发明名称 三维监视装置
摘要
本发明涉及一种三维监视装置，通过采用图案光作为检测介质，可以高精度地检测出规定三维空间内的侵入物体。该三维监视装置设置有：向检测对象的三维空间照射规定的图案光的照射装置、通过上述图案光的照射对上述三维空间内的侵入物体以及在屏幕上投影的映像图案摄像、获取图像数据的摄像装置、通过将由摄像装置实时获取的监视图象与在没有物体进入到三维空间内时所获取的参考图象进行比较而检测在三维空间中侵入物体的位置的检测装置。
权利要求书

1. 一种三维监视装置，其特征在于，具有：
 向成为监视对象空间的三维空间照射规定图案光的照射装置、
 通过所述图案光的照射，对投影于在所述监视对象空间内存在的物体表面以及构成该监视对象空间的背景的规定物体表面上的映像图案进行摄像，
 获取图象数据的摄像装置、
 通过将由所述摄像装置这时获取的图象数据与和在所述监视对象空间内不存在进入物体时由所述摄像装置获取的图象数据相当的基准图象数据进行比较，获取在所述监视对象空间中的侵入物体的位置信息的位置检测装置、
 根据所述位置检测装置所计算出的位置信息输出机器控制信号的判定输出装置，
 所述照射装置具有通过控制图案光的照射方向让该图案光在规定范围内可以扫描的扫描机构。
 所述摄像装置，通过由所述扫描机构让图案光对所述监视对象空间内进行扫描，获取和在预定的方向和时刻向该监视对象空间投影的多个瞬间映像图案的合成映像相当的图象数据。

2. 根据权利要求1所述的三维监视装置，其特征在于，扫描机构是具有光反射体；和通过电磁诱导进行扭曲转动控制、支撑所述光反射体可使其自由转动的支撑部件的微机电结构。

3. 根据权利要求1和2所述的三维监视装置，其特征在于，位置检测装置利用照射装置以及摄像装置之间的已知位置关系，图案光的已知形状或者模样，根据由摄像装置这时获取的图象数据和预先获取的基准图象数据求出的变位，根据三角测量原理计算监视对象空间内侵入物体的三维位置坐标。

4. 一种三维监视装置，其特征在于，具有：
 向成为监视对象空间的三维空间照射规定图案光的照射装置、
 通过所述图案光的照射，对投影于在所述监视对象空间内存在的物体表面以及构成该监视对象空间的背景的规定物体表面上的映像图案进行摄像，
 获取图象数据的摄像装置、
通过将由所述摄像装置这时获取的图象数据与和在所述监视对象空间内不存在进入物体时由所述摄像装置获取的图象数据相当的基准图象数据进行比较、获取在所述监视对象空间中的侵入物体的位置信息的位置检测装置、

根据所述位置检测装置所计算出的位置信息输出机器控制信号的判定输出装置、

从预先假想分割成多个区域的所述监视对象空间内通过用户操作所任意选择的区域作为指定区域确定的同时，对每个指定区域设定从预先准备的多个输出种类中通过用户操作所任意选择的输出种类的装置，

所述位置检测装置，作为侵入物体的位置信息获取该侵入物体存在的区域的特定信息，
所述判定装置，根据在由所述位置检测装置确定的区域中所设定的输出种类，输出机器控制信号。

5. 根据权利要求 4 所述的三维监视装置，其特征在于，输出种类设定按照根据图案光的形状或者模样所区分的体素单位进行。

6. 根据权利要求 4 或 5 所述的三维监视装置，其特征在于，指定区域是通过在监视对象空间内的所希望的位置上设置物体的状态下进行摄像、抽出该物体存在的区域的方式自动确定。

7. 一种三维监视装置，其特征是

向成为监视对象空间的三维空间照射规定图案光的照射装置、
通过所述图案光的照射，对投影于在所述监视对象空间内存在的物体表面以及构成该监视对象空间的背景的规定物体表面上的映像图案进行摄像，获取图象数据的摄像装置、

通过将由所述摄像装置这时获取的图象数据与和在所述监视对象空间内不存在进入物体时由所述摄像装置获取的图象数据相当的基准图象数据进行比较、获取在所述监视对象空间中的侵入物体的位置信息的位置检测装置、

根据所述位置检测装置所计算出的位置信息输出机器控制信号的判定输出装置、

从预先假想分割成多个区域的所述监视对象空间内通过用户操作所任
意选择的区域作为指定区域确定的同时，对每个指定区域设定从预先准备的多个输出种类中通过用户操作所任意选择的输出种类的装置，

所述位置检测装置，根据连续获取的多个监视图象数据的时序的变化，检测侵入物体的移动状态。

判定输出装置，根据所述检测装置的检测结果确定该侵入物体的预想到达区域，根据该预测到达区域和该区域中设定的输出种类，输出机器控制信号。

8. 一种三维监视装置，其特征在于，具有：

向成为监视对象空间的三维空间照射规定图案光的照射装置、

通过所述图案光的照射，对投影于在所述监视对象空间内存在的物体表面以及构成该监视对象空间的背景的规定物体表面上的映像图案进行摄像，获取图象数据的摄像装置、

通过将由所述摄像装置这时获取的图象数据与和在所述监视对象空间内不存在进入物体时由所述摄像装置获取的图象数据相当的基准图象数据进行比较、获取在所述监视对象空间中的侵入物体的位置信息的位置检测装置、

根据所述位置检测装置所计算出的位置信息输出机器控制信号的判定输出装置、

确认根据由所述照射装置所照射的图案光的映像图案是否与预定的映像图案一致，当确认为一致时，保证这时各构成装置正常动作的自己诊断装置。

9. 根据权利要求 8 所述的三维监视装置，其特征在于，照射装置具有通过控制图案光的照射方向让该图案光在规定范围内可以扫描的扫描机构、

摄像装置，通过由所述扫描机构让图案光对所述监视对象空间内进行扫描，获取和在预定的方向和时刻向该监视对象空间投影的多个瞬间映像图案的合成映像相当的图象数据。

10. 根据权利要求 8 所述的三维监视装置，其特征在于，具有：通过让照射装置所照射的光的一部分直接照射在摄像装置的摄像面上所获取的图象数据中，根据是否正常出现预定的校对模样，自动检测自身动作有无异常发生的自己诊断功能。
11. 根据权利要求 10 所述的三维监视装置，其特征在于，具有作为照射装置的激光光源，校对模样由该激光光源的点火时刻以及扫描时刻所规定。

12. 一种三维监视传感器，其特征在于，具有：

通过所述图案光的照射，对投影于在所述监视对象空间内存在的物体表面以及构成该监视对象空间的背景的规定物体表面上的映像图案进行摄像，获取图象数据的摄像装置、

通过将由所述摄像装置所获取的图象数据与和在所述监视对象空间内不存在进入物体时由所述摄像装置获取的图象数据相当的基准图象数据进行比较，获取在所述监视对象空间中物体的位置信息的位置检测装置、

根据所述位置检测装置所计算出的位置信息输出机器控制信号的判定输出装置，

所述摄像装置和所述照射装置配置在这样的位置，即连接摄像装置和照射装置的假想线与水平面之间形成的角度大致为 45 度，

这样，通过视差检测物体的位置信息。

13. 一种三维空间监视方法，其特征在于，使用多台权利要求 1 到权利要求 12 中任一项所述的三维监视装置，从多个方向同时监视成为监视对象空间的三维空间。

14. 一种三维监视系统，包含三维监视装置、成为控制对象的机械装置，其特征在于，所述三维监视装置具有：

通过所述摄像装置的照射，对投影于在所述监视对象空间内存在的物体表面以及构成该监视对象空间的背景的规定物体表面上的映像图案进行摄像，

获取图象数据的装置、

通过将由摄像装置所获取的图象数据与和在所述监视对象空间内不存在进入物体时由所述摄像装置获取的图象数据相当的基准图象数据进行比较、计算出在所述监视对象空间中的侵入物体的位置信息的位置检测装置、

根据计算出的位置信息，向所述机械装置输出控制信号的装置。
三维监视装置

技术领域

本发明涉及一种适合用于检测人体等进入工厂内的生产线和产业用机械等的危险区域中的三维监视装置，特别是涉及通过采用图案光作为载体而可以获取进入规定三维空间内的物体的位置信息的三维监视装置。

背景技术

近年来，在工厂等处，为防止各种机械装置将操作者卷入事故的发生，和由于意外物体进入等造成装置破损的情况发生，导入检测有无物体进入规定区域（三维空间）的监视装置的情况逐渐增多。

作为监视装置，众所周知有通过连接多条光线监视规定平面的区域传感器、和使用多角镜等通过激光束扫描而监视规定平面的激光扫描型传感器等。如果使用这些监视装置，例如当检测到物体进入时可以实施立即使装置停止等的自动控制。

但是，这些现有技术的传感器（监视装置），由于均是由入射光在空间上展开假想光检测面，只对横切（遮挡）该光检测面的物体作出反应并产生输出，即是以所谓的“二维（平面）监视”为前提的装置，所以可以讲，不适合用于任意三维空间的监视。即，即使以任意三维空间作为监视对象，也存在这样的问题，即实际能监视（检测）的只是从光检测面展开的一侧有无物体的进入，而对于不通过该光检测面而侵入到规定三维空间内的物体等不能反应。

此外，这些现有技术的传感器，本质上只是检测有无遮蔽光检测面的物体存在，而不能满足用户需要检测到在规定三维空间内物体侵入状态（侵入到三维空间内什么位置等）的要求。

发明内容

本发明正是着眼于上述问题，其目的在于提供一种三维监视装置，通过
采用图案光作为检测介质，可以高精度检测出规定三维空间内的物体侵入。

本发明的另一目的在于提供一种三维监视装置，通过采用图案光作为检测介质，可以获取规定三维空间内的侵入物体的位置信息。

本发明的其它目的和作用效果，通过参照以下的说明书内容，本领域人员可以容易理解。

为了达到上述目的，本发明的三维监视装置具有：向成为监视对象空间的三维空间照射规定图案光的照射装置；通过所述图案光的照射，对投影于在所述监视对象空间中存在的物体表面以及构成该监视对象空间的背景的规定物体表面上的映像图案进行摄像，获取图象数据的摄像装置；通过将由所述摄像装置这时获取的图象数据与和在所述监视对象空间内不存在进入物体时由所述摄像装置获取的图象数据相当的基准图象数据进行比较、获取在所述监视对象空间中的侵入物体的位置信息的位置检测装置。

在此使用了“图案光”，而这里所谓的“图案光”是指，例如在平面屏幕上照射该图案光时会映射出特定形状以及模样的映像（一定的映像图案）的光束。又，虽然使用了“映射出”，而在这里所谓的“图案光”中，包括红外光等人眼不能识别的波长的光。又，作为“一定模样的形状”的一例，可以举出格子状模样、同心圆模样、同心多角形模样等。

作为“照射装置”的具体一例，可以举出激光照射装置。又，作为“摄像装置”，可以举出 CCD 摄像机等。

虽然使用了“上述监视对象空间内存在的物体表面以及在构成该监视对象空间的背景的规定物体”，而作为该物体，优选使用预先准备的平面屏幕。这样可以提高图案光的反射效率，稳定检测。又，在这种情况下，这里所谓的‘构成背景的规定物体’虽然另外准备，该物体也可能是本身就已存在的例如‘墙壁’等。

又，“与图象数据相当”，是指基准图象数据也可以不是由摄像装置直接获取的数据，即，只要是“和在监视对象空间内不存在进入物体时由摄像装置获取的图象数据相当”数据，也可以通过 PLC 等外部装置直接输入的数据等。

本发明的三维监视装置，由于采用图案光作为载体（检测介质）进行监视的装置，所以不仅可以平面监视，而且可以监视三维空间的物体侵入。又，
本发明的三维监视装置由于是检测物体的存在位置的装置，不仅可以用于检测侵入物体的有无，而且可以适合用于位置检测等各种各样的三维空间监视。

在本发明中，优先还包括根据位置检测装置所计算出的位置信息输出机器控制信号的判定输出装置。

依据这样的方案，可以容易构想根据监视对象空间内物体侵入的情况让规定设备装置紧急停止，或者自动发出警报等的安全系统。这样，可以预防作业者卷入事故等灾害的发生。

在本发明中，优先基准图象数据通过由摄像装置的摄像的示教所获取。

依据该方案，即使在背景等环境容易发生变化的场所使用，适应这种时刻不同的变化，可以适当设定或者变更贴切的基准图象。

又，对于图案光的生成以及产生样式，可以是各种各样。作为一优选例，让本发明中的照射装置，具有产生激光的激光二极管等光源体、将该光源体产生的激光光束变换成规定图案光的图案光产生器，这样，可以产生激光图案光。

在此，虽然使用了“图案光生成器”，作为该生成器，适合采用 MLA（Micro Lens Array）或者 CGH（Computer Generated Hologram）。一般讲，由于 MLA 和 CGH 没有可动部，耐用性好，并且由于是超小型，装置本身可以轻量化。

又，在本发明中，优选照射装置具有通过控制图案光的照射方向让该图案光在规定范围内可以扫描的扫描机构，摄像装置通过由上述扫描机构让图案光对上述监视对象空间内进行扫描，获取和在预定的方向和时刻向该监视对象空间投影的多个瞬间映像图案的合成映像相当的图象数据。

依据这样的方案，通过调整扫描范围可以变更、调整监视范围，并且通过调整合成映像，可以变更、调整检测分辨率。

在此，作为扫描机构，更优选适用包括光反射体、通过电磁诱导进行扭曲转动控制而支撑上述光反射体可让其自由转动的支撑部件的微机电结构（MEMS：Micro Electro Mechanical System）。

MEMS 制造技术，是由于其实用性而受到瞩目的技术。在本发明中，特别是作为扫描机构通过采用上述那样不需要可动部的由电磁诱导控制的
MEMS，不会出现采用多角镜等时所常见的由于摩擦热和金属疲劳等产生故障的情况，可以期待装置的长寿命化。

本发明，如上所述，是获取侵入物体的位置信息的装置。为了获取更详细的位置信息，优选包括作为照射手段的照射装置、和作为摄像手段的摄像装置，位置检测装置利用照射装置以及摄像装置之间的已知位置关系、图案光的已知形状或者模样、根据由摄像装置实时获取的图像数据和预先获取的基准图像数据求出的变位，根据三角测量原理计算监测对象空间内侵入物体的三维位置坐标。

该计算方案，只不过是一优选例，本发明中的位置信息的计算方案并不限定于基于三角测量原理的方案。

又，为了获取更详细的位置信息，在依据另一优选方案的本发明的三维监视装置中，上述摄像装置和上述照射装置，配置成连接摄像装置和照射装置的假想线与水平面之间的形成的角度为45度，这样，通过视差检测侵入物体的位置信息。

依据这样的方案，在高度方向和宽度方向上可以产生大致均等的'视差'，所以由位置检测装置可以更正确地进行检测。

又，依据优选方案的本发明的三维监视装置，进一步包括从预先假想分割成多个区域的上述监视对象空间内通过用户操作而任意选择的区域作为指定区域确定的，对每个指定区域设定从预先准备的多个输出种类中通过用户操作而任意选择的输出种类的装置，位置检测装置作为侵入物体的位置信息获取该进入物体存在的区域的特定信息，判定输出装置根据在由上述位置检测装置确定的区域中所设定的输出种类、输出机器控制信号。

在此，作为'预先准备的多个输出种类'，如果举出几个例子，例如有机器停止信号输出、警告信号等点灯信号输出、警报动作信号输出等。当然，除此之外，也可以预先设定或者准备各种各样的输出种类。

此外，'特定信息'是指'为确定相当的区域的信息'，作为一例可以举出例如是分配给分割成多个的每个区域的顺序编号信息等。

依据这样的方案，根据各区域有无物体进入，可以自动输出针对相当的区域设定的机器控制信号。

在此，更优选输出种类设定按照根据图案光的形状和模样所区分的体素
单位进行。
在此，作为“根据图案光的形状所区分的体素”，如果以格子状的图案光为例，例如可以举出由格子线和规定的假想截面所区分的体素等。
依据这样的方案，假想分割的区域容易被用户识别（选定），这样容易进行输出种类设定。
又，在上述方案中，指定区域，也可以通过在监视对象空间内的所希望的位置上设置物体的状态下进行摄像，抽出该物体存在的区域的方式自动确定。
该自动确定，相当于所谓的‘示教’，依据这样的方案，不是进行暧昧的区域选定，而是进行不会有错的可靠的区域选定。
又，依据另一优选方案的本发明的三维监视装置，进一步包括从预先假想分割成的多个区域的上述监视对象空间内通过用户操作而任意选择的区域作为指定区域确定的同时，对每个指定区域设定从预先准备的多个输出种类中通过用户操作而任意选择的输出种类的装置，位置检测装置、根据连续获取的多个监视图象数据的时序的变化，检测侵入物体的移动状态，判定输出装置，根据检测结果确定该侵入物体的预想到达区域，根据该预测到达区域和该区域中设定的输出种类，输出机器控制信号。
在此使用了“侵入物体的移动状态”，而作为“移动状态”可以举出移动方向、移动速度等。
作为“确定预想不到区域”，在此，对于成为该特定的基准的时候并不限定。即例如，可以是确定（预测）规定时间后（例如‘1秒后’）的物体到达区域，或者在规定时间内预测物体到达的多个区域，分别计算出到到达预测时刻，将此加入到输出的判断基准中。
依据这样的方案，可以根据侵入物体到达规定区域的预测进行机器控制。又，即使是移动速度快的物体等，也可以极其敏捷反应，输出控制信号。
然后，在本发明的三维监视装置中，可以加入自己诊断功能。例如，在本发明的三维监视装置中，通过进一步设置确认由照射装置所照射的图案光的映像图案是否与预定的映像图案一致，当确认为一致时、保证这时各构成装置正常动作的自己诊断装置，而进行附加。
除此之外，作为自己诊断，也可以举出将基准图象数据与这时获取的监
视图象数据对照，根据特定部位是否一致，自动检测自身的动作有无异常发生的装置。

又，作为另一例，也可以举出：通过让照射装置所照射的光的一部分直接照射在摄像装置的摄像面上所获取的图象数据中，根据是否正常出现预定的校对模样，自动检测自身动作有无异常发生的装置。

依据任一方案，可以实现自己诊断功能，所以可以预防监视装置本身的故障等引起的检测误动作。

此外，“自己诊断”，如果在实施例水平进行考查，优选由三维监视装置进行监视动作处理之前进行。具体讲，例如，可以举出：让一次自己诊断处理和一次监视动作处理（例如将一次图象摄取的处理规定为一次处理）交互循环进行的方案（自己诊断→监视→自己诊断→监视…），或者装置启动时进行一次自己诊断，然后反复进行监视动作的方案（自己诊断→监视→监视…）等。这时，通过“自己诊断”，当照射装置、扫描装置、摄像装置等三维监视装置的构成要素的任何一个确认有异常时，不能照射规定的图案光，禁止监视动作的开始。又，也可以进行用于向外部通报自己诊断 NG 的规定输出。同时，也可以根据该通报输出，让监视对象的机器停止等，进行安全的处置。

此外，上述本发明的三维监视装置，也可以同时使用多台，从多个方向监视成为监视对象的监视对象空间。

附图说明

图 1 是本发明的三维监视装置的整体构成图；
图 2 是光源单元的构成以及动作内容的概略示意图；
图 3 是作为扫描机构所采用的 MEMS 的构成示意图；
图 4 是摄像机单元的概略构成示意图；
图 5 是控制器单元的构成方框图；
图 6（a）、图 6（b）是 MEMS 的振动角度与监视范围、检测分辨率之间关系的示意图；
图 7 表示监视对象空间的体素分割的示意图；
图 8（a）、图 8（b）表示光源单元和摄像机单元的位置关系示意图；
图 9 表示监视空间设定模式的内容的流程图；
图 10 表示光源单元中监视器用光源体的设置模式示意图；
图 11 表示校正模式的内容的流程图；
图 12 表示 MEMS 的振动角度与激光光源体的振动控制以及摄像时刻控制之间的关系的时序图；
图 13 是 8 字 1 周的合成图案映像示意图；
图 14（a）、图 14（b）表示光轴和格子图案光的各格子线之间所成角度（θx,θy）的示意图；
图 15 表示数据保存处理的内容的流程图；
图 16 表示格子线的数据结构例的示意图；
图 17（a）、图 17（b）表示对监视空间的输出种类设定的一例的示意图；
图 18 表示监视空间设定用的界面（微机画面）的一例的示意图；
图 19（a）、图 19（b）是用于说明有关输出种类设定的体素自动选定（示教）的内容的图；
图 20 表示同时使用 2 组光源、摄像单元的例的示意图；
图 21 表示自己诊断处理的内容的流程图；
图 22（a）、图 22（b）表示图象处理检测部的图象处理内容的示意图（其一）；
图 23（a）、图 23（b）表示图象处理检测部的图象处理内容的示意图（其二）；
图 24（a）、图 24（b）表示图象处理检测部的图象处理内容的示意图（其三）；
图 25 表示适用于本发明中的基于三角测量的测距原理的示意图；
图 26 表示有关距离检测的处理内容的流程图（其一）；
图 27 表示有关距离检测的处理内容的流程图（其二）；
图 28 表示有关距离检测的处理内容的流程图（其三）；
图 29（a）、图 29（b）表示监视空间中物体到达区域预测处理的内容的示意图；
图 30 表示物体到达区域预测处理内容的流程图；
图 31 表示另一实施例中自己诊断处理用的装置构成的示意图；
图 32 表示另一实施例中自己诊断处理用的装置控制内容的时序图；
图 33（a）、图 33（b）表示另一实施例中有关自己诊断处理的获取图
象的一例的示意图。

5

具体实施方式

以下参照附图详细说明有关本发明的三维监视装置的优选实施例。
首先，根据图 1 说明本实施例中三维监视装置的整体构成以及动作的概
略。如该图所示，该三维监视装置 100 包括作为照射装置的光源单元 1、作
为摄像装置的摄像机单元 2、统一控制这些装置的控制器 3。

光源单元 1 根据控制器 3 的控制发出规定激光图案光（以下称为图案光）
照射作为监视对象的三维空间（以下称为监视空间 S）。在该例中，在监视
空间 S 的背后配置屏幕 5，在该屏幕 5 上根据从光源单元 1 发出的图案光映
射出图案影像（在该例中是人眼不能识别的红外光影像）。

在监视空间 S 中当有人或者物体等侵入时（以下称为侵入物体 M），在
屏幕 5 上映射出的红外光图案影像发生变化。这种变化后的图案影像由摄像
机单元 2 摄像，通过图象处理，检测出侵入物体 M（在该图中描绘的是人物）
的位置和移动方向。

控制器 3，控制光源单元 1、摄像机单元 2，同时进行根据该侵入物体 M
的在监视空间 S 中的检测位置或者移动方向的输出。更具体地说，在该例中，
向信号灯 6 输出点亮/熄灭灯的控制信号（在本实施例中为‘停止（红色）’、
‘警告（黄色）’、‘不感应（兰色）’），同时向作为控制对象的设备机
器 4 输出控制信号（动作开始（ON）、动作停止（OFF））。又，根据侵入
物体 M 的检测位置、移动方向输出怎样的信号，是根据由用户预先通过控制
器 3 任意设定的输出种类设置而确定。

根据图 2 说明光源单元 1 的详细内容。光源单元 1 的构成包括发射红外
激光的光源体 11、将光源体 11 发射的红外激光光束变换成规定图案光的作
为图案光产生器的 MLA（微镜阵列：Micro Lens Array）12、具有由电磁诱
导进行动作控制（振动控制）的反射镜面（参见图 3）、将由 MLA 所产生
的图案光导入到监视空间 S 中的任意场所的作为扫描机构的微机电结构
（MEMS: Micro Electro Mechanical System）13。又，该图中符号 Ls 表示图案光的光轴（从光源体 11 发射的激光光束光轴的假想延长线）。

光源体 11 所发射的红外激光光束的强度为不对人体有不良影响的程度。该红外激光光束通过 MLA12 变换成格子状（网格状）的图案光（该图中符号 A21～A25 表示其模型）。该图案光通过 MEMS13 的反射镜面向规定方向反射，从而在监视空间 S 内让图案光扫描。又，光源体 11 的振荡控制、ON/OFF 控制以及 MEMS13 的动作控制通过控制器 3 进行。

光源体 1 进一步还包括后述的监视空间 S 的设定用的监视器用光源体（可视激光光源）14 以及单透镜 15（参见图 10），这些将在后面说明。根据图 3 说明 MEMS13 的详细内容。又，在该图中虽然只画出了符号 134、135 所示的扭轴（torsion bar），但在其周围还连接着图中未画出的硅基底（参见图 2 的 MEMS13）。又，该图中符号 136、137 表示电磁诱导用的永磁铁。

在本实施例中所使用的 MEMS13 包括设置在硅基板 130 上的反射面 131，在搭载反射面 131 的硅基板 130 表面上形成有在该图中用连续线描绘的线圈图案。然后，以该图中符号 132、133、134、135 所示的扭轴（硅的两腕）作为转动轴，在规定的角度范围内向该图中所示的 X 轴、Y 轴两方向上可以振动控制。

更详细地说，如果在特定方向上施加磁场 B（BA、BB），同时线圈中流入电流 i（iA、iB），由洛伦兹力（FA、FB）产生转动力矩，可以让硅基底（反射面 131）振动到与扭轴的恢复力均衡的位置上。因此，依据 MEMS13，通过在 X 轴方向上制作的扭轴（134、135）和在 Y 轴方向上制作的扭轴（132、133），可以自由控制图案光的照射方向。

光源单元 1 通过采用上述构成，依据本实施例可以获得以下所示(a)、(b) 的效果。

(a)通过更换 MLA，不仅可以产生格子状的图案光，而且可以产生例如同心圆状或者同心多角形状等的各种图案光。

(b)在 MLA12 以及 MEMS13 上，由于没有例如象多角镜那样产生摩擦的可动部，所以可以延长装置的寿命。

又，作为图案光产生器，也可以采用 CGH（计算机合成全息图）替代
MLA。这时也可以和上述同样获得(a)、(b)的效果。

根据图 4 说明摄像机单元 2 的构成。如该图所示，摄像机单元 2 由包含摄像装置 21a 和快门机构 21b 的摄像机 21、与光源体 11 发射的红外光的波长对应的带通滤波器（BPF：bandpass filter）22 所构成，通过由控制器 3 控制快门时刻，对屏幕 5 和侵入物体 M 投影的映像图案进行摄像。此外，在本实施例中，由于摄像机 21 采用 CCD 摄像机，实际上并不存在快门机构 21b，在此是为了说明摄像机单元 2 的功能而图示出。

又，在该例中，带通滤波器 22 可以防止荧光灯和太阳光等外部光的侵入。

控制器 3 的构成如图 5 的方框图所示。如该图所示，控制器 3 包括设定控制部 30、光源单元控制部 31、摄像机单元控制部 32、图像处理检测部 33、自己诊断部 34、判定部 35。

又，控制器 3 具有该图中‘用户设定输入（IN1）’、‘摄像机图像信号输入（IN2）’所示的 2 个输入、‘机器控制信号输出（OUT1）’、‘点熄灯控制输出（OUT2）’、‘光源单元控制信号输出（OUT3）’、‘摄像机单元控制信号输出（OUT4）’所示的 4 个输出。

设定控制部 30 根据用户设定输入（IN1），切换三维监视装置 100 的动作模式，通过用户设定输入（IN1）获得的各种设定输入值（数据）被保存在规定的存储器内。

在本实施例中，作为动作模式，准备有 4 个模式，在以下依次说明。

1)监视模式

（内容）用于检测侵入到监视空间 S 中的侵入物体 M 的位置和移动方向，并产生对应于检测结果的输出的监视模式。

2)监视空间设定模式

（内容）进行监视空间 S 的范围设定用的设定模式

（详细说明）图 6(a)、图 6(b)是表示 MEMS13 的振动角度和监视范围、检测分辨率之间的关系的示意图。光源单元 1，通过 MEMS13 的动作控制而在监视空间 S 内扫描格子状的图案光。这时，如图 6(a)所示，如果增大设置 MEMS13（反射面 131）的振动角度（以下称为‘振角’）θ（用 θwx61 表示），扩大其扫描范围（该图中符号 A61 所示的合成图案映像投影范围），
可以监视比较宽的范围。

另一方面，如图 6(b)所示，如果减小设置 MEMS13 的振角 θ（用 θwx62 表示），缩小其照射范围（该图中符号 A62 所示的合成图案映像投影范围），可以提高格子线密度（单位面积内的格子线数），可以进行分辨率比较高的检测。

在监视空间设定模式中，上述 MEMS13 的振角 θwx（或者 θwy）通过规定的用户操作接收。

又，在图 6 所示的例中，虽然只示出了 MEMS13 在 X 轴方向上（环绕 Y 轴）的动作（振动）的样子，如以上说明的那样，在本实施例中所适用的 MEMS13，可以在 X、Y 轴两方向上扫描图案光。

3)校正模式

（内容）获取从摄像机单元 2 到屏幕 5 之间的距离数据 L（参见图 8(a)）。又，在监视空间 S 中侵入物体 M 不存在的状态下进行图案光的照射，由此用摄像机单元 2 对投影在屏幕 5 上的图案映像进行摄像，获取基准图象（以下称为参考图象）的模式。

（详细说明）在本实施例中，如后面所述，根据由摄像机单元 2 摄像到的在监视模式时的图象（以下称为监视图象）与参考图象的比较，利用三角测量原理，计算出到侵入物体 M 的距离。又，在该校正模式下获取的距离数据 L，在后述的自己诊断时使用。

4)输出种类设定模式

（内容）是用于进行对应于在监视空间 S 内侵入物体 M 的位置以及移动方向的输出的输出种类设定模式。

（详细说明）在上面的监视空间设定模式下设定了其范围的监视空间 S，被切割成图 7 所示的假想的多个体素（Volume Pixel）（在该例中为 4×4×3 个）。在该例中，与有无向各体素的物体侵入相对应，可以按体素单位（也可以多个体素合在一起）预先设定何种输出种类。

在该例中，作为输出种类，准备了‘停止’、‘警告’、‘不感应’3 种。对于设定形式，将在后面说明。在该模式下设定的输出种类设定数据，在判定部 35 种使用。顺便说明，设定的缺席值（default value），为 (b)的警告。
图 8(a)、图 8(b) 表示本实施例的三维监视装置 100 中光源单元 1 和摄像机单元 2 之间的设置位置关系的示意图。如图 8(a)所示，光源单元 1、摄像机单元 2 分别设其正面（正确讲，对于光源单元 1 为 MEMS 面，对于摄像机单元 2 为摄像机镜头面）与屏幕 5 之间成等距离（该图中用距离 L 表示），相互邻接配置。进一步，光源单元 1 和摄像机单元 2 之间的位置关系，同时满足下述 a)～c)的条件。

a) 光源单元 1 的光轴（图 8 中用点划线 J1 表示）和摄像机单元 2 的光轴（图 8 中用点划线 J2 表示）平行。又，光源单元 1 的光轴 J1 是 MEMS 面的法线，摄像机单元 2 的光轴 J2 是镜头面的法线。

b) 光源单元 1 发射的图案光的横方向的格子线和由图象处理检测部 33 获取的图象数据的 X 轴（摄像机单元 2 的摄像元件（CCD）的扫描方向（后面详细说明））平行。

c) 摄像机单元 2 配置在光源单元 1 的左下方 45 度（用图 8(b)的角度 θ80 表示）的位置上。

又，这些条件是以适用于后述的物体位置检测用计算式的前提情况下的设置条件，光源单元 1 和摄像机单元 2 之间的位置关系并不限定于此。

又，如果对上述条件 c) 进行补充，摄像机单元 2 配置在光源单元 1 的左下 45 度的位置上，是为了在 X、Y 轴两方向上产生均等的视差，例如配置方向为右上、左上、右下时也会获得同样的效果。

监视空间设定模式中的三维监视装置的动作内容如图 9 的流程图所示。

监视空间设定模式，以通过用户设定设定（IN1）指定监视空间设定模式为条件（步骤 901、步骤 902 为 YES）启动（步骤 904）。又，由用户设定输入（IN1）设定其他模式时（步骤 902 为 NO），切换成各设定模式所对应的模式（步骤 903）。

监视空间设定模式启动后，通过光源单元控制部 31 的控制开始由图 10 所示的显示器用光源体 14 进行激光驱动。同时，根据保存在设定控制部 30 的规定存储器中的振角设定值（θwx, θwy），让 MEMS13 在 X、Y 轴两方向上振动（步骤 905）。又，只是在初次设定中该振角设定值采取缺席值。

又，在图 2 中虽然未画出，显示器用光源体 14，如图 10 所示，是设置在光源单元 1 中的可视激光振荡用的光源体，该光源体 14 发射的激光光束
又，图7中符号A71～A74所示格子图案，是示出将监视空间S在前后方向上3分割时的各分割面上所识别的概念上的假想合成图案映像（通过扫描图案光所生成的在该例中的4×4合成图案映像）。该图所示的体素Vp，是相当于将监视空间S在前后方向上3分割后的中央空间S2中的由合成图案映像A72、A73的格子线所区分的平面区域P72和平面区域P73之间的空间的体素。

返回到图5，光源单元控制部31，根据保存在设定控制部30中的振角设定值（θwx, θwy），进行MEMS13的动作（振角）控制，同时进行光源体11（以及后述的显示器用光源体14）的ON/OFF控制、振荡控制。

摄影机单元控制部32，进行摄影机单元2的快门时刻控制以及图象获取控制，获取监视图象以及参考图象。该图象作为2值化数据保存在图象处理检测部33的帧存储器F1以及F2中。又，快门时刻控制，参考光源单元控制部31的振荡状态（振荡控制信号）、和MEMS13的动作状态（振角控制信号）进行。

图象处理检测部33，通过对由摄影机单元控制部32获取的监视图象和参考图象进行比较，利用三角测量原理检测侵入物体M的存在位置（空间坐标z(x,y)），将其检测结果输出给判定部35。又，图象处理检测部33，包括保存由摄影机单元控制部32获取的图象数据的帧存储器FM1（监视图象用）和FM2（参考图象用）。

自己诊断部34，诊断三维监视装置100是否正常动作。更具体讲，根据通过摄影机单元控制部32适当获取的图象数据，诊断激光单元控制部31、摄影机单元控制部32是否正常动作。将诊断结果输入给判定部35。

判定部35，根据图象处理检测部33的检测结果、设定控制部30所输入的监视空间设定、体素Vp单位的输出种类设定、自己诊断部34的诊断结果，从如前所述3个种类中确定点灭灯控制信号（OUT2），同时确定向设备机器4输出的机器控制信号（OUT1）。

又，判定部35，根据侵入物体M的移动速度和移动方向，预测有无向预先指定的部位体素的侵入，如果确认是侵入时，可以事先让机器控制信号输出（OUT2）为‘动作停止’（预测停止功能）。对此将在后面说明。

以下依次详细说明本实施例的三维监视装置100的动作。
由配置在光源体 11 和 MLA12 之间的单向透镜 15 以与光源体 11 发射的激光光束相同的光轴 Ls 入射到 MLA12 上。

这样，扫描和由光源体 11 产生的图案光相同模样的可视图案光，在屏幕 S 上映射出可以目视的合成图案映像。用户可以一边观察该合成图案映像，一边确认监视空间 S 的设定范围。

然后，用户操作连接在设定控制部 30 上的图中未画出的操作杆开关（操作部）（步骤 906 为 YES），根据该操作变更振角（步骤 907），改变在屏幕 S 上映射的合成图案映像（图案光扫描范围）。在开关操作之后，用户按下图中未画出的确认按键，将这时的振角作为新的振角设定值（θwx, θwy）改写保存在设定控制部 30 的规定存储器上（步骤 909），处理结束。

这样，在本实施例中，利用监视空间设定模式，用户通过可以目视的合成图案映像，可以设定监视空间 S。

校正模式中的三维监视装置的动作内容如图 11 的流程图所示。

校正模式，以通过用户设定输入（IN1）指定校正模式为条件启动（步骤 1101），首先处于如前所述的距离数据 L 的输入等待状态（步骤 1102 为 NO，步骤 1103）。当通过控制器 3 的键盘操作部（例如数字键），由用户输入距离数据 L （步骤 1102 为 YES）时，该距离数据被保存在设定控制部 30 的规定存储器内（步骤 1104）。

然后，将在上面保存在设定控制部 30 中的 MEMS13 的振角设定值（θwx, θwy）读出（步骤 1105）。

光源单元控制部 30，进行光源体 11 的激光振荡控制，同时根据读出的振角设定值（θwx, θwy）进行 MEMS13 的振角控制，将合成图案映像投影在屏幕 S 上（步骤 1106）。

摄像机单元控制部 32，控制摄像机单元 2，对投影在屏幕 S 上的合成图案映像进行摄像（步骤 1107），将这样获取的图象数据 2 值化，作为参考图象保存在图象处理检测部 33 的帧存储器 FM2 中（步骤 1108）。又，如上所述，在该校正模式下获取参考图象是在监视空间 S 中侵入物体 M 不存在的状态下进行。

又，在图 11 的流程图中，在步骤 1106 所示的 MEMS13 的振角控制时，光源单元控制部 30 向光源单元 1 输出图 12 所示的时序图所示的控制信号。
又，在该图(a)中表示有关X轴方向上的振角(θwx)的控制信号，在该图(b)中表示有关Y轴方向上的振角(θwy)的控制信号，在该图(c)中表示光源体11的振荡控制信号（点火控制），在该图(d)中表示在各时刻投影的瞬间图案映像（图13所示的A121~A124）。

在校正模式时，光源单元控制部31，向光源单元1输出图12中(a)、(b)所示的MEMS的振角控制信号、和该图(c)所示的光源体11的点火信号。图13中，符号A120所示的图案映像，表示根据该控制信号投影在屏幕5上的合成图案映像。

摄像机单元控制部32，监视来自光源单元控制部31的该控制信号，控制摄像机单元的快门机构21b的开闭，使得以8字的1周（在该例中为4个瞬间图象）作为一图象进行记录。图象处理检测部33，将这样获取的8字的1周的图象保存在参考图象用的帧存储器FM2中。

然后，在图象处理检测部33中，根据所获取的数据，计算出合成格子图案映像的纵向(Y轴方向)、横向(X轴方向)的各格子线与Z轴(激光光束的光轴)之间所成的角度θ。又，该角度θ在计算到侵入物体M的距离时采用。

在此，光源单元1内的光源体11和MLA12之间的距离为已知，Z轴与基本格子图案映像(在该例中作为4×4的格子图案光表示)的纵向的各格子线之间所成的角度在设计上也是已知的(图14(a)所示的θx1~θx4)。

又，Z轴与横向的各格子线之间所成的角度(θy1~θy4)在设计上也是已知的。又，图12中(a)、(b)所示的MEMS13的振角控制信号、和MEMS13的摇角(设定值)也是已知的。(这样，MEMS13的摇角在X轴方向上为θw/2～θw/2，在Y轴方向上为±θh/2～±θh/2之间振动，投影出图13所示的合成图案映像)。

采用产生图14所示的格子图案光的MLA时，图13所示的合成图案映像的最左边的纵向格子线相对于Z轴形成的角度θx成θx=0。同样，纵向和横向的各格子线与Z轴形成的角度可以根据MEMS13的摇角和在设计上已知的信息计算出来。

再，在此，为了便于理解，是以4×4的格子状图案光为例进行了说明，但即使格子数增加也可以同样计算出来。
然后，纵向和横向上的各格子线在摄像元件（CCD）上的坐标（xf, yf）从保存在帧存储器 FM2 中的数据搜寻。将搜寻结果例如保存在以下那样的 C 语言的数据结构中。

【式 1】

```c
typedef struct grid_v {/*纵向格子线保存用数据结构*/
int angle;/*与 z 轴的角值*/
int y_min;/*Y 的最小值*/
int y_max;/*Y 的最大值*/
int xf[MAX_YSIZE];/*帧存储器上的格子线的 x 坐标*/
}GRID_V;

typedef struct grid_h {/*横向格子线保存用数据结构*/
int angle;/*与 z 轴的角值*/
int x_min;/*X 的最小值*/
int x_max;/*X 的最大值*/
int xf[MAX_XSIZE];/*帧存储器上的格子线的 x 坐标*/
}GRID_H;
```

这些数据的存储处理的详细顺序如图 15 的流程图所示。又，先说明一下，图 16 表示由该数据存储处理保存的数据结构的一例（在该例中，摄像了 6×7 的合成映像图案时的数据结构）。

在数据存储处理中，首先，为检测纵向格子线，以滤光检测出纵向成分（步骤 1501）。

然后，为修补由图象处理切出的纵向格子线，进行边缘线的放大和收缩（步骤 1502、1503），强调纵向成分。

然后，对图 16 所示的图象上的坐标（在该例中为 (0, 0)～(MAX_XSIZE-1, MAX_YSIZE-1)）进行纵向数据处理。
MAX_YSIZE-1)）扫描，检测出纵向格子线。然后，针对所检测出的每个格子线，在相应的数据结构 Lv[n]中保存坐标，Y 坐标最大值以及最大值，在上面的格子角度计算中获得的与 Z 轴形成的角度（θx）（步骤 1504）。又，数据结构 Lh[n]中所示的‘n’，在该例中表示以左端的格子线为‘0’，向

同样，为检测横向格子线，滤光检测出横向成分（步骤 1505）。

然后，为修补由图象处理切断的横向格子线，进行边缘线的放大和收缩（步骤 1506、1507），强调横向成分。

然后，对图 16 所示的图象上的坐标（在该例中为(0, 0)～(MAX_XSIZE-1, MAX_YSIZE-1)）扫描，检测出横向格子线。然后，针对所检测出的每个格子线，在相应的数据结构 Lh[n]中保存坐标，X 坐标最大值以及最大值，在上面的格子角度计算中获得的与 Z 轴形成的角度（θx）（步骤 1508）。又，数据结构 Lh[n]中所示的‘n’，在该例中表示以左端的格子线为‘0’，向下每进一步加 1。

以下详细说明输出种类设定模式。在输出种类设定模式中，设定当在监视空间 S 中有人或者障碍物等物体 M 侵入时，确定向设备机器 4 以及信号灯 6 的输出（OUT1、OUT2）的输出种类。

输出设定，可以按图 7 所示的那样以体素单位进行。又，在图 7 中，虽然设定了 4×4×3 的体素，体素分割与图案光无关，可以任意设定。

图 17(a)、图 17(b)表示对监视空间的输出种类设定的一例。在图 17(a)所示的设定例中，阴影所示的区域（体素 S131、132）设定成‘停止’。当人或者障碍物等进入到该区域中时，信号灯 6 点亮红色灯，停止设备机器 4 的运转。又，阴影以外的空白区域设定成‘警告’，当物体 M 进入到这些区域中时，信号灯 6 点亮黄色灯，这时，设备机器 4 的运转继续进行。

有这样的情况，即为了调整设备儿需要在监视空间 S 中作业，在这样的情况下，在作业中，由于其它作业者（或者障碍物）从调整者的背后接近，有可能推调整者，而出现危险情况。这时，通过将作业者需要操作的区域设定成‘不感应’，在确保作业者的安全的情况下，可以提高生产效率。例如，在图 17(b)所示的设定例中，当人或者障碍物等进入到体素 S132、S133 所示的区域中时，信号灯 6 点亮红色灯，停止设备机器 4 的运转，而将体素 S134
所示的区域设定成‘不感应’，在该区域中即使有人或者物等进入，输出也不发生变化。

图18表示为设定监视空间S用的界面的一例。在该例中，采用微机中的软件实现。在微机的显示器140上，同时显示可以鸟瞰监视空间区分成体素的情况的鸟瞰用映像（18a）、从横方向观察监视空间用于选定体素的XZ选择用映像（18b）、从正面观察监视空间用于指定体素的YX选择用映像（18c），为设定每个体素的输出种类的输出种类选择用映像（18d）。

使用该界面的用户设定顺序如下。

①在XZ选择用映像（18b）上，用光标指定要设定的体素所属的XZ区域（图中符号B）。

②然后，在XY选择用映像（18c）上，指定要设定的体素所属的XY区域（图中符号C）。这样完成1个体素的指定。

③然后，从输出种类选择用映像（18d）中选择所指定的体素的输出种类。

输出种类选择结束后，在鸟瞰用映像18a上对应的体素以颜色表示（图中符号A）。

④然后，重复①～③，对任意的体素进行必要的输出种类设定。

图19(a)、图19(b)表示另一输出种类设定方法（体素示教）。在该例中，预先在监视空间S内所希望的位置上配置要检测的人或者障碍物等物体M。在该状态下，通过输入规定的设定指示，选择物体M这时所属的体素。然后，在输出种类设定用映像上设定对应于该体素的所希望的输出种类。

图20表示本发明的另一实施例。在上述实施例中，光源单元只使用了1台。为此，例如当作业者等在监视空间S内的指定区域内进行作业时，就不能同时进行对遮住了图案光的其背后的监视。在图20所示的例中，使用和上述实施例中所示的光源单元1和摄像机单元2相同的另一组单元（光源单元1000、摄像机单元2000），通过分别从不同的方向（在该例中从屏幕S的正面和斜上方）进行照射、摄像，可以覆盖死角，更进一步确保作业者的安全。

以下说明本实施例的三维监视装置的主要功能的监视模式时的动作内容。监视，是通过由用户的操作在设定控制部30设定“监视模式”而实现。
三维监视装置 100，在进行监视前进行自己诊断。在此，首先说明在本实施例中所采用的自己诊断方法。

自己诊断时，各单元如下动作。
- 光源单元控制部 31 和校正时同样控制光源单元 1，在监视空间 S 内扫描图案光。
- 摄像机单元控制部，和校正时同样监视光源单元控制部 31 的控制信号，控制摄像机单元 2 的快门 21b，使得能获取 8 字形的 1 周的图象数据。又，摄像机单元 2 摄取图象时，将图象读入用的帧存储器 FM1 完全清除。

自己诊断部 34，将摄像机单元 2 所摄取的图象数据和保存在帧存储器 FM2 中的参考图象数据进行比较，如果确认在相同范围内具有相同的图象图案，输出自己诊断 OK。如果不能识别图案，或者所摄取的图象图案的存在区域比参考图象数据中的要宽的多或者窄的多，输出自己诊断 NG。

又，自己诊断时，也想定物体 M 已经侵入到监视空间 S 内的情况。这时，帧存储器 FM1 和帧存储器 FM2 中保存的图象图案之间存在差异。这时，图象图案的不同地方，如果在参考图象图案的外框内（允许范围内），判定为侵入物体 M 的影响，自己诊断为 OK。

判定部 35，当自己诊断为 NG 时，立即输出‘停止’控制信号（OUT1），停止设备机器 4。

根据图 21 的流程图说明有关上述自己诊断的详细动作内容。又，在该流程图所示的例中，采用在图 16 所示的图象图案在屏幕 S 上投影的情况的例子。

自己诊断处理开始后，首先，将图象读入用的帧存储器 FM1 清除（步骤 2101）。然后，和校正时同样，摄取 8 字形的 1 周的映像图案，将自己诊断图象保存在帧存储器 FM1 中（步骤 2102）。

如果，预先保存在帧存储器 FM2 中的参考图象和自己诊断图象之间存在差异，可以判定是由于发射、接收、扫描系统出现异常或者有物体侵入所引起。为此，在该例中，抽出参考图象和自己诊断图象之间的差分（步骤 2103）。

如果参考图象和自己诊断图象之间不存在差异 (FM1=FM1−FM2)时 (步骤 2104 为 YES)，判定是正常动作（→步骤 2107）。
如果参考图象和自己诊断图象之间存在差异（步骤 2104 为 NO），然后，
判定参考图象和自己诊断图象出现差异部分的坐标是否在参考图象的外周
（是否在允许范围内）。在此，如果不在允许范围内（步骤 2105 为 NO），
由于可能是过度扫描，自己诊断为 NG（步骤 2108），处理结束。
另一方面，如果差异在允许范围内时（步骤 2105 为 YES），搜索纵向
格子线的左右端（Lb[0], Lb[6]），如果均正常检测出来（步骤 2106 为 YES），
表明光源单元控制部 31 的控制输出和这样获取的图象图案能够对照上了。
即，这时，两图象的差异判定是由于侵入物体 M 所引起（步骤 2107 为 YES）。
另一方面，如果没有正常检测出来时（步骤 2106 为 NO），判断是某种异常，
自己诊断为 NG，输出机器停止信号（步骤 2108）。又，如果 Lh[0]和 Lh[6]
正常，可以确认在保存在数据结构上的坐标上，帧存储器 FM1 和 FM2 之间
不存在差。

然后在步骤 2107, 将校正时获取的到屏幕 S 的距离数据 L 及利用三角测
量原理求出的到 Lh[0]（最上端的横格子线）的距离进行比较。如果该距离
一致（包含允许误差范围内的情况）（步骤 2107 为 YES），判断运算也正
常进行，自己诊断为 OK（步骤 2107 为 YES，步骤 2109）。另一方面，如
果这些距离不一致时（步骤 2107 为 NO），判断是某种异常，自己诊断为
NG，输出机器停止信号（步骤 2108）。又，到 Lh[0]的距离计算方式将在后
面说明。

如果自己诊断为 OK，继续进行监视。在监视时，各单元如下动作。

· 光源单元控制部 31 和校正时同样控制光源单元 1，在监视空间 S 内扫
描图案光。

· 摄像机单元控制部 32，和校正时同样监视光源单元控制部 31 的控制
信号，控制摄像机单元 2 的快门 21b，使得能获取 8 字形的 1 周的图象数据。

图象处理检测部 33，计算图 22(a)所示的获取图象（在摄像机单元 2 中
装载了与光源体的波长对应的滤光器，所以实际上摄不出该图所示的人物轮
廓）、和保存在帧存储器 FM2 中的参考图象之间的差，将图 22(b)所示的差
分图象保存在帧存储器 FM1 中。

然后，利用本来格子线的位置和从这些位置的偏移量，计算到检测物体
M 的距离地图 z(x, y)。

又，为了便于理解，保存在帧存储器 FM1 中的差分图象，分别分成 X 轴成分、Y 轴成分，如图 23(a)、图 23(b)所示。

如果该图所示，在差分图象中，没有物体侵入的部位（坐标）上的各象素的值为 0。另一方面，由于物体侵入，格子线的位置有变化时，原来的格子线所处的部位成为负值，格子线移动后的坐标为正值。

各格子线的坐标由于在制作参考图象时已经保存在数据结构（Lh[], Lv[]）中（参见图 15、图 16），据此，沿横方向的格子线、纵方向的格子线，搜索各自的格子线的移动去向。其模样如图 24 的示意图所示。

如图 24(a)所示，从 a 点到 b 点如果是原来的格子线，从其中间点 c 向斜 45° 方向搜索移动后的格子线。又，向斜 45° 方向的搜索，是取决于如图 8 所示的光源单元 1 和摄像装置 2 之间的位置关系。

搜索结果发现移动后的格子线（图中的 d 点）后，获取移动后的格子线的全坐标（e→d→f）。

由于格子线相对于光源体 11 的光轴 Z 的角度是已知的（已保存在数据结构：Lh[], Lv[]的 angle 中），如果计算 CCD 上观察的偏离光轴后的格子线之间的角度，利用三角测量原理，可以计算出距离地图 z(x, y)。

在本实施例中适用的三角测量进行计算的原理如图 25 所示。假定 CCD 的象素数为 640×480，CCD 的象素间距为 ccd_p，CCD 的光轴通过 (319, 239)，摄像机的焦点距离为 "1"。

假定所获取的监视图象的格子线的（CCD 上）的坐标为 (x1, y1)，实际的 CCD 上的偏离光轴的偏移量 (Δdy) 由下式表示。

【式 2】
\[Δy = ccd_p*(y1-239) \]

又，根据摄像机的焦点距离为 "1" 和 Δdy，如果用角度表示格子线的移动量，可以用下式表示。

【式 3】
\[ϕ' = tan^{-1}(Δdy/l) \]

进一步，根据保存在 lh[n].angle 中的移动前的格子线的从光源体 11 的角度、和摄像机的镜头面 23 与光源体 11 之间所成的角度 φ0 之间的关系，到
偏移后的格子线的距离 \(g(x, y) \) 可以用下式计算。（此外，下式（式 4）为一般的三角测量公式）。

【式 4】

\[
g(x, y) = L \times \tan \theta \times \tan \phi / (\tan \theta + \tan \phi)
\]

式中，\(\phi = \varphi_0 + \varphi' \)

采用上式，计算与移动后的格子点对应的所有的\(g(x, y) \)。又，在 X 轴方向和 Y 轴方向两边可以计算的坐标（格子线的交点），为了确保安全性，采用距离小的一方。

依据本实施例，由于摄像机单元 2 配置在光源单元 1 的斜 45° 的位置上，使用 X 轴和 Y 轴两方的视差，1 次摄像可以计算所有的距离 \(z(x, y) \)。这也是使用格子状的激光图案的优点之一。

图象处理检测部 33 进行的有关上述距离检测的处理内容如图 26～图 28 的流程图所示。

在图 26 的流程图所示的距离计算处理中，首先，在步骤 2601 进行初始化（对于所有的 \(x, y \) 让 \(g(x, y) = 0, m = 0, n = 0, j = 0, k = 0 \)）。

在步骤 2602，将 2 值化的监视图象保存在帧存储器 FM1 中。

在步骤 2603，抽出所保存的监视图象和参考图象之间的差分图象，并保存在帧存储器 FM1 中。这样，格子线移动后的部分为 + 值，原来的格子线的部分为 - 值。没有变化的部分为 \(\pm 0 \) 值。

在步骤 2604，沿保存在横向格子线的数据结构 Lh[n]中的格子线坐标（\(x_m = Lh[n].x[f[j]], y_m = Lh[n].y[f[j]] \)），搜索 FM(xm, ym)<0 的点（图 24(a) 中的‘a’点）。搜索到后，转移到距离检测子流程（图 27，步骤 2701～步骤 2708）。

该步骤 2604 所示的搜索，针对所有的横向格子线进行（～步骤 2604 为 NO，步骤 2605 为 NO，步骤 2610～）。又，‘j’为 0～Lh[n].max-Lh[n].min-1。

在步骤 2606，检查针对横向格子线的所有搜索是否结束。如果搜索已经结束，然后，针对纵向格子线进行搜索（步骤 2607～2609）。

在步骤 2607，沿保存在纵向格子线的数据结构 Lv[m]中的格子线坐标（\(x_m = Lv[n].x[f[k]], y_m = Lv[n].y[f[k]] \)），搜索 FM(xm, ym)<0 的点。搜索到后，转移到距离检测子流程（图 28，步骤 2801～步骤 2808）。该步骤 2607 所示的搜索，针对所有的纵向格子线进行（～步骤 2607 为 NO，步骤 2608 为
NO，步骤 2610～）。又，‘k’为 0～Lv[m].max-Lv[m].min-1。

在步骤 2609，检查针对纵向方向格子线的搜索是否结束。该检查针对所有纵向方向格子线进行（步骤 2609 为 NO，步骤 2613～）。搜索结束后，处理结束。

在图 27 所示的距离计算处理（伴随横向移动的距离检测子流程）中，首先将图 24(a)的点 a 所示的 FM(fmX, fmY)<0 的坐标作为 (fmX S, fmY S) 保存（步骤 2701）。

在步骤 2702，搜索 FM(fmX, fmY)再次为 0 的点（图 24(a) 的 b 点）。该搜索直到达到格子线的终点为止（～步骤 2703 为 NO，步骤 2704，步骤 2702 为 NO～）。

在步骤 2705，由于物体的侵入，根据当前的 (fmX, fmY) 求出格子线的位置变化的区间的中间点 (fmX S, fmY S)（图 24(a) 中的 c 点）。

在步骤 2706，由于物体的侵入，从格子线的位置变化的区间的中间点开始，搜索变化后的格子线。该搜索是从中间点向右斜 45° 的方向上搜索 FM1(x, y)>0 的点（图 24(a) 的 d 点）。

在步骤 2707，在左右方向搜索移动后的格子线，获取格子的全坐标（图 24(a) 的 d→e→f 所示的 FM1 上的坐标）。

在步骤 2708，根据三角测量的原理。获取针对全坐标的 g(x, y)。

在图 28 所示的距离计算处理（伴随纵向方向格子线移动的距离检测子流程）中，首先将成为 FM(fmX, fmY)<0 的坐标作为 (fmX S, fmY S) 保存（步骤 2801）。

在步骤 2802，搜索 FM1(fmX, fmY)再次为 0 的点。该搜索直到达到格子线的终点为止（～步骤 2803 为 NO，步骤 2804，步骤 2802 为 NO～）。

在步骤 2805，由于物体的侵入，根据当前的 (fmX, fmY) 求出格子线的位置变化的区间的中间点 (fmX S, fmY S)。

在步骤 2806，由于物体的侵入，从格子线的位置变化的区间的中间点开始，搜索变化后的格子线。该搜索是从中间点向右斜 45° 的方向上搜索 FM1(x, y)>0 的点。

在步骤 2807，在左右方向搜索移动后的格子线，获取格子的全坐标。

在步骤 2808，根据三角测量的原理。获取针对全坐标的 g(x, y)。又，在

28
此的计算方法，针对纵方向的格子间适用和上述方法同样的方法。但是对于 \(g(x, y) \) 已经计算出来的点（纵横格子线的交点），当计算值比已经计算的值要大时，优先采用已经计算的值（较小的值）。

然后，判定部 35，检查由上述图象处理检测部 33 求出的 \(z(x, y) \) 的位置，5 是否进入到输出种类设定模式所指定的特定区域（指定体素）中。

如果，在设定为‘停止’的体素内检测到 \(z(x, y) \) 时，立即输出机器停止信号。

如果在设定为‘停止’的体素内没有所检测的坐标 \(z(x, y) \)，而在设定为‘警告’的体素内有坐标 \(z(x, y) \) 时，产生警告输出。此外，该处理中，不检查设定为不感应的体素。
10 以下说明判定部 35 的侵入预测功能。

判定部 35，在监视模式时，收集 \(z(x, y) < L \)（距离数据 \(L \)）的点（侵入物体的表面的点坐标），计算其重心坐标 \(g(x_t, y_t, z_t) \) 并保存。然后，根据前次检测（计算）所获得的重心坐标 \(g[t-1](x_t-1, y_t-1, z_t-1) \) 分别计算该侵入物体的 X、Y、Z 轴的移动方向、移动速度。又，移动速度（v）的计算式如下所示。
15

【式 5】

\[
\begin{align*}
v_x &= \frac{\partial g}{\partial x}(x_t-1-x_t) / \text{检测间隔} \\
v_y &= \frac{\partial g}{\partial y}(y_t-1-y_t) / \text{检测间隔} \\
v_z &= \frac{\partial g}{\partial z}(z_t-1-z_t) / \text{检测间隔}
\end{align*}
\]

20 根据该移动速度 v 和当前的重心位置 \(g_t \)，计算下次检测中预测到达位置（坐标）\(g_{t+1} \)。例如，如图 29(a) 所示，侵入物体在监视空间 S 内移动，所检测的重心位置按 \(g[t-1] \to g_t \) 变化时，在下次检测之前，预测到达设定为‘停止’的最深部的区域 S251。这时，即使在下次检测的时刻让设备停止，也有可能出现不能确保作业者的安全的情况。在这种情况下，计算该预测到达位置 \(g[t+1] \)，如果该位置处在‘停止’设定区域，由判定部 35，在该时刻输出机器停止信号。

又，如果 29(b) 所示，在监视空间 S 内，重心位置 \(g_t \) 在 z 轴方向上远离时，或者 z 轴方向上没有变化（通过）时，判断不会到达危险状态，可以解除警告状态，或者保持原状态。

此外，多个侵入物体同时在监视空间 S 内存在时，只要监视空间 S 分成
适当的体素，所属于各体素的 \(z(x, y) \)的重心坐标按体素单位分别管理，计算移动方向、移动速度，进行危险预测即可。

又，在此虽然采用的是重心位置，也可以采用最小值（距摄像机最近）进行判断。

有关重心位置的计算和到达位置预测的处理内容如图 30 的流程图所示。在该处理中，在步骤 3001，采用图 25 所示的距离检测方法计算到侵入物体的距离（计算 \(z(x, y) \)）。

在步骤 3002，加算 \(z(x, y)<L \) 点的坐标，用总数去除，获得这时（时刻 \(t \)）的重心坐标 \(g_t(x, y, z) \)。

在步骤 3003，搜索 \(g_t(x, y, z) \) 所属（位于）的体素。（体素的八角上的坐标在计算上已知，通过和八角上的坐标进行比较，可以确定 \(g_t(x, y, z) \) 所属的体素。

在步骤 3004，如果 \(g[t-1] \) 所属的体素的设定为‘警告’或者‘不感应’，并且该体素为‘停止’，判断物体侵入到规定区域（体素）内，在步骤 3011 输出机器停止信号。

在步骤 3005，如果 \(g[t-1] \) 所属的体素的设定为‘不感应’，并且体素的设定为‘警告’，在步骤 3006 输出警告信号（点火控制信号输出）。

在步骤 3007，计算重心的移动速度 \(v \)，计算式如下所示。

【式 6】

\[
\begin{align*}
v_x &= \frac{g_x - g_x[t-1]}{dt} \\
v_y &= \frac{g_y - g_y[t-1]}{dt} \\
v_z &= \frac{g_z - g_z[t-1]}{dt}
\end{align*}
\]

在步骤 3008，计算下一次采样时（\(t+1 \））之前重心会进入到什么地方。

计算式如下所示。

【式 6】

\[
\begin{align*}
g_x[t+1] &= g_x + v_x \cdot dt \\
g_y[t+1] &= g_y + v_y \cdot dt \\
g_z[t+1] &= g_z + v_y \cdot dt
\end{align*}
\]

在步骤 3009，搜索下一次采样时（\(t+1 \））之前 \(g[t+1](x, y, z) \) 进入到哪一

个体素。搜索通过与体素的八角坐标比较而进行。
在步骤 3010，时刻 t\(+1\) 的预测位置如果在设定为‘停止’的体素内时，
判定为危险，在步骤 3011 输出机器停止信号。又，再该例中，一旦输出机
器停止信号，在由用户操作而复位（运行重开输出）之前，机器停止。

在步骤 3012，判定 g[t-1]所属的体素是否设定为‘警告’。如果没有
设定返回到在步骤 3001。

在步骤 3013，计算从 g[t-1]和 g[t]的位置最近的到设定为‘停止’的体
素的距离。所计算的距离分别为 d_{g[t-1]}、d_{gt}。

在步骤 3014，如果当前为警告输出状态，并且 d_{g[t-1]}<d_{gt}，则远离设
定为‘警告’的体素，或者只是路过设定为警告的体素，在步骤 3015 解除
警告输出。

以下说明可以适用于本发明的三维监视装置的另一自己诊断方法。在上
述实施例中，在自己诊断时当 MEMS13 的振角为 0° 时，不能正确自己诊
断光源体 11 的点火是否正常进行。为此，在该例中，使用图 31 所示的另一实
施例的光源单元 1、摄像机单元 2。在此，只对与上述实施例的改变点进行
说明。

在光源单元 1 中，追加了用于将从光源体 11 发出的光的一部传送到
光纤 17 中的光束棱镜 16。对于光源单元 1，除此之外与上述实施例相同。

在摄像机单元 2 中，追加了用于使光源体 11 发出的光的一部分分支的
激光光束在 CCD25 上成像的单向透镜 24 和 MEMS23。又，从光源体 11 发
出的光的一大部分分支的激光光束，控制其在 CCD25 上的上下端成像，而
不会对从光源单元 1 照射的图案光的摄像干扰。

摄像机单元控制部 32，控制 MEMS23，在打开快门的期间，让所分支
的激光光束从 CCD 上的右端向左端扫描。

又，分为偶数区域和奇数区域，在偶数区域摄像时，在 CCD25 的上端
成像，在奇数区域摄像时，在下端成像。

MEMS1 和 MEMS2 的控制关系如图 32 的时序图所示。又，在该图 32
中的(a)中表示有关 MEMS13 的 X 轴以及 Y 轴方向的振角（\(\theta_{wx}\)、\(\theta_{wy}\)
的控制信号，在该图(b)中表示光源体 11 的振荡控制信号（点火控制），在
该图(c)中表示有关 MEMS23 的 X 轴方向的振角（\(\theta_{wx}\)）的控制信号，在该
图(d)中表示有关 MEMS23 的 Y 轴方向的振角（\(\theta_{wy}\)）的控制信号。
如该图所示，MEMS13 的图案光在 8 字的 1 周扫描监视空间 S 的期间，
MEMS23 在 CCD 上扫描所分支的激光光束。

自己诊断部，按以下的流程进行自己诊断。

1)如果是偶数区域，在图象上端上，如图 33(a)所示，确认有与光源体
11 的 ON/OFF 点火控制对应的虚线（C1～C4）。

2)如果是奇数区域，在图象下端上，如图 33(b)所示，确认有与光源体
11 的 ON/OFF 点火控制对应的虚线（C5～C8）。

3)如果上述结果 OK，则自己诊断 OK。

依据这样的自己诊断方法，即使 MEMS13 的振角为 0° 时，也能进行正
15 确自己诊断。

又，在上述实施例中，作为图案映像的投影面虽然采用了屏幕 5，也可以
采用在监视空间 S 的背后存在的墙壁等。

上述说明表明，依据本发明，可以实现能高精度检测在规定三维空间内
的物体侵入的三维监视装置。
图 1
图 4
图 9
图 10
图11
图 14(a)

图 14(b)
开始

1501 检测 FM2 的纵向边缘

1502 放大处理

1503 收缩处理

1504 检测纵向格子线，将与摄像元件上的坐标对应的相位角θ保存在Lv[n]中

1505 检测 FM2 横向边缘

1506 放大处理

1507 收缩处理

1508 检测横向格子线，将与摄像元件上的坐标对应的相位角θ保存在Lv[n]中

结束

图 15
图 21
图26

```
开始
   - 初始化
     - 从 FM1 获取 2 值化图象
       - FM1 = FM1 - FM2
         - FM1(fmX, fmY) < 0
           - j = j + 1
             - n = n + 1
               - j = (Lh[n].max - Lh[n].min - 1)
                 - n 是最下端的格子
                   - 是
                     - FM1(fmX, fmY) < 0
                       - j = j + 1
                         - k = (Lv[m].max - Lv[m].min - 1)
                           - m 是最右端的格子
                             - 是
                               - 结束
```

```
否
       - 是
         - 是
           - 是
             - 是
               - 是
                 - 是
                   - 是
                     - 是
                       - 是
                         - 是
                           - 是
```

58
保存 FM1(fmx, fmy) < 0 的坐标 2701

FM1(fmx, fmy) = 0

是 2702

否

j = j + 1 2704

是

j = (Lh[n].max - Lh[min-1]) 2703

否

计算 FM(fmx, fmy) < 0 的中间点 2705

搜索从中间点移动后的格子线 2706

获取移动后的格子线的全坐标 2707

针对全坐标计算 g(x, y) 2708

图 27
图28

3. 保存 FM1(fmx, fmy) < 0 的坐标 2801

2802

是

FM1(fmx, fmy) = 0

否

k = k + 1

2804

k = (Lv[m].max - Lv[m].min - 1)

是

否

2803

计算 FM(fmx, fmy) < 0 的中间点 2805

2806

搜索从中间点移动后的格子线

2807

获取移动后的格子线的全坐标

2808

针对全坐标计算 g(x, y)

4
图 31
图 32