
(19) United States
US 2001 0008019A1

(12) Patent Application Publication (10) Pub. No.: US 2001/0008019 A1
VERT et al. (43) Pub. Date: Jul. 12, 2001

(54) METHOD AND SYSTEM FOR
TRANSPARENTLY FAILING OVER
APPLICATION CONFIGURATION
INFORMATION IN A SERVER CLUSTER

(76) Inventors: JOHN D. VERT, SEATTLE, WA (US);
SUNITASHRIVASTAVA,
REDMOND, WA (US)

Correspondence Address:
ALBERT S MICHALIK
Michalik & Wylie
14645 Bel-Red Road
Suite 103
Bellevue, WA 98.007 (US)

(*) Notice: This is a publication of a continued pros
ecution application (CPA) filed under 37
CFR 1.53(d).

(21) Appl. No.: 09/061,857

(22) Filed: Apr. 17, 1998

Processing
Unit

(RAM) 25
OPERATING
SYSTEM 35

Disk Drive
Interface

Drive
Interface

(File System) 23

APPLICATION
PROGRAMs 36

OTHER PROGRAM
MODULES 37

Hard Disk Magnetic
PROGRAM
DATA 38

PROGRAM
MODULES

PROGRAMS
36

SYSTEM
35

21

Publication Classification

(51) Int. Cl." H04L 1/22; H04B 1/74;
HO2H 3/05; H05K 10/00;

HO3K 19/003
(52) U.S. Cl. .. 714/1

(57) ABSTRACT

A method and System for transparently failing over a legacy
application from a first System to a Second System of a Server
cluster by tracking and checkpointing changes to application
configuration information Stored in a System's local registry.
When an application running on the first System makes a
change to the application configuration information in a
Subtree of the registry, the change is detected and a Snapshot
of the Subtree's data is taken. The Snapshot is written to a
Storage device shared by Systems of the cluster, Such as a
quorum disk. When the application is failed over to a Second
System, the SnapShot for that application is retrieved from
the quorum disk and written to the registry of the Second
System in a corresponding Subtree. The application is then
run on the Second System using the most-recent application
configuration information as modified by the other System in
the cluster.

47

55

Monitor

Video
Adapter

Host
Adapter

Serial
Port

linterface

Optical
Orive

Network
interface

interface

Remote
Computer(s)

Keyboard 40 - - -
--- 50

APPLICATION PROGRAMs 36 Mouse 42

Sheet 1 of 11 US 2001/0008019 A1 Jul. 12, 2001 Patent Application Publication

55 SWVH9Odd NO]] VOITddV

§5

WELSÅS

Sheet 2 of 11 US 2001/0008019 A1 Jul. 12, 2001 Patent Application Publication

EKOLAECI WTºOTTO
09

99

Patent Application Publication Jul. 12, 2001 Sheet 3 of 11 US 2001/0008019 A1

Cluster Management

68 RPC

74
70 PC

embership
Manager

heckpoint
Manager

Quorum
Resource

Node
Manager

Database
Manager

D) 80 Monitors 102 Comm.
Manager

App Logical App Physical 76
Resource ReSource ReSource ReSource

DLL DLL DLL DLL
: : .. TO

Other 1023 -
Cluster
Unaware
App

021 102 Logical Systems
Resource 96

94 object
Physical
ReSource
Object

vivo"NAGTAÐAH E E ?I-NOOTINE!!!!/ STABXH DJE] sw?asnTAÐAH EJ E] uønsÁS EJE] |
u uuelfioud Ej E]|| zuelfiold E DEJ|

Sheet 4 of 11 US 2001/0008019 A1

?70),(O) O?000000x0 EnTVA CHOMCI DJ6?uoo FJ[+] ; 0?, þ0 00 00EITTIVA ÅRHWNIE DUENIHOVINT TVO OTTAEXH BRÐT-T

Patent Application Publication

Patent Application Publication Jul. 12, 2001 Sheet 5 of 11 US 2001/0008019 A1

96 601

APPLICATION
(Program2)

Subtree 1
Subtree 2A

NOTIFICATION
MECHANISM Subtreek

REGISTRY CHECKPOINT
MANAGER SNAPSHOT

MECHANISM

118 SNAPSHOT
DATA 1

82 1182
SNAPSHOT
DATA2

OTHER FILES

LIST OF REGISTERED
SUBTREES (Program2)

CLUSTERREGISTRY
(DATABASES)

SNAPSHOT
118m DATA m

FIG. 5 57

110

QUORUM DEVICE

Patent Application Publication Jul. 12, 2001 Sheet 6 of 11 US 2001/0008019 A1

96 602

SYSTEM 2
APPLICATION
(Program2)

. 124 120

Subtree 1
Subtree 2A

NOTIFICATION
MECHANISM Subtreek

REGISTRY
RESTORE
MECHANISM

CHECKPOINT
MANAGER

1181. SNAPSHOT
82 1182 FILE1 LIST OF REGISTERED

SNAPSHOT SUBTREES (Program2)

OTHER FILES FILE 2 CLUSTER REGISTRY

(DATABASES)
SNAPSHOT

118m FLE in 110

QUORUM DEVICE

F.G. 6 57

Patent Application Publication Jul. 12, 2001 Sheet 7 of 11 US 2001/0008019A1

FIG. 7

706

Receive Request to
Create Registry Receive Request to Run
Checkpoint for Specified Application

Specified Application p pp.

DOes
Specified
Application
Have Existing
Checkpoint

p

702

Receive Specified
Subtree(s) Associated

with Application Yes

TO FIG. 9

Patent Application Publication Jul. 12, 2001 Sheet 8 of 11 US 2001/0008019 A1

FIG. 8

Select First Subtree 800
ASSociated With

Specified Application

Take Snapshot
(Checkpoint Data) of

Selected Registry Subtree
On Local Machine

Write Checkpoint
Data to Quorum Disk

806

Another Subtree
ASSOCiated With

Specified
Application

2

NO
810

ls
Specified

Application
Running

p
Yes

Select Next
Registry Subtree

NO TO FIG. 10

Patent Application Publication Jul. 12, 2001 Sheet 9 of 11 US 2001/0008019 A1

FIG. 9

Select First Checkpoint
ASSOciated with

Specified Application

Retrieve Selected
Registry Checkpoint

Data from Quorum Disk

Overwrite Corresponding
Location in Local
Machine's Existing

Registry with Retrieved
Checkpoint Data

Another
Checkpoint

ASSOCiated With
Specified
Application

Select Next Checkpoint
ASSOCiated With

Specified Application

TO FIG. 10

Patent Application Publication Jul. 12, 2001 Sheet 10 of 11 US 2001/0008019 A1

FIG 10

Register for Registry
Subtree Change
Notifications

Begin Running
Application

Change
to Registry
Subtree
Detected

Take New Snapshot
(Checkpoint Data) of
Registry Subtree

Overwrite Old Registry
Checkpoint Data on
Quorum Disk with New

Snapshot

End of
Application

p

TO FIG. 11

Patent Application Publication Jul. 12, 2001 Sheet 11 of 11 US 2001/0008019 A1

From F.G. 10

Start Shutdown

FIG. 11

Change
Notification
Pending

Take New Snapshot
(Checkpoint Data)
of Registry Subtree

Overwrite Old Registry
Checkpoint Data on

Quorum Disk with New
Snapshot Data

Remove Change
Notification

Another
Change

Notification
Pending

p

1112

Complete the
Shutdown

US 2001/0008019 A1

METHOD AND SYSTEM FORTRANSPARENTLY
FALLING OVER APPLICATION CONFIGURATION

INFORMATION IN A SERVER CLUSTER

FIELD OF THE INVENTION

0001. The invention relates generally to computer net
work Servers, and more particularly to computer Servers
arranged in a Server cluster.

BACKGROUND OF THE INVENTION

0002. A server cluster is a group of at least two indepen
dent Servers connected by a network and managed as a
Single System. The clustering of Servers provides a number
of benefits over independent servers. One important benefit
is that cluster Software, which is run on each of the Servers
in a cluster, automatically detects application failures or the
failure of another server in the cluster. Upon detection of
Such failures, failed applications and the like can be termi
nated and restarted on a Surviving Server.
0003. Other benefits include the ability for administrators
to inspect the Status of cluster resources, and accordingly
balance workloads among different Servers in the cluster to
improve performance. Dynamic load balancing is also avail
able. Such manageability also provides administrators with
the ability to update one server in a cluster without taking
important data and applications offline. AS can be appreci
ated, Server clusters are used in critical database manage
ment, file and intranet data sharing, messaging, general
business applications and the like.
0004 Thus, the failover of an application from one server

(i.e., machine) to another may be automatic in response to a
Software or hardware failure on the first machine, or alter
natively may be manually initiated by an administrator. In
any event, to failover an application in a manner that is
transparent to the application and to the client requires that
the application's execution environment be recreated on the
other machine. This execution environment comprises dis
tinct parts having different characteristics from one another,
a first part of which is the application code. The application
code changes very rarely, and thus an application's code
environment may be replicated either by installing the
application on all of the machines which may run in a
cluster, or by installing the application on Storage that is
shared by all machines in the cluster. When an application
needs to be restarted, the exact code is thus available to the
cluster.

0005 Another part of the execution environment is the
application's data, which changes very regularly. The appli
cation's data environment is best preserved by having the
application Store all of its data files on a shared disk, a task
that is ordinarily accomplished by inputting appropriate
information via the application's user interface. When an
application needs to be restarted, the exact data is thus
available to the cluster.

0006 A third part of the execution environment is the
application configuration information, which changes occa
Sionally. Applications that are “cluster-aware' (i.e., designed
with the knowledge that they may be run in a clustering
environment) store their application configuration informa
tion in a cluster registry maintained on a shared disk, thus
ensuring reliable failover.

Jul. 12, 2001

0007. However, existing applications that are not cluster
aware (i.e., legacy applications) use their local machine
registry to Store their application configuration information.
For example, Windows NT applications use the WIN32
Registry. As a result, this configuration data is not available
to the rest of the cluster. At the same time, it is impractical
(and likely very dangerous) to attempt to modify these
legacy applications So as to use the cluster registry instead
of their local registry. Moreover, it is not feasible to trans
parently redirect each of the local registries in the various
machines to the cluster registry, and costly to replicate
copies of each of the local registries to the various machines.
Nevertheless, in order to ensure correct and transparent
behavior after a failover, the application configuration infor
mation needs to be recreated at the machine on which the
application is being restarted.

SUMMARY OF THE INVENTION

0008. The present invention provides a method and sys
tem for transparently failing over resource configuration
information Stored by a resource (Such as an application) on
a local machine. More particularly, the application configu
ration information written to a registry of a local machine is
made available to other machines of the cluster. The other
machines can rapidly obtain this application configuration
information and use it to recreate the application's execution
environment on another machine in the cluster, ensuring a
rapid and transparent failover operation.
0009 Briefly, the present invention transparently fails
over a legacy application by tracking and checkpointing
changes to application configuration information that is
Stored locally, Such as in a System's local registry. When an
application running on the first System makes a change to the
application configuration information in a Subtree of the
registry, the change is detected by a notification mechanism.
A Snapshot mechanism is notified, takes a Snapshot of the
Subtree's data, and causes it to be written to a Storage device
shared by systems of the cluster. When the application is
failed over to a Second System, the Snapshot for that appli
cation is retrieved from the quorum disk by a restore
mechanism and written to the registry of the Second System
in a corresponding Subtree. The application is then run on the
Second System using the restored application configuration
information for that application.
0010. Other benefits and advantages will become appar
ent from the following detailed description when taken in
conjunction with the drawings, in which:

BRIEF DESCRIPTION OF THE DRAWINGS

0011 FIG. 1 is a block diagram representing a computer
System into which the present invention may be incorpo
rated;
0012 FIG. 2 is a block diagram representing a server
cluster including various cluster machines and a shared
quorum device for Storing cluster information;
0013 FIG. 3 is a representation of various components
within the clustering Service of a machine;
0014 FIG. 4 is a representation of a local registry
maintained on a local machine;
0015 FIG. 5 is a block diagram generally representing
the components for writing local registry information to the

US 2001/0008019 A1

quorum device from a local machine in accordance with one
aspect of the present invention;
0016 FIG. 6 is a block diagram generally representing
the components for restoring registry information from the
quorum device to a registry of a local machine in accordance
with one aspect of the present invention; and
0017 FIGS. 7-11 comprise a flow diagram generally
representing the Steps taken to failover application configu
ration information in accordance with one aspect of the
present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Exemplary Operating Environment

0.018 FIG. 1 and the following discussion are intended to
provide a brief general description of a Suitable computing
environment in which the invention may be implemented.
Although not required, the invention will be described in the
general context of computer-executable instructions, Such as
program modules, being executed by a personal computer.
Generally, program modules include routines, programs,
objects, components, data Structures and the like that per
form particular tasks or implement particular abstract data
types. Moreover, those skilled in the art will appreciate that
the invention may be practiced with other computer System
configurations, including hand-held devices, multi-proces
Sor Systems, microprocessor-based or programmable con
Sumer electronics, network PCs, minicomputers, mainframe
computers and the like. The invention may also be practiced
in distributed computing environments where tasks are
performed by remote processing devices that are linked
through a communications network. In a distributed com
puting environment, program modules may be located in
both local and remote memory Storage devices.
0019. With reference to FIG. 1, an exemplary system for
implementing the invention includes a general purpose
computing device in the form of a conventional personal
computer 20 or the like acting as a node (i.e., System) in a
clustering environment. The computer 20 includes a pro
cessing unit 21, a System memory 22, and a System buS 23
that couples various System components including the SyS
tem memory to the processing unit 21. The System buS 23
may be any of Several types of bus structures including a
memory bus or memory controller, a peripheral bus, and a
local bus using any of a variety of bus architectures. The
system memory includes read-only memory (ROM) 24 and
random access memory (RAM) 25. A basic input/output
system 26 (BIOS), containing the basic routines that help to
transfer information between elements within the personal
computer 20, such as during start-up, is stored in ROM 24.
The personal computer 20 may further include a hard disk
drive 27 for reading from and writing to a hard disk, not
shown, a magnetic disk drive 28 for reading from or writing
to a removable magnetic disk 29, and an optical disk drive
30 for reading from or writing to a removable optical disk 31
such as a CD-ROM or other optical media. The hard disk
drive 27, magnetic disk drive 28, and optical disk drive 30
are connected to the system bus 23 by a hard disk drive
interface 32, a magnetic disk drive interface 33, and an
optical drive interface 34, respectively. The drives and their
asSociated computer-readable media provide non-volatile

Jul. 12, 2001

Storage of computer readable instructions, data structures,
program modules and other data for the personal computer
20. Although the exemplary environment described herein
employs a hard disk, a removable magnetic disk 29 and a
removable optical disk 31, it should be appreciated by those
skilled in the art that other types of computer readable media
which can Store data that is accessible by a computer, Such
as magnetic cassettes, flash memory cards, digital Video
disks, Bernoulli cartridges, random acceSS memories
(RAMs), read-only memories (ROMs) and the like may also
be used in the exemplary operating environment.

0020. A number of program modules may be stored on
the hard disk, magnetic disk 29, optical disk 31, ROM 24 or
RAM 25, including an operating system 35 (which may be
considered as including or operatively connected to a file
System), one or more application programs 36, other pro
gram modules 37 and program data 38. A user may enter
commands and information into the personal computer 20
through input devices Such as a keyboard 40 and pointing
device 42. Other input devices (not shown) may include a
microphone, joystick, game pad, Satellite dish, Scanner or
the like. These and other input devices are often connected
to the processing unit 21 through a Serial port interface 46
that is coupled to the System bus, but may be connected by
other interfaces, Such as a parallel port, game port or
universal serial bus (USB). A monitor 47 or other type of
display device is also connected to the System buS 23 via an
interface, Such as a Video adapter 48. In addition to the
monitor 47, personal computers typically include other
peripheral output devices (not shown), Such as speakers and
printers.

0021. The personal computer 20 operates in a networked
environment using logical connections to one or more
remote computers 49. At least one such remote computer 49
is another System of a cluster communicating with the
personal computer System 20 Over the networked connec
tion. Other remote computers 49 may be another personal
computer Such as a client computer, a Server, a router, a
network PC, a peer device or other common network Sys
tem, and typically includes many or all of the elements
described above relative to the personal computer 20,
although only a memory Storage device 50 has been illus
trated in FIG. 1. The logical connections depicted in FIG.
1 include a local area network (LAN) 51 and a wide area
network (WAN) 52. Such networking environments are
commonplace in offices, enterprise-wide computer net
WorkS, Intranets and the Internet. Other mechanisms Suitable
for connecting computers to form a cluster include direct
connections Such as over a Serial or parallel cable, as well as
wireless connections. When used in a LAN networking
environment, as is typical for connecting Systems of a
cluster, the personal computer 20 is connected to the local
network 51 through a network interface or adapter 53. When
used in a WAN networking environment, the personal com
puter 20 typically includes a modem 54 or other means for
establishing communications over the wide area network52,
such as the Internet. The modem 54, which may be internal
or external, is connected to the System buS 23 via the Serial
port interface 46. In a networked environment, program
modules depicted relative to the personal computer 20, or
portions thereof, may be Stored in the remote memory
Storage device. It will be appreciated that the network

US 2001/0008019 A1

connections shown are exemplary and other means of estab
lishing a communications link between the computerS may
be used.

0022. The preferred system 20 further includes a host
adapter 55 or the like which connects the system bus 23 to
a SCSI (Small Computer Standard Interface) bus 56 for
communicating with at least one persistent memory Storage
device 57, also referred to herein as a quorum device. Of
course, other ways of connecting cluster Systems to a Storage
device, including Fibre Channel, are equivalent. In any
event, as shown in FIG. 2, the computer system 20 may
comprise the System 60, while one of the remote computers
49 may be similarly connected to the SCSI bus 56 and
comprise the System 60, and So on. Note that multiple
shared storage devices may be connected to the SCSI bus 56
(or the like) Such as for purposes of resilience to disk failure
through the use of multiple disks, i.e., Software and/or
hardware-based redundant arrays of inexpensive or indepen
dent disks (RAID).
0023 To create a new cluster, a system administrator runs
a cluster installation utility on a System that then becomes a
first member of the cluster 58. For a new cluster 58, a
database is created and the initial cluster member informa
tion is added thereto. The administrator then configures any
devices that are to be managed by the cluster Software. At
this time, a cluster exists having a Single member, after
which the installation procedure is run on each of the other
members of the cluster. For each added member, the name
of the existing cluster is entered and the new System receives
a copy of the existing cluster database.

0024. As shown in FIG. 3, to accomplish cluster creation
and to perform other administration of cluster resources,
Systems, and the cluster itself, a cluster application program
ming interface (API) 68 is provided. Applications and clus
ter management administration tools 69 call various inter
faces in the API 68 using remote procedure calls (RPC),
whether running in the cluster or on an external System. The
various interfaces of the API 68 may be considered as being
categorized by their association with a particular cluster
component, i.e., Systems, resources and the cluster itself.

Cluster Service Components

0.025 FIG. 3 provides a representation of the cluster
Service components and their general relationships in a
single system (e.g., 60) of a Windows NT cluster. A cluster
Service 70 controls the cluster operation on a cluster System
58, and is preferably implemented as a Windows NT service.
The cluster service 70 includes a node manager 72, which
manages node configuration information and network con
figuration information (e.g., the paths between nodes). The
node manager 72 operates in conjunction with a membership
manager 74, which runs the protocols that determine what
cluster membership is when a change (e.g., regroup) occurs.
A communications manager 76 (kernel driver) manages
communications with other systems of the cluster 58 via one
or more network paths. The communications manager 76
Sends periodic messages, called heartbeats, to counterpart
components on the other systems of the cluster 58 to provide
a mechanism for detecting that the communications path is
good and that the other Systems are operational. Through the
communications manager 76, the cluster Service 70 is essen
tially in constant communication with the other Systems of

Jul. 12, 2001

the cluster. In a Small cluster, communication is fully con
nected, i.e., all systems of the cluster 58 are in direct
communication with all other Systems.

0026 Systems (e.g., 60-60, of FIG. 2) in the cluster 58
have the same view of cluster membership, and in the event
that one System detects a communication failure with
another System, the detecting System broadcasts a message
to the cluster 58 causing other members to verify their view
of the current cluster membership. This is known as a
regroup event, during which writes to potentially shared
devices are disabled until the membership has stabilized. If
a system does not respond, it is removed from the cluster 58
and its active groups are failed over ("pulled') to one or
more active Systems. Note that the failure of a cluster Service
70 also causes its locally managed resources to fail.

0027. The cluster service 70 also includes a configuration
database manager 80 which implements the functions that
maintain a cluster configuration database on a local device
Such as a disk and/or memory, and a configuration database
82 (FIG. 2) on the common persistent storage devices, (e.g.,
storage device 57). The database maintains information
about the physical and logical entities in the cluster 58,
including the cluster itself, Systems, resource types, quorum
resource configuration, network configuration, groups, and
resources. Note that both persistent and volatile information
may be used to track the current and desired State of the
cluster. The database manager 80 cooperates with counter
part database managers of Systems in the cluster 58 to
maintain configuration information consistently across the
cluster 58. As described below, global updates are used to
ensure the consistency of the cluster database in each of
Systems. The configuration database manager 80 also pro
vides an interface to the configuration database 82 for use by
the other cluster service 70 components.
0028. A logging manager 84 provides a facility that
works with the database manager 80 to maintain cluster state
information acroSS a Situation in which a cluster shuts down
and a new cluster is later formed with no members common
to the previous cluster, known as a temporal partition. The
logging manager 84 operates with a log file, preferably
maintained on the quorum device (storage device 57), to
unroll logged State changes when forming a new cluster
following a temporal partition.

0029. A failover manager 87 makes resource/group man
agement decisions and initiates appropriate actions, Such as
startup, restart and failover. The failover manager 87 is
responsible for Stopping and Starting the System's resources,
managing resource dependencies, and for initiating failover
of groups. A group is a collection of resources organized to
allow an administrator to combine resources into larger
logical units and manage them as a unit. Usually a group
contains all of the elements needed to run a Specific appli
cation, and for client Systems to connect to the Service
provided by the application. For example, a group may
include an application that depends on a network name,
which in turn depends on an Internet Protocol (IP) address,
all of which are collected in a single group. In a preferred
arrangement, the dependencies of all resources in the group
are maintained in a directed acyclic graph, known as a
dependency tree. Group operations performed on a group
affect all resources contained within that group. Dependency
trees are described in more detail in U.S. patent application

US 2001/0008019 A1

Ser. No. 08/963,049 entitled “Method and System for
Resource Monitoring of Disparate Resources in a Server
Cluster,' assigned to the same assignee as the present
invention.

0030 The failover manager 87 receives resource and
System State information from at least one resource monitor
90 and the node manager 72, for example, to make decisions
about groups. The failover manager 87 is responsible for
deciding which systems in the cluster should “own” which
groups. Those Systems that own individual groups turn
control of the resources within the group over to their
respective failover managers 87.
0.031) An event processor 92 connects the components of
the cluster service 70 via an event notification mechanism.
The event processor 92 propagates events to and from
applications (e.g., 94 and 96) and to and from the compo
nents within the cluster service 70, and also performs
miscellaneous Services Such as delivering Signal events to
cluster-aware applications 94. The event processor 92, in
conjunction with an object manager 98, also maintains
various cluster objects. A global update manager 100 oper
ates to provide a global update Service that is used by other
components within the Cluster Service 70.
0032 The global update protocol (GLUP) is used by the
global update manager 100 to broadcast updates to each
node in a cluster. GLUP generally comprises a Standard
global update message format, State information maintained
in each node, and a set of rules that Specify how global
update should be processed and what steps should be taken
when failures occur. In general, according to the GLUP
protocol, one node (e.g. 60) serves as a "locker node. The
locker node 60 ensures that only one global update is in
progress at any given time. With GLUP, a node (e.g., 60)
wishing to Send an update to other nodes first sends a request
to the locker node 60. When any preceding updates are
complete, the locker node 60 gives permission for this
“sender node 60 to broadcast its update to the other nodes
in the system. In accordance with GLUP, the sender node
Sends the updates, one at a time, to the other nodes in a
predetermined GLUP order that is ordinarily based on a
unique number assigned to each node. GLUP can be utilized
to replicate data to the machines of a cluster, including
application configuration information, as described below. A
more detailed discussion of the GLUP protocol is described
in the publication “Tandem Systems Review” Volume 1,
Number 2, June, 1985 pp. 74-84.
0033. A resource monitor 90 runs in one or more pro
cesses that may be part of the cluster service 70, but are
shown herein as being separate from the cluster service 70
and communicating therewith via Remote Procedure Calls
(RPC) or the like. The resource monitor 90 monitors the
health of one or more resources (e.g., 102-1025) via call
backs thereto. The monitoring and general operation of
resources is described in more detail in U.S. patent appli
cation Ser. No. 08/963,049, hereby incorporated by refer
ence herein in its entirety.
0034) The resources (e.g., 102-102s) are implemented as
one or more Dynamically Linked Libraries (DLLs) loaded
into the address space of the Resource Monitor 102. For
example, resource DLLS may include physical disk, logical
Volume (consisting of one or more physical disks), file and
print shares, network addresses and names, generic Service

Jul. 12, 2001

or application, and Internet Server Service DLLS. Certain
resources (e.g., provided by a single Source) may be run in
a single process, while other resources may be run in at least
one other process. The resources 102-102 run in the
System account and are considered privileged code.
Resources 102-102 may be defined to run in separate
processes, created by the Cluster Service 70 when creating
CSOUCCS.

0035) Resources expose interfaces and properties to the
cluster Service 70, and may depend on other resources, with
no circular dependencies allowed. If a resource does depend
on other resources, the resource is brought online after the
resources on which it depends are already online, and is
taken offline before those resources. Moreover, each
resource has an associated list of Systems in the cluster on
which this resource may execute. For example, a disk
resource may only be hosted on Systems that are physically
connected to the disk. Also associated with each resource is
a local restart policy, defining the desired action in the event
that the resource cannot continue on the current System.

0036) Systems in the cluster need to maintain a consistent
View of time. One of the Systems, known as the time Source
and Selected by the administrator, includes a resource that
implements the time Service. Note that the time Service,
which maintains consistent time within the cluster 58, is
implemented as a resource rather than as part of the cluster
Service 70 itself.

0037. From the point of view of other systems in the
cluster 58 and management interfaces, Systems in the cluster
58 may be in one of three distinct states, offline, online or
paused. These States are visible to other Systems in the
cluster 58, and thus may be considered the state of the cluster
service 70. When offline, a system is not a fully active
member of the cluster 58. The system and its cluster service
70 may or may not be running. When online, a system is a
fully active member of the cluster 58, and honors cluster
database updates, can contribute one or more votes to a
quorum algorithm, maintains heartbeats, and can own and
run groups. Lastly, a paused System is a fully active member
of the cluster 58, and thus honors cluster database update,
can contribute votes to a quorum algorithm, and maintain
heartbeats. Online and paused are treated as equivalent States
by most of the cluster Software, however, a System that is in
the paused State cannot honor requests to take ownership of
groups. The paused State is provided to allow certain main
tenance to be performed.

0038) Note that after initialization is complete, the exter
nal State of the System is offline. The event processor calls
the node manager 72 to begin the process of joining or
forming a cluster. To join a cluster, following the restart of
a system, the cluster service 70 is started automatically. The
System configures and mounts local, non-shared devices.
Cluster-wide devices are left offline while booting, because
they may be in use by another node. The System tries to
communicate over the network with the last known mem
bers of the cluster 58. When the system discovers any
member of the cluster, it performs an authentication
Sequence wherein the existing cluster System authenticates
the newcomer and returns a Status of Success if authenti
cated, or fails the request if not. For example, if a System is
not recognized as a member or its credentials are invalid,
then the request to join the cluster is refused. If Successful,

US 2001/0008019 A1

the newcomer is sent an updated copy of the shared data
base. The joining System uses this shared database to find
shared resources and to bring them online as needed, and
also to find other cluster members.

0039. If a cluster is not found during the discovery
process, a System will attempt to form its own cluster. In
general, to form a cluster, the System gains exclusive acceSS
to a special resource known as the quorum resource (quorum
device or disk) 57. The quorum resource 57 is used as a
tie-breaker when booting a cluster and also to protect against
more than one node forming its own cluster if communica
tion fails in a multiple node cluster. The quorum resource is
often (but not necessarily) a disk that maintains the State of
the cluster, which a node arbitrates for and needs possession
of before it can form a cluster. The quorum resource 57
preferably maintains a log file that is unrolled to ensure
consistency acroSS a temporal partition when forming a new
cluster, after another cluster previously existed. The node 57
that has possession of the quorum resource is responsible for
logging operations, and thus if application configuration
information is replicated, Such an operation is logged. Also,
the quorum resource 57 offers a method for arbitrating a
quorum resource object, typically by challenging (or defend
ing) for an exclusive reservation of a storage device (e.g., 57
of FIG.2A) such as a disk that ordinarily stores log data for
the cluster. A method for releasing an exclusive reservation
may also be provided. The general operation of quorum
resources including arbitration and exclusive possession of
the quorum resource is described in more detail in U.S.
patent application Ser. No. 08/963,050 entitled “Method and
System for Quorum Resource Arbitration in a Server Clus
ter,' assigned to the same assignee and hereby incorporated
by reference herein in its entirety.
0040. When leaving a cluster, a cluster member will send
a ClusterExit message to all other members in the cluster,
notifying them of its intent to leave the cluster. The exiting
cluster member does not wait for any responses and imme
diately proceeds to shutdown all resources and close all
connections managed by the cluster Software. Sending a
message to the other Systems in the cluster when leaving
Saves the other Systems from discovering the absence by a
time-out operation.
0041. Once online, a system can have groups thereon. A
group can be "owned' by only one System at a time, and the
individual resources within a group are present on the
System which currently owns the Group. As a result, at any
given instant, different resources within the same group
cannot be owned by different Systems acroSS the cluster.
Groups can be failed over or moved from one System to
another as atomic units. Each group has a cluster-wide
policy associated there with comprising an ordered list of
owners. A group fails over to Systems in the listed order.
0.042 For example, if a resource (e.g., an application)
fails, the failover manager 87 may choose to restart the
resource, or to take the resource offline along with any
resources dependent thereon. If the failover manager 87
takes the resource offline, the group is restarted on another
System in the cluster, known as pushing the group to another
System. A cluster administrator may also manually initiate
Such a group transfer. Both Situations are Similar, except that
resources are gracefully shutdown for a manually initiated
failover, while they are forcefully shut down in the failure
CSC.

Jul. 12, 2001

0043. When an entire system in the cluster fails, its
groups are pulled from the failed System to another System.
This process is similar to pushing a group, but without the
shutdown phase on the failed system. To determine what
groups were running on the failed System, the Systems
maintain group information on each node of the cluster in a
database to track which Systems own which groups. To
determine which system should take ownership of which
groups, those Systems capable of hosting the groups nego
tiate among themselves for Ownership, based on System
capabilities, current load, application feedback and/or the
group's System preference list. Once negotiation of a group
is complete, all members of the cluster update their data
bases to properly reflect which Systems own which groups.
0044) When a previously failed system comes back
online, the failover manager 87 decides whether to move
Some groups back to that System, in an action referred to as
failback. To automatically failback, groups require a defined
preferred owner. Groups for which the newly online system
is the preferred owner are pushed from the current owner to
the new System. Protection, in the form of a timing window,
is included to control when the failback occurs.

Failing Over Application Configuration Information
0045 Although the present invention primarily provides
benefits with legacy applications, as will become apparent
below, other types of resources may be failed over to other
Systems of a cluster. Accordingly, the present invention will
be described with respect to the failing over of application
configuration information stored in a local registry, however
it is understood that it will operate in an equivalent manner
with other types of resources that may store their configu
ration information locally rather than with the cluster. Thus,
as used herein, the term “application' and “resource' are
equivalent when used with respect to the failing over of
appropriate configuration information.
0046. In accordance with one aspect of the present inven
tion, there is provided a method and System for tracking and
checkpointing changes to a local System's registry, Such that
application configuration changes that would otherwise be
lost are protected from machine failures. AS will be
described below, because the registry checkpointing is trans
parent to the application, no application changes are
required, whereby a legacy application which Stores its
configuration in the local registry may be reliably used in a
failover environment.

0047 AS represented in FIG. 4, a local system's registry
104 is essentially a database indexed by a number of keys
106-106, hierarchically arranged into trees and subtrees. As
shown in FIG. 4, the keys (particularly the low level
Subtrees) typically have named data associated there with
including strings, binary values and/or DWORDS. As
described above, legacy applications Store configuration
information in the local registry 104, and occasionally make
changes thereto. For example, as shown in FIG. 4, an
application named “Program2” has configuration informa
tion indexed at
HKEY_LOCAL_MACHINE\SOFTWARE\Program2,
including a string, a binary value and a DWORD.
0048 FIG. 5 represents the general architecture for
tracking and checkpointing changes to configuration infor
mation on a first system (e.g., 60), while FIG. 6 represents

US 2001/0008019 A1

the general architecture for failing over the information to
another System (e.g., 60) of the cluster 58. In general,
whenever an application 96 is initially installed on any
cluster machine, a list 108 of registry subtrees associated
with that application 96 may be generated. AS can be
appreciated, this may be accomplished by noting the differ
ences to the local registry key Structure after the application
96 is installed. This list 108 is preferably stored in the cluster
registry 110 of the quorum device 57 under a registry key for
that resource, however it may be maintained elsewhere in
the cluster (Such as replicated in its Systems) if desired. In
any event, whenever the application 96 is run, a checkpoint
manager 112 accesses the list 108 and registers each Subtree
in the application's list of registry Subtrees with a notifica
tion mechanism 114. The notification mechanism 114
watches the registry 104, and, whenever a change to a
registered Subtree is detected, informs the checkpoint man
ager 112 of the change. When notified of a change, the
checkpoint manager 112, via a Snapshot mechanism 116,
takes a Snapshot of the listed Subtree data and records the
Snapshot as data 118-118, associated with that application
96 (e.g., snapshot data 118) on the quorum device 57. The
data may be stored as text (i.e., human readable) data.
0049 More particularly, to accomplish the checkpointing
operation, the checkpoint manager 112 is associated with an
interface that includes three cluster resource controls which
may be sent to a particular application resource's DLL (e.g.,
102, FIG. 3) with a ClusterResourceControl function. A
first resource control, CLCTL ADDREGISTRY
CHECKPOINT, includes a pointer named lp InBuffer,

which points to a null-terminated Unicode String. The String
Specifies the name of the registry key at the root of the
subtree that should be checkpointed for the specified
resource. Since local application Subtrees are Stored under
the HKEY_LOCAL_MACHINE key 106, the key name
string is preferably shortened relative to HKEY_LOCAL
MACHINE, e.g., the exemplary application is simplified to
“SOFTWARE\Program2.” Thus, this control function adds a
Subtree to the Subtree list 108 that is associated with an
application.

0050 A second resource control, which essentially per
forms the opposite function, is named CLCTL DEL
ETE REGISTRY CHECKPOINT, and similarly includes a
pointer, lpIn Buffer, to a null-terminated Unicode string. This
String Specifies the name of a registry key that was previ
ously registered with CLCTL ADD REGISTRY CHECK
POINT. When called, the specified subtree pointed to by
lpInBuffer will no longer be checkpointed for the specified
resource. Lastly, a control function named CLCTL GE
T REGISTRY CHECKPOINTS includes a pointer to a
buffer named lpOutBuffer, which when invoked, returns a
REG MULTI SZ list of registry keys that have been added
to the specified resource's list 108 with CLCTL AD
D_REGISTRY CHECKPOINT
0051. Using this general-purpose checkpointing facility,
each resource may have a list of registry subtrees 108 to
checkpoint. To receive notifications when the application 96
changes its configuration information, the notification
mechanism 114 preferably utilizes a WIN32 API named
RegNotify ChangeKey(), via which a registry notification
will be posted on each of a resource's subtrees when that
resource is online. When any registry data is modified in a
Subtree with a notification posted thereon, a notification fires

Jul. 12, 2001

and the Snapshot mechanism 116 of the checkpoint manager
112 takes a Snapshot of the registry Subtree (or trees). To
accomplish the Snapshot, the SnapShot mechanism 116 pref
erably utilizes the WIN32 API named RegSaveKey().
0052. In keeping with the invention, to provide failover
Support, the Snapshot data is Saved to the quorum device 57,
referenced by the resource ID (a globally unique identifier,
or GUID) and a unique checkpoint ID, which is an arbitrary
DWORD. The interface for saving the data to the quorum
device is set forth in the table below:

DWORD
CpSaveData (

IN PFM RESOURCE Resource,
IN DWORD dwCheckpointId,
IN PVOID lpData,
IN DWORD lpcbData
)

0053. The CpSaveData function checkpoints arbitrary
data for the specified resource. The checkpointed data 118
is stored on the quorum device 57 to ensure that it survives
temporal partitions, and So that any node in the cluster may
save or retrieve the checkpointed data 118. The Resource
argument Supplies the resource associated with this data,
while the dwCheckpointId argument provides a unique
checkpoint identifier describing this data. The caller is
responsible for ensuring the uniqueness of the checkpoint
identifier. Another argument, lpData Supplies a pointer to the
checkpoint data, while lpcbdata provides the length (in
bytes) of the checkpoint data pointed to by lpData. The
function returns a value of ERROR SUCCESS if success
ful, or a Win32 error code otherwise.

0054. In accordance with another aspect of the present
invention, once application configuration information is
checkpointed (e.g., as the data 118) to the quorum device
57, the application configuration information may be
restored to any other node of the cluster 58. Thus, to failover
an application to another System 60, the checkpoint man
ager 120 on the other system 60 includes a restore mecha
nism 122 that essentially reverses the checkpointing opera
tion. As represented in FIG. 6, when a resource 96 is failed
over, but before it is brought online on another System, (as
represented by the dashed box), its checkpointed registry
data 118 is retrieved and restored into the other system's
local registry 124.

0055) To this end, another function, CpGetData(), is
provided to retrieve the checkpointed data for a specified
resource 96, i.e., the data 118 which was saved to the
quorum device 57 by CpSaveData(). The CpGetData()
function is set forth in the table below:

DWORD
CpGetData (
IN PFM RESOURCE Resource,
IN DWORD dwCheckpointId,
OUT PVOID *lpData,
OUT DWORD *lpcbData

US 2001/0008019 A1

0056. In the present example with the CpGetData func
tion, Resource identifies the resource 96 associated with this
data 118, while dwCheckpointId Supplies the unique check
point ID describing this data. The lipData argument returns
a pointer to the checkpoint data, and lpcbdata returns the
length (in bytes) of the checkpoint data pointed to by lpData.
The caller is responsible for freeing the memory, and as
before, the caller is responsible for ensuring the uniqueness
of the checkpoint identifier. The CpGetData function returns
a value of ERROR SUCCESS if successful, or a Win32
error code otherwise.

0057 To restore the registry, the restore mechanism 122
utilizes the RegRestoreKey() WIN32 API for each check
pointed subtree. Once the other systems registry 124 is
restored, the resource can be brought online, i.e., the failed
over application 96 can be run. However, because this other
System 60 may also fail, the application configuration
information is also first tracked and checkpointed on the new
System, in accordance with the present invention and as
described above, i.e., using a notification mechanism 126.
0.058 Turning to an explanation of the operation of the
invention with particular respect to the flow diagrams of
FIGS. 7-11, the checkpointing operation is initiated when a
request is received, either to initially create an initial registry
checkpoint (step 700) for an application on the quorum
device, or to run the application (Step 706). In any event, at
this time a cluster application (e.g., 96) and its associated
registry subtree 108 are known. If the request is to create a
registry checkpoint (e.g., 118), then step 702 obtains the
Subtree (or Subtrees) associated with the application from the
list 108 thereof in the cluster registry 110, and continues to
step 800 of FIG. 8. Alternatively, if the application 96 is to
be run, any initial steps to run the application 96, (e.g.,
allocate Space in memory) may be performed. Then, Step
708 determines if a checkpoint 118 already exists for this
particular application on the quorum device 57, and if So,
continues on to update the application's configuration infor
mation and then run the application 96, as described below
with reference to FIG. 9. If no checkpoint 118 exists for this
resource 96, then step 708 branches to step 702 and then to
step 800 of FIG.8.

0059) At step 800 of FIG. 8, to create a registry check
point 118, a first Subtree associated is Selected and a
Snapshot is made of the specified registry Subtree (using the
RegSaveKey() WIN32 API) as described above. The reg
istry checkpoint data is then Saved to the cluster quorum
device 118 as also described above (CpSaveData). Note
that it is possible to also generate the subtree list 108
associated with the application (using CLCTL ADD REG
ISTRY CHECKPOINT) at this time, or the list 108 can be
generated in advance (step 702). If there is more than one
Subtree of application configuration information for an
application, the process is repeated for each Subtree via Steps
806-808. This ensures that the appropriate application con
figuration information will be available to other cluster
Systems if the current System fails, as the registry Subtree
and its location on the quorum device 57 are now associated
with the cluster application.

0060. When the application has been initially check
pointed, step 810 tests the state of the cluster application 96.
If at step 810 the application 96 is not currently running,
nothing further needs to be done, and thus the proceSS ends

Jul. 12, 2001

and waits for the application to be run at Some later time.
Otherwise the system proceeds to step 1000 of FIG. 10,
where the process will register for change notifications and
take any remaining steps to run the application (Step 1001)
as described below.

0061 The steps of FIG. 9 are executed when a request is
received to run an application (e.g., 96) that has an existing
checkpoint 118 on the quorum device 57. In general, before
the application 96 is Started, the checkpointing process
enumerates all the registry checkpoints associated with the
cluster application 96. To this end, for each checkpoint, via
steps 900-908, each registry snapshot associated with the
application (e.g., 118) is retrieved from its location on the
quorum device 57 (using CpGetData), and restored into the
current machines (e.g., 60) local registry 124 using the
RegRestore Key() API. As a result, any previously existing
data at that location in the current System's local registry 124
is overwritten with the stored registry snapshot 118,
whereby the application 96 will not see any stale data that
may have been in the current System's local registry 124.
0062 Next, after each checkpoint has been restored into
the local registry 124, the checkpoint manager 120 (via the
notification mechanism 126) registers for registry change
notifications associated with the registry Subtree, using the
WIN32 API named RegNotify ChangeKey() as described
above. At this time, the application 96 is allowed to run.
0063 AS represented in FIG. 10, any subsequent modi
fications to the Specified registry data alert the notification
mechanism 126. The API preferably works asynchronously
to report a change to the registry 124, although for purposes
of simplicity, FIG. 10 represents the monitoring for changes
(or detecting the end of the application) in a loop (steps
1002-1008). In any event, when a change is detected as
represented by step 1002, at step 1004, the checkpoint
manager 120 takes a Snapshot of the registry Subtree that has
changed as described above. Then, at step 1006, the existing
registry checkpoint data 118 on the quorum device 57 is
overwritten with the new snapshot of the registry subtree.
Note that in a preferred embodiment, the communication
mechanism of the current System 60 transfers this informa
tion to the System that has exclusive possession of the
quorum device 57, which then writes the data. In this
manner, each time that the registry data 118 is modified, the
appropriate Subtree is copied to the quorum device 57,
whereby if the application is moved to another node, the
configuration information is current on the new node.
0064 FIG. 11 represents the steps taken when an appli
cation ends. As shown by steps 1102-1110, any registry
change notifications associated with that application are
removed So as to no longer fire upon a change. This is
Synchronized in Such a way as to ensure that any registry
modifications pending during the application shutdown are
detected by the notification mechanism 126 and a new
Snapshot taken. Then, the shutdown of the application is
completed at step 1112.
0065 Lastly, as can be appreciated, instead of using the
shared quorum device 57, the checkpoint manager 104
alternatively may write the information to at least one other
non-volatile Storage device shared by Systems in the cluster.
In another alternative, the checkpoint manager 104 may
cause the information to be replicated via GLUP or some
other communications mechanism to the other Systems of

US 2001/0008019 A1

the cluster. Note that Such a replication operation would be
logged on the quorum device 57, So that changes to the
configuration information would Survive a temporal parti
tion. Moreover, rather than snapshot the entire set of Sub
trees, it is feasible to alternatively provide a mechanism that
transferS only change information, for example if the Subtree
data is otherwise relatively large.
0.066 AS can be seen from the foregoing detailed descrip
tion, there is provided a method and System for transparently
failing over resource configuration information Stored by an
application on a local machine. The application configura
tion information written to a registry of a local machine is
made available to other machines of the cluster. The other
machines can rapidly obtain this application configuration
information and use it to recreate the application's execution
environment on another machine in the cluster, ensuring a
rapid and transparent failover operation.
0067. While the invention is susceptible to various modi
fications and alternative constructions, certain illustrated
embodiments thereof are shown in the drawings and has
been described above in detail. It should be understood,
however, that there is no intention to limit the invention to
the Specific forms disclosed, but on the contrary, the inten
tion is to cover all modifications, alternative constructions,
and equivalents falling within the Spirit and Scope of the
invention.

What is claimed is:
1. In a server cluster including at least two Systems, a

method of failing over an application from a first system to
a Second System of the cluster, comprising the Steps of,
locally maintaining application configuration information
for the application on the first System, running the applica
tion on the first System, detecting a change to the application
configuration information, and, in response to the change,
making data representative of the change available to the
Second System, and running the application on the Second
System using the data made available thereto.

2. The method of claim 1 wherein the application con
figuration information is maintained in a registry of the first
System, and wherein the Step of detecting a change to the
application configuration information includes the Step of
monitoring for a change to data in at least one Subtree
asSociated with the application in the registry.

3. The method of claim 2 wherein the step of making data
representative of the change available to the Second System
includes the Steps of making a copy of the data in each
Subtree having a change detected thereto.

4. The method of claim 1 wherein the step of making data
representative of the change available to the Second System
comprises the Step of writing the data to a storage device
shared by Systems of the cluster.

5. The method of claim 4 wherein the step of making data
representative of the change available to the Second System
further comprises the Step of retrieving the data from the
Storage device and passing the data to the Second System.

6. The method of claim 1 wherein the step of making data
representative of the change available to other Systems in the
cluster comprises the Step of Storing the data in a quorum
device of the cluster.

7. The method of claim 1 wherein the step of making data
representative of the change available to other Systems in the
cluster comprises the Step communicating the data to at least
one other System in the cluster.

Jul. 12, 2001

8. The method of claim 1 wherein the first system and the
Second System each locally maintain application configura
tion information for the application in a registry, and
wherein the Step of making data representative of the change
available to the Second System comprises the Steps of,
reading Subtree data of the registry in the first System,
Writing the Subtree data to a storage device shared by
Systems in the cluster, and retrieving the Subtree data from
the Storage device to the registry of the Second System.

9. The method of claim 1 wherein the application has a list
of Subtrees associated therewith, and further comprising the
Step of registering each of the Subtrees in the list with a
notification mechanism for detecting changes thereto.

10. The method of claim 1 further comprising the step of
terminating the application on the first System.

11. The method of claim 1 wherein the cluster includes a
third System, and further comprising the Steps of locally
maintaining application configuration information for
another application on the first System, running the other
application on the first System, detecting a change to the
other application configuration information, and, in response
to the change, making data representative of the change
available to the third System, and running the other appli
cation on the third System using the data made available
thereto.

12. In a server cluster including at least two Systems, a
System for failing over an application from a first System to
a Second System of the cluster, comprising, a registry on each
of the first and Second Systems for Storing application
configuration information of the application, a Storage
device shared by the first and Second Systems, a notification
mechanism in the first System for detecting a change to a
Subtree in the registry associated with the application and
providing a notification in response thereto, a Snapshot
mechanism in the first System responsive to the notification
for reading the registry and Saving Subtree data to the Storage
device, and a restore mechanism in the Second System for
retrieving the Subtree data from the Storage device and
updating the registry of the Second System there with.

13. The system of claim 12 wherein the application has a
list of Subtrees associated there with, and wherein the noti
fication mechanism monitors each of the Subtrees in the list
for detecting changes thereto.

14. The system of claim 13 wherein the list of subtrees is
Stored on the Storage device.

15. The system of claim 13 wherein the list of subtrees is
Stored in a cluster registry on the Storage device.

16. The system of claim 12 wherein the subtree data
includes a name representative of a key in the registry and
at least one value.

17. In a Server cluster, a method of using application
configuration information with an application, comprising
the Steps of:

locally maintaining application configuration information
for the application on a System of the cluster;

determining if a cluster checkpoint of data corresponding
to the application configuration information for the
application is present on a storage device shared by
Systems in the cluster, and

if the cluster checkpoint exists,
updating the application configuration information of

the local System with the data in the Storage device,

US 2001/0008019 A1

running the application with the updated application
configuration information, and

updating the cluster checkpoint to correspond to local
changes to the application configuration information;
and

if the checkpoint does not exist,
creating a cluster checkpoint on the Storage device,
running the application with the locally maintained

application configuration information, and
updating the cluster checkpoint to correspond to local

changes to the application configuration information.
18. The method of claim 17 wherein the application

configuration information is maintained in a local registry of
the System, and further comprising the Step of detecting a
change to the application configuration information by
monitoring for a change to data of at least one Subtree in the
registry.

19. In a Server cluster including at least two Systems, a
method of failing over an application from a first System to
a Second System of the cluster, comprising the Steps of,
maintaining application configuration information for the
application in a registry of the first System, running the
application on the first System, detecting a change to the
application configuration information in a Subtree of the
registry, and, in response to the change, writing data of that

Jul. 12, 2001

Subtree as Subtree data to a storage device shared by Systems
of the cluster, terminating the application on the first System,
reading the Subtree data, modifying a registry of the Second
System with the Subtree data, and running the application on
the Second System using the application configuration infor
mation Stored in the registry of the Second System.

20. The method of claim 18 wherein the application has
a list of Subtrees associated therewith, and further compris
ing the Step of registering each of the Subtrees in the list with
a notification mechanism for detecting changes thereto.

21. The method of claim 19 wherein the cluster includes
a third System, and further comprising the Steps of main
taining other application configuration information for
another application in the registry of the first System, run
ning the other application on the first System, detecting a
change to the other application configuration information in
a Subtree of the registry, and, in response to the change,
Writing data of that Subtree as Subtree data to a Storage
device shared by Systems of the cluster, terminating the other
application on the first System, reading the Subtree data,
modifying a registry of the third System with the Subtree
data, and running the other application on the third System
using the other application configuration information Stored
in the registry of the third System.

