Title: A PROCESS FOR THE PREPARATION OF 1-(3-TRIFLUOROMETHYLPHENYL)-PROPA-N-2-OL ENANTIOEMERS

Abstract: A process for the preparation of 1-(3-trifluoromethylphenyl)-propan-2-ol enantiomers through enzymatic resolution by a lipase.
A PROCESS FOR THE PREPARATION OF 1-(3-TRIFLUOROMETHYLPHENYL)-PROPAN-2-OL ENANTIOMERS

The present invention relates to a process for the preparation of 1-(3-trifluoromethylphenyl)-propan-2-ol enantiomers through enzymatic resolution by a lipase.

1-(3-Trifluoromethylphenyl)-propan-2-ol enantiomers are useful intermediates for the preparation of the enantiomers of fenfluramine, a known medicament with anorectic activity used in the treatment of obesity. In particular, S-fenfluramine, which is considered the more active enantiomer, or eutomer, (Grice et al. Clin. Exp. Pharmacol. Physiol. 1998, 25, 621-23), can be obtained by tosylation of R-(-)-1-(3-trifluoromethylphenyl)-propan-2-ol and subsequent reaction with ethylamine.

A process for the separation of R,S-fenfluramine enantiomers by selective crystallization has been described [Morehead AT Jr. et al., Enantiomer 1996, 1, 63-8]. The kinetic resolution of the amine precursor of fenfluramine by lipase-catalyzed enantioselective acylation has also been effected [Garcia-Urdiales et al., Tetrahedron: Asymmetry, 2000. 11, 1459-63]. Both procedures however involve the problem of the recycle of the undesired enantiomer.

EP-A-441160 discloses a process for the preparation of the two fenfluramine isomers, which uses as an intermediate the chiral alcohol obtained by reducing (3-trifluoromethylphenyl)acetone with beer yeast. Said process provides only one of the two enantiomeric alcohols, as a product of the enantioselective reduction, but has the drawback of requiring a high number of steps, so that the final yield in S-fenfluramine is rather low.

It is therefore necessary to develop a simple, advantageous method for
the preparation of fenfluramine precursors in enantiopure form.

Said problem is solved by the process of the invention, which makes use of lipase biocatalysis in an organic solvent to obtain both enantiopure forms of 1-(3-trifluoromethylphenyl)-propan-2-ol (1) enantiomers in high yields.

It has, in fact, been found that some lipases are capable of catalyzing the esterification of (1) with high enantioselectivity, to yield the ester (2) with configuration \(R \) and the alcohol (1) with configuration \(S \).

Said lipases are also capable of enantioselectively catalyzing the alcoholysis of 1-(3-trifluoromethylphenyl)-propan-2-ol racemic ester (2), to give the alcohol (1) with configuration \(R \) and the ester (2) with configuration \(S \).

Therefore, the invention provides a process for the preparation of 1-(3-trifluoromethylphenyl)-propan-2-ol enantiomers, which process comprises the esterification of racemic 1-(3-trifluoromethylphenyl)-propan-2-ol with an acylating agent or the alcoholysis of 1-(3-trifluoromethylphenyl)-propan-2-ol esters of formula
wherein R is alkyl or C₁-C₈ alkenyl or benzoyl,

in the presence of a lipase and the separation of the unreacted S-(+) 1-(3-trifluoromethylphenyl)-propan-2-ol or of the corresponding ester respectively from R-(-) 1-(3-trifluoromethylphenyl)-propan-2-ol ester or from R-(-) 1-(3-trifluoromethylphenyl)-propan-2-ol resulting from the esterification or lipase-catalyzed hydrolysis/alcoholysis reactions.

In the case of the resolution through esterification, the acylating agent is preferably selected from the vinyl or isopropenyl alcohols esters, in particular vinyl acetate, vinyl propionate, isopropenyl acetate, vinyl benzoate.

The lipases for use in the process of the invention are commercially available and derive from microorganisms such as Candida antarctica, Mucor miehei or Pseudomonas cepacia.

The esterification reaction is carried out in an organic apolar solvent compatible with the lipase, such as pentane, hexane, heptane, octane, dichloromethane, diethyl ether, diisopropyl ether, t-butyl methyl ether, preferably hexane, at a temperature ranging from 20 to 70°C, for times ranging approximately from 30 min to 10 hours.

In the case of resolution through alcoholysis, the same lipases can be used as well as the same conditions and solvents as described for the esterification, in the presence of a straight alkyl alcohol, preferably n-butanol. Acetic, propionic, benzoic esters and the like, preferably the acetic ester, can be used as racemic esters.
Both in the esterification and in the alcoholysis, the lipases selectively recognize the isomer with configuration \(R \), which can be transformed into ester or hydrolyzed with enantiomeric purity above 98%. The separation of the reaction products is carried out with known procedures.

Racemic 1-(3-trifluoromethylphenyl)-propan-2-ol can be obtained by reduction of 1-(3-trifluoromethylphenyl)acetone, preferably by reaction with lithium aluminium hydride in ethyl ether.

The process of the invention can also be used for the optical resolution of 1-(phenyl)-propan-2-ol or of derivatives substituted at the phenyl ring with hydroxy or methoxy groups, in particular at the meta and para positions.

The following examples illustrate the invention in greater detail.

Example 1

Preparation of \((R)-1-(3\text{-trifluoromethylphenyl})\text{-propan-2-ol, } (-)-(1)\) and of \((S)-1-(3\text{-trifluoromethylphenyl})\text{-propan-2-ol, } (+)-(1)\), by esterification.

One gram of 1-(3-trifluoromethylphenyl)-propan-2-ol, \((\pm)-(1)\), is dissolved in 100 ml of hexane, then is added with 0.5 g of Novozym (lipase from *Candida antarctica*) and 1 ml of vinyl acetate. The suspension is then incubated at 45°C in a rotating stirrer (300 rpm). After 1 h, when the reaction mixture contains only two compounds in 1:1 ratio, the reaction is stopped and the solvent is distilled off under vacuum. The resulting residue is subjected to chromatographic separation on silica gel, eluting with ethyl ether/petroleum ether gradient, to yield 0.627 g of \((R)-1-(3\text{-trifluoromethylphenyl})\text{-propan-2-ol acetic ester, } (-)-(2)\), (52% yield, 92% ee) and \((S)-1-(3\text{-trifluoromethylphenyl})\text{-propan-2-ol, } (+)-(1),\) 0.470 g (47% yield, >98% ee). The \((-)-(2)\) ester is dissolved in 50 ml of hexane containing 1.5 ml of butanol and added with 0.5 g of Novozym. The suspension is then incubated at 45°C in a rotating stirrer (300 rpm). After 5 h, the reaction is
stopped to yield (R)-1-(3-trifluoromethylphenyl)-propan-2-ol, (-)-(1), 0.488 g (94% yield, >98% ee).

Example 2

Preparation of (R)-1-(3-trifluoromethylphenyl)-propan-2-ol, (-)-(1) and of (S)-1-(3-trifluoromethylphenyl)-propan-2-ol, (+)-(1), by alcoholyis.

One gram of 1-(3-trifluoromethylphenyl)-propan-2-ol acetic ester (±)-2 is dissolved in 100 ml of hexane, which is added with 0.5 g of Novozym (lipase from *Candida antarctica*) and 1 ml of butanol. The suspension is then incubated at 45°C in a rotating stirrer (300 rpm). After 6 h, when the reaction mixture contains only two reaction products in a 1:1 ratio, the reaction is stopped and the solvent is distilled off under vacuum. The resulting residue is subjected to chromatographic separation on silica gel eluting with petroleum ether/ethyl ether gradient, to yield 0.480 g of (S)-1-(3-trifluoromethylphenyl)-propan-2-ol acetic ester, (+)-(2) (48% yield, >98% ee) and (R)-1-(3-trifluoromethylphenyl)-propan-2-ol (-)-(1), 0.420 g (51% yield, 96% ee).
CLAIMS

1. A process for the preparation of 1-(3-trifluoromethylphenyl)-propan-2-ol enantiomers, which comprises the esterification of racemic 1-(3-trifluoromethylphenyl)-propan-2-ol with an acylating agent or the alcoholysis of 1-(3-trifluoromethylphenyl)-propan-2-ol esters of formula

\[\text{OCOR} \]

\[(\pm)-2\]

wherein R is alkyl or C1-C8 alkenyl or benzoyl,
in the presence of a lipase and the separation of the unreacted \(S-\) and \(R-\) 1-(3-trifluoromethylphenyl)-propan-2-ol or of the corresponding ester respectively from the \(R-\) 1-(3-trifluoromethylphenyl)-propan-2-ol ester or from \(R-\) 1-(3-trifluoromethylphenyl)-propan-2-ol ester resulting from the lipase-catalyzed esterification or alcoholysis reactions.

2. A process as claimed in claim 1, which comprises the esterification of racemic 1-(3-trifluoromethylphenyl)-propan-2-ol with an acylating agent in the presence of a lipase and the subsequent separation of \(S-\) 1-(3-trifluoromethylphenyl)-propan-2-ol from the \(R-\) 1-(3-trifluoromethylphenyl)-propan-2-ol ester.

3. A process as claimed in claim 2, wherein the acylating agent is selected from vinyl or isopropenyl alcohols esters.

4. A process as claimed in claim 3, wherein the acylating agent is selected from vinyl acetate, isopropenyl acetate, vinyl benzoate.

5. A process as claimed in any one of claims 2 to 4, wherein the esterification reaction is carried out in hexane.
6. A process as claimed in claim 1, which comprises the alcoholysis of 1-(3-trifluoromethylphenyl)-propan-2-ol esters of formula

\[
\begin{align*}
&\text{CF}_3 \\
&\text{OCOR} \\
&\text{(±)-2}
\end{align*}
\]

wherein R is alkyl or C$_1$-C$_8$ alkenyl or benzoyl,

5 in the presence of a lipase and of a straight C$_2$-C$_6$ alkyl alcohol and the separation of the unreacted S- (+) 1-(3-trifluoromethylphenyl)-propan-2-ol ester from R- (-) 1-(3-trifluoromethylphenyl)-propan-2-ol.

7. A process as claimed in claim 6, wherein the alkyl alcohol is n-butanol.

8. A process as claimed in claim 6 or 7, wherein R is methyl.

9. A process as claimed in any one of claims 6 to 8, wherein the alcoholysis is carried out in hexane.

10. A process as claimed in any one of claims 1 to 9, wherein the lipase derives from *Candida antarctica*, *Mucor miehei* or *Pseudomonas cepacia*.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C12P7/22 C12P7/62

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, CHEM ABS Data, WPI Data, PAJ, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

Due Date of the actual completion of the international search

10 April 2002

Date of mailing of the international search report

25/04/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 940-3018

Douschan, K
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DATABASE CA 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; GOUMENT, B. ET AL: "Synthesis of (S)-fenfluramine from (R)- or (S)-1-'3-(trifluoromethyl)phenyl)propan-2-ol" retrieved from STN Database accession no. 120:244208 XP002195662 abstract & BULL. SOC. CHIM. FR. (1993), 130(4), 450-8</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 441 160 A (LABORATORI MAG S.P.A.) 14 August 1991 (1991-08-14) cited in the application the whole document</td>
<td>1-10</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>EP 0441160 A</td>
<td>14-08-1991</td>
<td>IT 1238686 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 124680 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69110917 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69110917 T2</td>
</tr>
</tbody>
</table>