A method of manufacturing an antenna pattern frame, includes arranging antenna radiators in an elongated radiator sheet in the form of cells, the antenna radiators including antenna pattern portions receiving an external signal, and while moving the radiator sheet, forming connection terminal portions of the antenna radiators by a successive bending process and injecting-molding radiator frames such that the antenna pattern portions are formed on one set of respective sides of the radiator frames and the connection terminal portions are formed on the other set of respective opposite sides of the radiator frames.
METHOD AND DEVICE FOR MANUFACTURING ANTENNA PATTERN FRAME

CROSS-REFERENCE TO RELATED APPLICATIONS

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention
[0003] The present invention relates to a method and device for manufacturing an antenna pattern frame capable of mass-producing antenna pattern frames in a successive manner, wherein the antenna pattern frames enable antenna patterns to be embedded in electronic device cases.

[0004] 2. Description of the Related Art
[0005] Mobile communications terminals such as cellular phones, personal digital assistants (PDAs) and laptop computers, which support wireless communications, are indispensable devices in modern society. Functions including CDMA, wireless LANs, GSM and DMB have been added to these mobile communications terminals. One of the most important components that enable these functions to operate is associated with antennas.

[0006] Antennas being used in these mobile communications terminals have advanced from external antennas, such as rod antennas or helical antennas, to internal antennas that are disposed inside of terminals.

[0007] External antennas are susceptible to damage by external shock, while internal antennas increase the volume of terminals.

[0008] In order to solve these problems, research has been undertaken to manufacture antennas that are formed integrally with mobile communications terminals.

[0009] In order that antennas are formed integrally with terminals, a method of bonding flexible antennas to terminal bodies using adhesives is used. Recently, a method of forming antenna films by molding has been proposed.

[0010] However, when flexible antennas are bonded by simply using adhesives, the reliability of these antennas is reduced as the adhesiveness decreases. Besides, this also causes harm to the appearance of the terminals, lessening emotional quality for consumers.

[0011] In addition, when antenna films are used, product stability can be ensured. However, a process of bonding an antenna to a film is difficult to perform and manufacturing costs are also increased.

[0012] Moreover, when such antenna films undergo a molding process, the elasticity of the antenna films makes it difficult to inject a molding solution into the mold while fixing the antenna films.

[0013] Therefore, there is a need for studies to enable electronic device cases having antenna radiators embedded therein to be mass produced in a successive manner.

SUMMARY OF THE INVENTION

[0014] An aspect of the present invention provides a method of manufacturing an antenna pattern frame, capable of performing press-processing and injection-molding in a successive manner while a radiator sheet including antenna radiators successively arranged in the form of cells is being conveyed.

[0015] An aspect of the present invention also provides a device for manufacturing an antenna pattern frame, capable of performing press-processing and injection-molding while conveying a radiator sheet including antenna radiators successively arranged in the form of cells.

[0016] According to an aspect of the present invention, there is provided a method of manufacturing an antenna pattern frame, the method including: arranging antenna radiators in an elongated radiator sheet in the form of cells, the antenna radiators including antenna pattern portions receiving an external signal; and, while conveying the radiator sheet, successively forming connection terminal portions of the antenna radiators by using a bending process and injecting-molding radiator frames such that the antenna pattern portions are placed on one set of respective sides of the radiator frames and the connection terminal portions are placed on the other set of respective opposite sides of the radiator frames.

[0017] Each of the antenna pattern portions may be connected with the radiator sheet by a support pin, and be separated from the radiator sheet after the injection-molding.

[0018] A notch, a relief recess or the notch and the relief recess may be formed in a connection portion between the antenna pattern portion and the support pin, and serve to facilitate the separation of the antenna pattern portion from the support pin.

[0019] The bending process and the injection-molding may be respectively performed by a bending mold and an injection mold by stages.

[0020] The radiator sheet may be moved continuously by a supply reel and a pick-up reel.

[0021] According to another aspect of the present invention, there is provided a method of manufacturing an antenna pattern frame, the method including: forming radiator-sheet units by grouping antenna radiators arranged in the form of cells and including respective antenna pattern portions receiving an external signal; forming connection terminal portions of the antenna radiators of each radiator-sheet unit by using a bending process simultaneously or by stages; and injection-molding radiator frames such that the antenna pattern portions in the radiator-sheet unit are placed on one set of respective sides of the radiator frames and the connection terminal portions are placed on the other set of respective opposite sides of the radiator frames.

[0022] Each of the antenna pattern portions may be connected with the radiator sheet by a support pin, and be separated from the radiator sheet after the injection-molding.

[0023] A notch, a relief recess or the notch and the relief recess may be formed in a connection portion between the antenna pattern portion and the support pin, and serve to facilitate the separation of the antenna pattern portion from the support pin.

[0024] According to another aspect of the present invention, there is provided a device for manufacturing an antenna pattern frame, the device including: a radiator sheet including antenna radiators successively arranged therein in the form of cells, the antenna radiators including respective antenna pattern portions receiving an external signal; a conveyor conveying the radiator sheet; a bending mold successively forming connection terminal portions in the radiator sheet that is being conveyed, by using a bending process; and an injection mold injection-molding antenna frames such that the antenna pat-
tern portions are placed on one set of respective sides of the radiator frames and the connection terminal portions are placed on the other set of respective opposite sides of the radiator frames.

[0025] The device may further include: a supply reel supplying the radiator sheet; and a pick-up reel collecting the radiator sheet, wherein the supply reel and the pick-up reel convey the radiator sheet continuously.

[0026] Each of the antenna pattern portions may be connected to a support pin of the radiator sheet, and the support pin may include a cutting guide portion disposed in a connection portion of the support pin with the antenna pattern portion, so that the antenna pattern portion is easily separated from the support pin.

[0027] The cutting guide portion may be a notch, a relief recess, or both the notch and the relief recess.

BRIEF DESCRIPTION OF THE DRAWINGS

[0028] The above and other aspects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:

[0029] FIG. 1 is a schematic perspective view, with a cut-out portion, illustrating a case for a mobile communications terminal, which is an electronic device having an antenna radiator embedded therein by using an antenna pattern frame according to an exemplary embodiment of the present invention;

[0030] FIG. 2 is a schematic perspective view illustrating an antenna pattern frame according to an exemplary embodiment of the present invention.

[0031] FIG. 3 is a schematic view illustrating a device for manufacturing an antenna pattern frame in a successive manner, according to an exemplary embodiment of the present invention;

[0032] FIG. 4 is a schematic plan view illustrating how antenna radiators including antenna pattern portions are arranged in the form of cells in an elongated radiator sheet by press processing performed by the device for manufacturing an antenna pattern frame depicted in FIG. 3;

[0033] FIG. 5 is a schematic perspective view illustrating the antenna cells cut in radiator-sheet units to be put into a mold for manufacturing successive antenna pattern frames;

[0034] FIG. 6 is a schematic perspective view illustrating successive antenna pattern frames injection-molded by injecting a resin material into the mold for manufacturing antenna pattern frames after putting the radiator-sheet units into the mold;

[0035] FIG. 7 is a schematic enlarged view illustrating an antenna pattern portion in connection with a support pin; and

[0036] FIG. 8 is a schematic enlarged view illustrating an antenna pattern portion being separated from a support pin.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0037] Exemplary embodiments of the present invention will now be described in detail with reference to the accompanying drawings. The invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. While those skilled in the art could readily devise many other varied embodiments that incorporate the teachings of the present invention through the addition, modification or deletion of elements, such embodiments may fall within the scope of the present invention.

[0038] In the drawings, like reference numerals in the drawings denote like elements.

[0039] FIG. 1 is a schematic perspective view, with a cut-out portion, illustrating a case for a mobile communications terminal, which is an electronic device having an antenna radiator embedded therein by using an antenna pattern frame according to an exemplary embodiment of the present invention. FIG. 2 is a schematic perspective view illustrating an antenna pattern frame according to an exemplary embodiment of the present invention.

[0040] Referring to FIGS. 1 through 3, an antenna pattern frame 200, according to an exemplary embodiment of the present invention, is applied to a case 120 for a mobile communications terminal 100, which is an electronic device. The antenna pattern frame 200 is applicable to every electronic device using an antenna, such as a laptop computer as well as the mobile communications terminal 100.

[0041] The antenna pattern frame 200 is used so that an antenna radiator 220 is formed at or in the vicinity of the center of the inner section of the case 120 and receives an external signal.

[0042] The antenna radiator 220 is formed of a conductive material such as aluminum or copper, and receives an external signal and sends it to a signal processor of the electronic device. The antenna radiator 220 may include an antenna pattern portion 222 for receiving an external signal of various bands.

[0043] A connection terminal portion 224 transmits a received external signal to the electronic device, and may be formed by bending, forming or drawing a portion of the antenna radiator 220.

[0044] A radiator frame 210 may have a three-dimensional structure having a flat portion 260 and a curved portion 240 having a curvature. The antenna radiator 220 may have flexibility so as to be disposed on the curved portion 240 of the radiator frame 210.

[0045] The radiator frame 210 is produced by injection-molding. The antenna pattern portion 222 is disposed on one side 210a of the radiator frame 210, and the connection terminal portion 224 may be disposed on an other side 210b opposite to the one side 210a.

[0046] The antenna radiator 220 embedded in the case 120 may include the antenna pattern portion 222 and the connection terminal portion 224 arranged in different planes. Here, the antenna pattern portion 222 receives an external signal, and the connection terminal portion 224 transmits the external signal to the electronic device.

[0047] The antenna pattern frame 200 serves as a first injection-molded structure enabling the radiator 220 including the antenna pattern portion 222 to be embedded in the case 120.

[0048] Hereinafter, a device for manufacturing the antenna pattern frame 200 in a successive manner.

[0049] FIG. 3 is a schematic view illustrating a device for manufacturing an antenna pattern frame in a successive manner, according to an exemplary embodiment of the present invention. FIG. 4 is a schematic plan view illustrating how antenna radiators including antenna pattern portions are arranged in the form of cells (hereinafter, also referred to as 'antenna cells') in an elongated radiator sheet by the press processing performed by the device for manufacturing an antenna pattern frame depicted in FIG. 3. FIG. 5 is a sche-
matic perspective view illustrating the antenna cells cut in predetermined radiator-sheet units to be put into a mold for manufacturing successive antenna pattern frames. FIG. 6 is a schematic perspective view illustrating successive antenna pattern frames injection-molded by injecting a resin material into the mold for manufacturing antenna pattern frames after putting the radiator-sheet units into the mold.

0050 A device 300 for manufacturing an antenna pattern frame according to an exemplary embodiment of the present invention may include a conveyor 350 for conveying a radiator sheet 400, a bending mold 360, and an injection mold 380. The radiator sheet 400 has antenna radiators 220 respectively including antenna pattern portions 222 receiving an external signal. The antenna radiators 220 are arranged in the form of cells 400A, 400B, 400C, 400D (i.e., antenna cells). Here, the antenna cells 400A, 400B, 400C, 400D are arranged successively in the radiator sheet 400.

0051 The antenna cells 400A, 400B, 400C, 400D in the radiator sheet 400 may each be provided with a support pin 270 as well as the corresponding antenna radiator 220. Here, the support pin 270 serves to support the antenna radiator 220.

0052 In order to provide the antenna radiators 220, the elongated radiator sheet 400 is subjected to press-processing 360 and injection-molding 380 while continuously moving in the device 300 for manufacturing an antenna pattern frame. The press-processing 360 refers to the process of punching the radiator sheet 400 for the formation of antenna pattern frames as illustrated in a part (a) of FIG. 4, and the process of successively bending portions of the radiator sheet 400 so as to form three-dimensionally curved connection terminal portions 224 from the antenna pattern frames 200 as illustrated in a part (b) of FIG. 4.

0053 The injection molding 380 refers to the process of injecting-molding the antenna pattern frames 200 such that the antenna pattern portion 222 is placed on the one side 210a of each of the antenna pattern frames 200 and the connection terminal portion 224 is placed on the other side 210b thereof as illustrated in a part of FIG. 4.

0054 The molded antenna pattern frames 200 are subjected to an ejection process as illustrated in a part (d) of FIG. 4, and then to the second injection-molding process allowing the antenna radiators 220 to be placed at or in the vicinity of the centers of the respective inner sections of cases 120 for electronic devices.

0055 The device 300 for manufacturing the antenna pattern frame 200 may further include a supply reel 320 supplying the radiator sheet 400 such that the radiator sheet 400 is continuously conveyed, and a pick-up reel 340 collecting the radiator sheet 400.

0056 The conveyor 350 is a conveyor plate for supporting the continuous transfer of the radiator sheet 400. The radiator sheet 400 may include conveyance support holes 352 coupled with the conveyor 350 and enabling the radiator sheet 400 to be stably conveyed.

0057 The radiator sheet 400 has conveyance support pieces 354 to support its conveyance on the conveyor 350. Each conveyance support piece 354 is stably supported on the central portion of the conveyor plate, namely, the conveyor 350.

0058 FIG. 7 is a schematic enlarged view illustrating an antenna pattern portion in connection with a support pin, and FIG. 8 is a schematic enlarged view illustrating an antenna pattern portion being separated from a support pin.

0061 As described above, each of the antenna cells 400A, 400B, 400C and 400D in the radiator sheet 400 includes the antenna radiator 220 and the support pin 270 supporting the antenna radiator 220.

0062 The support pin 270 supporting the antenna radiator 220 includes a cutting guide portion 275 at a connection portion between the support pin 270 and the antenna pattern portion 222 of the antenna radiator 220. The cutting guide portion 275 facilitates the ejection of the antenna pattern frame 200 including the antenna radiator 220.

0063 The cutting guide portion 275 may include a notch 276, a relief recess 274, or both the notch 276 and the relief recess 274 in order to facilitate the separation between the antenna pattern portion 222 and the support pin 270.

0064 As for a method of manufacturing an antenna pattern frame in a successive manner, one exemplary embodiment is associated with moving a radiator sheet continuously, and another exemplary embodiment is associated with grouping cells of antenna radiators (i.e., antenna cells), including antenna pattern portions, into radiator-sheet units and performing injection-molding by stages.

0065 In detail, as shown in FIG. 4, the one exemplary method of the manufacturing method includes arranging, in the elongated radiator sheet 400, cells of the antenna radiators 220 including the antenna pattern portions 222 receiving external signals.

0066 Subsequently, while the radiator sheet 400 is being conveyed, the connection terminal portions 224 of the antenna radiators 220 are formed successively by using a bending process, and the radiator frames 210 are then injection-molded successively such that antenna pattern portions 222 are placed on one set of sides 210a of the respective radiator frames 210 and the connection terminal parts 224 are placed on the other set of sides 210b opposite to the sides 210a, respectively.

0067 As shown in FIGS. 5 and 6, another exemplary embodiment of the manufacturing method includes grouping the cells of the antenna radiators 220, including the antenna pattern portions 222 receiving external signals, into radiator-sheet units.

0068 The connection terminal portions 224 of the antenna radiators 220 in each radiator-sheet unit are formed by a bending process simultaneously or by stages. Subsequently, each radiator frame 210 is injection-molded such that the antenna pattern portion 222 is placed on one side 210a thereof and the connection terminal portion 224 is placed on the other side 210b thereof.

0069 As set forth above, according to the method and device for manufacturing antenna pattern frames according to exemplary embodiments of the invention, antenna pattern frames including antenna radiators can be mass-produced through successive processes.

0070 Furthermore, the time it takes to manufacture electronic device cases having antenna radiators embedded therein is shortened, and productivity is enhanced to thereby reduce manufacturing costs and enhance product competitiveness.

0071 While the present invention has been shown and described in connection with the exemplary embodiments, it will be apparent to those skilled in the art that modifications and variations can be made without departing from the spirit and scope of the invention as defined by the appended claims.
What is claimed is:
1. A method of manufacturing an antenna pattern frame, the method comprising:
 arranging antenna radiators in an elongated radiator sheet in the form of cells, the antenna radiators including antenna pattern portions receiving an external signal; and
 while moving the radiator sheet, successively forming respective connection terminal portions of the antenna radiators by using a bending process, and injecting-molding radiator frames such that the antenna pattern portions are placed on one set of respective sides of the radiator frames and the connection terminal portions are placed on the other set of respective opposite sides of the radiator frames.
2. The method of claim 1, wherein each of the antenna pattern portions is connected with the radiator sheet by a support pin, and is separated from the radiator sheet after the injection-molding.
3. The method of claim 2, wherein a notch, a relief recess, or the notch and the relief recess are formed in a connection portion between the antenna pattern portion and the support pin, and serve to facilitate the separation of the antenna pattern portion from the support pin.
4. The method of claim 1, wherein the bending process and the injection-molding are respectively performed by a bending mold and an injection mold by stages.
5. The method of claim 1, wherein the radiator sheet is moved continuously by a supply reel and a pick-up reel.
6. A method of manufacturing an antenna pattern frame, the method comprising:
 forming radiator-sheet units by grouping antenna radiators arranged in the form of cells and including respective antenna pattern portions receiving an external signal;
 forming connection terminal portions of the antenna radiators of each radiator-sheet unit by using a bending process simultaneously or by stages; and
 injection-molding radiator frames such that the antenna pattern portions of the radiator-sheet unit are placed on one set of respective sides of the radiator frames and the connection terminal portions are placed on the other set of respective opposite sides of the radiator frames.
7. The method of claim 6, wherein each of the antenna pattern portions is connected with the radiator sheet by a support pin, and is separated from the radiator sheet after the injection-molding.
8. The method of claim 7, wherein a notch, a relief recess, or the notch and the relief recess are formed in a connection portion between the antenna pattern portion and the support pin, and serve to facilitate the separation of the antenna pattern portion from the support pin.

* * * * *