules.

Alternatively, the process of manufacturing the sitagliptin composition may comprise a step of granulating sitagliptin with one or more pharmaceutical excipients followed by complete or partial coating of the resulting granules with a beneficial agent. The coated granules may be compressed to form tablets or filled in hard gelatin capsules.

In another embodiment, a stable sitagliptin composition may be developed in the form of pellets, which may be prepared by coating one or more layers of sitagliptin and a beneficial agent on non-pareil sugar seeds or inert cores. The resulting pellets may be admixed with pharmaceutical excipients and filled into hard gelatin capsules or may be compressed with pharmaceutical excipients to form tablets.

Alternatively, the pellets may be prepared by completely or partially coating particles of sitagliptin by a beneficial agent. The resulting pellets may be admixed with pharmaceutical excipients and filled into hard gelatin capsules or may be compressed with pharmaceutical excipients to form tablets.
The composition may be seal coated. Preferably, the composition is seal coated and finally film coated. The composition can be coated with ready color mix systems (such as opadry color mix systems).

In yet another embodiment, the pharmaceutical composition may involve one or more manufacturing process to obtain a single unitary dosage form - i.e., wherein the drug is processed by granulation techniques as discussed above and finally compacted to yield a single dosage form.

In yet another embodiment, the stable pharmaceutical composition may be prepared by a process, wherein the process comprises the steps of:

(a) preparing a homogeneous melt by mixing sitagliptin with a suitable binder;
(b) cooling the melt of step (a), milling and sizing to obtain granules;
(c) blending the granules of step (b) with at least one beneficial agent and one or more pharmaceutically acceptable excipients;
(d) compressing the blend of step (c) to obtain tablets; and
(e) optionally, coating the tablets.

In yet another embodiment, the stable pharmaceutical composition may be prepared by a process, wherein the process comprises the steps of:

(a) mixing sitagliptin, at least one beneficial agent and optionally one or more pharmaceutically acceptable excipients;
(b) granulating the mixture of step (a) with or without a binder solution;
(c) blending granules obtained in step (b) with one or more pharmaceutically acceptable excipients; and
(d) compressing the blended granules into a tablet.

In yet another embodiment, the stable pharmaceutical composition may be prepared by a process, wherein the process comprises the steps of:

(a) preparing solution or dispersion of sitagliptin, at least one beneficial agent and optionally one or more pharmaceutically acceptable excipients;
(b) spraying the solution or dispersion of sitagliptin on inert cores;
(c) blending coated cores obtained in step (b) with one or more pharmaceutically acceptable excipients; and
(d) compressing the blended granules into a tablet.

In yet another embodiment, the stable pharmaceutical composition may be prepared by a process, wherein the process comprises the steps of:
(a) mixing sitagliptin and one or more pharmaceutically acceptable excipients; granulating the mixture with or without a binder solution to obtain the sitagliptin granules and optionally coating the granules;
(b) mixing at least one beneficial agent and one or more pharmaceutically acceptable excipients; granulating the mixture with or without a binder solution to obtain the granules and optionally coating the granules;
(c) blending granules obtained in step (a) and (b) with one or more pharmaceutically acceptable excipients; and
(d) compressing the blended granules into a tablet.

In yet another embodiment, the stable pharmaceutical composition may be prepared by a process, wherein the process comprises the steps of:
(a) taking inert cores of sugar spheres;
(b) spraying solution or dispersion of sitagliptin and one or more pharmaceutically acceptable excipients;
(c) spraying solution or dispersion of at least one beneficial agent and one or more pharmaceutically acceptable excipients; and
(d) compressing the coated cores into a tablet.

In yet another embodiment, the stable pharmaceutical composition may be prepared by a process, wherein the process comprises the steps of:
(a) preparing inert cores of at least one beneficial agent;
(b) seal coating of the cores of acid;
(c) spraying solution or dispersion of sitagliptin and one or more pharmaceutically acceptable excipients;
(d) drying the coated cores; and
(e) compressing the coated cores into a tablet.

The compositions as per the invention are tested for assay, dissolution and impurity profile. The compositions are tested for known and unknown impurities
under different conditions. One of the known impurities is Impurity-1 which is 3-
Trifluoromethyl-5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-a]pyrazine hydrochloride. According to ICH guideline, the level of single known or unknown impurity should not be more than 0.2% in any pack.

In another embodiment, a stable pharmaceutical composition comprising sitagliptin and at least one beneficial agent, wherein the composition provides a mean of C$_{\text{max}}$ from about 900 ng/mL to about 1000 ng/mL, a mean of AUC from about 8000 ng*hr/mL to about 9000 ng*hr/mL and a mean of T$_{\text{max}}$ at least about 2 hours.

In still another embodiment, a method of treating type 2 diabetes mellitus in a patient comprising administering to said subject a stable pharmaceutical composition comprising sitagliptin, a beneficial agent and one or more pharmaceutically acceptable excipients.

The invention is further illustrated by the following examples which are provided to be exemplary of the invention and do not limit the scope of the invention. While the present invention has been described in terms of its specific embodiments, certain modifications and equivalents will be apparent to those skilled in the art and are intended to be included within the scope of the present invention.

Example 1

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Ingredient</th>
<th>Quantity (% w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sitagliptin</td>
<td>22.58</td>
</tr>
<tr>
<td>2</td>
<td>Microcrystalline cellulose</td>
<td>26.26</td>
</tr>
<tr>
<td>3</td>
<td>Dibasic calcium phosphate anhydrous</td>
<td>22.58</td>
</tr>
<tr>
<td>4</td>
<td>Croscarmellose sodium</td>
<td>1.75</td>
</tr>
<tr>
<td>5</td>
<td>Citric acid</td>
<td>5.64</td>
</tr>
</tbody>
</table>
Table 2

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Ingredient</th>
<th>Quantity (%) w/w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intragranular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Sitagliptin</td>
<td>24.27</td>
</tr>
<tr>
<td>2</td>
<td>Microcrystalline cellulose</td>
<td>34.22</td>
</tr>
<tr>
<td>3</td>
<td>Dibasic calcium phosphate anhydrous</td>
<td>9.71</td>
</tr>
<tr>
<td>4</td>
<td>Croscarmellose sodium</td>
<td>3.88</td>
</tr>
<tr>
<td>Extragranular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Magnesium stearate</td>
<td>0.73</td>
</tr>
<tr>
<td>6</td>
<td>Sodium stearyl fumarate</td>
<td>0.73</td>
</tr>
<tr>
<td>Coating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Microcrystalline cellulose</td>
<td>11.29</td>
</tr>
<tr>
<td>8</td>
<td>Croscarmellose sodium</td>
<td>1.17</td>
</tr>
<tr>
<td>9</td>
<td>Magnesium stearate</td>
<td>1.69</td>
</tr>
<tr>
<td>10</td>
<td>Sodium stearyl fumarate</td>
<td>1.69</td>
</tr>
<tr>
<td>11</td>
<td>Colloidal silicon dioxide</td>
<td>0.97</td>
</tr>
<tr>
<td>12</td>
<td>Opadry II</td>
<td>2.91</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100.00</td>
</tr>
</tbody>
</table>

Procedure: Sitagliptin, microcrystalline cellulose, dibasic calcium phosphate, croscarmellose sodium and citric acid were mixed. The mixture was lubricated with magnesium stearate and sodium stearyl fumarate. The lubricated mixture was roller compacted and compacts were milled and blended with extragranular ingredients like microcrystalline cellulose and croscarmellose sodium. The blend was lubricated with magnesium stearate, sodium stearyl fumarate, colloidal silicon dioxide and was compressed into tablets. The tablets thus obtained were film-coated with opadry II.

Example 2
Example 3

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Ingredient</th>
<th>Quantity (% w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intragranular</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Sitagliptin</td>
<td>24.27</td>
</tr>
<tr>
<td>2</td>
<td>Microcrystalline cellulose</td>
<td>34.47</td>
</tr>
<tr>
<td>3</td>
<td>Croscarmellose sodium</td>
<td>3.88</td>
</tr>
</tbody>
</table>

Procedure: Sitagliptin, microcrystalline cellulose, dibasic calcium phosphate, croscarmellose sodium and fumaric were mixed. The mixture was granulated using solution of Povidone and poloxamer in Isopropyl alcohol (IPA). The granules were dried. The granules were milled and blended with extragranular ingredients like microcrystalline cellulose and croscarmellose sodium. The blend was lubricated with magnesium stearate, sodium stearyl fumarate, colloidal silicon dioxide and was compressed into tablets. The tablets thus obtained were film-coated with opadry II.
Alginic acid 16.99

Povidone 0.97

Isopropyl alcohol q.s.

Extragranular

Microcrystalline cellulose 12.14

Croscarmellose sodium 2.91

Magnesium stearate 0.97

Colloidal silicon dioxide 0.49

Coating

Opadry II 2.91

Total 100.00

Procedure: Sitagliptin, microcrystalline cellulose, croscarmellose sodium and alginic acid were mixed. The mixture was granulated using solution of Povidone in Isopropyl alcohol (IPA). The mixture was blended with extragranular ingredients like microcrystalline cellulose and croscarmellose sodium. The blend was lubricated with magnesium stearate, colloidal silicon dioxide and was compressed into tablets. The tablets thus obtained were film-coated with opadry II.

The tablets thus prepared were tested for dissolution, assay and impurity profile. The dissolution was carried out in USP Type-I (basket) apparatus having 900 ml purified water as a dissolution medium at 100 RPM. The results of the tests are shown below in Table 6b.

Table 6b

<table>
<thead>
<tr>
<th>Assay</th>
<th>103.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolution</td>
<td>87% drug release (in 30 min)</td>
</tr>
<tr>
<td>Impurity - I</td>
<td>0.03</td>
</tr>
<tr>
<td>Single unknown impurity</td>
<td></td>
</tr>
<tr>
<td>(maximum)</td>
<td>0.17</td>
</tr>
<tr>
<td>Total impurity</td>
<td>0.20</td>
</tr>
</tbody>
</table>
Example 4

Table 4

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Ingredient</th>
<th>Quantity (%) w/w</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intragraanular</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Sitagliptin</td>
<td>20.71</td>
</tr>
<tr>
<td>2</td>
<td>Microcrystalline cellulose</td>
<td>41.83</td>
</tr>
<tr>
<td>3</td>
<td>Crospovidone</td>
<td>3.31</td>
</tr>
<tr>
<td>4</td>
<td>Concentrated Hydrochloric acid (HCl)</td>
<td>8.28</td>
</tr>
<tr>
<td>5</td>
<td>Povidone</td>
<td>0.83</td>
</tr>
<tr>
<td>6</td>
<td>Water</td>
<td>q.s.</td>
</tr>
<tr>
<td></td>
<td>Extragranular</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Dibasic calcium phosphate anhydrous</td>
<td>18.64</td>
</tr>
<tr>
<td>8</td>
<td>Crospovidone</td>
<td>2.48</td>
</tr>
<tr>
<td>9</td>
<td>Magnesium stearate</td>
<td>0.83</td>
</tr>
<tr>
<td>10</td>
<td>Colloidal silicon dioxide</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>Coating</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Opadry II</td>
<td>2.67</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Procedure: A binder solution was prepared by dissolving sitagliptin and povidone in HCl - water mixture. Microcrystalline cellulose and crospovidone were mixed and the mixture was granulated using above prepared binder solution. The granules were dried and mixed with extragranular ingredients like dibasic calcium phosphate anhydrous and crospovidone. The blend was lubricated with magnesium stearate, colloidal silicon dioxide and was compressed into tablets. The tablets thus obtained were film-coated with opadry II.
Example 5

Table 5

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Ingredient</th>
<th>Quantity (% w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intragranular</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Sitagliptin</td>
<td>24.27</td>
</tr>
<tr>
<td>2</td>
<td>Microcrystalline cellulose</td>
<td>41.75</td>
</tr>
<tr>
<td>3</td>
<td>Dibasic calcium phosphate anhydrous</td>
<td>9.71</td>
</tr>
<tr>
<td>4</td>
<td>Croscarmellose sodium</td>
<td>3.88</td>
</tr>
<tr>
<td>5</td>
<td>Povidone</td>
<td>0.97</td>
</tr>
<tr>
<td>6</td>
<td>Water</td>
<td>q.s.</td>
</tr>
<tr>
<td></td>
<td>Extragranular</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Microcrystalline cellulose</td>
<td>7.28</td>
</tr>
<tr>
<td>8</td>
<td>Maleic acid</td>
<td>4.85</td>
</tr>
<tr>
<td>9</td>
<td>Crospovidone</td>
<td>2.91</td>
</tr>
<tr>
<td>10</td>
<td>Magnesium stearate</td>
<td>0.97</td>
</tr>
<tr>
<td>11</td>
<td>Colloidal silicon dioxide</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>Coating</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Opadry II</td>
<td>2.91</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Procedure: Sitagliptin, microcrystalline cellulose, dibasic calcium phosphate anhydrous and croscarmellose sodium were mixed. The mixture was granulated using solution of povidone in water. The mixture was blended with extragranular ingredients like microcrystalline cellulose, maleic acid and crospovidone. The blend was lubricated with magnesium stearate, colloidal silicon dioxide and was compressed into tablets. The tablets thus obtained were film-coated with opadry II.

Example 6

Table 6a
<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Ingredient</th>
<th>Quantity (%) w/w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intragranular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Sitagliptin</td>
<td>24.27</td>
</tr>
<tr>
<td>2</td>
<td>Microcrystalline cellulose</td>
<td>38.11</td>
</tr>
<tr>
<td>3</td>
<td>Dibasic calcium phosphate anhydrous</td>
<td>9.71</td>
</tr>
<tr>
<td>4</td>
<td>Croscarmellose sodium</td>
<td>3.88</td>
</tr>
<tr>
<td>5</td>
<td>Povidone</td>
<td>0.97</td>
</tr>
<tr>
<td>6</td>
<td>Isopropyl alcohol (IPA)</td>
<td>q.s.</td>
</tr>
<tr>
<td>Extragranular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Microcrystalline cellulose</td>
<td>12.14</td>
</tr>
<tr>
<td>8</td>
<td>L-cysteine hydrochloride</td>
<td>3.64</td>
</tr>
<tr>
<td>9</td>
<td>Crospovidone</td>
<td>2.91</td>
</tr>
<tr>
<td>10</td>
<td>Magnesium stearate</td>
<td>0.97</td>
</tr>
<tr>
<td>11</td>
<td>Colloidal silicon dioxide</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>Coating</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Opadry II</td>
<td>2.91</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Procedure: Sitagliptin, microcrystalline cellulose, dibasic calcium phosphate anhydrous and croscarmellose sodium were mixed. The mixture was granulated using solution of povidone in IPA. The mixture was blended with extragranular ingredients like microcrystalline cellulose, L-cysteine hydrochloride and crospovidone. The blend was lubricated with magnesium stearate, colloidal silicon dioxide and was compressed into tablets. The tablets thus obtained were film-coated with opadry II.

The tablets thus prepared were tested for dissolution, assay and impurity profile. The dissolution was carried out in USP Type-I (basket) apparatus having 900 ml purified water as a dissolution medium at 100 RPM. The results of the tests are shown below in Table 6b.
While the invention has been described in terms of its specific embodiments, certain modifications and equivalents will be apparent to those skilled in the art and are intended to be included within the scope of the invention.

<table>
<thead>
<tr>
<th>Assay</th>
<th>100.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolution</td>
<td>89% drug release (in 30 min)</td>
</tr>
<tr>
<td>Impurity - I</td>
<td>0.08</td>
</tr>
<tr>
<td>Single unknown impurity (maximum)</td>
<td>0.12</td>
</tr>
<tr>
<td>Total impurity</td>
<td>0.58</td>
</tr>
</tbody>
</table>
Claims:
1. A stable pharmaceutical composition comprising sitagliptin and at least one beneficial agent, wherein the composition is a bioequivalent composition to Januvia® and shows similar rate and extent of absorption to those of Januvia®, the currently marketed product of sitagliptin phosphate monohydrate in USA.

2. The stable pharmaceutical composition according to claim 1, wherein the sitagliptin is in an amorphous form.

3. The stable pharmaceutical composition according to claim 1, wherein the sitagliptin is in a crystalline form.

4. The stable pharmaceutical composition according to claim 1, wherein the beneficial agent comprises a complexing agent, a pH modifying agent, a solubilizing compound, a stabilizing compound, a permeability enhancing compound, or a combination thereof.

5. The stable pharmaceutical composition according to claim 1, wherein the beneficial agent is L-cysteine hydrochloride.

6. The stable pharmaceutical composition according to claim 1, wherein the beneficial agent is alginic acid.

7. The stable pharmaceutical composition according to claim 1, wherein the sitagliptin is in a micronized form.

8. The stable pharmaceutical composition according to claim 7, wherein the sitagliptin has an average particle size diameter below 25 microns.
9. The stable pharmaceutical composition according to claim 1, wherein the composition further comprises one or more pharmaceutically acceptable excipients comprising diluents, binders, disintegrants, glidants, lubricants, sweeteners/taste masking agents, compression aids, colorants, flavors and the combinations thereof.

10. The stable pharmaceutical composition according to claim 1, wherein the composition is in the form of a solid dispersion.

11. The stable pharmaceutical composition according to claim 1, wherein said composition retains at least about 90% of the potency of sitagliptin in the pharmaceutical composition after storing the composition at 40°C and 75% relative humidity for at least three months.

12. The stable pharmaceutical composition according to claim 1, wherein the composition is prepared by a process comprising the steps of:
(a) mixing sitagliptin, at least one beneficial agent and optionally one or more pharmaceutically acceptable excipients;
(b) granulating the mixture of step (a) with or without a binder solution;
(c) blending granules obtained in step (b) with one or more pharmaceutically acceptable excipients; and
(d) compressing the blended granules into a tablet.

13. The stable pharmaceutical composition according to claim 1, wherein the composition is prepared by a process comprising the steps of:
(a) preparing solution or dispersion of sitagliptin, at least one beneficial agent and optionally one or more pharmaceutically acceptable excipients;
(b) spraying the solution or dispersion of sitagliptin on inert cores;
(c) blending coated cores obtained in step (b) with one or more pharmaceutically acceptable excipients; and
(d) compressing the blended granules into a tablet.

14. The stable pharmaceutical composition according to claim 1, wherein the composition is prepared by a process comprising the steps of:
(a) mixing sitagliptin and one or more pharmaceutically acceptable excipients; granulating the mixture with or without a binder solution to obtain the sitagliptin granules and optionally coating the granules;
(b) mixing at least one beneficial agent and one or more pharmaceutically acceptable excipients; granulating the mixture with or without a binder solution to obtain the granules and optionally coating the granules;
(c) blending granules obtained in step (a) and (b) with one or more pharmaceutically acceptable excipients; and
(d) compressing the blended granules into a tablet.

15. The stable pharmaceutical composition according to claim 1, wherein the composition is prepared by a process comprising the steps of:
(a) taking inert cores of sugar spheres;
(b) spraying solution or dispersion of sitagliptin and one or more pharmaceutically acceptable excipients;
(c) spraying solution or dispersion of at least one beneficial agent and one or more pharmaceutically acceptable excipients; and
(d) compressing the coated cores into a tablet.

16. The stable pharmaceutical composition according to claim 1, wherein the composition is prepared by a process comprising the steps of:
(a) preparing inert cores of at least one beneficial agent;
(b) seal coating of the cores of acid;
(c) spraying solution or dispersion of sitagliptin and one or more pharmaceutically acceptable excipients;
(d) drying the coated cores; and
(e) compressing the coated cores into a tablet.

17. A stable pharmaceutical composition comprising sitagliptin and at least one beneficial agent, wherein the composition provides an in-vivo plasma profile for sitagliptin comprising:
a mean of $C_{\text{m,\infty}}$ from about 900 ng/mL to about 1000 ng/ml,
a mean of AUC from about 8000 ng*hr/mL to about 9000 ng*hr/mL; and
a mean of T_{max} at least about 2 hours.
A. CLASSIFICATION OF SUBJECT MATTER
A61K9/20 A61K31/4985
A61K9/16

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPO-Internal, BIOSIS, EMBASE, FSTA, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

[X] Further documents are listed in the continuation of Box C. [X] See patent family annex.

* Special categories of cited documents:
A document defining the general state of the art which is not considered to be of particular relevance
E earlier application or patent but published on or after the international filing date
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
O document referring to an oral disclosure, use, exhibition or other means
P document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"A" document member of the same patent family

Date of the actual completion of the international search
26 June 2015

Date of mailing of the international search report
11/08/2015

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer
van de Wetering, P
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>wo 2012/131005 A1 (KRKA TOVARNA ZDRAVLJ D NOVO MESTO [SI]; PRESKAR MAJA [SI]; KROSELJ V) 4 October 2012 (2012-10-04) page 4, lines 13-20 page 6, lines 1-28 examples</td>
<td>1, 2, 4, 9, 12-17</td>
</tr>
</tbody>
</table>
Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. □ Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. □ Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

> see additional sheet

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.

3. □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ✔ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

 1-3 , 9 , 12-17 (completely) ; 4(partially)

Remark on Protest

- The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.
This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. claims: 1-3, 9, 12-17 (completely) ; 4 (partially)

 A stable pharmaceutical composition comprising sitagliptin and at least one beneficial agent, wherein the sitagliptin is in an amorphous or in a crystalline form, wherein the beneficial agent comprises a stabilizing compound, and wherein the composition further comprises one or more pharmaceutically acceptable excipients.

2. claim: 4 (partially)

 A stable pharmaceutical composition comprising sitagliptin and at least one beneficial agent, wherein the beneficial agent comprises a complexing agent or a solubilizing compound.

3. claims: 5, 6 (completely) ; 4 (partially)

 A stable pharmaceutical composition comprising sitagliptin and at least one beneficial agent, wherein the beneficial agent comprises a pH modifying agent.

4. claim: 4 (partially)

 A stable pharmaceutical composition comprising sitagliptin and at least one beneficial agent, wherein the beneficial agent comprises a permeability enhancing compound.

5. claims: 7, 8

 A stable pharmaceutical composition comprising sitagliptin and at least one beneficial agent, wherein the sitagliptin is in a micronized form.

6. claims: 10, 11

 A stable pharmaceutical composition comprising sitagliptin and at least one beneficial agent, wherein the composition is in the form of a solid dispersion.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EP 2691083 A1</td>
<td>05-02-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2012131005 A1</td>
<td>04-10-2012</td>
</tr>
</tbody>
</table>