
US 2003O126453A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2003/0126453 A1

Glew et al. (43) Pub. Date: Jul. 3, 2003

(54) PROCESSOR SUPPORTING EXECUTION OF (21) Appl. No.: 10/039,961
AN AUTHENTICATED CODE INSTRUCTION

(22) Filed: Dec. 31, 2001
(76) Inventors: Andrew F. Glew, Portland, OR (US);

James A. Sutton, Portland, WA (US);
Lawrence O. Smith, Beaverton, OR Publication Classification
(US); David W. Grawrock, Aloha, OR
(US); Gilbert Neiger, Portland, OR (51) Int. Cl." ... G06F 12/14
(US); Michael A. Kozuch, Export, PA (52) U.S. Cl. .. 713/193
(US)

Correspondence Address:
John P. Ward, Esq. (57) ABSTRACT
BLAKELY, SOKOLOFF, TAYLOR & ZAFMAN
LLP
Seventh Floor A processor loads, authenticates, and/or initiates execution
12400 Wilshire Boulevard of authenticated code modules in response to executing
Los Angeles, CA 90025-1026 (US) launch authenticated code instructions.

190

AC Module

Header
230

Data Page Data
222 220

Execution Point
260

Code Page
212 -

Code Page Code E- 20

Code Page
22*.

Signature 240

Data Pade Digest value 242est Walue 242 : 9 -- > Data
End of Module Marker

250

Patent Application Publication Jul. 3, 2003. Sheet 1 of 12 US 2003/0126453 A1

100

Processor Processor

Control
Registers

114
Registers

114

Processor Bus 130

Physical
Token
150

Chipset
120 Memory

140

Private Space
142

Memory
Controller

122
Interface
170

Public Space
144

Patent Application Publication Jul. 3, 2003 Sheet 2 of 12 US 2003/0126453 A1

100

Processor Processor

Control
Registers

114
Registers

114

Processor Bus 130

Physical
Token
150 Memory

140

Private Space
142

Memory
Controller

122
Public Space

144 Interface KC 170

Patent Application Publication Jul. 3, 2003. Sheet 3 of 12 US 2003/0126453 A1

PM PM 100

-

Processor
110

Processor
110

Control
Registers

114
Registers

114

Processor Bus 130

Physical
Token Chipset
150 120 Memory
Key 140
152

Memory Private Space
Controller 142

122
Media Public Space

Interface 144
170

Media
180

mic FIG. 1C
190

Patent Application Publication

Processor
110

Physical
Token
150
Key
152

Media
Interface
170

Control
Registers
114

Processor Bus 130

Jul. 3, 2003. Sheet 4 of 12

Processor
110

Registers
114

Chipset
120

Memory
Controller

122

US 2003/0126453 A1

100

Memory
140

Private Space
142

Patent Application Publication Jul. 3, 2003. Sheet 5 of 12 US 2003/0126453 A1

100

Processor
110

Processor
110

Control
Registers
114

Control
Registers

114

Physical
Token
150 Memory,

140 Key

- Private Space Controller

Media
interface
170

Public Space
144

PM
Controller

128

PM
160

Patent Application Publication Jul. 3, 2003 Sheet 6 of 12 US 2003/0126453 A1

190

-1
AC Module

Header
230

Data Page Data
222 220

Execution Point
260

Code Page
212

Code Page Code
212 210

Code Page
212

Signature 240

Didest Value 242 Data Page > Data
End of Module Marker

250

FIG. 2

US 2003/0126453 A1 Jul. 3, 2003 Sheet 7 of 12 Patent Application Publication

Sn? JOSS30Old

US 2003/0126453 A1 Jul. 3, 2003 Sheet 8 of 12

0 0 ;

Patent Application Publication

80 #8 ?po O doul E. 3? eu a u 9 5)

Patent Application Publication Jul. 3, 2003 Sheet 9 of 12 US 2003/0126453 A1

500

Clear/Reconfigure Protected
AC Memory

504

Update Security Aspects
Of Computing Device

506

Release Process Bus
From Processor

510

Update
Events Processing

514

Terminate AC Module And
Launch Post-AC Code

516

FIG. 5

Patent Application Publication Jul. 3, 2003 Sheet 10 of 12 US 2003/0126453 A1

600

-1

Processor
110 Memory Interface

620

PrOCeSSOr
110

Memory Space
Physical 640
Token
150 Pre-AC Code

642

Media
Interface K X AC Module
170 190

Post-AC Code
646

F.G. 6

Patent Application Publication

Pre-AC Code Results in
Device Storing AC Module in

Memory Space
704

Pre-AC Code Results in
Device Loading,

Authenticating, And
Launching AC Module

708

Device Executes
AC Module

712

Device Terminates AC
Module And Launches

Post-AC Code
716

FIG. 7A

Jul. 3, 2003 Sheet 11 of 12 US 2003/0126453 A1

Pre-AC Code Results in
Device Storing AC Module

In Memory Space
740

Pre-AC Code Results in
Device Loading,

Authenticating, Launching
AC Module, And Storing
Instruction Pointer Based

Execution Point
744

Device Executes
AC Module

748

Device Terminates AC
Module And Launches

Post-AC Code From Stored
instruction Pointer Based

Execution Point
752

FIG. 7B

Patent Application Publication Jul. 3, 2003 Sheet 12 of 12 US 2003/0126453 A1

Machine Readable Medium
800

Memory
850

Simulation
Software Hardware Model
820 (HDL or Physical Storage Device

Design Data) 840
810

Wave
860

-
FIG. 8

US 2003/O126453 A1

PROCESSOR SUPPORTING EXECUTION OF AN
AUTHENTICATED CODE INSTRUCTION

RELATED APPLICATIONS

0001. This application is related to application Ser. No.
/ , , entitled “Authenticated Code Module'; and

application Ser. No., / , , entitled "Authenticated
Code Method And Apparatus' both filed on the same date as
the present application.

BACKGROUND

0002 Computing devices execute firmware and/or soft
ware code to perform various operations. The code may be
in the form of user applications, BIOS routines, operating
System routines, etc. Some operating Systems provide lim
ited protections for maintaining the integrity of the comput
ing device against rogue code. For example, an administra
tor may limit users or groups of users to executing certain
pre-approved code. Further, an administrator may configure
a Sandbox or an isolated environment in which untrusted
code may be executed until the administrator deems the code
trustworthy. While the above techniques provide some pro
tection, they generally require an administrator to manually
make a trust determination based upon the provider of the
code, historic performance of the code, and/or review of the
Source code itself.

0003. Other mechanisms have also been introduced to
provide automated mechanisms for making a trust decision.
For example, an entity (e.g. Software manufacturer) may
provide the code with a certificate such as a X.509 certificate
that digitally signs the code and attests to the integrity of the
code. An administrator may configure an operating System
to automatically allow users to execute code that provides a
certificate from a trusted entity without the administrator
Specifically analyzing the code in question. While the above
technique may be Sufficient for Some environments, the
above technique inherently trusts the operating System or
other Software executing under the control of the operating
System to correctly process the certificate.
0004 Certain operations, however, may not be able to
trust the operating System to make Such a determination. For
example, the code to be executed may result in the comput
ing device determining whether the operating System is to be
trusted. Relying on the operating System to authenticate Such
code would thwart the purpose of the code. Further, the code
to be executed may comprise System initialization code that
is executed prior to the operating System of the computing
device. Such code therefore cannot be authenticated by the
operating System.

BRIEF DESCRIPTION OF THE DRAWINGS

0005. The invention described herein is illustrated by
way of example and not by way of limitation in the accom
panying figures. For simplicity and clarity of illustration,
elements illustrated in the figures are not necessarily drawn
to Scale. For example, the dimensions of Some elements may
be exaggerated relative to other elements for clarity. Further,
where considered appropriate, reference numerals have been
repeated among the figures to indicate corresponding or
analogous elements.
0006 FIGS. 1A-1E illustrate example embodiments of a
computing device having private memory.

Jul. 3, 2003

0007 FIG. 2 illustrates an example authenticated code
(AC) module that may launched by the computing device
shown in FIGS 1A-1E.

0008 FIG. 3 illustrates an example embodiment of the
processor of the computing device shown in FIGS. 1A-1E.
0009 FIG. 4 illustrates an example method of launching
the AC module shown in FIG. 2.

0010 FIG. 5 illustrates an example method of terminat
ing execution of the AC module shown in FIG. 2.
0011 FIG. 6 illustrates another embodiment of the com
puting device shown in FIGS. 1A-1E.
0012 FIGS. 7A-7B illustrate example methods of
launching and terminating execution of the AC module
shown in FIG. 2.

0013 FIG. 8 illustrates a system for simulating, emulat
ing, and/or testing the processors of the computing devices
shown in FIGS 1A-1E.

DETAILED DESCRIPTION

0014. The following description describes techniques for
launching and terminating execution of authenticated code
(AC) modules that may be used for various operations Such
as establishing and/or maintaining a trusted computing envi
ronment. In the following description, numerous specific
details Such as logic implementations, opcodes, means to
Specify operands, resource partitioning/sharing/duplication
implementations, types and interrelationships of System
components, and logic partitioning/integration choices are
Set forth in order to provide a more thorough understanding
of the present invention. It will be appreciated, however, by
one skilled in the art that the invention may be practiced
without Such specific details. In other instances, control
Structures, gate level circuits and full Software instruction
Sequences have not been shown in detail in order not to
obscure the invention. Those of ordinary skill in the art, with
the included descriptions, will be able to implement appro
priate functionality without undue experimentation.
0015 References in the specification to “one embodi
ment”, “an embodiment”, “an example embodiment', etc.,
indicate that the embodiment described may include a
particular feature, Structure, or characteristic, but every
embodiment may not necessarily include the particular
feature, Structure, or characteristic. Moreover, Such phrases
are not necessarily referring to the same embodiment. Fur
ther, when a particular feature, Structure, or characteristic is
described in connection with an embodiment, it is Submitted
that it is within the knowledge of one skilled in the art to
effect Such feature, Structure, or characteristic in connection
with other embodiments whether or not explicitly described.
0016. In the following description and claims, the terms
“coupled” and “connected,” along with their derivatives,
may be used. It should be understood that these terms are not
intended as Synonyms for each other. Rather, in particular
embodiments, “connected” may be used to indicate that two
or more elements are in direct physical or electrical contact
with each other. “Coupled” may mean that two or more
elements are in direct physical or electrical contact. How
ever, “coupled' may also mean that two or more elements
are not in direct contact with each other, but yet still
co-operate or interact with each other.

US 2003/O126453 A1

0017 Example embodiments of a computing device 100
are shown in FIGS. 1A-1E. The computing device 100 may
comprise one or more processors 110 coupled to a chipset
120 via a processor bus 130. The chipset 120 may comprise
one or more integrated circuit packages or chips that couple
the processors 110 to system memory 140, a physical token
150, private memory 160, a media interface 170, and/or
other I/O devices of the computing device 100.
0.018. Each processor 110 may be implemented as a
Single integrated circuit, multiple integrated circuits, or
hardware with Software routines (e.g., binary translation
routines). Further, the processors 110 may comprise cache
memories 112 and control registers 114 via which the cache
memories 112 may be configured to operate in a normal
cache mode or in a cache-as-RAM mode. In the normal
cache mode, the cache memories 112 Satisfy memory
requests in response to cache: hits, replace cache lines in
response to cache misses, and may invalidate or replace
cache lines in response to Snoop requests of the processor
bus 130. In the cache-as-RAM mode, the cache memories
112 operate as random acceSS memory in which requests
within the memory range of the cache memories 112 are
Satisfied by the cache memories and lines of the cache are
not replaced or invalidated in response to Snoop requests of
the processor bus 130.
0019. The processors 110 may further comprise a key 116
Such as, for example, a key of a Symmetric cryptographic
algorithm (e.g. the well known DES, 3DES, and AES
algorithms) or of an asymmetric cryptographic algorithm
(e.g. the well-known RSA algorithm). The processor 110
may use the key 116 to authentic an AC module 190 prior to
executing the AC module 190.
0020. The processors 110 may support one or more
operating modes Such as, for example, a real mode, a
protected mode, a virtual real mode, and a virtual machine
mode (VMX mode). Further, the processors 110 may sup
port one or more privilege levels or rings in each of the
Supported operating modes. In general, the operating modes
and privilege levels of a processor 110 define the instruc
tions available for execution and the effect of executing Such
instructions. More Specifically, a processor 110 may be
permitted to execute certain privileged instructions only if
the processor 110 is in an appropriate mode and/or privilege
level.

0021. The processors 110 may also support locking of the
processor buS 130. AS a result of locking the processor bus
130, a processor 110 obtains exclusive ownership of the
processor bus 130. The other processors 110 and the chipset
120 may not obtain ownership of the processor bus 130 until
the processor bus 130 is released. In an example embodi
ment, a processor 110 may issue a Special transaction on the
processor bus 130 that provides the other processors 110 and
the chipset 120 with a LTPROCESSOR.HOLD message.
The LTPROCESSOR.HOLD bus message prevents the
other processors 110 and the chipset 120 from acquiring
ownership of the processor bus 130 until the processor 110
releases the processor bus 130 via a LTPROCESSOR.RE
LEASE bus message.
0022. The processors 110 may however support alterna
tive and/or additional methods of locking the processor bus
130. For example, a processor 110 may inform the other
processors 110 and/or the chipset 120 of the lock condition

Jul. 3, 2003

by issuing an Inter-Processor Interrupt, asserting a processor
bus lock signal, asserting a processor bus request Signal,
and/or causing the other processors 110 to halt execution.
Similarly, the processor 110 may release the processor bus
130 by issuing an Inter-Processor Interrupt, deasserting a
processor bus lock Signal, deasserting a processor bus
request Signal, and/or causing the other processors 110 to
resume execution.

0023 The processors 110 may further support launching
AC modules 190 and terminating execution of AC modules
190. In an example embodiment, the processors 110 Support
execution of an ENTERAC instruction that loads, authen
ticates, and initiates execution of an AC module 190 from
private memory 160. However, the processors 110 may
Support additional or different instructions that cause the
processors 110 to load, authenticate, and/or initiate execu
tion of an AC module 190. These other instructions may be
variants for launching AC modules 190 or may be concerned
with other operations that launch AC modules 190 to help
accomplish a larger task. Unless denoted otherwise, the
ENTERAC instruction and these other instructions are
referred to hereafter as launch AC instructions despite the
fact that Some of these instructions may load, authenticate,
and launch an AC module 190 as a side effect of another
operation Such as, for example, establishing a trusted com
puting environment.
0024. In an example embodiment, the processors 110
further support execution of an EXITAC instruction that
terminates execution of an AC module 190 and initiates
post-AC code (See, FIG. 6). However, the processors 110
may Support additional or different instructions that result in
the processors 110 terminating an AC module 190 and
launching post-AC code. These other instructions may be
variants of the EXITAC instruction for terminating AC
modules 190 or may be instructions concerned primarily
with other operations that result in AC modules 190 being
terminated as part of a larger operation. Unless denoted
otherwise, the EXITAC instruction and these other instruc
tions are referred to hereafter as terminate AC instructions
despite the fact that Some of these instructions may termi
nate AC modules 190 and launch post-AC code as a side
effect of another operation Such as, for example, tearing
down a trusted computing environment.
0025 The chipset 120 may comprise a memory controller
122 for controlling access to the memory 140. Further, the
chipset 120 may comprise a key 124 that the processor 110
may use to authentic an AC module 190 prior to execution.
Similar to the key 116 of the processor 110, the key 124 may
comprise a key of a Symmetric or asymmetric cryptographic
algorithm.

0026. The chipset 120 may also comprise trusted plat
form registers 126 to control and provide Status information
about trusted platform features of the chipset 120. In an
example embodiment, the chipset 120 maps the trusted
platform registers 126 to a private Space 142 and/or a public
space 144 of the memory 140 to enable the processors 110
to access the trusted platform registers 126 in a consistent

C.

0027. For example, the chipset 120 may map a Subset of
the registers 126 as read only locations in the public space
144 and may map the registers 126 as read/write locations in
the private space 142. The chipset 120 may configure the

US 2003/O126453 A1

private Space 142 in a manner that enables only processors
110 in the most privileged mode to access its mapped
registers 126 with privileged read and write transactions.
Further, the chipset 120 may further configure the public
space 144 in a manner that enables processors 110 in all
privilege modes to access its mapped registers 126 with
normal read and write transactions. The chipset 120 may
also open the private Space 142 in response to an OpenPri
Vate command being written to a command register 126. AS
a result of opening the private Space 142, the processors 110
may access the private Space 142 in the Same manner as the
public space 144 with normal unprivileged read and write
transactions.

0028. The physical token 150 of the computing device
100 comprises protected Storage for recording integrity
metrics and Storing Secrets Such as, for example, encryption
keys. The physical token 150 may perform various integrity
functions in response to requests from the processors 110
and the chipset 120. In particular, the physical token 150
may store integrity metrics in a trusted manner, may quote
integrity metrics in a trusted manner, may Seal Secrets Such
as encryption keys to a particular environment, and may
only unseal Secrets to the environment to which they were
sealed. Hereinafter, the term “platform key” is used to refer
to a key that is Sealed to a particular hardware and/or
Software environment. The physical token 150 may be
implemented in a number of different manners. However, in
an example embodiment, the physical token 150 is imple
mented to comply with the specification of the Trusted
Platform Module (TPM) described in detail in the Trusted
Computing Platform Alliance (TCPA) Main Specification,
Version 1.1, Jul. 31, 2001.
0029. The private memory 160 may store an AC module
190 in a manner that allows the processor or processors 110
that are to execute the AC module 190 to access the AC
module 190 and that prevents other processors 110 and
components of the computing device 100 from altering the
AC module 190 or interfering with the execution of the AC
module 190. As shown in FIG. 1A, the private memory 160
may be implemented with the cache memory 112 of the
processor 110 that is executing the launch AC instruction.
Alternatively, the private memory 160 may be implemented
as a memory area internal to the processor 110 that is
separate from its cache memory 112 as shown in FIG. 1B.
The private memory 160 may also be implemented as a
Separate external memory coupled to the processors 110 via
a separate dedicated bus as shown in FIG. 1C, thus enabling
only the processors 110 having associated external memo
ries to validly execute launch AC instructions.
0030 The private memory 160 may also be implemented
via the system memory 140. In such an embodiment, the
chipset 120 and/or processors 110 may define certain regions
of the memory 140 as private memory 160 (see FIG. 1D)
that may be restricted to a specific processor 110 and that
may only be accessed by the Specific processor 110 when in
a particular operating mode. One disadvantage of this imple
mentation is that the processor 110 relies on the memory
controller 122 of the chipset 120 to access the private
memory 160 and the AC module 190. Accordingly, an AC
module 190 may not be able to reconfigure the memory
controller 122 without denying the processor 110 access to
the AC module 190 and thus causing the processor 110 to
abort execution of the AC module 190.

Jul. 3, 2003

0031. The private memory 160 may also be implemented
as a separate memory coupled to a separate private memory
controller 128 of the chipset 120 as shown in FIG. 1E. In
such an embodiment, the private memory controller 128
may provide a separate interface to the private memory 160.
AS a result of a separate private memory controller 128, the
processor 110 may be able to reconfigure the memory
controller 122 for the system memory 140 in a manner that
ensures that the processor 110 will be able to access the
private memory 160 and the AC module 190. In general, the
Separate private memory controller 128 overcomes Some
disadvantages of the embodiment shown in FIG. 1D at the
expense of an additional memory and memory controller.

0032) The AC module 190 may be provided in any of a
variety of machine readable mediums 180. The media inter
face 170 provides an interface to a machine readable
medium 180 and AC module 190. The machine readable
medium 180 may comprise any medium that can Store, at
least temporarily, information for reading by the machine
interface 170. This may include signal transmissions (via
wire, optics, or air as the medium) and/or physical Storage
media Such as various types of disk and memory Storage
devices.

0033 Referring now to FIG. 2, an example embodiment
of the AC module 190 is shown in more detail. The AC
module 190 may comprise code 210 and data 220. The code
210 comprises one or more code pages 212 and the data 220
comprises one or more data pages 222. Each code page 212
and data page 222 in an example embodiment corresponds
to a 4 kilobyte contiguous memory region; however, the
code 210 and data 220 may be implemented with different
page sizes or in a non-paging manner. The code pages 212
comprise processor instructions to be executed by one or
more processors 110 and the data pages 222 comprise data
to be accessed by one or more processors 110 and/or Scratch
pad for Storing data generated by one or more processors 110
in response to executing instructions of the code pages 212.

0034) The AC module 190 may further comprise one or
more headers 230 that may be part of the code 210 or the
data 220. The headers 230 may provide information about
the AC module 190 such as, for example, module author,
copyright notice, module version, module execution point
location, module length, authentication method, etc. The AC
module 190 may further comprise a signature 240 which
may be a part of the code 210, data 220, and/or headers 230.
The signature 240 may provide information about the AC
module 190, authentication entity, authentication message,
authentication method, and/or digest value.
0035) The AC module 190 may also comprise an end of
module marker 250. The end of module marker 250 specifies
the end of the AC module 190 and may be used as an
alternative to specifying the length of the AC module 190.
For example, the code pages 212 and data pages 222 may be
Specified in a contiguous manner and the end of module
marker 250 may comprise a predefined bit pattern that
Signals the end of the code pages 212 and data pages 222. It
should be appreciated that the AC module 190 may specify
its length and/or end in a number of different manners. For
example, the header 230 may specify the number of bytes or
the number of pages the AC module 190 contains. Alterna
tively, launch AC and terminate AC instructions may expect
the AC module 190 be a predefined number of bytes in

US 2003/O126453 A1

length or contain a predefined number of pages. Further,
launch AC and terminate AC instructions may comprise
operands that specify the length of the AC module 190.
0036). It should be appreciated that the AC module 190
may reside in a contiguous region of the memory 140 that is
contiguous in the physical memory Space or that is contigu
ous in virtual memory space. Whether physically or virtually
contiguous, the locations of the memory 140 that store the
AC module 190 may be specified by a starting location and
a length and/or end of module marker 250 may specify.
Alternatively, the AC module 190 may be stored in memory
140 in neither a physically or a virtually contiguous manner.
For example, the AC module 190 may be stored in a data
Structure Such as, for example, a linked list that permits the
computing device 100 to store and retrieve the AC module
190 from the memory 140 in a non-contiguous manner.
0037 AS will be discussed in more detail below, the
example processors 110 Support launch AC instructions that
load the AC module 190 into private memory 160 and
initiate execution of the AC module 190 from an execution
point 260. An AC module 190 to be launched by such a
launch AC instruction may comprise code 210 which when
loaded into the private memory 160 places the execution
point 260 at a location specified one or more operands of a
launch AC instruction. Alternatively, a launch AC instruc
tion may result in the processor 110 obtaining the location of
the execution point 260 from the AC module 190 itself. For
example, the code 210, data 220, a header 230, and/or
Signature 240 may comprise one or more fields that Specify
the location of the execution point 260.
0.038. As will be discussed in more detail below, the
example processors 110 Support launch AC instructions that
authenticated the AC module 190 prior to execution.
Accordingly, the AC module 190 may comprise information
to Support authenticity determinations by the processors 110.
For example, the Signature 240 may comprise a digest value
242. The digest value 242 may be generated by passing the
AC module 190 through a hashing algorithm (e.g. SHA-1 or
MD5) or some other algorithm. The signature 240 may also
be encrypted to prevent alteration of the digest value 242 via
an encryption algorithm (e.g. DES, 3DES, AES, and/or RSA
algorithms). In example embodiment, the Signature 240 is
RSA-encrypted with the private key that corresponds to a
public key of the processor key 116, the chipset key 120,
and/or platform key 152.
0039. It should be appreciated that the AC module 190
may be authenticated via other mechanisms. For example,
the AC module 190 may utilize different hashing algorithms
or different encryption algorithms. Further, the AC module
190 may comprise information in the code 210, data 220,
headers 230, and/or signature 240 that indicate which algo
rithms were used. The AC module 190 may also be protected
by encrypting the whole AC module 190 for decryption via
a Symmetric or asymmetric key of the processor key 116,
chipset key 124, or platform key 152.
0040. An example embodiment of the processor 110 is
illustrated in more detail in FIG. 3. As depicted, the pro
cessor 110 may comprise a front end 302, a register file 306,
one or more execution units 370, and a retirement unit or
back end 380. The front end 302 comprises a processor bus
interface 304, a fetching unit 330 having instruction and
instruction pointer registers 314, 316, a decoder 340, an

Jul. 3, 2003

instruction queue 350, and one or more cache memories 360.
The register file 306 comprises general purpose registers
312, status/control registers 318, and other registers 320.
The fetching unit 330 fetches the instructions specified by
the instruction pointer registers 316 from the memory 140
via the processor bus interface 304 or the cache memories
360 and stores the fetched instructions in the instruction
registers 314.

0041 An instruction register 314 may contain more than
one instruction. According, the decoder 340 identifies the
instructions in the instruction registers 314 and places the
identified instructions in the instruction queue 350 in a form
suitable for execution. For example, the decoder 340 may
generate and Store one or more micro-operations (uops) for
each identified instruction in the instruction queue 350.
Alternatively, the decoder 340 may generate and Store a
Single macro-operation (Mop) for each identified instruction
in the instruction queue 350. Unless indicated otherwise the
term opS is used hereafter to refer to both uops and Mops.

0042. The processor 110 further comprises one or more
execution units 370 that perform the operations dictated by
the ops of the instruction queue 350. For example, the
execution units 370 may comprise hashing units, decryption
units, and/or microcode units that implement authentication
operations that may be used to authenticate the AC module
190. The execution units 370 may perform in-order execu
tion of the ops stored in the instruction queue 350. However,
in an example embodiment, the processor 110 Supports
out-of-order execution of ops by the execution units 370. In
such an embodiment, the processor 110 may further com
prise a retirement unit 380 that removes ops from the
instruction queue 350 in-order and commits the results of
executing the ops to one or more registers 312, 314, 316,
318,320 to insure proper in-order results.
0043. The decoder 340 may generate one or more ops for
an identified launch AC instruction and the execution units
370 may load, authenticate, and/or initiate execution of an
AC module 190 in response to executing the associated opS.
Further, the decoder 340 may generate one or more ops for
an identified terminate AC instruction and the execution
units 370 may terminate execution of an AC module 190,
adjust Security aspects of the computing device 100, and/or
initiate execution of post-AC code in response to executing
the associated opS.
0044) In particular, the decoder 340 may generate one or
more opS that depend on the launch AC instruction and the
Zero or more operands associated with the launch AC
instruction. Each launch AC instruction and its associated
operands Specify parameters for launching the AC module
190. For example, the launch AC instruction and/or oper
ands may specify parameters about the AC module 190 such
as AC module location, AC module length, and/or AC
module execution point. The launch AC instruction and/or
operands may also specify parameters about the private
memory 160 Such as, for example, private memory location,
private memory length, and/or private memory implemen
tation. The launch AC instruction and/or operands may
further specify parameters for authenticating the AC module
190 Such as Specifying which authentication algorithms,
hashing algorithms, decryption,algorithms, and/or other
algorithms are to be used. The launch AC instruction and/.or
operands may further Specify parameters for the algorithms

US 2003/O126453 A1

Such as, for example, key length, key location, and/or keys.
The launch AC instruction and/or operands may further
Specify parameters to configure the computer System 100 for
AC module launch Such as, for example, Specifying events
to be masked/unmasked and/or Security capabilities to be
updated.

004.5 The launch AC instructions and/or operands may
provide fewer, additional, and/or different parameters than
those described above. Furthermore, the launch AC instruc
tions may comprise Zero or more explicit operands and/or
implicit operands. For example, the launch AC instruction
may have operand values implicitly Specified by processor
registers and/or memory locations despite the launch AC
instruction itself not comprising fields that define the loca
tion of these operands. Furthermore, the launch AC instruc
tion may explicitly Specify the operands via various tech
niques Such as, for example, immediate data, register
identification, absolute addresses, and/or relative addresses.
0046) The decoder 340 may also generate one or more
ops that depend on the terminate AC instructions and the
Zero or more operands associated with the terminate AC
instructions. Each terminate AC instruction and its associ
ated operands Specify parameters for terminating execution
of the AC module 190. For example, the terminate AC
instruction and/or operands may specify parameters about
the AC module 190 Such as AC module location and/or AC
module length. The terminate AC instruction and/or oper
ands may also specify parameters about the private memory
160 Such as, for example, private memory location, private
memory length, and/or private implementation. The termi
nate AC instruction and/or operands may specify parameters
about launching post-AC code Such as, for example.,
launching method and/or post-AC code execution point. The
terminate AC instruction and/or operands may further
Specify parameters to configure the computer System 100 for
post-AC code execution Such as, for example, Specifying
events to be masked/unmasked and/or Security capabilities
to be updated.
0047 The terminate AC instructions and/or operands
may provide fewer, additional, and/or different parameters
than those described above. Furthermore, the terminate AC
instructions may comprise Zero or more explicit operands
and/or implicit operands in a manner as described above in
regard to the launch AC instructions.
0.048 Referring now to FIG. 4, there is depicted a
method 400 of launching an AC module 190. In particular,
the method 400 illustrates the operations of a processor 110
in response to executing an example ENTERAC instruction
having an authenticate operand, a module operand, and a
length operand. However, one skilled in the art should be
able implement other launch AC instructions having fewer,
additional, and/or different operands without undue experi
mentation.

0049. In block 404, the processor 110 determines whether
the environment is appropriate to Start execution of an AC
module 190. For example, the processor 110 may verify that
its current privilege level, operating mode, and/or addressing
mode are appropriate. Further, if the processor Supports
multiple hardware threads, the processor may verify that all
other threads have halted. The processor 110 may further
Verify that the chipset 120 meets certain requirements. In an
example embodiment of the ENTERAC instruction, the

Jul. 3, 2003

processor 110 determines that the environment is appropri
ate in response to determining that the processor 110 is in a
protected flat mode of operation, that the processor's current
privilege level is 0, that the processor 110 has halted all other
threads of execution, and that the chipset 120 provides
trusted platform capabilities as indicated by one or more
registers 126. Other embodiments of launch AC instructions
may define appropriate environments differently. Other
launch AC instructions and/or associated operands may
Specify environment requirements that result in the proces
Sor 110 verifying fewer, additional, and/or different param
eters of its environment.

0050. In response to determining that the environment is
inappropriate for launching an AC module 190, the proces
Sor 110 may terminate the ENTERAC instruction with an
appropriate error code (block 408). Alternatively, the pro
cessor 110 may further trap to some more trusted software
layer to permit emulation of the ENTERAC instruction.
0051). Otherwise, the processor 110 in block 414 may
update event processing to Support launching the AC module
190. In an example embodiment of the ENTERAC instruc
tion, the processor 110 masks processing of the INTR, NMI,
SMI, INIT, and A20M events. Other launch AC instructions
and/or associated operands may specify masking fewer,
additional, and/or different events. Further, other launch AC
instructions and/or associated operands may explicitly
Specify the events to be masked and the events to be
unmasked. Alternatively, other embodiments may avoid
masking events by causing the computing device 100 to
execute trusted code Such as, for example, event handlers of
the AC module 190 in response to such events.
0.052 The processor 110 in block 416 may lock the
processor bus 130 to prevent the other processors 110 and
the chipset 120 from acquiring ownership of the processor
bus 130 during the launch and execution of the AC module
190. In an example embodiment of the ENTERAC instruc
tion, the processor 110 obtains exclusive ownership of the
processor buS 130 by generating a Special transaction that
provides the other processors 110 and the chipset 120 with
a LTPROCESSOR.HOLD bus message. Other embodi
ments of launch AC instructions and/or associated operands
may specify that the processor bus 130 is to remain unlocked
or may specify a different manner to lock the processor bus
130.

0053) The processor 110 in block 420 may configure its
private memory 160 for receiving the AC module 190. The
processor 110 may clear the contents of the private memory
160 and may configure control Structures associated with the
private memory 160 to enable the processor 110 to access
the private memory 160. In an example embodiment of the
ENTERAC instruction, the processor 110 updates one or
more control registers to Switch the cache memory 112 to the
cache-as-RAM mode and invalidates the contents of its
cache memory 112.

0054) Other launch AC instructions and/or associated
operands may specify private memory parameters for dif
ferent implementations of the private memory 160. (See, for
example, FIGS. 1A-1E). Accordingly, the processor 110 in
executing these other launch AC instructions may perform
different operations in order to prepare the private memory
160 for the AC module 190. For example, the processor 110
may 1A enable/configure a memory controller (e.g. PM

US 2003/O126453 A1

controller 128 of FIG. 1E) associated with the private
memory 160. The processor 110 may also provide the
private memory 160 with a clear, reset, and/or invalidate
signal to clear the private memory 160. Alternatively, the
processor 110 may write Zeros or some other bit pattern to
the private memory 160, remove power from the private
memory 160, and/or utilize some other mechanism to clear
the private memory 160 as specified by the launch AC
instruction and/or operands.

0055. In block 424, the processor 110 loads the AC
module 190 into its private memory 160. In an example
embodiment of the ENTERAC instruction, the processor
110 starts reading from a location of the memory 140
Specified by the address operand until a number of bytes
Specified by the length operand are transferred to its cache
memory 112. Other embodiments of launch AC instructions
and/or associated operands may specify parameters for
loading the AC module 190 into the private memory 160 in
a different manner. For example, the other launch AC
instructions and/or associated operands may specify the
location of the AC module 190, the location of the private
memory 160, where the AC module 190 is to be loaded in
the private memory 160, and/or the end of the AC module
190 in numerous different manners.

0056. In block 428, the processor 110 may further lock
the private memory 160. In an example embodiment of the
ENTERAC instruction, the processor 110 updates one or
more control registers to lock its cache memory 112 to
prevent external events Such as Snoop requests from pro
cessors or I/O devices from altering the stored lines of the
AC module 190. However, other launch AC instructions
and/or associated operands may specify other operations for
the processor 110. For example, the processor 110 may
configure a memory controller (e.g. PM controller 128 of
FIG. 1E) associated with the private memory 160 to prevent
the other processors 110 and/or chipset 120 from accessing
the private memory 160. In some embodiments, the private
memory 160 may already be sufficiently locked, thus the
processor 110 may take no action in block 428.

0057 The processor in block 432 determines whether the
AC module 190 stored in its private memory 160 is authentic
based upon a protection mechanism Specified by the pro
tection operand of the ENTERAC instruction. In an example
embodiment of the ENTERAC instruction, the processor
110 retrieves a processor key 116, chipset key 124, and/or
platform key 152 specified by the protection operand. The
processor 110 then RSA-decrypts the signature 240 of the
AC module 190 using the retrieved key to obtain the digest
value 242. The processor 110 further hashes the AC module
190 using a SHA-1 hash to obtain a computed digest value.
The processor 110 then determines that the AC module 190
is authentic in response to the computed digest value and the
digest value 242 having an expected relationship (e.g. equal
to one another). Otherwise, the processor 110 determines
that the AC module 190 is not authenticate.

0.058 Other launch AC instructions and/or associated
operands may specify different authentication parameters.
For example, the other launch AC instructions and/or asso
ciated operands may specify a different authentication
method, different decryption algorithms, and/or different
hashing algorithms. The other launch AC instructions and/or

Jul. 3, 2003

asSociated operands may further specify different key
lengths, different key locations, and/or keys for authenticat
ing the AC module 190.
0059. In response to determining that the AC module 190
is not authentic; the processor 10 in block 436 generates an
error code and terminates execution of the launch AC
instruction. Otherwise, the processor 110 in block 440 may
update Security aspects of the computing device 100 to
support execution of the AC module 190. In an example
embodiment of the ENTERAC instruction, the processor
110 in block 440 writes a OpenPrivate command to a
command register 126 of the chipset 120 to enable the
processor 110 to acceSS registers 126 via the private Space
142 with normal unprivileged read and write transactions.

0060. Other launch AC instructions and/or associated
operands may specify other operations to configure the
computing device 100 for AC module execution. For
example, a launch AC instruction and/or associated oper
ands may specify that the processor 110 leave the private
Space 142 in its current State. A launch AC instruction and/or
asSociated operands may also specify that the processor 110
enable and/or disable access to certain computing resources
Such as protected memory regions, protected Storage
devices, protected partitions of Storage devices, protected
files of Storage devices, etc.
0061. After updating Security aspects of the computing
device 100, the processor 110 in block 444 may initiate
execution of the AC module 190. In an example embodiment
of the ENTERAC instruction, the processor 110 loads its
instruction pointer register 316 with the physical address
provided by the module operand resulting in the processor
110 jumping to and executing the AC module 190 from the
execution point 260 specified by the physical address. Other
launch AC instructions and/or associated operands may
specify the location of the execution point 260 in a number
of alternative manners. For example, a launch AC instruc
tion and/or associated operands may result in the processor
110 obtaining the location of the execution point 260 from
the AC module 190 itself.

0062) Referring now to FIG. 5, there is depicted a
method 500 of terminating an AC module 190. In particular,
the method 500 illustrates the operations of a processor 110
in response to executing an example EXITAC instruction
having a protection operand, an events operand, and a
launch operand. However, one skilled in the art should be
able to implement other terminate AC instructions having
fewer, additional, and/or different operands without undue
experimentation.

0063. In block 504, the processor 110 may clear and/or
reconfigure the private memory 160 to prevent further
access to the AC module 190 stored in the private memory
160. In an example embodiment of the EXITAC instruction,
the processor 110 invalidates its cache memory 112 and
updates control registers to Switch the cache memory 112 to
the normal cache mode of operation.

0064. A terminate AC instruction and/or associated oper
and may specify private memory parameters for different
implementations of the private memory 160. (See, for
example, FIGS. 1A-1E). Accordingly, a terminate AC
instruction and/or associated operand may result in the
processor 110 performing different operations in order to

US 2003/O126453 A1

prepare the computing device 100 for post-AC code execu
tion. For example, the processor 110 may disable a memory
controller (e.g. PM controller 128 of FIG. 1E) associated
with the private memory 160 to prevent further access to the
AC module 190. The processor 110 may also provide the
private memory 160 with a clear, reset, and/or invalidate
signal to clear the private memory 160. Alternatively, the
processor 110 may write Zeros or some other bit pattern to
the private memory 160; remove power from the private
memory 160, and/or utilize some other mechanism to clear
the private memory 160 as specified by a terminate AC
instruction and/or associated operands.
0065. The processor 110 in block 506 may update secu

rity aspects of the computing device 100 based upon the
protection operand to Support post-AC code execution. In an
example embodiment of the EXITAC instruction, the pro
tection operand specifies whether the processor 110 is to
close the private Space 142 or leave the private Space 142 in
its current State. In response to determining to leave the
private Space 142 in its current State, the processor 110
proceeds to block 510. Otherwise, the processor 110 closes
the private space 142 by writing a Close Private command to
a command register 126 to prevent the processors 110 from
further accessing the registerS 126 via normal unprivileged
read and write transactions to the private Space 142.
0.066 A terminate AC instruction and/or associated oper
ands of another embodiment may result in the processor 110
updating other Security aspects of the computing device 100
to support execution of code after the AC module 190. For
example, a terminate AC instruction and/or associated oper
ands may specify that the processor 110 enable and/or
disable access to certain computing resources Such as pro
tected memory regions, protected Storage devices, protected
partitions of Storage devices, protected files of Storage
devices, etc.
0067. The processor 110 in block 510 may unlock the
processor bus 130 to enable other processors 110 and the
chipset 120 to acquire ownership of the processor bus 130.
In an example embodiment of the EXITAC-instruction, the
processor 110 releaseS eXclusive ownership of the, processor
buS 130 by generating a special transaction that provides the
other processors 110 and the chipset 120 with a LTPRO
CESSOR.RELEASE bus message. Other embodiments of
terminate AC instructions and/or associated operands may
specify that the processor bus 130 is to remain locked or may
specify a different manner to unlock the processor bus 130.
0068. The processor 110 in block 514 may update events
processing based upon the mask operand. In example
embodiment of the EXITAC instruction, the mask operand
specifies whether the processor 110 is to enable events
processing or leave events processing in its current State. In
response to determining to leave events processing in its
current state, the processor 110 proceeds to block 516.
Otherwise, the processor 110 unmasks the INTR, NMI, SMI,
INIT, and A20M events to enable processing of Such events.
Other terminate AC instructions and/or associated operands
may specify unmasking fewer, additional, and/or different
events. Further, other terminate AC instructions and/or asso
ciated operands may explicitly Specify the events to be
masked and the events to be unmasked.

0069. The processor 110 in block 516 terminates execu
tion of the AC module 190 and launches post-AC code

Jul. 3, 2003

Specified by the launch operand. In an example embodiment
of the EXITAC instruction, the processor 110 updates its
code Segment register and instruction pointer register with a
code Segment and Segment offset Specified by the launch
operand. As a result, the processor 110 jumps to and begins
executing from an execution point of the post-AC code
Specified by the code Segment and Segment offset.

0070. Other terminate AC modules and/or associated
operands may specify the execution point of the post-AC
code in a number of different manners. For example, a
launch AC instruction may result in the processor 110 Saving
the current instruction pointer to identify the execution point
of post-AC code. In Such an embodiment, the terminate AC
instruction may retrieve the execution point Saved by the
launch AC instruction and initiate execution of the post-AC
code from the retrieved execution point. In this manner, the
terminate AC instruction returns execution to the instruction
following the launch AC instruction. Further, in Such an
embodiment, the AC module 190 appears to have been
called, like a function call or System call, by the invoking
code.

0071 Another embodiment of the computing device 100
is shown in FIG. 6. The computing device 100 comprises
processors 110, a memory interface 620 that provides the
processors 110 access to a memory Space 640, and a media
interface 170 that provides the processors 110 access to
media 180. The memory space 640 comprises an address
Space that may span multiple machine readable media from
which the processor 110 may execute code Such as, for
example, firmware, System memory 140, private memory
160, hard disk storage, network storage, etc (See, FIGS.
1A-1E). The memory space 640 comprises pre-AC code
642, an AC module 190, and post-AC code 646. The pre-AC
code 642 may comprise operating System code, System
library code, Shared library code, application code, firmware
routines, BIOS routines, and/or other routines that may
launch execution of an AC module 190. The post-AC code
646 may similarly comprise operating System code, System
library code, Shared library code, application code, firmware
routines, BIOS routines, and/or other routines that may be
executed after the AC module 190. It should be appreciated
that the pre-AC code 642 and the post-AC code 646 may be
the same Software and/or firmware module or different
Software and/or firmware modules.

0072 An example embodiment of launching and termi
nating an AC module is illustrated in FIG. 7A. In block 704,
the computing device 100 stores the AC module 190 into the
memory Space 640 in response to executing the pre-AC code
642. In an example embodiment, the computing device 100
retrieves the AC module 190 from a machine readable
medium 180 via the media interface 170 and stores the AC
module 190 in the memory space 640. For example, the
computing device 100 may retrieve the AC module 190 from
firmware, a hard drive, System memory, network Storage, a
file Server, a web server, etc and may store the retrieved AC
module 190 into a system memory 140 of the computing
device 100.

0073. The computing device 100 in block 708 loads,
authenticates, and initiates execution of the AC module 190
in response to executing the pre-AC code 642. For example,
the pre-AC code 642 may comprise an ENTERAC instruc
tion or another launch AC instruction that results in the

US 2003/O126453 A1

computing device 100 transferring the AC module 190 to
private memory 160 of the memory space 640, authenticat
ing the AC module 190, and invoking execution of the AC
module 190 from its execution point. Alternatively, the
pre-AC code 642 may comprise a Series of instructions that
result in the computing device 100 transferring the AC
module 190 to private memory 160 of the memory space
640, authenticating the AC module 190, and invoking execu
tion of the AC module 190 from its execution point.

0074) In block 712, the computing device 100 executes
the code 210 of the AC module 190 (See, FIG. 2). The
computing device 100, in block 716 terminates execution of
the AC module 190 and initiates execution of the post-AC
code 646 of the memory space 640. For example, the AC
module 190 may comprise an EXITAC instruction or
another terminate AC instruction that results in the comput
ing device 100 terminating execution of the AC module 190,
updating Security aspects of the computing device 100, and
initiating execution of the post-AC code 646 from an
execution point of the post-AC code 646. Alternatively, the
AC module 190 may comprise a series of instructions that
result in the computing device 100 terminating execution of
the AC module 190 and initiating execution of the post-AC
code 646 from an execution point of the post-AC code 646.
0075 Another example embodiment of launching and
terminating an AC module is illustrated in FIG. 7B. In block
740, the computing device 100 stores the AC module 190
into the memory Space 640 in response to executing the
pre-AC code 642. In an example embodiment, the comput
ing device 100 retrieves the AC module 190 from a machine
readable medium 180 via the media interface 170 and stores
the AC module 190 in the memory space 640. For example,
the computing device 100 may retrieve the AC module 190
from firmware, a hard drive, System memory, network
Storage, a file Server, a web server, etc and Stores the
retrieved AC module 190 into a system memory 140 of the
computing device 100.

0076) The computing device 100 in block 744 loads,
authenticates, and initiates execution of the AC module 190
response to executing the pre-AC code 642. The computing
device in block 744 further saves an execution point for the
post-AC code 646 that is based upon the instruction pointer.
For example, the pre-AC code 642 may comprise an
ENTERAC instruction or another launch AC instruction that
results in the computing device 100 transferring the AC
module 190 to private memory 160 of the memory space
640, authenticating the AC module 190, invoking execution
of the AC module 190 from its execution point, and saving
the instruction pointer So that the processor 110 may return
to the instruction following the launch AC instruction after
executing the AC module 190. Alternatively, the pre-AC
code 642 may comprise a Series of instructions that result in
the computing device 100 transferring the AC module 190 to
private memory 160 of the memory space 640, authenticat
ing the AC module 190, invoking execution of the AC
module 190 from its execution point, and saving the instruc
tion pointer.

0077. In block 748, the computing device 100 executes
the code 210 of the AC module 190 (See, FIG. 2). The
computing device 100 in block 752 terminates execution of
the AC module 190, loads the instruction pointer based
execution point Saved in block 744, and initiates execution

Jul. 3, 2003

of the instruction following the launch AC instruction or the
series of instructions executed in block 744. For example,
the AC module 190 may comprise an EXITAC instruction or
another terminate AC instruction that results in the comput
ing device 100 terminating execution of the AC module 190,
updating Security aspects of the computing device 100, and
initiating execution of the post-AC code 646 from an
execution point of the post-AC code 646 specified by the
instruction pointer saved in block 744. Alternatively, the AC
module 190 may comprise a series of instructions that result
in the computing device 100 terminating execution of the
AC module 190, updating Security aspects of the computing
device 100, and initiating execution of the post-AC code 646
from an execution point of the post-AC code 646 specified
by the instruction pointer saved in block 744.
0078 FIG. 8 illustrates various design representations or
formats for Simulation, emulation, and fabrication of a
design using the disclosed techniques. Data representing a
design may represent the design in a number of manners.
First, as is useful in Simulations, the hardware may be
represented using a hardware description language or
another functional description language which essentially
provides a computerized model of how the designed hard
ware is expected to perform. The hardware model 810 may
be stored in a storage medium 800 such as a computer
memory So that the model may be Simulated using Simula
tion Software 820 that applies a particular test Suite 830 to
the hardware model 810 to determine if it indeed functions
as intended. In Some embodiments, the Simulation Software
is not recorded, captured, or contained in the medium.
0079 Additionally, a circuit level model with logic and/
or transistor gates may be produced at Some stages of the
design process. This model may be similarly simulated,
sometimes by dedicated hardware simulators that form the
model using programmable logic. This type of Simulation,
taken a degree further, may be an emulation technique. In
any case, re-configurable hardware is another embodiment
that may involve a machine readable medium Storing a
model employing the disclosed techniques.
0080 Furthermore, most designs, at Some stage, reach a
level of data representing the physical placement of various
devices in the hardware model. In the case where conven
tional Semiconductor fabrication techniques are used, the
data representing the hardware model may be the data
Specifying the presence or absence of various features on
different mask layers for masks used to produce the inte
grated circuit. Again, this data representing the integrated
circuit embodies the techniques disclosed in that the cir
cuitry or logic in the data can be Simulated or fabricated to
perform these techniques.
0081. In any representation of the design, the data may be
Stored in any form of a computer readable medium. An
optical or electrical wave 860 modulated or otherwise gen
erated to transmit such information, a memory 850, or a
magnetic or optical Storage 840 Such as a disc may be the
medium. The Set of bits describing the design or the par
ticular part of the design are an article that may be Sold in
and of itself or used by others for further design or fabri
cation.

0082) While certain exemplary embodiments have been
described and shown in the accompanying drawings, it is to
be understood that such embodiments are merely illustrative

US 2003/O126453 A1

of and not restrictive on the broad invention, and that this
invention not be limited to the Specific constructions and
arrangements shown and described, Since various other
modifications may occur to those ordinarily skilled in the art
upon Studying this disclosure.
What is claimed is:

1. A processor comprising
private memory; and
one or more execution units to authenticate an authenti

cated code module Stored in the private memory and to
execute the authenticated code module Stored in the
private memory in response to executing a launch
instruction.

2. The processor of claim 1 further comprising a cache
memory that provides the private memory.

3. The processor of claim 2 wherein the execution units
load authentication code module into the cache memory in
response to executing the launch instruction.

4. The processor of claim 3 wherein the execution units
lock the cache memory to prevent replacement of lines of the
authenticated code module Stored in the cache memory.

5. The processor of claim 1 wherein the execution units
lock the private memory to prevent other processors from
altering the authenticated code module Stored in the private
memory.

6. The processor of claim 1 further comprising a decoder
to generate one or more opcodes for the launch instruction,
wherein the execution units authenticate and execute the
authenticated code module in response to executing the one
or more opcodes.

7. The processor of claim 1 further comprising a key,
wherein the execution units utilize the key to authenticate
the authenticated code module.

8. The processor of claim 1, wherein the execution units
retrieve a key Specified by one or more operands of the
launch instruction and use the key to authenticate the
authenticated code module Stored in the protected memory.

9. The processor of claim 1, wherein the execution units,
in response to the launch instruction, retrieve a key from a
chipset and use the key to authenticate the authenticated
code module Stored in the protected memory.

10. The processor of claim 1, wherein the execution units,
in response to the launch instruction, retrieve a key from a
token and use the key to authenticate the authenticated code
module Stored in the protected memory.

11. The processor of claim 1, wherein the execution units,
in response to the launch instruction, use a key of the
processor to authenticate the authenticated code module
Stored in the protected memory.

12. The processor of claim 1, wherein the execution units,
in response to the launch instruction, decrypt at least a
portion of the authentication module Stored in the private
memory.

13. The processor of claim 1, wherein the execution units,
in response to the launch instruction, decrypt at least a
portion of the authentication module to obtain a digest value,
and determine whether the authentication module is authen
tic based upon the digest value.

14. The processor of claim 1, wherein the execution units,
in response to the launch instruction, obtain a digest value
for the authentication code module, generate a computed
digest value from at least a portion of the authenticated code
module, and determine that the authenticated code module is

Jul. 3, 2003

authentic in response to the digest Value and the computed
digest value having a predetermined relationship.

15. The processor of claim 1, wherein the execution units,
in response to the launch instruction, RSA-decrypt a signa
ture of the authentication code module to obtain a digest
value from the Signature, perform a SHA-1 hash on the
authenticated code module to generate a computed digest
value, and determine that the authenticated code module is
authentic in response to the digest Value and the computed
digest value being equal.

16. The processor of claim 1, wherein the execution units
initiate execution of the authenticated code module only if
the authenticated code module is determined to be authentic.

17. The processor of claim 16, wherein the execution units
generate an error code in response to determining that the
authenticated code module is not authentic.

18. The processor of claim 17, wherein the execution units
generate a trap in response to determining that the authen
ticated code module is not authentic.

19. The processor of claim 1, wherein the execution units
execute the authenticated code module from a execution
point Specified by one or more operands of the launch
instruction.

20. The processor of claim 1, wherein the execution units
execute the authenticated code module from an execution
point Specified by one or more fields of the authenticate code
module.

21. The processor of claim 1, wherein the execution units
mask one or more events Selected from a group of events
comprising INTR, NMI, SMI, INIT, and A20M events in
response to executing the launch instruction.

22. The processor of claim 1, wherein the execution units
authenticate and initiate execution of the authenticated code
module Stored in the private memory in response to execut
ing microcode associated with the launch AC instruction.

23. The processor of claim 1, embodied in a machine
readable medium.

24. A processor, comprising

a front end to fetch an instruction; and
one or more execution units to execute the instruction that

results in the one or more execution units retrieving a
key and authenticating an authenticated code module.

25. The processor of claim 24, wherein the front end
generates one or more opS for the instruction, and execution
of the instruction results in the execution units executing the
one or more opS.

26. The processor of claim 24 further comprising a
processor key, wherein execution of the instruction results in
the execution units authenticating the authenticated code
module based upon the processor key.

27. The processor of claim 24, wherein execution of the
instruction results in the execution units loading the authen
ticated code module into a private memory associated with
the processor.

28. The processor of claim 24, wherein execution of the
instruction results in the execution units obtaining a digest
value from the authenticated code module, hashing the
authenticated code module to generate a computed digest
value, and initiating execution of the authenticated code
module in response to the digest value and the computed
digest value having a predetermined relationship.

29. The processor of claim 28, wherein execution of the
instruction results in the execution units generating an error

US 2003/O126453 A1

code in response to determining that the digest value and the
computed digest Value do not have the predetermined rela
tionship.

30. The processor of claim 28, wherein execution of the
instruction results in the execution units initiating execution
of the authenticated code module from an execution point
Specified by one or more operands of the instruction.

31. The processor of claim 24, wherein execution of the
instruction results in the execution units initiating execution
of the authenticated code module from an execution point
Specified by one or more fields of the authenticate code
module.

32. The processor of claim 24, wherein the execution units
authenticate the authenticated code module in response to
executing microcode of the processor.

33. The processor of claim 24, embodied in a machine
readable medium.

34. A processor, comprising
a cache memory;
a front end to fetch an instruction; and
one or more execution units to execute the instruction that

results in the one or more execution units loading an

Jul. 3, 2003

authentication module into the cache memory and
authenticating the authenticated code module Stored in
the cache memory.

35. The processor of claim 34, wherein the execution units
initiate execution of the authenticated code module Stored in
the cache memory in response to determining that the
authenticated code module is authentic.

36. The processor of claim 35, wherein the execution units
retrieve a key and authenticate the authenticated code mod
ule based upon the key.

37. The processor of claim 36, wherein the execution units
obtain a digest value by decrypting a portion of the authen
ticated code module with the key, generated a computed
digest value, and determine authenticity of the authenticated
code based upon a relationship between the digest value and
the computed digest value.

38. The processor of claim 36, wherein the execution units
retrieve the key and authenticate the authenticated code
module in response to executing microcode.

39. The processor of claim 38 embodied in a machine
readable medium.

