Title: METHOD FOR DETECTING AND/OR ASSAYING HORMONES AND ANTIBODIES FOR USE IN SAID METHOD

Titre: METHODE DE DETECTION ET/OU DE DOSAGE DES HORMONES ET ANTICORPS UTILISABLES DANS LADITE METHODE DE DETECTION

Abstract

A method for detecting and/or assaying hormones, including placental hormones, and antibodies which can be used in said method. This method, which increases the sensitivity and specificity of the detection and/or immunoassaying of human or animal hormones in culture media or biological fluids, and which employs at least two identical or different antibodies which are specific for the hormone to be assayed, is characterized in that at least one of said antibodies is preincubated in a medium containing plasma or serum which is free of the hormone to be detected and/or assayed (INC medium).

Abrégé

Méthode de détection et/ou de dosage des hormones y compris les hormones placentaires et des anticorps utilisables dans ladite méthode de détection. Cette méthode, augmentant la sensibilité et la spécificité de la détection et/ou du dosage immunologique d'hormones humaines ou animales, dans des milieux de culture ou dans des fluides biologiques, mettant en œuvre au moins deux anticorps identiques ou différents, spécifiques de l'hormone à doser, est caractérisée en ce qu'au moins l'un des anticorps est préincubé dans un milieu contenant du plasma ou du sérum dépourvu de l'hormone à détecter et/ou à doser (milieu INC).
UNIQUEMENT A TITRE D’INFORMATION

Codes utilisés pour identifier les États parties au PCT, sur les pages de couverture des brochures publifiant des demandes internationales en vertu du PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Autriche</td>
<td>ES</td>
<td>Espagne</td>
<td>MG</td>
<td>Madagascar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU</td>
<td>Australie</td>
<td>FI</td>
<td>Finlande</td>
<td>ML</td>
<td>Mali</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>Barbade</td>
<td>FR</td>
<td>France</td>
<td>MN</td>
<td>Mongolie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>Belgique</td>
<td>GA</td>
<td>Gabon</td>
<td>MR</td>
<td>Mauriceanie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GB</td>
<td>Royaume-Uni</td>
<td>MW</td>
<td>Malawi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarie</td>
<td>GN</td>
<td>Guinée</td>
<td>NL</td>
<td>Pays-Bas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BJ</td>
<td>Bénin</td>
<td>GR</td>
<td>Grèce</td>
<td>NO</td>
<td>Norvège</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR</td>
<td>Brésil</td>
<td>HU</td>
<td>Hongrie</td>
<td>PL</td>
<td>Pologne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italie</td>
<td>RO</td>
<td>Roumanie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>République Centrafricaine</td>
<td>JP</td>
<td>Japon</td>
<td>SD</td>
<td>Soudan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KP</td>
<td>République populaire démocratique</td>
<td>SE</td>
<td>Suisse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>Suisse</td>
<td>KR</td>
<td>République de Corée</td>
<td>SN</td>
<td>Sénégal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>LI</td>
<td>Lisbonne</td>
<td>SU</td>
<td>Union soviétique</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Cameroun</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>TD</td>
<td>Tchad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>Tchécoslovaquie</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TG</td>
<td>Togo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>Allemagne</td>
<td>MC</td>
<td>Monaco</td>
<td>US</td>
<td>États-Unis d’Amérique</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
METHODE DE DETECTION ET/OU DE DOSAGE DES HORMONES ET ANTICORPS UTILISABLES DANS LADITE METHODE DE DETECTION.

La présente invention est relative à une méthode de détection et/ou de dosage des hormones y compris les hormones placentaires, ainsi qu'à des anticorps utilisables dans ladite méthode de détection.

On entend par hormones, les substances élaborées par les différentes glandes endocrines humaines et animales et notamment, les hormones hypophysaires (FSH, LH, TSH, GH, ACTH, prolactine, oxytocine, MSH, ADH), les hormones placentaires apparentées [choriogonadotropines humaines (hCG) et équines (eCG), choriosomatotropine (CS), GH placentaire], les hormones thyroïdiennes, les hormones surrenaliennes, les hormones gonadiques et les hormones pancréatiques.

Selon leur structure chimique, ces hormones appartiennent à différentes catégories : les hormones dérivées d'acides aminés (hormones thyroïdiennes, hormones de la médullosurrénale), les hormones peptidiques et protidiques (hormones pancréatiques, GH, ACTH, prolactine, MSH, ADH, oxytocine), les hormones stéroïdiennes (hormones gonadiques, hormones de la corticosurrénale) et les hormones glycoprotéiques (LH, FSH, TSH, hCG, eCG).

Les hormones glycoprotéiques sont caractérisées par une même organisation structurale : elles sont formées par l'association de deux sous-unités α et β. La sous-unité α est identique pour toutes les hormones glycoprotéiques d'une même espèce animale. À l'inverse, la sous-unité β est différente d'une hormone à l'autre et confère la spécificité d'action. Les hormones peptidiques, de même, présentent une parenté structurale ainsi que les hormones polypeptidiques (exemple : GH et prolactine).

De manière générale, ces hormones ne sont pas sécrétées à des taux constants mais présentent au contraire des variations de concentration circulante de
faible amplitude (micropulsatilité) ou, dans certains cas, de forte amplitude (ex : pic de sécrétion de la FSH puis de la LH en période préovulatoire). Il est donc nécessaire de disposer de méthodes de dosage qui permettent de mesurer de façon précise et spécifique le taux circulant de ces différentes hormones, dans le sang ou dans tout autre fluide biologique possible.

Ces méthodes de dosages doivent être, de plus, très sensibles, dans la mesure où les concentrations basales de ces différentes hormones sont relativement faibles (pour les hormones hypophysaires par exemple, de 0,1 ng/ml à quelques ng/ml), en dehors de tous cas pathologiques.

À titre d'exemple, la détection et/ou le dosage des hormones gonadotropes LH et FSH est particulièrement importante dans l'étude de la physiologie de la reproduction mâle et femelle chez les animaux et l'Homme. Chez les mammifères, par exemple, le fonctionnement de l'ovaire comporte pendant la période d'activité génitale (continue ou saisonnière selon les espèces) une succession de cycles ovariens au cours desquels les gamètes femelles mûrissent à intervalles réguliers.

Le cycle ovarien comporte deux phases : la phase folliculaire (croissance du follicule et maturation de l'ovocyte) aboutissant à l'ovulation, période propice à la fécondation, et la phase lutéale (formation du corps jaune). La FSH est responsable de la croissance et de la maturation du follicule préovulatoire ; la LH intervient plus particulièrement dans la croissance folliculaire terminale de ce dernier et dans le déclenchement de l'ovulation. En effet, l'ovulation intervient à un moment très précis et constant, pour chaque espèce, après le pic de LH (de 17 à 24 heures selon les espèces). Il apparaît donc utile et important de pouvoir disposer, aussi bien au laboratoire pour des dosages très précis que sur le terrain ou à domicile pour la détection du pic préovu-
latoire de LH (pour prévoir le meilleur moment pour une insémination artificielle, par exemple), d'outils de détection spécifiques de la LH, chez différents animaux et chez l'Homme.

De même, la possibilité de détecter des niveaux circulants très bas de la choriogonadotropine (CG) est particulièrement importante pour la mise au point de kits de diagnostics de gestation les plus précoce possibles, spécialement chez la femme.

Chez l'Homme, un certain nombre de tests réalisables à domicile à partir de l'urine ont été développés et commercialisés pour la LH et la hCG.

En ce qui concerne la LH, un certain nombre de kits sont maintenant disponibles et permettent de déterminer de façon précise la date de l'ovulation. Ces tests utilisent des anticorps monoclonaux et sont basés soit sur une réaction d'agglutination ("DISCRETEST", CHEFARO pour ORGANON ; "HI GONADO TEST", MOSHIDA) soit sur une réaction immunoenzymatique ("OVUSTICK", MONOCLONAL ANTIBODIES ; "OVUTEST", CLONATEC ; "FIRST REPONSE" ; "REVELATEST O", ARLEY-DIAGNOSTIC).

En ce qui concerne la hCG, plusieurs tests de grossesse sont disponibles et sont réalisés à partir d'anticorps polyclonaux ou, le plus fréquemment, d'anticorps monoclonaux. On peut distinguer selon leur principe :

- les tests d'hémagglutination (ou tests à anneaux) ("PRIMOTEST RAPIDE" de FUMOZE ; "BETA-TEST 100 UI" de SOEAMI-LEFRANCO ; "G-TEST" de THERANOL ; "ELLE-TEST BETA" de DEGLAUBE);
- les tests d'agglutination de particules d'or ("PREDICTOR COLOR" de NICHOLAS);
- les tests immunoenzymatiques à lecture indirecte (apparition d'une couleur bleue sur bandelette : "BLUE TEST" de CLONATEC) ou à lecture directe (apparition d'un signe particulier (point, barre ou signe +) : "BLUE
4

POINT" de CLONATEC ; "G-TEST LOGIC" de THERANOL ; "PREVISION" de PHARMYGIENE] ;
- les tests associant anticorps monoclonaux et migration sur membrane, sans enzyme de révélation : 5
"CLEAR BLUE EVIDENCE" de POLIVE-TRICOSTERIL ; "PRIMOTEST MINUTE" de FUMOUZE ; "G-TEST PRO" de THERANOL ; "FIRST RESPONSE" de TALCO ; "TEST PACK PLUS hCG" de ABBOTT). Ils sont caractérisés par l'apparition d'un signe coloré (bandes roses, barre bleue, etc...).

De manière générale, les méthodes de dosages, actuellement utilisées en clinique humaine, pour ces différentes hormones sont d'une part des méthodes radioimmunologiques (par exemple : système "AMERLEX-M" d'AMERSHAM, système "MAIAclone" de SERONO pour hLH, hFSH, hTSH, hCG, etc...) et d'autre part, des méthodes enzyamo-immunométriques ou immunométriques (utilisant un marqueur non-enzymatique : particules de latex, chélate d'europium). Parmi les systèmes enzyamo-immunométriques, certains utilisent un signal fluorescent (système enzyamo-microparticulaire "IMx" de ABBOTT ; "STRATUS SYSTEM" de AMERICAN DADE pour LH, FSH, hCG...) ou luminescent (système "AMERLITE" d'AMERSHAM pour LH, TSH, FSH, hCG ; système "MAGIC LITE" de CIBA CORNING pour TSH, prolactine...). Parmi les systèmes immunométriques, on peut citer notamment le procédé de dosage "DELFIA" de PHARMACIA utilisant l'europium comme marqueur fluorescent, pour hLH, hFSH, hTSH, hCG, etc...

Chez les animaux, les méthodes de dosage de la LH sont notamment :

- le dosage de la LH dans l'urine chez le Gorille (N.M. CZEKALA et al., J. Reprod. Fert., 1988, 82, 255-261), qui utilise deux anticorps monoclonaux dont l'un est fixé sur une plaque de microtitration et dont l'autre est couplé à de la phosphatase alcaline. Le temps d'incubation total de ce test est de 4 heures (2 h : incubation de l'échantillon sur l'anticorps fixé ; 1 h :
incubation du deuxième anticorps couplé ; 30 à 50 mn : révélation enzymatique). La sensibilité de ce dosage est de 0,5 ng/ml.

- le dosage de la LH bovine plasmatique (sérum ou milieu de culture), par une méthode radioimmunologique (R. HOIER et al., Theriogenology., 1988, 30, 235-243). Ce dosage est réalisé en présence de deux anticorps (AC₁ : anti-LH fait chez le lapin, AC₂ : anti-IgG de lapin) et de LH radioactive (marquée à l'iode 125).

Il s'agit d'une méthode par compétition, le premier anticorps (AC₁) se liant à la LH de l'échantillon ou à la LH* radioactive ajoutée (incubation de 36 à 48 h). La séparation du complexe anticorps-LH, de la LH* libre est réalisée en utilisant le deuxième anticorps (AC₂) immobilisé sur les parois d'un tube (incubation : 3 heures, sous agitation à 37°C).

La sensibilité de cette méthode est de l'ordre de 1,5 ng/ml.

- un dosage ELISA de la LH de souris, de rat, d'ovins et de bovins, applicable au sérum, aux milieux de culture de tissus et aux tampons, (J.L. SPEAROW et al., Biol. Reprod., 1987, 37, 595-605), qui utilise le principe de la compétition entre une LH couplée à de la peroxydase et la LH de l'échantillon, vis-à-vis d'un anticorps (AC₁) qui est soit un immunsérum anti-LH ovine fait chez le lapin, soit un anticorps monoclonal anti-LHβ bovine, soit un immunsérum anti-LHβ ovine fait chez le poulet.

Pour l'anticorps préparé chez le lapin, l'incubation AC₁-échantillon est de 16 à 24 h à 20°C sous agitation ; l'ajout de la LH-peroxydase nécessite une nouvelle incubation de 16 à 24 h à 4°C. La révélation est réalisée à l'aide de TMB (30 mn à 2 h).

Dans ces conditions, la sensibilité de la méthode est de 79 pg/ml.

- une méthode de dosage ELISA de la LH bovine
plasmatique (W.G. ABDUL-AHAD et al., J. Reprod. Fert., 1987, 80, 1-9). Il s'agit d'une méthode sandwich sur plaques de microtitration. Le premier anticorps (AC₁) est une IgG anti-LH bovine de lapin et le deuxième anticorps (AC₂) est le fragment Fab' préparé à partir du premier anticorps, conjugué à la peroxydase.

Ils présentent un protocole court (4 heures) et un protocole long (20 heures). Le seuil de détection obtenu avec le protocole court est de 260 pg/ml et celui obtenu avec le protocole long est de 70 pg/ml.

La révélation de la peroxydase se fait avec l'OPD.

Une autre publication des mêmes Auteurs (620th Meeting Dublin, Biochem. Soc. Transactions, 1985, 15, 277-278) relate le même procédé de dosage, utilisant comme AC₂ un conjugué Fab'-β lactamase.

Dans cet Article, il est spécifié que la durée du dosage est de 4 h 30 et que le seuil de détection est de 420 pg/ml.

- il faut également citer le dosage de la LH chez le singe Rhésus par un RIA qui utilise de la LH ovine marquée et un anti-sérum anti-LH ovine qui réagit avec les LH de nombreuses espèces.

Les méthodes de dosage de la FSH chez les animaux sont de type radioimmunologique essentiellement, de même pour les autres hormones.

Un dosage immunoenzymatique de la prolactine de rat a été décrit (A.P. SIGNORELLA et al., Anal. Biochem., 1984, 136, 372-381). Ce dosage, de type compétitif, donne un seuil de détection fixé à 0,6 ng/ml en appliquant un protocole long (24 heures).

Cependant, de manière générale, pour le dosage des hormones, tant chez l'Homme que chez l'animal, malgré la diversité des méthodes de dosages proposées et appliquées, de nombreux travaux mentionnent le problème d'interférences non-spécifiques dans les dosages, entraî-
nant l'obtention de résultats erronés (cas des "fau
positifs" ou des "fau négatifs") [J.P. GOSLING, Clin.
Clin. Immunoassay, 1989, 12, 18-19]. Ce problème
d'interférences non-spécifiques conduit à une perte dans
la sensibilité et le seuil de détection du dosage. On
peut notamment citer le cas d'un dosage immunoenzymatique
de hCG (B. LONGHI et al., 1986, J. Immun. Meth., 92, 89-
95) pour lequel le seuil de détection a été évalué à
2,2 UI/l dans un milieu sans sérum et à 10,4 UI/l dans un
milieu contenant 20 % de sérum humain "hCG négatif".

Un certain nombre de solutions à ce problème
d'interférence, ont été proposées, mais celles-ci abou-
tissent dans tous les cas, à une perte de sensibilité du
dosage. Il s'agit notamment :

- de supprimer la partie Fc du deuxième anti-
corps et de coupler directement l'enzyme sur un fragment
Fab' [W.G. ABDUL-AHAD et al., J. Reprod. Fert., 1987, 80,
1-9]. Il faut, dans ce cas, appliquer des temps
d'incubation et de révélation enzymatique plus longs pour
pallier la perte de sensibilité due au traitement du
deuxième anticorps : un seuil de détection de 70 pg/ml
pour la LH bovine exige un protocole de 20 heures, un
protocole court de 4 heures ne donnant qu'un seuil de
détection à 260 pg/ml.

- d'appliquer un test permettant de mesurer le
niveau des signaux non-spécifiques dépendants de
l'échantillon ; pour cela, l'anticorps spécifique non-
marqué (AC1) est substitué par un autre anticorps simi-
laire à AC1 mais d'une toute autre spécificité (P. KASPAR
de déterminer la valeur du signal non-spécifique, intrin-
sèque à chaque échantillon, et d'en tenir compte pour la
 calibration du dosage mais cela ne supprime en rien ce
problème.
- de saturer l'anticorps spécifique avec de l'avidine, dans le cas d'un dosage ELISA de l'oestradiol-17β, de type compétitif utilisant le complexe avidine-biotine (D.M. BODMER et L.X. TIEFENAUER, 1990, J. Immunoassay, 11, 139-145).

Ainsi, l'ensemble des méthodes précitées présentent un certain nombre d'inconvénients :

- des temps d'incubation longs, notamment dans le cas des LHs animales, non adaptés au dosage ou à la détection sur le terrain (4 h à plus de 24 h);

- des dosages qui parfois, ne peuvent pas être réalisés sur le sang total;

- l'absence de polyspécificité d'espèces de ces dosages;

- l'existence de signaux non-spécifiques importants, lors de la lecture des résultats, qui peuvent notamment entraîner des difficultés d'interprétation de ces derniers;

- un seuil de détection élevé, qui en résulte, variant de 100 pg à 1500 pg/ml dans le cas des LHs animales par exemple.

C'est pourquoi la Demanderesse s'est donné pour but de pourvoir à un procédé de dosage des hormones élaborées par les différentes glandes endocrines, applicables à de nombreuses espèces animales, y compris l'homme, qui répond mieux aux besoins de la pratique que les procédés de l'Art antérieur, notamment :

- en ce qu'il peut être réalisé en moins de 3 heures, selon un protocole simple dans des conditions qui peuvent être qualifiées de rustiques,

- en ce qu'il offre une lecture non-ambiguë du résultat, de type "tout ou rien", par l'obtention d'une couleur dans le cas de la détection d'un pic de sécrétion aiguë d'une hormone (exemple : pic préovulatoire de LH), alors que les tests de l'Art antérieur, lorsqu'ils sont basés sur une réaction colorimétrique, nécessitent une
interprétation des résultats bien délicate pour une personne non-expérimentée (par exemple la distinction d'un bleu pâle ou foncé ou tout autre nuance de couleur, lesquelles nuances de couleur peuvent de plus, être directement dépendantes de la température, ce qui introduit un facteur supplémentaire d'erreur),

- en ce qu'il peut être semi-quantitatif sans besoin d'aucun appareil de lecture, si une gamme étalon de l'hormone à doser est déposée, en plus des échantillons à tester, notamment pour distinguer, pour un même animal, le prélèvement contenant, pour la LH par exemple, le début du pic de LH, celui contenant le sommet du pic (valeur maximale) et celui contenant la fin du pic (valeur descendante) ; dans le cas de la LH un tel procédé permet ainsi de synchroniser l'insémination artificielle par rapport au début du pic ou par rapport au sommet du pic et permet également de distinguer les pulses de sécrétion de la LH chez le mâle ou la femelle après une incubation du substrat de 15 à 30 mn si nécessaire, pour une étude de la micropulsatilité,

- en ce qu'il présente à la fois une polyspécificité d'espèce et une spécificité de substance,

- en ce qu'il est reproductible,

- en ce qu'il est réalisable sur le terrain (lecture à l'œil nu) et

- en ce qu'il peut être parfaitement quantitatif en augmentant de façon importante la sensibilité du dosage et en abaissant le seuil de détection.

La présente invention a pour objet un procédé augmentant la sensibilité et la spécificité de la détection et/ou du dosage immunologique d'hormones humaines ou animales, dans des milieux de culture ou dans des fluides biologiques, mettant en œuvre au moins deux anticorps identiques ou différents, spécifiques de l'hormone à doser, lequel procédé est caractérisé en ce qu'au moins l'un des dits anticorps est préincubé dans un milieu
contenant du plasma ou du sérum dépourvu de l'hormone (des hormones) à détecter et/ou à doser.

On entend par anticorps préincubé, au sens de la présente invention, un anticorps "épuisé", -par mise en contact ou passage sur colonne de chromatographie convenable-, par toute substance pouvant induire une interférence sérique non hormonale et non spécifique.

Conformément à l'invention, le fluide biologique est avantageusement du sérum, du plasma, du sang total, du lait ou de l'urine.

Dans la suite de la présente Demande, le milieu contenant du sérum ou du plasma, dépourvu de l'hormone à détecter et/ou à doser est dénommé milieu INC.

Selon un mode de mise en oeuvre avantageux de ce procédé, ledit milieu INC comprend un sérum ou un plasma d'un animal ayant subi l'ablation d'une glande endocrine, appropriée au dosage, et est éventuellement associé à un tampon convenable.

Selon une disposition avantageuse de ce mode de mise en oeuvre, le milieu INC est dépourvu en hormones hypophysaires et comprend avantageusement un sérum ou un plasma d'un animal hypophysectomisé approprié, éventuellement associé à un tampon approprié.

On peut notamment citer comme tampon approprié un tampon à pH neutre associé à un agent surfactant et notamment un tampon PBS-Tween-BSA.

Selon une modalité avantageuse de cette disposition, le milieu INC comprend un sérum ou un plasma de bœuf hypophysectomisé, associé à un tampon approprié.

Selon une autre disposition avantageuse de ce mode de mise en oeuvre, le plasma ou sérum d'animal ayant subi l'ablation d'une glande endocrine appropriée et le tampon approprié sont dans un rapport 1:1.

Conformément à l'invention, ledit procédé est avantageusement un test enzymo-immunométrique, hautemen
spécifique et sensible, de détection d'au moins une hormone.

Selon un mode de mise en œuvre avantageux dudit test enzymo-immunométrique, le premier anticorps est fixé sur un support solide approprié et le deuxième anticorps préincubé dans un milieu contenant un plasma ou un sérum dépourvu de l'hormone à détecter et/ou à doser (milieu INC), et éventuellement couplé à une enzyme appropriée, sont mis en contact avec le fluide biologique à tester, après quoi l'activité enzymatique liée à la phase solide et/ou libre est révélée par tout moyen approprié.

Selon une disposition avantageuse de ce mode de mise en œuvre, lorsque le deuxième anticorps préincubé dans ledit milieu INC n'est pas couplé à une enzyme, la révélation de la réaction est alors réalisée par l'introduction d'un troisième anticorps couplé à une enzyme appropriée, préincubé dans ledit milieu INC et se liant spécifiquement au deuxième anticorps.

Selon une autre disposition avantageuse de ce mode de mise en œuvre, ledit milieu INC est dépourvu d'hormones hypophysaires.

Conformément à cette dernière disposition, les premier et deuxième anticorps sont avantageusement choisis dans le groupe qui comprend les anticorps monoclonaux anti-FSH, anti-LH, anti-TSH, anti-GH, anti-ACTH, anti-prolactine, anti-oxytocine, anti-ADH, anti-MSH, anti-hCG et anti-eCG et les anticorps polyclonaux anti-FSH, anti-LH, anti-TSH, anti-GH, anti-ACTH, anti-prolactine, anti-oxytocine, anti-ADH, anti-MSH, anti-hCG et anti-eCG.

Selon une modalité avantageuse de cette disposition, les anticorps polyclonaux anti-LH sont notamment obtenus par immunisation d'un animal approprié par un mélange de différentes isoformes de LH ovine, puis par purification convenable de l'immunsérum obtenu, lesquels anticorps polyclonaux présentent un pourcentage de réac-
tions croisées avec les autres hormones glycoprotéiques telles que la FSH, inférieur à 4 %, c'est-à-dire une spécificité vis-à-vis de la LH, en ce qu'ils présentent une polyspécificité de reconnaissance de la LH de nombreuses espèces animales et notamment au moins des espèces ovines, bovines, caprines, porcines, canines, camelines, murines ainsi que les cervidés et en ce qu'ils présentent une affinité vis-à-vis de la LH ovine de l'ordre du $10^9 M^{-1}$, respectivement dans deux espèces animales différentes.

Conformément à cette modalité avantageuse, les premier et deuxième anticorps sont avantageusement choisis dans le groupe qui comprend des anticorps polyclonaux de Lapin anti-LH ovine et des anticorps polyclonaux de Cheval anti-LH ovine et le troisième anticorps est avantageusement choisi dans le groupe qui comprend les anti-IgG de Cheval et les anti-IgG de Lapin couplés à une enzyme appropriée.

Également conformément à cette modalité avantageuse, le premier anticorps est un anticorps polyclonal de Lapin anti-LH ovine, le deuxième anticorps est un anticorps polyclonal de Cheval anti-LH ovine et le troisième anticorps est un anti-IgG de Cheval couplé à une enzyme appropriée et notamment à une peroxydase ou à une β-galactosidase.

Également conformément à cette modalité avantageuse, le mélange de différentes isoformes de LH ovines, mis en œuvre pour l'immunisation contient avantageusement au moins deux isoformes de LH ovines.

Les différentes isoformes de LH ovines sont de préférence en quantités équimolaires.

Une purification convenable desdits anticorps polyclonaux anti-LH peut être réalisée, selon le cas, soit par chromatographie d'affinité, soit par chromatographie d'échange d'ions.

Selon un autre mode de mise en œuvre dudit
test enzymo-immunométrique, préalablement à l'introduction du deuxième anticorps, le support solide est saturé en milieu INC.

En effet, de manière inattendue, la préincubation avec le milieu INC, tel que défini ci-dessus, permet :

- d'éliminer les problèmes de signal non-spécifique habituellement rencontrés dans ce type de dosage, en neutralisant toute interférence sérique non spécifique pouvant conduire à une diminution de la sensibilité d'un dosage,

- d'augmenter considérablement, de ce fait, la sensibilité de ce type de dosage, particulièrement importante dans le cas des hormones à faible taux circulant,

- de doser ainsi l'ensemble des hormones et notamment des hormones hypophysaires et placentaires appropriées, en obtenant des résultats correctement et aisément interprétables.

En conséquence, le dosage immunologique et plus particulièrement le dosage enzymo-immunométrique des hormones, conforme à l'invention, présente à la fois les caractéristiques d'un dosage quantitatif en apportant une très bonne sensibilité ainsi qu'une très bonne reproductibilité, et d'un dosage qualitatif par sa facilité de réalisation et d'interprétation.

L'efficacité et les avantages du procédé conforme à l'invention décrit ci-dessus est illustrée en particulier par le dosage enzymo-immunométrique de l'hormone lutéinisante (LH). En effet, ce dosage présente à la fois les caractéristiques d'un dosage quantitatif en apportant une très bonne sensibilité (seuil de détection : 60 pg/ml) ainsi qu'une très bonne reproductibilité, et d'un dosage qualitatif par sa facilité de réalisation et d'interprétation. Il peut donc être utilisé aussi bien au laboratoire pour des dosages très précis (ex : mesure de la micropulsatilité de la sécrétion de
LH) que sur le terrain (détectection du pic préovulatoire de LH pour l’insémination artificielle de femelles synchr
onisées et/ou de femelles superovulées, donneuses d’embryons).

Ce dosage de la LH, utilisable chez de num-
breuses espèces : bovine, ovine, caprine, porcine,
cameline, canine, murine, cervidés, permet la détection
précise du pic préovulatoire de LH chez la femelle et
présente un intérêt physiologique et agronomique évident.

Il va, de plus, permettre une bonne estimation du moment
optimal choisi pour l’insémination artificielle dans
echaque espèce concernée. En effet, l’intervalle entre le
pic de LH et l’ovulation est constant pour chaque
espèce ; par contre, l’intervalle de temps séparant la
venue en chaleurs (repère utilisé jusqu’à présent) et le
pic de LH est très fluctuant selon les individus d’une
même race.

Le test conforme à l’invention s’avère donc un
outil indispensable pour bien maîtriser ce facteur de va-
riabilité important pour la réussite de la fécondation
des ovocytes et de la collecte d’embryons de bonne qua-
lité. En effet, connaissant le moment précis de
l’ovulation, grâce à la détection du pic de LH, et de
l’insémination artificielle, on peut en déduire à quel
stade de développement seront les embryons que l’on veut
collecter. Ce point est important dans la mesure où des
embryons trop jeunes ou trop avancés ne sont pas commer-
cialisables (ex : avec membrane pellucide rompue).

Enfin, ce test de dosage de la LH animale est
intéressant dans le cadre de la mise au point d’un nou-
veau traitement (synchronisation, superovulation) ou de
l’extension de ces traitements à une race, voire à une
espèce dont la physiologie préovulatoire est mal connue
(ex : cervidés).

De même, le dosage enzymo-immunométrique de la
LH humaine, réalisé selon le procédé conforme à
l'invention, présente à la fois les caractéristiques d'un dosage quantitatif par la très bonne sensibilité acquise grâce audit procédé et d'un dosage qualitatif par sa facilité de réalisation et d'interprétation acquise égale-
mente par le procédé selon l'invention. Il peut donc être utilisé en laboratoire ou à domicile pour un usage individuel ("Home test") ; il servira, dans ce dernier cas, de kit de détection du pic préovulatoire de LH, caractérisé par l'apparition d'une couleur verte non-
ambiguë, et permettant de prévoir le moment de l'ovulation chez la femme.

Par ailleurs, lorsque l'on désire réaliser un dosage présentant une polyspécificité d'espèce, les anticorps doivent présenter des qualités particulières ; en ce cas, le choix des anticorps est important pour une mise en œuvre appropriée du procédé conforme à l'invention. C'est dans ce but que la Demanderesse a égale-
ment mis au point des anticorps particulièrement adaptés au procédé conforme à l'invention.

La présente invention a également pour objet des anticorps polyclonaux anti-LH, caractérisés en ce qu'ils sont obtenus par immunisation d'un animal approprié par un mélange de différentes isoformes de LH ovine, puis par purification convenable de l'immunsérum obtenu, en ce que lesdits anticorps polyclonaux présentent un pourcentage de réactions croisées avec les autres hormone glycoprotéiques telles que la FSH, inférieur à 4 %, c'est-à-dire une spécificité vis-à-vis de la LH, en ce qu'ils présentent une polyspécificité de reconnaissance de la LH de nombreuses espèces animales et notamment au moins des espèces ovines, bovines, caprines, porcinves, canines, camelines, murines ainsi que les cervidés et en ce qu'ils présentent une affinité vis-à-vis de la LH ovine de l'ordre du $10^5 M^{-1}$.

Selon un mode de réalisation avantageux des-
dits anticorps, l'animal approprié est le Lapin ; on ob-
tient ainsi des anticorps polyclonaux anti-LH ovine chez le Lapin.

Selon un autre mode de réalisation avantageux desdits anticorps, l'animal approprié est le Cheval ; on obtient ainsi des anticorps polyclonaux anti-LH ovine chez le Cheval.

Selon un autre mode de réalisation avantageux desdits anticorps, le mélange de différentes isoformes de LH ovine, mis en oeuvre pour l'immunisation, contient avantageusement au moins deux isoformes de LH ovine.

Selon une disposition avantageuse de ce dernier mode de réalisation, les différentes isoformes de LH ovine sont en quantités équimolaires.

Une purification convenable desdits anticorps polyclonaux anti-LH peut être réalisée, selon le cas, soit par chromatographie d'affinité, soit par chromatographie d'échange d'ions.

La présente invention a, de plus, pour objet un réactif pour la mise en œuvre du procédé de détection et/ou de dosage immunologique d'hormones chez l'animal y compris l'homme, conforme à l'invention, caractérisé en ce qu'il comprend un anticorps anti-hormone propre à être utilisé comme premier, deuxième et/ou troisième anticorps dans ledit procédé, lequel anticorps est précédé dans un milieu INC.

La présente invention a, de plus, pour objet une trousse de détection et/ou de diagnostic d'hormones telles que les hormones hypophysaires (la FSH, la LH, la TSH, la GH, l'ACTH, la prolactine, l'ocytocine, l'ADH, la MSH), les hormones thyroïdiennes, les hormones surrenales, les hormones génitales et les hormones pancréatiques chez l'homme ou l'animal, l'hCG et l'eCG, ou kit pour la mise en œuvre du test conforme à l'invention, caractérisé en ce qu'il comprend outre des quantités utiles de tampons appropriés pour la mise en œuvre de ladite détection.
- des doses appropriées d'un anticorps choisi parmi les anticorps anti-hormone convenable, y compris les anticorps anti-LH et les réactifs conformes à l'invention ;

5 - des doses appropriées de conjugués enzyme appropriée et anticorps, lequel anticorps est choisi dans le groupe qui comprend les anticorps anti-hormone convenable y compris les anticorps anti-LH et les réactifs conformes à l'invention, ou dans le groupe qui comprend les anti-IgG convenables, lesquels conjugués sont préincubés dans un milieu INC, conformément au réactif décrit ci-dessus ;

10 - des quantités ou doses appropriées d'un substrat de révélation de l'enzyme ;

- un support solide approprié si nécessaire ;

15 et - des quantités ou doses appropriées d'un milieu INC.

Selon un mode de réalisation avantageux dudit kit, lorsqu'il est mis en œuvre pour le dosage de la LH, il comprend :

- des doses appropriées d'un anticorps polyclonal choisi parmi les anticorps polyclonaux de Lapin anti-LH ovine, les anticorps polyclonaux de Cheval anti-LH ovine conformes à l'invention et les réactifs conformes à l'invention contenant l'un des anticorps polyclonaux anti-LH ovine précités ;

20 - des doses appropriées de conjugués enzyme appropriée et anticorps, lequel anticorps est choisi dans le groupe qui comprend les anticorps polyclonaux de Lapin anti-LH ovine, les anticorps polyclonaux de Cheval anti-LH ovine conformes à l'invention ou dans le groupe qui comprend les anti-IgG de Cheval et les anti-IgG de Lapin, lesquels conjugués sont préincubés dans un milieu INC, conformément au réactif décrit ci-dessus ;

25 - des quantités ou doses appropriées d'un sub-
strat de révélation de l’enzyme ;
- un support solide approprié, si nécessaire ;
- un capillaire de prélèvement ; et
- éventuellement, des quantités ou doses ap-
propriées d’un milieu INC.

Selon un autre mode de réalisation avantageux
de ce kit, l’enzyme est choisie dans le groupe qui com-
prend les peroxydases et la β-galactosidase.

Les substrats de révélation de la peroxydase
sont avantageusement l’OPD et l’ABTS ; le substrat de ré-
vélation de la β-galactosidase est avantageusement le 4-
méthylumbelliféryl-β-D-galactopyranoside (MUG) et l’or-
thro-nitrophényl-β-O-galactopyranoside (ONPG).

Le support solide est avantageusement choisi
parmi les supports connus tels que les plaques de micro-
titration, les sticks, les bandelettes, les billes ou les
membranes.

Selon un autre mode de réalisation avantageux
de ce kit, il comprend :
- une série de supports solides convenables
revêtus d’un anticorps choisi parmi les anticorps anti-
hormone convenable, y compris les anticorps anti-LH et
les réactifs conformes à l’invention, lesquels supports
solides sont éventuellement saturés en milieu INC ;
- des doses appropriées d’un anticorps choisi
dans le groupe qui comprend les anticorps anti-FSH, anti-
LH, y compris les anticorps anti-LH conformes à
l’invention, anti-TSH, anti-GH, anti-ACTH, anti-
prolactine, anti-octocine, anti-ADH, anti-hCG, anti-eCG
et anti-PMSG, différents du premier anticorps et les
réactifs conformes à l’invention ;
- des doses appropriées de conjugués peroxy-
dase-anti-IgG convenables, préincubés dans un milieu INC,
conformément au réactif décrit ci-dessus ; et
- des quantités appropriées d’un substrat de
révélation de la peroxydase.
Selon une disposition avantageuse de ce mode de réalisation, il comprend :

- une série de supports solides convenables revêtus d'un anticorps choisi dans le groupe qui comprend les anticorps polyclonaux de Lapin anti-LH ovine conformes à l'invention et les réactifs conformes à l'invention contenant l'anticorps polyclonal de Lapin précité, lesquels supports solides sont éventuellement saturés en milieu INC ;

- des doses appropriées d'un anticorps choisi dans le groupe qui comprend les anticorps polyclonaux de Cheval anti-LH ovine et les réactifs conformes à l'invention contenant l'anticorps polyclonal de Cheval précité ;

- des doses appropriées de conjugués peroxydase-anti-IgG de Cheval préincubés dans un milieu INC, conformément au réactif décrit ci-dessus ;

- des quantités appropriées d'un substrat de révélation de la peroxydase ; et

- un capillaire de prélèvement.

Selon une autre disposition avantageuse de ce mode de réalisation, il comprend :

- une série de supports solides convenables revêtus d'un anticorps choisi dans le groupe qui comprend les anticorps polyclonaux de Lapin anti-LH ovine conformes à l'invention et les réactifs conformes à l'invention contenant l'anticorps polyclonal de Lapin précité, lesquels supports solides sont éventuellement saturés en milieu INC ;

- des doses appropriées de conjugués β-galactosidase-anticorps polyclonaux de Cheval anti-LH ovine préincubés dans un milieu INC, conformément au réactif décrit ci-dessus ;

- des quantités appropriées d'un substrat de révélation de la β-galactosidase ; et

- un capillaire de prélèvement.
Outre les dispositions qui précèdent, l'invention comprend encore d'autres dispositions qui ressortiront de la description qui va suivre.

L'invention sera mieux comprise à l'aide du complément de description qui va suivre, qui se réfère à des exemples de réalisation des anticorps polyclonaux conformes à l'invention et des exemples de mise en œuvre du test conformes à l'invention.

Il doit être bien entendu, toutefois, que ces exemples et dessins sont donnés uniquement à titre d'illustration de l'objet de l'invention, dont ils ne constituent en aucune manière une limitation.

EXEMPLE 1 : Préparation des anticorps polyclonaux anti-LHs animales conformes à l'invention.

1) Caractéristique de l'immunogène :
L'antigène utilisé pour les immunisations est un mélange équimolaire de différentes fractions purifiées de LH ovine (oLH). Ces fractions ont été répertoriées ainsi :

- oLH 1051 1083
- 1055 1085
- 1072 1086

2) Procédé d'obtention des anticorps polyclonaux anti-LH :

a.2) anticorps fait chez le cheval (poney MW5)
Chaque injection contient 1 mg du mélange oLH précisé ci-dessus, dissous dans 2,5 ml de sérum physiologique stérile et préparé en éulsion dans 2,5 ml d'adjuvant de Freund complet.

Le protocole d'immunisation consiste en 6 injections suivies de 8 rappels après chacun desquels a été réalisée une saignée, 2 semaines plus tard. La séquence exacte des injections est illustrée sur le schéma I ci-après :
injections-rappels

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>R₄</th>
<th>R₅</th>
<th>R₆</th>
<th>R₇</th>
<th>R₈</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 semaines</td>
<td>mois</td>
<td></td>
</tr>
<tr>
<td>pas de</td>
<td>une saignée 2 semaines après chaque saignée rappel</td>
<td></td>
</tr>
</tbody>
</table>

Schéma I

b.2) "Anticorps fait chez le lapin :

Chaque injection contient 0,1 mg du mélange oLH, dissous dans 0,5 ml de sérum physiologique stérile. Le tout est préparé en émulsion dans 0,5 ml d'adjuvant de Freund complet et injecté en multiples points le long de la colonne vertébrale (injections intra-dermiques).

Le protocole d'immunisation a consisté en 4 injections réalisées toutes les deux semaines. Puis, a suivi une série de 12 rappels effectués selon la séquence illustrée ci-après dans le schéma II :

2 mois	3 mois	2 mois	2 mois	1 mois	5 mois	4 mois	2 mois	2 mois	2 mois	1 mois
saignées : S₁	S₂	S₃	S₄	S₅	S₆	S₇	S₈	S₉	S₁₀	

Schéma II

Les saignées sont réalisées deux semaines après les rappels indiqués à l'exception de S₅ qui a été réalisée quatre semaines après R₇.

Trois lapins ont été immunisés : deux ont reçu les 12 rappels, un n'a reçu que 6 rappels.

3) Procédés de purification des anticorps polyclonaux anti-LH :

a.3) Purification de l'immunsérum de cheval :

Cette purification se fait par chromatographie
d'échanges d'ions sur DEAE-Trisacryl (IBF-FRANCE) en colonne K26/40 de PHARMACIA.

L'immunsérum (15 ml) est dialysé une nuit contre un tampon Tris-HCl 0,025 M, NaCl 0,035 M, pH 8,8 à 4°C. Parallèlement, la colonne est équilibrée avec ce même tampon. Après filtration du sérum dialysé, celui-ci est passé sur la colonne avec un débit de 50 ml/heure. La fraction éluee obtenue à la sortie de colonne, contient les IgG du sérum et représente la fraction enrichie en anticorps que l'on utilise dans le dosage. Avant utilisation, cette fraction est dialysée contre du PBS pH 7,4 (0,01 M de KH₂PO₄/K₂HPO₄, NaCl 0,15 M). Elle est ensuite concentrée par ultrafiltration sur support MINICON (AMICON, Irlande) jusqu'à obtenir une concentration comprise entre 5 et 10 ng/ml. Elle est stockée sous forme d'aliquote à -20°C, diluée dans 50 % de glycérol bi-distillé.

b.3) Purification de l'immunsérum de lapin :

La purification se fait par chromatographie d'affinité sur protéine A. On utilise le gel Protéine A-Sépharose CL-4B (PHARMACIA) coulé dans une colonne 2 X 10 cm (PHARMACIA). Le sérum (5 ml) est préalablement dialysé contre du tampon phosphate 0,1 M pH 8, filtré et passé sur la colonne équilibrée avec le même tampon (débit : 15 ml/h).

Les immunoglobulines sont désorbées en utilisant un gradient de pH allant de 6 à 4,5 et préparé avec un tampon citrate-acide citrique 0,1 M puis avec un tampon pH 3 (acide acétique 0,1 N, NaCl 0,15 M).

Les fractions éluees sont neutralisées avec du tampon phosphate 1 M pH 8, et dialysées contre du PBS avant d'être concentrées par ultrafiltration (cf ci-dessus) et stockées à -20°C dans 50 % de glycérol bi-distillé.

Les protocoles expérimentaux utilisés en 3 a) et b) ont été réalisés selon les indications données par

Dans tous les cas, la concentration exacte des fractions purifiées est évaluée par une mesure de la densité optique à 280 nm en considérant qu'une d.o. de 1,4 correspond approximativement à une solution d'IgG à 1 mg/ml.

4) Caractéristiques et spécificité des anticorps anti-LH conformes à l’invention :
 réactions croisées :
 Compte-tenu de la parenté structurale avec d'autres hormones glycoprotéiques, il est indispensable pour obtenir un dosage fiable, de disposer d'anticorps ne reconnaissant que la LH et ne présentant aucune réaction croisée avec la FSH et la TSH dans les espèces animales étudiées. En conséquence, diverses FSH et TSH ont été testées dans le dosage pour en évaluer le pourcentage de réaction croisée.

De la même façon, des LH de différentes espèces animales ont été testées dans le dosage et leur pourcentage de réaction croisée a été calculé.

Le pourcentage de réaction croisée est calculé de façon classique en comparant les courbes dose-réponse obtenues d'une part, avec une gamme de concentrations de chaque LH testée et, d'autre part, avec une gamme de concentrations de LH ovine. A partir de la courbe "référence" obtenue avec la LH ovine, soit Y la concentration donnant 50 % du signal optique maximal (E.D.50). A partir de la courbe obtenue avec une autre LH, soit X la concentration correspondante à la même densité optique que
celle utilisée pour définir X :

Le pourcentage de réaction croisée est égal à $\frac{X}{Y} \times 100$

a) Réactions croisées obtenues avec les différentes LH testées :

<table>
<thead>
<tr>
<th>Origine de la LH</th>
<th>Bovine</th>
<th>Caprine</th>
<th>Porcine</th>
<th>Canine</th>
<th>Cameline</th>
<th>Murine (rat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pourcentage de réaction croisée</td>
<td>97 %</td>
<td>45,5 %</td>
<td>34 %</td>
<td>20 %</td>
<td>55,6 %</td>
<td>20 %</td>
</tr>
</tbody>
</table>

b) Réactions croisées obtenues avec les FSH et TSH des espèces animales pour lesquelles la LH est reconnue par les deux anticorps (AP1 et AP2) spécifiques du dosage :

<table>
<thead>
<tr>
<th>Espèce animale</th>
<th>Ovine</th>
<th>Bovine</th>
<th>Porcine</th>
<th>Murine (rat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH</td>
<td>0,05 %</td>
<td>3,12 %</td>
<td>0,06 %</td>
<td>0,03 %</td>
</tr>
<tr>
<td>TSH</td>
<td>8 %</td>
<td>2 %</td>
<td>0,62 %</td>
<td>1,15 %</td>
</tr>
</tbody>
</table>

Il faut remarquer que le pourcentage de réaction croisée avec la TSH ovine est élevé (8 %) et est peut être dû à une contamination élevée dans la préparation hormonale utilisée.

Affinité des anticorps anti-LH (anticorps lapin et cheval) utilisés dans le dosage :

La constante d'affinité (K_a) a été mesurée selon la méthode décrite par B. FRIGUET et al. (1985), J. Immunol. Methods, vol. 77, 305-319) et est calculée selon la représentation de KLOTZ :

- anticorps de Lapin anti-LH ovine,
 $K_a = 1,87 \times 10^9 M^{-1}$
- anticorps de Cheval anti-LH ovine,
 $K_a = 2.10^9 M^{-1}$.
EXEMPLE 2 : Test immunoenzymométrique conforme à l'invention : dosage de LHs animales.

A - Principe du dosage :

Il s'agit d'un dosage ELISA (Enzyme-Linked-ImmunoSorbant-Assay) c'est-à-dire que l'ensemble des réactifs sont liés à une phase solide. La phase solide utilisée est, de manière non limitative, une plaque de microtiration à 96 puits en Luxlon (plastique hydrophobe), mais le dosage peut être réalisé sur d'autres types de plaques ou d'autres types de supports, notamment des sticks, des bandelettes, des billes ou des membranes.

Le dosage conforme à l'invention, de type "sandwich", utilise deux anticorps polyclonaux tels que définis ci-dessus, c'est-à-dire fabriqués à partir d'un même antigène, la LH ovine, mais produits chez deux espèces animales différentes (le lapin et le poney) :

- le premier anticorps (API) est fixé sur le fond des puits d'une plaque de microtiration. Ce premier anticorps a été produit chez un lapin ;
- après lavages de la plaque, on sature éventuellement la plaque avec un milieu approprié additionné de sérum ou de plasma dépourvu de LH. Ce milieu est ci-après dénommé milieu INC ;
- l'échantillon à doser est incubé ; un volume de 10 µl par puits est nécessaire c'est-à-dire que le dosage peut se faire à partir d'une goutte de plasma ou de sang. Le dosage à partir du sang se fait dans un milieu modifié contenant de l'héparine, ci-après dénommé milieu S ;
- lavages de la plaque, incubation du deuxième anticorps préalablement dilué dans le milieu INC. Ce deuxième anticorps a été produit chez un poney ;
- lavages de la plaque, incubation d'un troisième anticorps couplé à une enzyme (anticorps de chèvre-anti-IgG de cheval couplé à la peroxydase ou à la β-galactosidase). Avant son dépôt, l'anticorps est préalab
blemment dilué dans le milieu INC ;
- après lavages, l'activité enzymatique liée à
la phase solide est révélée à l'aide d'un substrat chro-
mogène ou fluorogène spécifique de l'enzyme utilisée.

5 L'intensité de la réaction colorée ou du signal fluo-
resent obtenu est proportionnelle à la concentration de la
LH contenue dans l'échantillon dosé comme le montrent les
courbes de la figure 1. Le temps de réaction nécessaire
est de 5 minutes pour une détection de pic préovulatoire
et de 15 minutes pour une mesure quantitative précise de
taux circulants bas.

Le rôle de l'ordre d'utilisation des deux
anticorps spécifiques a été déterminé en comparant les
deux combinaisons possibles :

. courbe (■—■) : AP1 Lapin
. courbe (■—■) : AP1 Cheval
. courbe (■—■) : AP2 Cheval et
. courbe (■—■) : AP2 Lapin.

Les résultats, présentés sur la figure 1, ont
été obtenus à partir d'une gamme de dilutions de la LH
ovine réalisée dans du tampon phosphate (gamme standard).
Comme on le distingue très nettement, la combinaison AP1
Lapin/AP2 Cheval (■—■) donne de meilleurs résultats tant
d'un point de vue seuil de détection que sensibilité du
dosage.

Le fait d'avoir utilisé deux anticorps faits
chez deux espèces animales distinctes est crucial pour
l'obtention de la sensibilité améliorée du test conforme
t à l'invention, par rapport aux tests de l'Art antérieur.

Cette sélection particulière d'anticorps polyclonaux
donne plus de probabilités à la molécule de LH d'être
reconnue par des épitopes différents par chacun des im-
munsérum par rapport à des immunsérum faits chez la
même espèce. La figure 2 montre la diminution de la
sensibilité du dosage lorsqu'on utilise deux anticorps
(AP1 et AP2) faits chez la même espèce (Cheval, par
exemple : AP1 = AP Cheval à 10 µg/ml et AP2 = AP Cheval-β-galactosidase à 5 µg/ml).

L'utilisation d'un même anticorps comme AP1 et comme AP2 (courbe - -) aboutit à une perte considérable de la sensibilité du dosage comme en témoignent les courbes de la figure 2. On observe, pour la concentration de oLH donnant 50% de liaison, une sensibilité de 250 pg/ml dans le cas d'un protocole conforme à l'invention (API Lapin, AP2 Cheval, AP3 anti Cheval-peroxydase ; courbe (.. Q..) contre 1,8 ng/ml dans le cas d'un protocole à deux anticorps identiques (courbe - - -), comme précisés ci-dessus. Ce dernier chiffre correspond à une efficacité résiduelle de 15%, par rapport au dosage réalisé dans les conditions optimales (conformes à l'invention, voir notamment exemple 3 ci-après). Le pourcentage de liaison a été calculé selon la formule B-NS/T, dans laquelle B est la densité optique mesurée pour chaque point de la gamme, NS est la densité optique mesurée pour le point zéro de la gamme et T représente la densité optique mesurée pour le point le plus haut de la gamme.

B - Caractéristiques des milieux d'incubation conformes à l'invention :
1) Milieu de dilution du sang :
Dans le cas d'un dosage réalisé directement à partir du sang, le milieu de dilution du prélèvement doit être additionné d'héparine pour éviter la coagulation. Le sang est donc récupéré dans du PBS-Tween-BSA additionné de 0,2% d'héparine, soit 100 µl d'héparine pour 50 ml de PBS-Tween-BSA (voir Exemple 3).
2) Milieu INC :
2.a) composition du milieu INC :
Ce milieu est composé d'au moins 50% de sérum ou de plasma de bélier hypophysectomisé dilué dans du PBS-Tween-BSA.
2.b) obtention du sérum de bélier hypophysec-
tomisé :

L'animal est mis à jeun 48 heures avant l'opération. Celle-ci est réalisée sous anesthésie ; l'ablation de l'hypophyse se fait par le plancher buccal.

Des prélèvements de sang sont effectués tous les jours afin de contrôler la chute du taux de LH circulant à partir de l'hypophysectomie. Lorsque celui-ci n'est plus détectable, l'animal est anesthésié et saigné à blanc. Le sang est collecté sous héparine pour récupérer le plasma où est mis à coaguler pour en séparer le sérum. Plasma et sérum sont conservés à -20°C.

L'animal est saigné entre 5 et 7 jours après l'hypophysectomie.

2.c) Intérêt du milieu INC dans le dosage :

Il est indispensable, dans un dosage plasmétique, de réaliser la gamme standard dans un milieu de dilution contenant la même proportion de plasma que les préparations d'échantillons à doser. Si ceux-ci sont dilués dix fois, la gamme standard sera réalisée avec du sérum d'animal hypophysectomisé (LH⁻) dilué dix fois dans du tampon de dilution normal (PBS-BSA-Tween). La figure 3 rapporte les résultats obtenus avec une gamme standard préparée dans du tampon de dilution (-■-) et ceux obtenus avec une gamme réalisée dans ce même tampon additionné de 10 % de sérum d'animal hypophysectomisé (--□--) (dosage de type AP3-peroxydase/OPD, voir Exemple 3). On observe une interférence, particulièrement gênante, du sérum LH⁻ dans le dosage, surtout dans la zone des faibles concentrations de LH ovine (oLH), qui masque toute la sensibilité réelle du dosage.

En conséquence, les deux immunsérum anti-LH ont été épuisés sur des IgG de mouton afin d'éliminer toute interférence entre IgG provenant d'espèces animales différentes (ovine d'une part, lapine et équine d'autre part). Les résultats obtenus n'ont montré qu'une faible diminution du signal non-spécifique important, observé
sans épuisement préalable.

Il semblerait qu'une autre source d'interférence puisse intervenir, due par exemple à une substance immunologiquement proche de la LH et reconnue comme telle.

Des résultats semblables ont été décrits dans un dosage radioimmunologique de la LH chez le singe Rhésus (NEILL et al., 1977, PECKHAM et al., 1977). En utilisant de la LH ovine comme traceur iodé et un anticorps anti-LH ovine, les Auteurs ont observé une interférence non spécifique très importante pour les faibles concentrations de gamme ; à l'inverse ils n'observaient pas d'interférence en utilisant de la LH de singe iodée et un anticorps anti-LH de singe. Cette substance "LH-like" n'a pas été purifiée et son effet interférant n'a pas été contourné par les Auteurs.

Le procédé conforme à l'invention a pour sa part, l'avantage de permettre d'éliminer cette difficulté, grâce au milieu INC qui a permis la mise au point d'un dosage très sensible, fiable et rapide.

C - Substrats et conjugués enzymatiques :

Ce dosage n'est pas dépendant de l'enzyme utilisée comme marqueur. Deux enzymes ont été utilisées jusqu'à présent, la peroxydase et la β-galactosidase, la première avec deux substrats chromogènes, la deuxième avec un substrat fluorogène.

1) Substrats utilisés :
 * pour la peroxydase :
 . l'OPD (ortho-phénylènediamine)
 . l'ABTS (2-2'-azino-bis(3-éthylbenz-thiazoline-6-sulfonique acide).
 - l'OPD est préparé extemporanément à 0,5 mg/ml dans du tampon acétate (0,1 M d'acétate de sodium) pH 5,6, additionné d'eau oxygénée à 0,2 %.

La mesure de la densité optique se fait à 492 nm ; la réaction se traduit par l'apparition d'une
couleur orange à brune et est arrêtée avec 50 µl d'acide sulfurique 2N.

- l'ABTS est préparé dans du tampon citrate 0,05 M pH 4 ; pour 12 ml de tampon citrate on rajoute 60 µl d'ABTS stock et 50 µl d'eau oxygénée à 2 %, la mesure de la densité optique se fait à 405 nm.

Sous l'action de la peroxydase, l'ABTS incolore devient vert.

. Tampon citrate : 2 volumes d'acide citrique

\((5,3 \text{ g/l} \text{ C}_6\text{H}_8\text{O}_7, 1\text{H}_2\text{O}) + \text{un volume de phosphate de sodium (Na}_2\text{HPO}_4, 12 \text{ H}_2\text{O}) (17,73 \text{ g/l}). \) La réaction peut être arrêtée avec 20 µl de SDS 10 %, ceci n'ayant aucun caractère obligatoire.

* Pour la β-galactosidase :

- le 4-méthylumbelliféryl-β-D-galactopyranoside (MUG), produit commercial (SIGMA M 1633) :

2,5 mg sont dissous dans 12,5 ml de tampon phosphate 0,1 M, pH 7,4 (voir composition dans Exemple 3). La réaction est arrêtée avec 50 µl de carbonate de sodium 2 M.

La lecture du signal fluorescence se fait avec un spectrofluorimètre pour plaques ELISA.

La longueur d'onde d'excitation = 360 nm, la longueur d'onde d'émission = 448 nm.

2) Conjugués enzymatiques :

* l'anticorps conjugué à la peroxydase (AP3 : anticorps-anti-IgG de cheval couplé à la peroxydase est disponible dans le commerce : Jackson Immunoresearch Laboratories Inc., code n° 108-035-003.

* l'anticorps conjugué à la β-galactosidase a été réalisé selon deux optiques :

- soit l'anticorps anti-LH de cheval est couplé directement à la β-galactosidase (AP2-β-galactosidase),

- soit un anticorps anti-IgG de cheval est couplé à la β-galactosidase (AP3-β-galactosidase).
réalisation du couplage :

L'anticorps anti-LH de cheval est purifié sur chromatographie d'échanges d'ions (DEAE) ainsi que l'anticorps anti-IgG de cheval (fait chez le mouton).

D - Tampons :

* Tampon carbonate 0,1M pH 9,6 : diluer 10 fois une solution molaire de carbonate-bicarbonate de sodium dans de l'eau distillée.

* PBS : diluer 100 fois une solution molaire de phosphate de potassium mono- et bi-potassique pH 7,4 dans une solution à 0,15 % de NaCl.

* PBS-Tween : ajouter 0,1 % (1 ml dans 1 litre) de Tween 20 dans le PBS.

* PBS-Tween-BSA : ajouter 0,2 % de BSA dans le PBS-Tween.

EXEMPLE 3 : Dosage colorimétrique quantitatif avec le système AP3-peroxydase: dosage de LHs animales

1.a) Système AP3-peroxydase/substrat ABTS :

* sensibilisation des plaques ou coating :

100 µl de l'anticorps anti-LH ovine de lapin (AP1) préparé dans du tampon carbonate 0,1 M pH 9,6 à la concentration de 7,5 µg/ml sont distribués par puits. La plaque est incubée 1 heure à 37°C puis une nuit à 4°C. Ensuite, la plaque est lavée avec du PBS-Tween 5 fois à raison de 300 µl par puits, soit manuellement, soit avec un laveur automatique pour plaque ELISA.

L'AP1 peut être préparé à une concentration différente : 10 µg/ml ou 5 µg/ml ; les concentrations extrêmes étant de 20 µg/ml et de 2,5 µg/ml.
* Surcoating ou saturation des puits :
Après lavage, les puits sont remplis de 100 µl de milieu INC et la plaque est incubée 30 minutes à 37°C. A cette étape, la plaque est soit utilisée pour la suite du dosage, soit vidée, mise à sécher à 37°C puis gardée dans une atmosphère sèche, scellée sous plastique.

* incubation des échantillons et de la gamme :
La gamme de oLH (LH ovine) est préparée dans du PBS-Tween-BSA contenant du sérum d'animal hypophysectomisé dilué au 1/10e. Elle comprend les concentrations suivantes : 60 pg/ml, 125 pg/ml, 250 pg/ml, 500 pg/ml, 1 ng/ml, 2 ng/ml, 4 ng/ml, 8 ng/ml et éventuellement 40 ng/ml de oLH. Elle est déposée en double à raison de 100 µl par puits.

Les plasmas à doser sont dilués 10 fois dans du PBS-Tween-BSA. Ils sont déposés en double ou en triple, à raison de 100 µl par puits. (La dilution de 1/10e n'est pas impérative et pourra être supérieure ou inférieure si cela est nécessaire). Le tout est mis à incuber 1 heure à 37°C. Après quoi, la plaque est lavée 5 fois avec du PBS-Tween (300 µl/puits) de la même façon que ci-dessus.

* incubation du deuxième anticorps anti-LH (cheval) :

Cet anticorps, AP2, est préalablement préparé dans du milieu INC : il est dilué à la concentration de 5 µg/ml dans le milieu INC et mis à incuber 30 minutes à 37°C avant d'être déposé dans les puits à raison de 100 µl par puits.

L'AP2 une fois distribué, la plaque est mise à incuber 1 heure à 37°C. Comme dans le cas de l'AP1 de lapin, la concentration de 5 µg/ml pour l'AP2 n'est pas obligatoire mais elle doit dans tous les cas être inférieure à celle de l'AP1. Elle peut être comprise entre 15 µg/ml (si AP1 est à 20 µg/ml) à 2,5 µg/ml, voire 1 µg/ml (si AP1 est à 2,5 µg/ml). Après l'incubation, la
plaque est lavée 5 fois de la même façon que précédemment avec du PBS-Tween.

* incubation du troisième anticorps anti-IgG de cheval couplé à la peroxydase :

L'AP3 est également préincubé 30 mn à 37°C dans le milieu INC à la dilution de 1/5000e (selon l'indication du fabricant) avant d'être déposé dans les puits (100 μl par puits). On laisse incuber 1 heure à 37°C. La plaque est ensuite lavée 5 fois avec du PBS-Tween.

* dépôt du substrat de la peroxydase :

On dépose 100 μl d'ABTS préparé comme précisé ci-dessus (C) ; au bout de 5 minutes, les puits correspondant à une forte concentration de oLH, sont colorés en vert.

Après 15 minutes d'incubation à 37°C, une première mesure de la densité optique est effectuée pour fournir une première indication de développement de la réaction. Après quoi, la plaque est à nouveau mise à incuber 15 minutes à 37°C, si la réaction nécessite d'être poursuivie, notamment dans le cas d'échantillons à faible teneur en LH. Puis, on procède à une lecture définitive des résultats. On peut arrêter la réaction enzymatique en ajoutant 20 μl de SDS à 10 % par puits.

La lecture de la densité optique se fait à l'aide d'un spectrophotomètre automatique pour plaques ELISA, muni d'un filtre à 405 nm.

La figure 4 présente les résultats d'un tel dosage réalisé en présence de milieu INC, avec une gamme de concentrations de oLH faite dans du PBS-BSA-Tween (--■--) et avec une gamme réalisée dans du LH⁻ (sérum d'animal hypophysectomisé) dilué au 1/10e avec du PBS-BSA-Tween (-■-). La superposition parfaite des deux courbes indique que l'interférence non-spécifique décrite ci-dessus est totalement éliminée. On constate également une amélioration de la sensibilité du dosage par rapport
à la courbe (-■-) de la figure 3.

L'effet du milieu INC est le même, qu'il soit composé de 50 % de plasma ou de sérum d'animal hypophysectomisé.

La proportion de 50 % de LH- dans le milieu INC n'est pas impérative et peut être augmentée. En dessous de 50 % cependant, l'interférence non-spécifique décrite n'est plus totalement éliminée.

La figure 5 illustre la courbe obtenue, dans ces conditions, avec une gamme standard préparée dans le milieu de dilution indiqué ci-dessus. (La figure 5 a été obtenue dans les mêmes conditions expérimentales que la courbe (-■-) de la figure 4. Le seuil de détection du dosage est de 60 pg/ml. Le coefficient de variation intra-dosage est de 2,5 % (n = 10), le coefficient de variation inter-dosage est de 6 % (n = 8).

Le protocole exposé ci-dessus est un mode de réalisation non limitatif tant pour les concentrations d'anticorps que pour les temps d'incubation du substrat que l'on peut varier. Les conditions expérimentales présentées ci-dessus représentent un mode de réalisation préféré pour le développement d'un dosage très sensible et très fiable (peu de variabilité intra et inter-dosage) tout en utilisant les plus faibles concentrations en réactifs possibles.

1.b) Révélation de la peroxydase avec l'OPD :

L'OPD peut être utilisé comme substrat, avec le même protocole expérimental. On distribue 100 µl de substrat par puits ; la révélation enzymatique se fait à température ambiante ou à 4°C pendant 5 à 20 mn ; elle est arrêtée avec 50 µl de solution acide comme précisé ci-dessus (C). La lecture de la densité optique se fait à 492 nm, à l'aide du même type d'appareil.

Ce dosage est également utilisable dans les milieux de culture de cellules et le lait notamment.
EXEMPLE 4 : Dosage fluorimétrique quantitatif avec le système AP2-β-galactosidase : dosage de LhS animales

* Sensibilisation des plaques (coating) :
 L'anticorps anti-LH lapin (AP1) est préparé à
 la concentration de 2,5 µg/ml dans du tampon carbonate
 0,1 M, pH 9,6. Il est distribué à raison de 100 µl par
 puits. L'incubation est de 1 heure à 37°C puis 18 heures
 à 4°C.

 * surcoating ou saturation des puits :
 Après 5 lavages au PBS-Tween, 100 µl de milieu
 INC sont déposés dans chaque puits. L'incubation est de
 30 mn à 37°C. La plaque est, soit conservée en milieu
 sec, soit directement utilisée.

 * Incubation des échantillons :
 Elle se fait de la même façon que dans le proto-
 colaire exposé à l'Exemple 3. La durée d'incubation peut
 varier de 1 h à 1 h 30.

 * Incubation du deuxième anticorps (anti-LH de
 cheval couplé à la β-galactosidase, AP2) :
 Après lavages de la plaque, l'AP2-β-galactosio-
 dase est déposé à raison de 100 µl par puits. Il a été
 préalablement préparé dans le milieu INC à la dilution de
 1 µg/ml et préincubé 30 mn à 37°C.
 L'incubation dans les puits est de 1 h à 37°C
 après quoi la plaque est lavée 5 fois avec du PBS-Tween.

 * Révélation de la β-galactosidase avec un
 substrat fluorogénique (4-MUG) :
 200 µl de MUG préparé selon les indications
 données ci-dessus en C sont déposés dans chaque puits. La
 plaque est incubée à 42°C pendant 1 à 2 heures. La mesure
 de la fluorescence se fait avec un fluorimètre auto-
 matique pour plaques ELISA ("Microfluor" de DYNATECH -
 USA).

 Sa longueur d'onde d'excitation est de
 360 nm ; il enregistre à une longueur d'onde de 448 nm.
 Les résultats obtenus avec une gamme standard
réalisée dans le milieu PBS-BSA-Tween-LH⁻¹ 1/10e sont rapportés sur la figure 6. Le MUG a été incubé pendant 1 heure ; on observe que le seuil de détection est moins bon que dans le protocole de l'Exemple 3 (entre 250 et 500 pg/ml). D'autre part, les coefficients de variation intra et inter-dosage sont plus élevés dans ce cas. L'intérêt de ce protocole est de permettre de réaliser le dosage en un temps plus court.

Les concentrations de réactifs ont été choisies de sorte que le rapport quantité de réactifs utilisés/qualité du dosage soit le plus favorable. Il est évident que les concentrations peuvent être modifiées tout en gardant un dosage correct.

EXEMPLE 5 : Dosage de LHs animales avec le système AP2-peroxydase.

On peut réaliser dans les mêmes conditions que celles de l'Exemple 4, un dosage de LH, dans lequel AP2 est couplé à une peroxydase.

EXEMPLE 6 : Dosage colorimétrique quantitatif et qualitatif de la LH, réalisé avec le système AP3-peroxydase à partir du sang ; développement d'un kit de détection du pic de LH chez les animaux, utilisé en laboratoire ou sur le terrain :

Le dosage à partir du sang peut être utilisé dans un but tant quantitatif que qualitatif ; on entend par "dosage qualitatif", un test permettant la détection du pic prouvatoire de LH chez la femelle, sur le terrain, sans appareil de mesure, simplement interprétable à l'œil. Ce test permet de même la détection de pulses de LH chez la femelle ou chez le mâle.

a) Procédé de collecte du sang :

Un dosage réalisé sur du plasma présente une véritable charge dans la mesure où il nécessite une étape de centrifugation, le pipetage du plasma après centrifugation et son transfert dans de nouveaux tubes et une étape de dilution avant l'utilisation dans le dosage
(c'est-à-dire pipetage, homogénéisation dans le tampon de dilution).

Afin d'éliminer ce problème, on applique dans ce test, un procédé nouveau de prélèvement de sang sur les animaux. Il consiste à placer une aiguille très fine dans la veine jugulaire de l'animal, laisser perler une goutte de sang, y appliquer l'extrémité d'un capillaire en verre, hépariné, et calibré à un volume bien précis (10 ou 25 μl). Le capillaire doit être tenu horizontalement, afin que le sang puisse migrer jusqu'à l'autre extrémité du capillaire. À l'aide d'une petite poire en plastique, adaptée au diamètre du capillaire, le contenu de celui-ci est récupéré dans un tube contenant 225 μl de PBS-Tween-BSA hépariné dans le cas d'un capillaire de 25 μl. Le sang est ainsi dilué 10 fois et n'a plus qu'à être distribué en 2 fois 100 μl dans les puits prévus d'une plaque.

On peut éviter cette dernière étape, en remplissant tous les puits de la plaque avec 90 μl de PBS-BSA-Tween hépariné. Il suffit alors d'utiliser des capillaires de 10 μl de volume et de les vider chacun directement dans un puits de la plaque de microtitration. L'échantillon à doser est ainsi directement dilué et déposé dans la plaque.

b) Protocole :

* Sensibilisation des plaques :
L'AP1 est dilué à 7,5 μg/ml dans du tampon carbonate 0,1 M pH 9,6 et incubé 1 h à 37°C puis 18 h à 4°C. Les plaques sont ensuite lavées au PBS-Tween, 5 fois, puis remplies de 100 μl par puits de milieu INC. Elles sont incubées 30 mn à 37°C, vidées et séchées puis scellées sous plastique, ou directement utilisées.

* Dépôt des échantillons :
- soit les 10 μl de sang sont déposés directement dans le puits correspondant à l'échantillon après avoir préalablement rempli tous les puits de 90 μl de
PBS-BSA-Tween hépariné ;

- soit on dépose 100 μl par puits des 25 μl de sang dilués dans 225 μl de PBS-BSA-Tween hépariné.

L'incubation est de 1 heure ou moins à 37°C ou à la température ambiante. Pendant l'incubation, on agite la plaque toutes les 15 mn, en la basculant manuellement afin de réhomogénéiser les hématies dans la phase liquide. On effectue ensuite 5 lavages au PBS-Tween si on est en laboratoire, ou au sérum physiologique (NaCl 0,15 M) ou à l'eau courante du robinet si on est sur le terrain.

* Dépôt du deuxième anticorps :
100 μl d'AP2 préparé dans le milieu INC à 5 μg/ml sont déposés dans chaque puits. L'incubation est de 45 mn à 37°C ou à la température ambiante. La plaque est ensuite lavée selon les indications précédentes.

* Dépôt du troisième anticorps :
100 μl d'AP3-peroxydase sont déposés par puits ; l'AP3 a été préparé dans le milieu INC à la dilution 1/5000e selon les indications de l'Exemple 3.

Dans le kit notamment, AP2 et AP3 seront fournis tout préparés. Après une incubation de 45 mn à 37°C ou à température ambiante, la plaque est lavée comme précédemment et on procède à la révélation enzymatique.

c) Lecture du dosage à l'œil nu, interprétation des observations :

La solution d'ABTS (préparée selon les indications ci-dessus en C) et l'eau oxygénée à 2 % ne sont mélangées qu'extemporanément c'est-à-dire juste avant utilisation. 100 μl de substrat sont déposés par puits.

La réaction enzymatique est instantanée et se fait à température ambiante. Au bout de 2 mn, l'apparition d'une couleur verte dans les puits correspondant à un pic préovulatoire de LH est visible. Au bout de 5 mn, on distingue les prélèvements de sang "porteurs" d'un pic préovulatoire de LH comparativement aux autres
dont le substrat reste incolore.

* Ce test de type "tout ou rien" est possible grâce à la combinaison AP1-AP2 et milieu INC, qui neutralise tout signal non-spécifique, c'est-à-dire que les échantillons à faible teneur en LH, préparés dans ce protocole, n'entraînent aucune coloration du substrat contrairement à ceux de forte teneur en LH qui provoquent l'apparition instantanée d'une couleur verte.

Le milieu INC évite ainsi d'avoir à distinguer un vert plus ou moins clair (cas d'un signal non spécifique élevé, par exemple) d'un vert foncé (niveau de LH élevé) avec tous les risques de variabilité que cela représente. En effet, le caractère de tout ou rien de ce test présente un avantage important par rapport aux kits immunoenzymatiques vendus pour la LH humaine ou pour d'autres hormones animales.

d) Dosage quantitatif de LH à partir du sang :

Le dosage réalisé à partir du sang peut être à la fois qualitatif mais aussi quantitatif. Il suffit d'appliquer le protocole expérimental optimisé du dosage, exposé ci-dessus à l'Exemple 3 et de prendre la précaution d'"agiter" la plaque pendant l'incubation du sang.

Le calcul du coefficient de corrélation entre la mesure de la concentration de LH dans le sang et dans le plasma provenant du même prélèvement, a été réalisé en comparant les résultats obtenus à partir des deux "milieux biologiques" (voir figure 7).

Le coefficient de corrélation = 0,9788 (n=40), l'équation de la droite de régression :

\[y = 1,14 x + 0,889 \] où \(y \) est la concentration de LH (ng/ml) mesurée dans le sang et \(x \) est la concentration de LH (ng/ml) mesurée dans le plasma selon le protocole exposé à l'Exemple 3.

La valeur obtenue pour le coefficient de corrélation indique qu'un dosage quantitatif très précis à partir du sang est tout à fait possible avec le protocole
indiqué ci-dessus.

EXEMPLE 7 : Autres variantes du test de détection de LHs animales conforme à l’invention :

L'incubation simultanée d'AP2 et d'AP3-peroxydase (1 h) diminue la durée totale du dosage.

Les essais réalisés ont donné une courbe dose-réponse de moins bonne sensibilité que celle obtenue selon le protocole exposé ci-dessus mais suffisante pour la détection de fortes concentrations en LH (à partir de 15 ng/ml). L'incubation du substrat doit en contre-partie être plus longue 30 à 45 mn si nécessaire pour la détection de pics préovulatoires.

EXEMPLE 8 : Détection du pic de LH dans le lait chez la chèvre et la brebis :

1) chez la chèvre:

L'exemple illustré ici a été réalisé sur un troupeau de 20 chèvres synchronisées pour traitement d'insémination artificielle.

Le protocole expérimental est le même que celui exposé dans l'exemple 3, à la différence que 100 µl de lait sont déposés dans chaque puits. Il n'y a dans ce cas aucune dilution à faire, le lait est utilisé brut, non dilué, contrairement au plasma ou au sang.

Après avoir éliminé les premiers jets du lait, les 100 µl d'échantillon peuvent être prélevés avec un capillaire calibré, de la même façon que dans le cas du sang. De même, la plaque est lavée au PBS-Tween ou à l'eau du robinet selon l'endroit de la réalisation du dosage.

La figure 8 présente le profil de sécrétion du pic de LH chez une chèvre, dans le sang (courbe ——) et dans le lait (—...). On constate que les concentrations de LH trouvées dans le lait sont infimes par rapport aux concentrations plasmatiques. Pour cette raison, il est nécessaire d'utiliser un spectrophotomètre de plaques de microtitration. On constate que l'apparition du pic de LH
dans le lait est décalée de 4 heures par rapport au sang, si on utilise le début du pic comme point de comparaison. Le Tableau I ci-dessous rapporte les concentrations de LH mesurées dans le sang et le lait au cours de 7 prélèvements effectués toutes les 4 heures dans les deux milieux simultanément. La comparaison des résultats montre que l'apparition du pic de LH dans le lait est décalée de 4 ou 8 heures par rapport au sang, si on compare le maximum du pic. Le début du pic, par contre, est toujours décalé de 4 heures dans le lait par rapport au sang, et ce de façon constante. En dehors du pic préovulatoire, les concentrations de LH dans le lait ne sont pas détectables.
<table>
<thead>
<tr>
<th>Prélèvements</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>n°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chèvre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sang Lait</td>
<td>1</td>
<td>0.10 ND</td>
<td>0.30 ND</td>
<td>0.14 ND</td>
<td>0.19 ND</td>
<td>0.21 ND</td>
<td>0.32 ND</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.20 ND</td>
<td>0.50 ND</td>
<td>0.29 ND</td>
<td>0.32 ND</td>
<td>0.23 ND</td>
<td>0.32 ND</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.50 ND</td>
<td>1.03 ND</td>
<td>1.02 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.50 ND</td>
<td>1.03 ND</td>
<td>1.02 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.50 ND</td>
<td>1.03 ND</td>
<td>1.02 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.50 ND</td>
<td>1.03 ND</td>
<td>1.02 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.50 ND</td>
<td>1.03 ND</td>
<td>1.02 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.50 ND</td>
<td>1.03 ND</td>
<td>1.02 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.50 ND</td>
<td>1.03 ND</td>
<td>1.02 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.50 ND</td>
<td>1.03 ND</td>
<td>1.02 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.50 ND</td>
<td>1.03 ND</td>
<td>1.02 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.50 ND</td>
<td>1.03 ND</td>
<td>1.02 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0.50 ND</td>
<td>1.03 ND</td>
<td>1.02 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0.50 ND</td>
<td>1.03 ND</td>
<td>1.02 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.50 ND</td>
<td>1.03 ND</td>
<td>1.02 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.50 ND</td>
<td>1.03 ND</td>
<td>1.02 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>0.50 ND</td>
<td>1.03 ND</td>
<td>1.02 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>0.50 ND</td>
<td>1.03 ND</td>
<td>1.02 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>0.50 ND</td>
<td>1.03 ND</td>
<td>1.02 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.50 ND</td>
<td>1.03 ND</td>
<td>1.02 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
<td>0.98 ND</td>
</tr>
</tbody>
</table>

ND: non détectable

Les concentrations sont données en ng/ml

TABLEAU I
Ce Tableau I illustre bien l'importance de la mise en œuvre du procédé conforme à l'invention dans la conduite de la reproduction à l'intérieur des troupeaux caprins mais également et de manière plus générale pour toutes les espèces pour lesquelles il est utilisable (bovins, ovins, etc...). Il permet d'éliminer les femelles n'ayant pas eu de pic préovulatoire (donc n'ayant pas ovulé) et de féconder à un moment optimum les femelles ayant présenté un pic préovulatoire précoce.

Ceci permet l'établissement de schémas d'insémination tels que le schéma III ci-dessous, très utile notamment pour rentabiliser au mieux les campagnes d'insémination artificielle menées dans les différentes espèces animales concernées.

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline
\text{Intervalle fin de traitement} & 16h & 20h & 24h & 28h & 32h & 36h & 40h & \text{non détecté} \\
\text{pic de LH (h)} & & & & & & & & \text{d} 40h \\
\hline
\text{nombre de } & (1) & (2) & (7) & (9) & (12) & (3) & (1) & \text{I.A. 45H} \\
\text{femelles} & 17.5\% & 63.2\% & 19.3\% & \text{non détecté} & & & & \text{I.A. 45H} \\
\text{taux de} & (0/1) & (2/2) & (2/7) & (9/9) & (8/12) & (7/9) & (6/8) & (5/11) \\
\text{gestation} & 40\% & 60.5\% & 45.5\% & & & & & \text{I.A. 45H} \\
\hline
\end{array}
\]

SCHEMA III

2) Chez la brebis :

L'exemple illustré ici a été réalisé sur un troupeau de 12 brebis laitières Lacaune choisies parmi les "bonnes" laitières.

Ces femelles ont reçu un traitement de synchronisation (acétate de fluorogestone), pendant 14 jours, après quoi elles ont reçu une injection de 500 U.I. d'ECG (hormone stimulant l'ovaire).

Les prélèvements de sang et de lait ont été faits toutes les quatre heures, à partir de la détection du comportement d'oestrus. Chaque femelle a été ainsi prélevée neuf fois, pendant 32 heures.
La mesure de la concentration de LH s'est faite dans les deux milieux, sang et lait, selon le protocole expérimental exposé dans l'exemple 3 ci-dessus.

Le tableau II ci-après exprime les résultats en ng/ml, et montre un parfait décalage de quatre heures entre le pic de LH dans le sang et celui détecté dans le lait, dans lequel, en dehors du pic préovulatoire, les concentrations en LH ne sont pas détectables.
La détection du pic de LH dans le lait offre
plusieurs avantages :

. sa durée est plus importante que dans le sang (20 à 24 heures contre 8 à 12 heures dans le sang), ce qui nécessite moins de prélèvements à faire, l'intervalle entre chaque prélèvement pouvant être plus important (par exemple toutes les huit heures) ;
. une prise de lait est moins "stressante" qu'une prise de sang, et peut se faire au moment de la traite des animaux ;
. de plus, chez la brebis, la lecture du test dans le lait peut se faire à l'œil nu.

La figure 16 représente le profil de sécrétion du pic de LH en ng/ml, en fonction du temps, chez une brebis, dans le sang, (courbe -.-) et dans le lait (---).

EXEMPLE 9 : Applications sur le terrain :

Ces exemples sont illustrés par des planches et appuyés par une étude de la corrélation entre les concentrations obtenues par le dosage ELISA et celles obtenues par un dosage radioimmunologique réalisé dans le plasma.

a) Détection de pics préovulatoires de LH chez des brebis superovulées (figures 9A et B) :

Les figures 9 sont des photos de plaques comportant 12 colonnes dénommées 1 à 12 et 8 lignes dénommées A à H.

Les colonnes 1 et 2 correspondent à la gamme étalon des concentrations et les colonnes 3 à 11 correspondent aux prélèvements réalisés chez huit brebis.

La figure 9A donne l'ordre de dépôt des échantillons. Les prélèvements d'une femelle sont déposés en colonne (colonnes 3 à 11) ; chaque prélèvement est dosé en double. Les pics de LH "apparaissent" en vert foncé ce qui dans cette figure et les figures suivantes est représenté en gris foncé comme on le voit en détail sur la figure 9B, dans laquelle la gamme de concentrations est également déposée à gauche de la plaque sur 2 colonnes.
(colonnes 1 et 2).

Les prélèvements ont été réalisés toutes les 4 heures à partir du début des chaleurs. Pour la brebis 1 (colonne 3), on observe un pic sur les deux premiers prélèvements (puits A3-B3 et C3-D3).

Ce dosage a été réalisé à partir de plasmas. Le temps de révélation a été de 15 mn à température ambiante.

La figure 10 illustre un profil de sécrétion de LH obtenu chez une brebis (Exemple 3) par le dosage ELISA (AP3-peroxydase/ABTS) et par RIA (radio immunoassay) à partir du plasma.

b) Détection de pics préovulatoires chez des chèvres superovulées (figure 11) :

Cette figure représente une photo d'une plaque du même type que la précédente (colonnes 1 à 12, ligne A à H).

Des prélèvements ont été réalisés toutes les 4 heures après le début des chaleurs.

Les dosages ont été faits à partir du sang. La révélation a été de 10 mn à température ambiante.

Les prélèvements par animaux ont été déposés en colonne : la colonne 2 montre, par exemple, un pic dans les puits D2-E2 puis la fin du pic en F2. Le sommet du pic est en D2. En dehors des pics, le substrat reste incolore. Dans la colonne 6, on observe de même le maximum d'un pic en D6-E6 puis la fin du pic en F6.

c) Détection de pics préovulatoires chez des vaches (figure 12) :

Après injection de GnRH, on prélève les animaux toutes les 30 minutes. Les prélèvements sont dosés en double et déposés en colonne (vache 1 ; colonnes 2 et 3 ; vache 2 : colonnes 4 et 5 ; vache 3 : colonnes 6 et 7 ; vache 4 : colonnes 8 et 9. La gamme standard est déposée dans les deux premières lignes A et B (figure 12A).
Le dosage est fait à partir du sang. Le temps de révélation est de 5 mn en figure 12A et de 15 mn en figure 12B à température ambiante. On constate l'absence de pic de LH chez la vache 2, un début de pic de LH au 4e et 5e prélèvement (F₂-F₃/G₂-G₃) pour la vache n° 1. Chez les deux animaux suivants, le pic est apparu plus rapidement : au 2e prélèvement (D₆-D₇) pour la vache n° 3 et dès le 1er prélèvement (C₈-C₉) pour la vache n° 4. On observe très bien la retombée du pic pour cette dernière.

La figure 13 donne l'intégralité du profil de sécrétion de la LH chez une vache traitée au GnRH. On peut constater une superposition des concentrations mesurées par ELISA et par RIA.

d) Étude de la micropulsatilité chez des béliers (figure 14) :

Les dosages ont été réalisés dans le plasma selon le protocole de l'Exemple 3. Les prélèvements ont eu lieu toutes les 20 minutes. Ils sont déposés par ligne (bélier 1 : lignes C et D ; lignes E et F ; bélier 3 : lignes G et H) et dosés en duplicates (les duplicates sont disposés verticalement).

Le temps de révélation est de 30 minutes. On observe un pulse en C₉-D₉ pour le bélier n° 1, en E₄-F₄ et E₁₀-F₁₀ pour le bélier n° 2, et un très léger en G₄-H₄ pour le bélier n° 3 de même en E₉-F₉ pour l'animal n° 2.

La figure 15 illustre un profil de sécrétion de LH obtenu chez le bélier avec les dosages ELISA et RIA. Les concentrations obtenues en ELISA ont des valeurs absolues plus basses que celles en RIA, par contre, le profil est identique. Cette différence est due à la meilleure sensibilité du dosage ELISA qui permet de détecter des valeurs plus faibles que le RIA.
e) Calcul du coefficient de corrélation obtenu entre dosages réalisés par ELISA et dosages par RIA :
Le dosage RIA utilisé est celui publié par J. PELLETIER et al., 1982.

1) Corrélation chez les bovins : (n = 60)
 coefficient de corrélation : \(r = 0.9705 \)
 équation de la droite de régression :
 \(y = 1.09x - 0.971 \).

2) Corrélation chez les caprins : (n = 60)
 coefficient de corrélation : \(r = 0.9759 \)
 équation de la droite de régression :
 \(y = 1.031x - 0.978 \).

3) Corrélation chez les ovins (n = 67)
 coefficient de corrélation : \(r = 0.9808 \)
 équation de la droite de régression :
 \(y = 1.0745x - 2.45 \)
 où \(Y \) est la concentration de LH (ng/ml) mesurée par ELISA,
 \(X \) est la concentration de LH (ng/ml) mesurée par RIA.

EXEMPLE 10 : Détection du pic de LH chez la biche.

Des dosages ont été fait à partir de prélèvements de sang réalisés toutes les deux heures pendant toute la période des chaleurs, chez la biche Rusa de Nouvelle-Calédonie. Les prélèvements ont été faits sur sept biches et les dosages ont été réalisés comme décrit à l'exemple 3. Les tests sont lus à l'œil nu comme pour les autres espèces. La figure 17 montre le profil de sécrétion de LH en ng/ml en fonction du temps chez une biche (biche n° 80). Les résultats obtenus chez l'ensemble des femelles montrent là encore, que le moment du pic de LH est très variable pendant la période des chaleurs : il a lieu, en général, au début des chaleurs.

Ceci illustre bien l'importance du procédé conforme à l'invention pour pouvoir établir la précision du moment d'insémination, étant donné la variabilité dans
l'apparition du pic de LH.

On peut, en particulier, noter l'intérêt de ce procédé dans l'insémination artificielle, de femelles donneuses d'embryons, chez des races de la famille des cervidés en voie de disparition.

EXEMPLE 11 : Détection du pic de LH chez la chienne

Les dosages sont réalisés comme décrit à l'exemple 3, à partir des prélèvements de sang journaliers faits sur 2 chiennes pendant la période des cha-leurs. Chez la chienne, le pic préovulatoire de LH s'étend sur un laps de temps plus important que chez les autres espèces décrites : la durée est de 24 heures en moyenne. De ce fait, il peut être détecté en ne faisant qu'un prélèvement de sang journalier, ce qui présente un avantage pour la clientèle d'un cabinet vétérinaire. Les résultats obtenus avec la chienne "DIXIE" illustrés sur la figure 18 le montrent clairement. Les tests sont lus à l'œil nu comme pour les autres espèces.

La figure 18 représente le profil de sécrétion de LH, (□) et de progestérone (-Methods) en ng/ml, obtenus chez la chienne DIXIE.

On observe qu'au-delà de 48 heures après le pic préovulatoire (3.9.90), la teneur en progestérone a considérablement augmenté (>50 ng/ml). Ceci témoigne de la présence d'un corps jaune (responsable de la forte sécrétion en progestérone) qui résulte d'une ovulation.

Etant donné la longueur de la période des cha-leurs, chez la chienne, le kit permettra de connaître avec précision le moment de l'ovulation chez la chienne suivie et permettra de pratiquer l'insémination au moment optimal (la fécondation a lieu 48 heures après l'ovulation, chez la chienne). Là encore, un schéma d'insémination pourra être établi précisément, à l'aide du procédé conforme à l'invention.
EXEMPLE 12 : Détection du pic de LH chez la truie

Une corrélation a été établie entre les valeurs de concentration en LH établies par un dosage radioimmunologique et celles obtenues avec le procédé conforme à l'invention, réalisé selon le protocole de l'exemple 3. Les dosages ont été faits sur des plasmas de truies.

- le coefficient de corrélation \(n = 0,943 \)
- l'équation de la droite de régression :
\[
y = 0,1719x + 0,069 \quad (n = 20), \text{ où :}
\]
y est la concentration de LH (ng/ml) mesurée par ELISA ;
et \(x \) est la concentration de LH (ng/ml) mesurée par RIA.

La figure 19 illustre un profil de sécrétion de LH en ng/ml obtenu avec un dosage conforme à l'invention (-*--) et avec un dosage RIA (-[]-).

EXEMPLE 13 : Dosage de la FSH ovine avec le procédé conforme à l'invention.

a- Anticorps utilisés pour le dosage :
- le premier anticorps (AC₁) est un anticorps monoclonal spécifique de la sous-unité \(\beta \) de la FSH de nombreuses espèces (bovine, ovine, équine, porcine, humaine, rat, lapin, chien, autruche). Il a été gracieusement fourni par Monsieur le Professeur Jacques LUSSIER pour ces essais expérimentaux. Cet anticorps monoclonal a été produit par le Docteur LUSSIER et son équipe (Université de Montréal - Faculté de médecine vétérinaire - CRRA - CP 5000 - St Hyacinthe J297C6 - Québec). Il s'agit d'un anticorps monoclonal de type IgG1.
- le deuxième anticorps (AC₂) est un anticorps polyclonal spécifique de la FSH ovine, qui a été fait chez le lapin. Il a été produit et est disponible à la station de Physiologie de la reproduction - INRA - 37380 NOUZILLY.
- le troisième anticorps (AC₃) est un anticorps polyclonal commercialisé par les Laboratoires Jackson (USA). Il s'agit d'un anticorps anti-IgG de lapin...
couplée à la peroxydase et fait chez la chèvre - référence 111-035-003.

b- Protocole expérimental
Le protocole utilisé est celui présenté dans l'exemple 3 :

(1) le premier anticorps est préparé dans du tampon carbonate 0,1M pH 9,6 à la concentration de 7,5 µg/ml. 100 µl sont distribués par puits. Les temps d'incubation pour la sensibilisation des plaques sont les mêmes : 1 heure à 37°C et 18 heures à 4°C.

(2) les lavages et la saturation des puits ("surcoating") sont réalisés de la même façon que dans l'exemple 3.

(3) l'incubation des échantillons et de la gamme : même procédé que dans l'exemple 3, la gamme de FSH ovine (standard du NIH : oFSH-13-AFP-2846-C) est préparée dans du PBS-Tween-BSA contenant du sérum d'animal hypophysectomisé dilué au 1/10ème. Elle comprend les concentrations : 125 pg/ml, 250 pg/ml, 500 pg/ml, 1 ng/ml, 2 ng/ml, 4 ng/ml, 8 ng/ml et 40 ng/ml. Elle est déposée en double à raison de 100 µl par puits. Les plasmas à doser sont dilués dix fois dans du PBS-Tween-BSA. La durée de l'incubation est de une heure à 37°C.

(4) lavages identiques à ceux de l'exemple 3

(5) préparation et incubation du deuxième anticorps (AC₃), anti-FSH ovine. Il est préparé dans le milieu INC à la concentration de 5 µg/ml. Sa préparation est réalisée de la même façon que dans l'exemple 3. L'incubation est de une heure à 37°C.

(6) lavages identiques à ceux de l'exemple 3,

(7) préparation et incubation du troisième anticorps (AC₃) anti-IgG de lapin couplé à la peroxydase. Il est préparé selon le protocole de l'exemple 3 à la dilution de 1/500ème (selon les indications du fabricant). Incubation de une heure à 37°C.

(8) lavages identiques à ceux de l'exemple 3,
(9) dépôt du substrat de la peroxydase et lecture de la densité optique.

c- Résultats :

* la figure 20 représente les résultats d'un tel dosage réalisé selon le protocole INC (courbe B). Le seuil de détection est à 0,25 ng/ml et la sensibilité du dosage est considérablement augmentée par rapport à la courbe A qui a été obtenue sans appliquer le procédé INC. En effet, dans le cas de la courbe A, le tampon utilisé pour le surcoating, l'incubation de AC2 et AC3 a été du PBS-BSA-Tween simple. Seule la gamme standard de la oFSH a été réalisée dans les mêmes conditions que pour la courbe B, c'est-à-dire dans du PBS-BSA-Tween additionné de sérum de l'animal hypophysectomisé dilué au 1/10ème.

La comparaison de ces deux courbes montre l'importance du procédé INC pour l'obtention d'une très bonne sensibilité dans ce dosage de la oFSH. Ces résultats démontrent également que l'efficacité du procédé INC n'est pas restreinte au dosage de LHs animales par les AP1 et AP2 ci-dessus définis mais qu'elle s'applique également au dosage d'une autre hormone hypophysaire, la FSH faisant intervenir d'autres anticorps. L'utilisation du milieu INC a permis, comme dans le dosage de LHs animales et de la hLH, de neutraliser toutes interférences sériques non spécifiques et d'améliorer ainsi considérablement le seuil de détection et la sensibilité du dosage de la oFSH.

* 53 plasmas de brebis ont été dosés pour la FSH selon le procédé INC. Les résultats obtenus par cette technique ont été corrélés à ceux obtenus par un dosage radioimmunologique :

le coefficient de corrélation est de 0,9759
54
l'équation de la droite de régression est
Y = 0,5856X - 0,845
où Y est la concentration de oFSH (ng/ml)
mesurée par ELISA et X est la concentration de oFSH
(ng/ml) mesurée par RIA.

Il est à noter enfin, que des concentrations
plasmatiques élevées (15 à 20 ng/ml) en oFSH sont tout-à-
fait détectables à l'œil, sans besoin d'appareil de lec-
ture, et se distinguent nettement des taux plasmatiques
bas (0,5 à 2 ng/ml). Ceci peut permettre de détecter et
mesurer le pic de FSH sécrété avant l'ovulation dans des
conditions tout-à-fait rustiques, hors du laboratoire.

Par le seuil de détection qu'il permet dans le
dosage, le procédé INC donne la possibilité de détecter
des niveaux circulants bas (entre 0,25 et 5 ng/ml), ce
qui présente un intérêt physiologique évident.

EXEMPLE 14 : Dosage de la LH humaine

a- Anticorps utilisés pour le dosage :
 * le premier anticorps (AC₁) est un anticorps
monoclonal spécifique de la LH humaine (hLH) commercia-
lisé par la Société Pierce - référence : 37110. Il s'agit
d'un anticorps monoclonal de type IgG₁, il provient du
clon ZMLHZ.
 * le deuxième anticorps (AC₂) est un anticorps
polyclonal anti-hLH, fait chez le lapin et commercialisé
par la Société UCB - référence : 1504/001.
 * le troisième anticorps (AC₃) est un anti-
corps polyclonal commercialisé par les laboratoires
Jackson - référence 111-035-003. C'est un anticorps anti-
IgG de lapin couplé à la peroxydase, fait chez la chèvre.

b- Protocole expérimental :
le protocole appliqué est celui de l'exemple
3 :

(1) AC₁ est préparé dans du tampon carbonate
0,1 M pH 9,6 à la concentration de 10 µg/ml (ou
7,5 µg/ml). 100 µl sont distribués par puits.
L'incubation est de une heure à 37°C et 18 heures à 4°C.

(2) lavages et surcoating (cf exemple 3)

(3) incubation des échantillons et de la gamme : cf exemple 3. Les échantillons à doser sont dilués 10 fois (ou 5 fois) dans du PBS-BSA-Tween. La gamme de hLH est préparée dans du PBS-BSA-Tween additionné de sérum d'animal hypophysectomisé dilué 10 fois. Elle comprend les concentrations suivantes : 62,5 pg/ml, 125 pg/ml, 250 pg/ml, 500 pg/ml, 1 ng/ml, 2 ng/ml, 4 ng/ml, 8 ng/ml, 40 ng/ml.

(4) lavages - cf exemple 3

(5) AC₂ est préparé à 2,5 µg/ml et préincubé dans le milieu INC de la même façon que dans l'exemple 3

(6) lavages

(7) AC₃ est préparé au 1/5000ème dans le milieu INC, comme dans l'exemple 3

(8) lavages

(9) dépôt du substrat (ABTS) et lecture des résultats au bout d'une heure.

Résultats

* La figure 21 montre les résultats obtenus avec une gamme standard de hLH en utilisant le procédé INC selon le protocole ci-dessus (courbe B) et ceux obtenus avec une même gamme standard sans appliquer le procédé INC (courbe A). Dans ce dernier cas, le tampon utilisé pour le surcoating, l'incubation de AC₂ et AC₃ a été du PBS-BSA-Tween seul. La comparaison des deux courbes illustre là encore, l'intérêt et l'impact du procédé INC qui apporte une très nette amélioration dans la sensibilité du dosage et dans son seuil de détection, en neutralisant tout signal non-spécifique dû aux interférences sériques non-spécifiques.

* 20 plasmas de femmes ont été dosés en hLH selon le procédé ci-dessus présenté. Les résultats obtenus par cette technique ELISA ont été correlées avec ceux obtenus par le kit de dosage de hLH fabriqué par Abbott
(système immuno-enzymo-micro-particulaire - IMX Abbott) :

. le coefficient de corrélation est de 0,8808
. l'équation de la droite de régression est

\[Y = 0,0483X + 0,0986 \]

où Y est la concentration de hLH (ng/ml) mesurée par ELISA et X est la concentration de hLH (UI/l) mesurée par le système IMX Abbott).

* Etant donné l'absence de tout signal non-spécifique et la grande sensibilité du dosage, il sera possible de discriminer les valeurs hautes (pic préovulaire de LH) donnant une couleur verte, des valeurs basses restant incolores. Cette interprétation "à l'œil nu" permettra d'utiliser ce procédé pour la mise au point d'un kit de détection du pic préovulaire de LH chez la femme, à domicile. Il pourra être utilisé aussi pour un dosage quantitatif fiable dans les laboratoires. Ces résultats démontrent que l'efficacité du procédé INC n'est pas restreinte à l'utilisation des anticorps polyclonaux AP1 et AP2 définis ci-dessus dans le dosage de LHs animales, mais qu'elle contribue également à l'amélioration du dosage d'une autre LH (la LH humaine) faisant intervenir d'autres anticorps (AG monoclonal anti-hLH, PIERCE ; AC2 polyclonal anti-hLH fait chez le lapin-UCB).

Ainsi que cela ressort de ce qui précède, l'invention ne se limite nullement à ceux de ses modes de mise en œuvre, de réalisation et d'application qui viennent d'être décrits de façon plus explicite ; elle en embrasse au contraire toutes les variantes qui peuvent venir à l'esprit du technicien en la matière, sans s'écarter du cadre, ni de la portée, de la présente invention.
57

REVENDICATIONS

1. Procédé augmentant la sensibilité et la spécificité de la détection et/ou du dosage immunologique d'hormones humaines ou animales, dans des milieux de culture ou dans des fluides biologiques, mettant en oeuvre au moins deux anticorps identiques ou différents, spécifiques de l'hormone à doser, lequel procédé est caractérisé en ce qu'au moins l'un desdits anticorps est préincubé dans un milieu contenant du plasma ou du sérum dépourvu de l'hormone à détecter et/ou à doser (milieu INC).

2. Procédé selon la revendication 1, caractérisé en ce que l'édit milieu INC comprend avantageusement un sérum ou un plasma d'un animal ayant subi l'ablation d'une glande endocrine, appropriée au dosage, et est éventuellement associé à un tampon convenable.

3. Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce que le milieu INC est dépourvu en hormones hypophysaires et comprend avantageusement un sérum ou un plasma d'un animal hypophysectomisé approprié, éventuellement associé à un tampon approprié.

4. Procédé selon la revendication 3, caractérisé en ce que le milieu INC comprend un sérum ou un plasma de bélier hypophysectomisé, associé à un tampon approprié.

5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le plasma ou sérum d'animal ayant subi l'ablation d'une glande endocrine appropriée et le tampon approprié sont dans un rapport 1:1.

6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il est avantageusement un test enzymo-immunométrique, hautement spécifique et sensible, de détection d'au moins une hormone.

7. Procédé selon la revendication 6, caractérisé en ce que le premier anticorps est fixé sur un sup-
port solide approprié et le deuxième anticorps préincubé dans un milieu contenant un plasma ou un sérum dépourvu de l’hormone à détecter et/ou à doser (milieu INC), et éventuellement couplé à une enzyme appropriée, sont mis en contact avec le fluide biologique à tester, après quoi l’activité enzymatique liée à la phase solide et/ou libre est révélée par tout moyen approprié.

8. Procédé selon la revendication 6 ou la revendication 7, caractérisé en ce que lorsque le deuxième anticorps préincubé dans ledit milieu INC n’est pas couplé à une enzyme, la révélation de la réaction est alors réalisée par l’introduction d’un troisième anticorps couplé à une enzyme appropriée, préincubé dans ledit milieu INC et se liant spécifiquement au deuxième anticorps.

9. Procédé selon l’une quelconque des revendications 6 à 8, caractérisé en ce que ledit milieu INC est dépourvu d’hormones hypophysaires.

10. Procédé selon l’une quelconque des revendications 6 à 9, caractérisé en ce que les premier et deuxième anticorps sont avantageusement choisis dans le groupe qui comprend les anticorps monoclonaux anti-FSH, anti-LH, anti-TSH, anti-GH, anti-ACTH, anti-prolactine, anti-oxytocine, anti-ADH, anti-MSH, anti-hCG et anti-eCG et les anticorps polyclonaux anti-FSH, anti-LH, anti-TSH, anti-GH, anti-ACTH, anti-prolactine, anti-oxytocine, anti-ADH, anti-MSH, anti-hCG et anti-eCG.

11. Procédé selon l’une quelconque des revendications 6 à 10, caractérisé en ce que les anticorps polyclonaux anti-LH sont notamment obtenus par immunisation d’un animal approprié par un mélange de différentes isoformes de LH ovine, puis par purification convenable de l’immunésérum obtenu, lesquels anticorps polyclonaux présentent un pourcentage de réactions croisées avec les autres hormones glycoprotéiques telles que la FSH, inférieur à 4 %, c’est-à-dire une spécificité vis-à-vis de la
LH, en ce qu'ils présentent une polyspéficité de reconnaissance de la LH de nombreuses espèces animales et notamment au moins des espèces ovines, bovines, caprines, porcines, canines, camelines, murines ainsi que les cervidés et en ce qu'ils présentent une affinité vis-à-vis de la LH ovine de l'ordre du 10^8M^{-1}, respectivement dans deux espèces animales différentes.

12. Procédé selon l'une quelconque des revendications 6 à 11, caractérisé en ce que les premier et deuxième anticorps sont avantageusement choisis dans le groupe qui comprend des anticorps polyclonaux de Lapin anti-LH ovine et des anticorps polyclonaux de Cheval anti-LH ovine et le troisième anticorps est avantageusement choisi dans le groupe qui comprend les anti-IgG de Cheval et les anti-IgG de Lapin couplés à une enzyme appropriée.

13. Procédé selon l'une quelconque des revendications 6 à 12, caractérisé en ce que le premier anticorps est un anticorps polyclonal de Lapin anti-LH ovine, le deuxième anticorps est un anticorps polyclonal de Cheval anti-LH ovine et le troisième anticorps est un anti-IgG de Cheval couplé à une enzyme appropriée et notamment à une peroxydase ou à une β-galactosidase.

14. Procédé selon l'une quelconque des revendications 6 à 12, caractérisé en ce que le mélange de différentes isoformes de LH ovines, mis en œuvre pour l'immunisation contient avantageusement au moins deux isoformes de LH ovines.

15. Procédé selon l'une quelconque des revendications 6 à 14, caractérisé en ce que préalablement à l'introduction du deuxième anticorps, le support solide est saturé en milieu INC.

16. Anticorps polyclonaux anti-LH, caractérisés en ce qu'ils sont obtenus par immunisation d'un animal approprié par un mélange de différentes isoformes de LH ovine, puis par purification convenable de
l'immunsérum obtenu, en ce que lesdits anticorps polyclonaux présentent un pourcentage de réactions croisées avec les autres hormones glycoprotéiques telles que la FSH, inférieur à 4 %, c'est-à-dire une spécificité vis-à-vis de la LH, en ce qu'ils présentent une polyspéificité de reconnaissance de la LH de nombreuses espèces animales et notamment au moins des espèces ovines, bovines, caprines, porcines, canines, camelines, murines ainsi que les cer-vidés et en ce qu'ils présentent une affinité vis-à-vis de la LH ovine de l'ordre du 10^9M^{-1}.

17. Anticorps polyclonaux selon la revendication 16, caractérisés en ce que l'animal approprié est le Lapin et en ce qu'on obtient ainsi des anticorps polyclonaux anti-LH ovine chez le Lapin.

18. Anticorps polyclonaux selon la revendication 16, caractérisés en ce que l'animal approprié est le Cheval et en ce qu'on obtient ainsi des anticorps polyclonaux anti-LH ovine chez le Cheval.

19. Anticorps polyclonaux selon l'une quelconque des revendications 16 à 18, caractérisés en ce que le mélange de différentes isoformes de LH ovine, mis en oeuvre pour l'immunisation, contient avantageusement au moins deux isoformes de LH ovine.

20. Anticorps polyclonaux selon la revendication 19, caractérisés en ce que les différentes isoformes de LH ovine sont en quantités équimolaires.

21. Réactif pour la mise en oeuvre du procédé de détection et/ou de dosage immunologique d'hormones chez l'animal y compris l'homme, selon l'une quelconque des revendications 1 à 15, caractérisé en ce qu'il comprend un anticorps anti-hormone propre à être utilisé comme premier, deuxième et/ou troisième anticorps dans ledit procédé, lequel anticorps est préincubé dans un milieu INC.

22. Trousses de détection et/ou de diagnostic d'hormones telles que les hormones hypophysaires (la FSH,
la LH, la TSH, la GH, l'ACTH, la prolactine, l'oxytocine, l'ADH, la MSH), les hormones thyroïdiennes, les hormones surrénales, les hormones génitales et les hormones pancréatiques chez l'homme ou l'animal, l'hCG et l'eCG, ou kit pour la mise en œuvre du test selon l'une quelconque des revendications 1 à 15, caractérisé en ce qu'il comprend outre des quantités utiles de tampons appropriés pour la mise en œuvre de ladite détection :
- des doses appropriées d'un anticorps choisi parmi les anticorps anti-hormone convenable, y compris les anticorps anti-LH selon l'une quelconque des revendications 16 à 20 et les réactifs selon la revendication 21 ;
- des doses appropriées de conjugués enzyme appropriée et anticorps, lequel anticorps est choisi dans le groupe qui comprend les anticorps anti-hormone convenable y compris les anticorps anti-LH selon l'une quelconque des revendications 16 à 20 et les réactifs selon la revendication 21, ou dans le groupe qui comprend les anti-IgG convenables, lesquels conjugués sont préincubés dans un milieu INC, conformément au réactif décrit ci-dessus ;
- des quantités ou doses appropriées d'un sub-strat de révélation de l'enzyme ;
- un support solide approprié si nécessaire ;
et
- des quantités ou doses appropriées d'un milieu INC.

23. Trousse selon la revendication 22, caractérisée en ce que lorsqu'elle est mise en œuvre pour le dosage de la LH, elle comprend :
- des doses appropriées d'un anticorps polyclonal choisi parmi les anticorps polyclonaux de Lapin anti-LH ovine, les anticorps polyclonaux de Cheval anti-LH ovine selon l'une quelconque des revendications 16 à 20 et les réactifs selon la revendication 21 contenant
l'un des anticorps polyclonaux anti-LH ovine précités ;
- des doses appropriées de conjugués enzyme appropriée et anticorps, lequel anticorps est choisi dans le groupe qui comprend les anticorps polyclonaux de Lapin anti-LH ovine, les anticorps polyclonaux de Cheval anti-LH ovine selon l'une quelconque des revendications 16 à 20 ou dans le groupe qui comprend les anti-IgG de Cheval et les anti-IgG de Lapin, lesquels conjugués sont préincubés dans un milieu INC, conformément au réactif décrit ci-dessus ;
- des quantités ou doses appropriées d'un substrat de révélation de l'enzyme ;
- un support solide approprié, si nécessaire ;
- un capillaire de prélèvement ; et
- éventuellement, des quantités ou doses appropriées d'un milieu INC.
24. Trousse selon la revendication 23, caractérisée en ce que l'enzyme est choisie dans le groupe qui comprend les peroxydases et la β-galactosidase.
25. Trousse selon la revendication 22, caractérisée en ce qu'elle comprend :
- une série de supports solides convenables revêtus d'un anticorps choisi parmi les anticorps antihormone convenable, y compris les anticorps anti-LH selon l'une quelconque des revendications 16 à 20 et les réactifs selon la revendication 21, lesquels supports solides sont éventuellement saturés en milieu INC ;
- des doses appropriées d'un anticorps choisi dans le groupe qui comprend les anticorps anti-FSH, anti-LH, y compris les anticorps anti-LH selon l'une quelconque des revendications 16 à 20, anti-TSH, anti-GH, anti-ACTH, anti-prolactine, anti-oxytocine, anti-ADH, anti-hCG, anti-eCG et anti-PMSG, différents du premier anticorps et les réactifs selon la revendication 21 ;
- des doses appropriées de conjugués peroxydase-anti-IgG convenables, préincubés dans un milieu INC,
conformément au réactif décrit ci-dessus ; et
- des quantités appropriées d'un substrat de
révélation de la peroxydase.

26. Trousse selon la revendication 25, carac-
térisée en ce qu'elle comprend :
- une série de supports solides convenables
revêtus d'un anticorps choisi dans le groupe qui comprend
les anticorps polyclonaux de Lapin anti-LH ovine selon
l'une quelconque des revendications 16 à 20 et les réac-
tifs selon la revendication 21 contenant l'anticorps
polyclonal de Lapin précité, lesquels supports solides
sont éventuellement saturés en milieu INC ;
- des doses appropriées d'un anticorps choisi
dans le groupe qui comprend les anticorps polyclonaux de
Cheval anti-LH ovine et les réactifs selon la revendica-
tion 21 contenant l'anticorps polyclonal de Cheval pré-
cité ;
- des doses appropriées de conjugués peroxy-
dase-anti-IgG de Cheval préincubés dans un milieu INC,
conformément au réactif décrit ci-dessus ;
- des quantités appropriées d'un substrat de
révélation de la peroxydase ; et
- un capillaire de prélèvement.

27. Trousse selon la revendication 25 ou la
revendication 26, caractérisée en ce qu'elle comprend :
- une série de supports solides convenables
revêtus d'un anticorps choisi dans le groupe qui comprend
les anticorps polyclonaux de Lapin anti-LH ovine selon
l'une quelconque des revendications 16 à 20 et les réac-
tifs selon la revendication 21 contenant l'anticorps
polyclonal de Lapin précité, lesquels supports solides
sont éventuellement saturés en milieu INC ;
- des doses appropriées de conjugués β-galac-
tosidase-anticorps polyclonaux de Cheval anti-LH ovine
préincubés dans un milieu INC, conformément au réactif
décrit ci-dessus ;
des quantités appropriées d'un substrat de révélation de la β-galactosidase ; et
- un capillaire de prélèvement.
FIG. 1
Pourcentage de liaison

A B

Concentration (ng/ml)

FIG. 2
FIG. 5
FIG. 6
BREBIS
1 2 3 4 5 6 7 8

Gamme de concentrations

Pic de LH:
A G E C C E E
C H F D D F F
D G G E G G G
H H F H H H

FIG. 9
FIG. 12

Gamme de concentrations

Vache Vache Vache Vache
1 2 3 4

Pic de LH: F G pas de D E C D E
pic F G
Gamme de concentrations
Bélier 1
pulse de LH en 9
Bélier 2
pulses en 4.9.10
Bélier 3
pulse en 4

FIG. 14
FIG. 15
Concentration de LH dans le sang
ng/ml

40h 44h 48h 52h 56h 60h 64h 68h 72h
Heure de prélèvement

Concentration de LH dans le lait
ng/ml

0.5
0.4
0.3
0.2
0.1
0

FIG. 16
FIG. 19
Densité Optique

(.....) Courbe A

(---) Courbe B

FIG. 20
Densité Optique

(....) Courbe A (---) Courbe B

FIG. 21