

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

**(19) World Intellectual Property Organization
International Bureau**

**(43) International Publication Date
28 March 2002 (28.03.2002)**

PCT

(10) International Publication Number
WO 02/24030 A1

(51) International Patent Classification⁷: A47B 96/14

(72) Inventor; and

(21) International Application Number: PCT/EP01/10954

(72) **Inventor; and**
(75) **Inventor/Applicant (for US only): BOHNACKER, Ulrich** [DE/CH]; Am Herrenberg 5, CH-8559 Fruthwilen (CH).

(22) International Filing Date:
21 September 2001 (21.09.2001)

(74) Agent: STREHL, SCHÜBEL-HOPF & PARTNER;
Maximilianstrasse 54, 80538 München (DE)

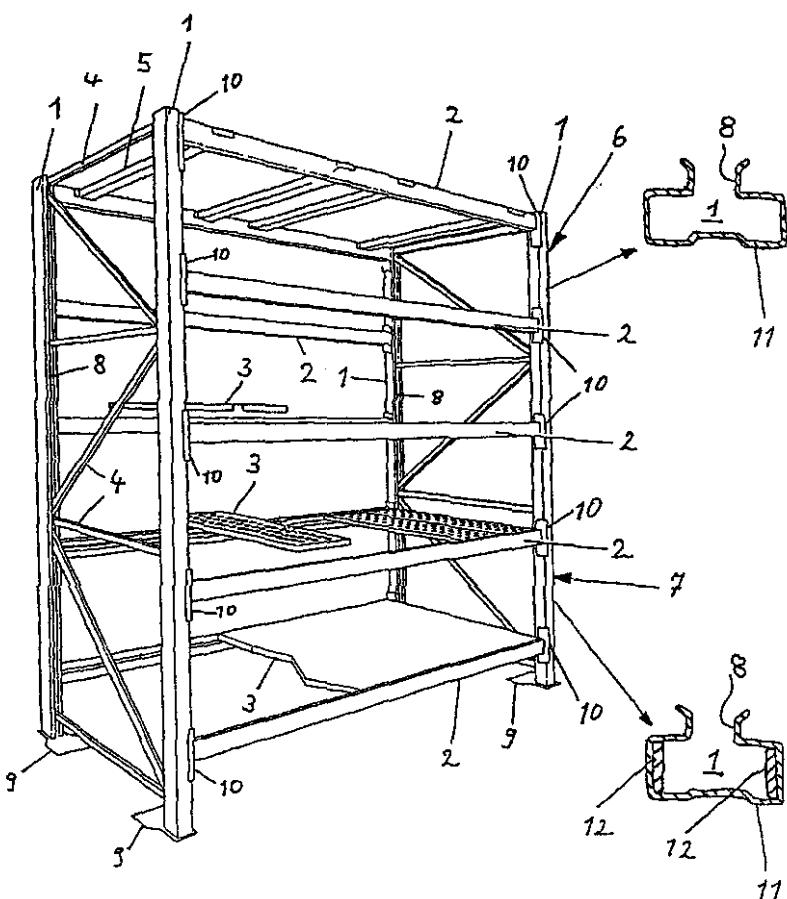
(25) Filing Language: English

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU,

(26) Publication Language: English

CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,

(30) Priority Data: 100-46-947-3 21 September 2000 (21.09.2000) DE


LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(71) *Applicant (for all designated States except US):*
TEGOMETALL (INTERNATIONAL) AG [CH/CH];
Industriestrasse, CH-8574 Lengwil (CH).

(84) **Designated States (regional):** ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian

[Continued on next page]

■ (54) Title: SHELVING

(57) Abstract: The shelving comprises a structural shelving member having a profile bar (11) made of sheet metal. The profile bar (11) is reinforced by y reinforcement strip (12) over part of the length of the structural shelving member. This part of the structural shelving member can be subjected to higher loads. Since the reinforcement strip (12) does not extend over the entire length of the structural member, the capability to carry higher loads is achieved at relatively low weight. The structural shelving member is e.g. a shelving column (1), wherein reinforcement strips (12) are provided in a lower portion (7) of the column. An upper portion (6) of the column does not comprise a reinforcement strip. Or the structural member can be a transverse shelving crossbar (2), wherein a reinforcement strip is then provided in the centre portion.

WO 02/24030 A1

patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

Declaration under Rule 4.17:

- *as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL,*

Published:

- *with international search report*
- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

SHELVING

Description

The invention relates to a structural member for shelving (structural shelving member), particularly to a column or transverse crossbar for steel shelving.

Ordinary shelving comprises an arrangement of vertical columns (uprights) and horizontal crossbars (connecting bars) and brackets or other rods carrying palettes or shelves for storage of goods.

Structural members of various profiles have been used for the columns, transverse crossbars and other rods of such shelving. The term "profile" is used hereunder to designate the shape of the structural member in a cross-sectional area perpendicular to the length of the member.

Such structural members can be manufactured from flat roller-milled sheet metal which is metal-formed by roll-forming (continuous bending by means of rolls) to form the structural member of the desired profile. The profile is the same over the entire length of the structural member. An example for roll-forming of structural members from sheet metal is disclosed in EP-A-0 715 974.

A large number of attempts for optimising the efficiency of use of material and the load carrying capability of such structural members are described in the literature. For example, DE-A-24 59 421 discloses a double-T-profile for use as a crossbar in steel shelving. This profile comprises parallel upper and lower flanges connected by a web. It is shaped from a single sheet metal in a way that the upper and lower flanges which are stressed relatively high consist of two layers of sheet metal whereas the web which is stressed relatively low consists of only a single layer of sheet metal. The two sheet metal layers of the upper and lower flanges are each obtained by folding from a single metal sheet. DE-A-24 21 918 shows a similar member having a separate strip of sheet metal inserted between the two layers of each of the

upper and lower flanges to further reinforce the structural member. Further structural members for shelving and made from single layer or multilayer sheet metal are shown in DE-C-26 28 537 and DE-A-30 02 401.

As opposed to the aforesaid documents, which disclose the manufacture of profiles with portions of different strength by use of a different number of sheet metal layers, WO 00/29138 discloses a method for manufacturing a structural member starting out from sheet metal having portions of different thickness. The sheet metal is obtained by welding two thinner sheet metal strips to the lengthwise edges of a thicker sheet metal strip. The two thinner strips are then bent to obtain a U-profile with thinner legs and a thicker web. The profile is the same over the entire length of the member. DE-C-195 25 347 and WO 99/05380 disclose structural steel members for use in car bodies and in buildings, which have reinforcement plates welded thereon. The one disclosed in WO 99/05380 is filled with concrete.

It is an object of the invention to provide a cost efficient structural shelving member with further optimised use of material and optimised load carrying capabilities. It is a further object to provide a manufacturing method for such a structural shelving member.

These objects are solved by the structural shelving member of claim 1 and the method of claim 9.

In optimising structural shelving members of the prior art, attention was mainly paid to optimising the profile which was kept the same over the entire length of the member. The invention, however, is based on the idea to impart different profiles to different portions in lengthwise direction of the structural shelving member. This takes into consideration that different lengthwise portions of a structural shelving member carry different loads. For example, the individual portions of a shelving column each carry only the load of the shelves above them and thus, the load decreases from the bottom to the top.

The structural shelving member comprises a profile bar. Different profile cross-sections of the structural shelving member are achieved by a reinforcement strip reinforcing the profile bar and extending along the length but only over a portion but not over the entire length of the profile bar or of the structural shelving member. This results also in an efficient use of material.

The reinforcement strip can be formed integrally connected with the profile bar. Preferably, however, both are separate pieces of sheet material which, during manufacturing of the structural shelving member, are commonly supplied and connected to each other.

Although steel shelving is usually disassembled for delivery and transport and is only assembled at its final destination to save transport volume, its high weight can cause shipping costs to exceed manufacturing costs. An efficient use of material in accordance with the invention lowers the weight of shelving in relation to its load carrying capability and thus reduces costs of manufacturing and transport.

The subclaims are directed to preferred embodiments of the invention.

Subclaims 2 to 4 relate to preferred ways of interconnecting the reinforcement strip and the profile bar.

An embodiment according to claim 5 has the particular advantage that the reinforcement strip does not affect the look of the shelving.

Claims 6 to 8 relate to more explicit embodiments of structural members for shelving combining an efficient use of material with high load carrying capability.

Claims 9 to 13 relate to economical methods for manufacturing a structural shelving member in accordance with the invention.

Preferred embodiments of the invention will now be described in connection with the drawings, wherein

Figure 1 shows heavy load shelving,

- 4 -

Figures 2 and 3 show a schematic representation of two different installations for manufacturing structural shelving members, and

Figure 4 shows a transverse cross bar.

The heavy load shelving shown in Figure 1 comprises vertical columns 1 interconnected by horizontal transverse crossbars 2 and horizontal and diagonal bracing struts 4. Shelves 3 and depthwise rods 5 used to deposit goods rest on the transverse cross bars 2. A foot plate 9 is welded to the bottom face of each column 1. An engagement plate 10 is welded to each side face of each transverse crossbar 2 and has hooks (not shown) for engagement with holes (not shown) in the columns 1. The columns 1, transverse crossbars 2, bracing struts 4 and depthwise rods 5 are different structural shelving members made of steel. Each portion of a shelving column 1 carries the part of the shelving load above itself. Thus, the buckle load on the column 1 increases from the top to the bottom of the column. This course of load is taken into account in the profile of the column 1.

Figure 1 also shows the profile of the column 1 in cross-section perpendicular to the length of the column at two positions. The column 1 comprises a profile bar 11 extending over its entire length. The profile bar is made by roll-forming from sheet metal and has the same hollow profile over its entire length. The hollow profile is not entirely closed because each column 1 has a slit 8 along the entire length of the column where the columns 1 face each other along the narrower sides of the shelving. The bracing struts engage the slits 8 and are fixed therein by welding or screwing.

The profile in the upper portion 6 of each column is exclusively defined by the profile bar 11. The lower portion 7 of the column 1, however, comprises two additional reinforcement strips 12 extending along the length of the column and fixed to two opposite inner walls of the profile bar 11. The

fixing can be made by welding, screwing, riveting, clinching or other positive or non-positive connections.

The reinforcement strips 12 are mounted to those inner walls of the profile bar 11 which are perpendicular to the wall having the slit 8. Hence, they reinforce the column 1 against buckling within the plane of the front face or rear face of the shelving, i.e. within the plane of the transverse cross-bars 2. This reinforcement is important because, other than the narrower side faces of the shelving, those front and rear faces have no or only few diagonal struts because these would obstruct access to the shelves. Further, the transverse crossbars 2 are often not very rigidly engaged with the columns 1 and thus their ability to support the columns is limited.

In the present embodiment, the upper portion 6 without reinforcement strips 12 extends over 4/5 or more and the lower portion 7 having reinforcement strips 12 extends from the foot plate 9 over about 1/5 or less of the length of the shelving column. In heavy load shelving being 12 m high or more, the reinforcement strips have a length of up to about 2.5 m.

Figure 2 shows a schematic diagram of an installation for manufacturing the columns 1. Also shown is the profile section, respectively formed in the different steps of the manufacturing process. The installation comprises a levelling machine 21, having a coil 22 of a first sheet metal 23 and two coils, one 24 of which only being visible of a second sheet metal 25. The levelling machine 21 uncoils the sheet metals 23, 25 from the coils 22, 24, straightens them and supplies them parallel to each other in the same direction.

The installation further comprises connection and roll-forming means 26 in which individually cut strips of the second sheet metal 25 are connected to the first sheet metal 23 by welding or clinching. Prior to or after making the connection, the first sheet metal 23 is roll-formed to form the profile of the profile bar 11.

Cutting means 27 cut the first sheet metal 23 into pieces having the length of a column 1 which is longer than the strip of the second sheet metal 25 fixed thereto. Punching means 28 punch holes (not shown) into the first sheet metal 23 for engagement by the transverse crossbars 2 and for fixture of the bracing struts 4 by screwing. Eventually, a foot plate 9 (Figure 1) is welded to one end of the compound of first and second sheet metals 23, 25, where ends of the first and second sheet metals 23, 25 are flush. In the columns 1 thus manufactured, the first sheet metal 23 forms the profile bar 11 and the two strips of second sheet metal 25 form the reinforcement strips 12.

Figure 3 shows a modification of the installation of Figure 2. That modification comprises two different levelling machines 31, 32 for supplying the first sheet metal 23 and the second sheet metal 25 from opposite directions. As in the embodiment of Figure 2, the sheet metals 23, 25 are uncoiled from respective coils 22, 24 and are straightened. Roll-forming and cutting means 33 are provided for giving the first sheet metal 23 the profile of the profile bar 11, cutting it to the length of a column 1 and supplying it to connection means 34. The connection means 34 are supplied from the opposite direction with two parallel strips of the second sheet metal 25. These strips are inserted from the front side into the profile bar 11 made from the first sheet metal 23 and are cut to a shorter length than the profile bar 11 by the connecting means 34 to form the reinforcement strips 12. The reinforcement strips are fixed to mutually opposite inner faces of the profile bar 11 by welding or clinching.

Since the reinforcement strips 12 are shorter than the profile bars 11, a portion 7 of the column comprises reinforcement strips whereas another portion 6 is void of reinforcement strips.

Figure 4 shows a side view of the transverse crossbar 2 when the engagement plates 10 are not yet welded to its two ends. Also shown are cross-sections along lines A-A and B-B.

Similar to the column 1, the transverse crossbar 2 comprises a profile bar 41 and a reinforcement strip 42. The profile bar 41 extends along the entire length of the transverse crossbar 2 and shows a rectangular hollow profile in cross-section perpendicular to its lengthwise direction. The hollow profile is not entirely closed. Namely, the lower side of the profile bar 41 comprises a slit 43.

The reinforcement strip 42 is deposited on the bottom within the profile bar 41 where it covers the slit 43. The reinforcement strip 42 is welded at the slit 43 to the profile bar 41 and carries part of the load of the crossbar 2 in use. The length of the reinforcement strip 42 is about 1/5 the length of the crossbar 2. The adjacent end portions 45 each having 2/5 the length of the crossbar 2 comprise no reinforcement strips. Further reinforcement strips could, however, be provided at the outermost ends of the crossbar 2 to increase the rigidity of its connection to the engagement plate 10 and thus to the column 1.

The installation of Figure 2 or 3 can also be used for manufacturing the transverse crossbar 2, wherein one coil only is required to provide the second sheet metal.

In the above-described embodiments of the column 1 and the transverse crossbar 2, the reinforcement strip 12, 42 is made from sheet material separate from the sheet material of the profile bar 11, 41 and is fixed on its flat side to the latter. And the first and second sheet materials 23, 25 have the same metal composition and thickness and differ only by their width. However, different materials and/or different thicknesses could also be used. It is also conceivable to manufacture the reinforcement strip integrally with the profile bar by bending part of the sheet material of the profile bar to the location of the reinforcement strip.

Also other structural members used in shelving, such as the bracing struts 4 and depthwise rods 5 can have the structure shown in Figure 4. Preferably, the profile bar extends over the entire length of the structural shelving member

whereas the reinforcement strip extends over 1/20 or 1/10 to 1/5 or 1/2 the length of the structural shelving member or the profile bar. Thus, since the reinforcement strip does not extend over the entire length but is only provided where the load is largest, high strength can be achieved at relatively low weight. The profile bar is hollow except that it includes the reinforcement strip or strips. And the profile bar has a lengthwise slit, i.e. has an open profile which facilitates manufacturing by roll-forming. Heavy load shelving comprising structural shelving members according to the invention can typically carry 50% higher loads than conventional shelving having the same weight.

Claims

1. A structural shelving member, comprising:

a longitudinal profile bar (11, 41) formed from first sheet material (23) and

a reinforcement strip (12, 42) formed from second sheet material (25) and extending along and being mounted to the profile bar (11, 41) for reinforcing the same,

characterised in that the reinforcement strip (12, 42) has a smaller length than the profile bar (11, 41).

2. A structural shelving member according to claim 1, wherein the reinforcement strip (12, 42) is connected to the profile bar (11, 41) by positive locking.

3. A structural shelving member according to claim 1, wherein the reinforcement strip (12, 42) is connected to the profile bar (11, 41) by clinching.

4. A structural shelving member according to claim 1, wherein the reinforcement strip (12, 42) is welded to the profile bar (11, 41).

5. A structural shelving member according to claim 1, wherein the profile bar (11, 41) has a hollow profile and the reinforcement strip (12, 42) is disposed within the hollow profile.

6. A structural shelving member according to any of claims 1 to 5 for steel shelving, having along its length a portion (7, 44) subjected to higher loads and a portion (6, 45) subjected to lower loads, wherein the reinforcement strip (12, 42) is provided in the portion (7, 44) subjected to higher loads, and the first and second sheet materials are first and second sheet metals, respectively.

7. A shelving column comprising a structural shelving member according to claim 6, wherein the reinforcement strip (12) is provided in a lower portion (7) but not in an upper portion (6) of the column.

8. A transverse crossbar for shelving, comprising a structural shelving member according to claim 6, wherein the reinforcement strip (42) is provided in a central portion (44) but not in adjacent portions (45) of the crossbar.

9. A method for manufacturing a structural shelving member (1, 2) comprising the following steps:

supplying a first sheet material (23),

supplying a reinforcement strip (12, 42) of a second sheet material (25) parallel to the first sheet material, and forming the first sheet material to a profile bar (11),

wherein the reinforcement strip (12) is brought to a shorter length than the profile bar (11) and is fixed to the profile bar.

10. A method according to claim 9, wherein the reinforcement strip (12) is first cut to length and is then fixed to the first sheet material (23) which is then formed to the profile bar (11).

11. A method according to claim 9, wherein the first sheet material (23) is first formed to the profile bar (11) and is then connected with the reinforcement strip (12) cut to length.

12. A method according to any of claims 9 to 11, wherein the supply of the first and second sheet materials (23, 25) is performed in the same direction.

13. A method according to any of claims 9 to 11, wherein the supply of the first and second sheet materials (23, 25) is performed in opposite directions.

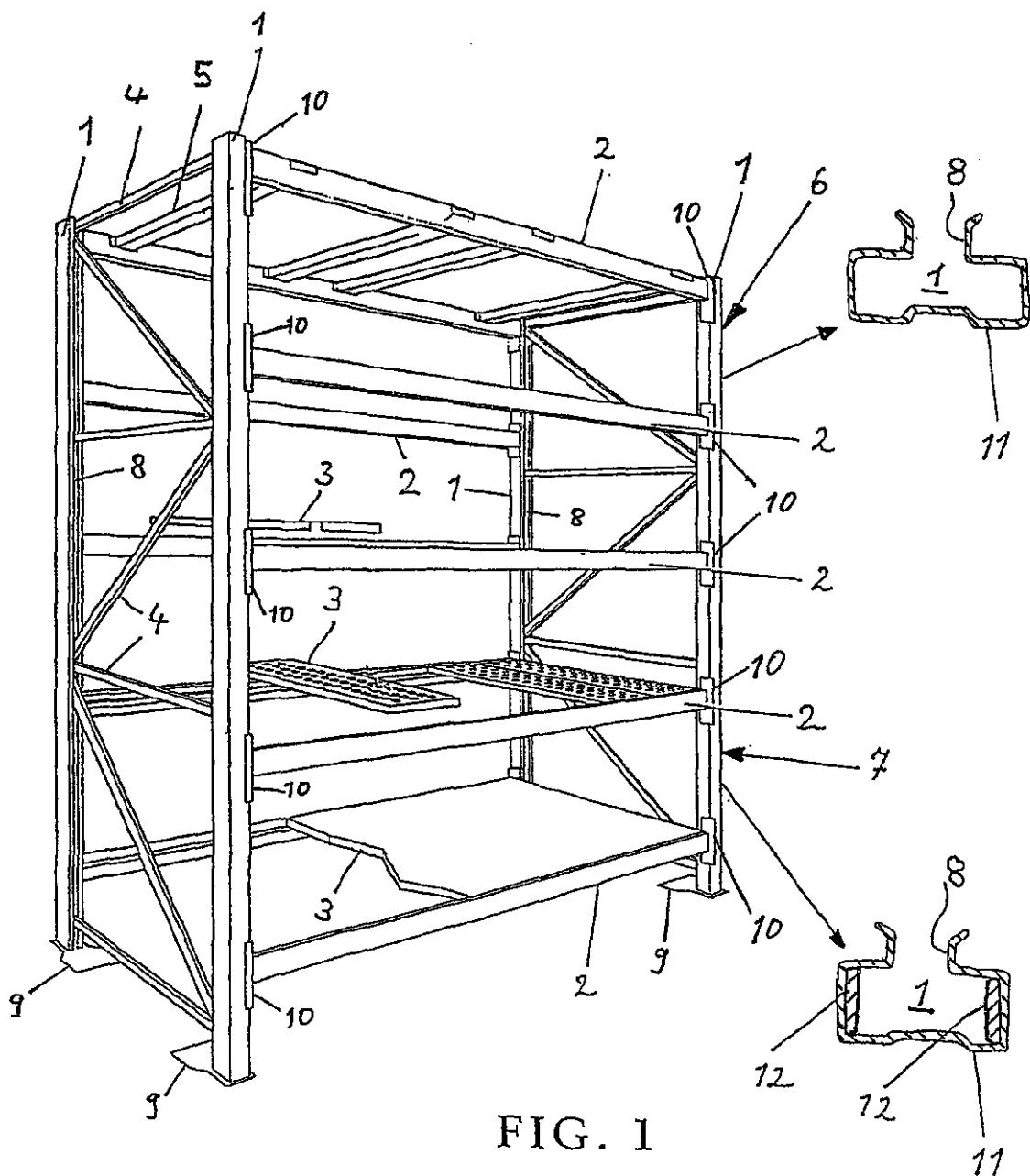


FIG. 2

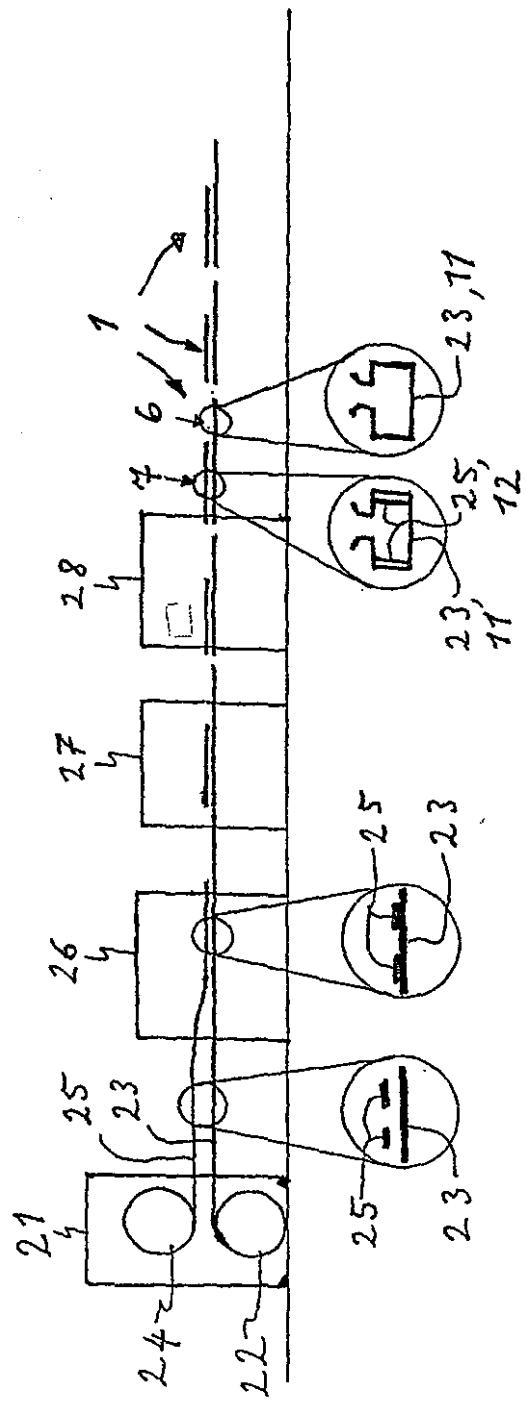
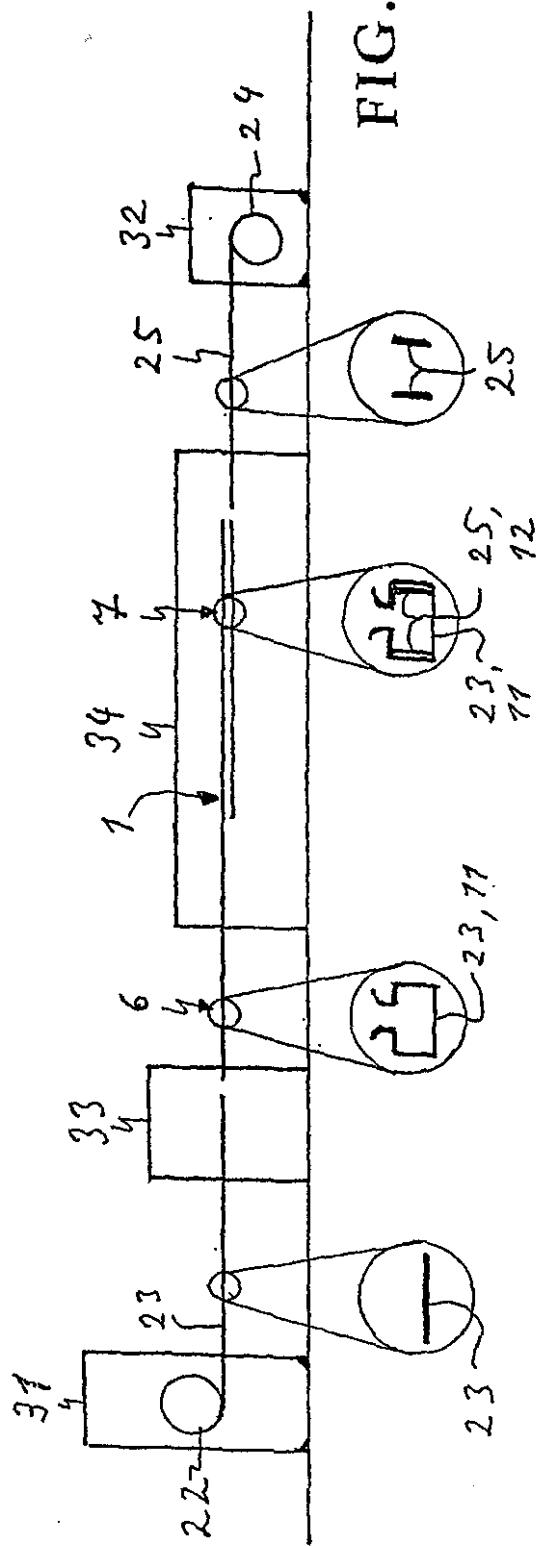



FIG. 3

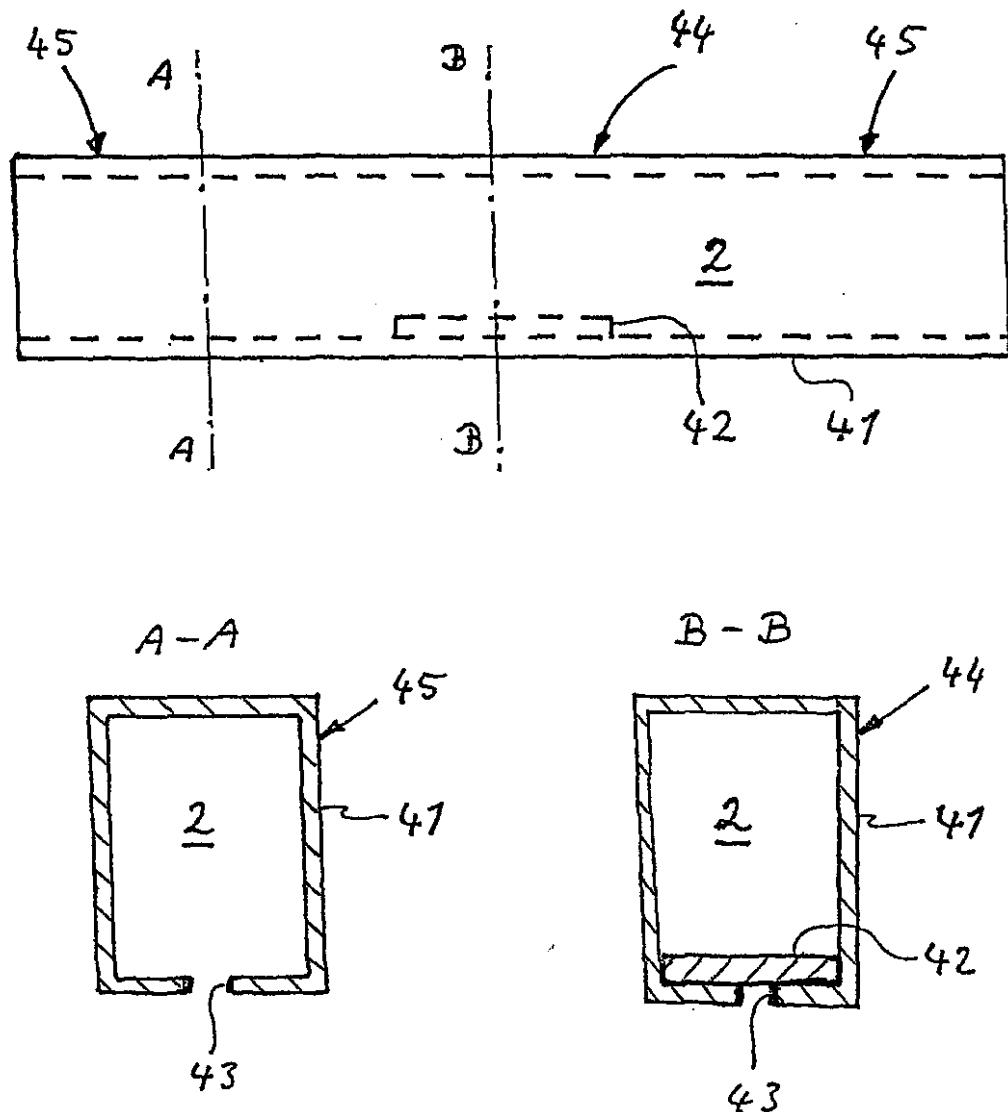


FIG. 4

INTERNATIONAL SEARCH REPORT

Inte
nal Application No
PCT/EP 01/10954

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 A47B96/14

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 A47B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	GB 818 459 A (FRANK RICHARD NOAKES) 19 August 1959 (1959-08-19) page 3, line 68 - line 82; figures 5-8 ---	1,4,6,9, 10
X	GB 2 054 356 A (SAGELINE LTD) 18 February 1981 (1981-02-18) page 1, line 37 - line 65; figures 1,2 ---	1,4-8
X	DE 298 03 113 U (META REGALBAU GMBH & CO KG) 9 April 1998 (1998-04-09) page 2, line 10 - line 16; figures 2,3 ---	1,2
X	US 5 797 501 A (GUNTEN LEE LOUIS VON) 25 August 1998 (1998-08-25) column 2, line 10 - line 38; figures 1,5,7 ---	1,2,5 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

23 January 2002

Date of mailing of the international search report

31/01/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Jones, C

INTERNATIONAL SEARCH REPORTInte
nal Application No
PCT/EP 01/10954**C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT**

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 855 157 A (LOSEY LTD) 29 July 1998 (1998-07-29) abstract; figures 1-4	1

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/EP 01/10954

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
GB 818459	A	19-08-1959	NONE			
GB 2054356	A	18-02-1981	NONE			
DE 29803113	U	09-04-1998	DE	29803113 U1		09-04-1998
US 5797501	A	25-08-1998	AU GB WO	5726598 A 2335475 A ,B 9829011 A1		31-07-1998 22-09-1999 09-07-1998
EP 0855157	A	29-07-1998	EP	0855157 A1		29-07-1998

INTERNATIONALER RECHERCHENBERICHT

Intra nationales Aktenzeichen

PCT/EP 01/10954

A. KLASSEFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 A47B96/14

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprässtoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 A47B

Recherchierte aber nicht zum Mindestprässtoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	GB 818 459 A (FRANK RICHARD NOAKES) 19. August 1959 (1959-08-19) Seite 3, Zeile 68 – Zeile 82; Abbildungen 5-8	1,4,6,9, 10
X	GB 2 054 356 A (SAGELINE LTD) 18. Februar 1981 (1981-02-18) Seite 1, Zeile 37 – Zeile 65; Abbildungen 1,2	1,4-8
X	DE 298 03 113 U (META REGALBAU GMBH & CO KG) 9. April 1998 (1998-04-09) Seite 2, Zeile 10 – Zeile 16; Abbildungen 2,3	1,2

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

T Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

X Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden

Y Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

& Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des Internationalen Recherchenberichts

23. Januar 2002

31/01/2002

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Jones, C

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 01/10954

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	US 5 797 501 A (GUNTEN LEE LOUIS VON) 25. August 1998 (1998-08-25) Spalte 2, Zeile 10 – Zeile 38; Abbildungen 1,5,7	1,2,5
A	EP 0 855 157 A (LOSEY LTD) 29. Juli 1998 (1998-07-29) Zusammenfassung; Abbildungen 1-4	1

INTERNATIONALER RECHERCHENBERICHT

Inte
ales Aktenzeichen
PCT/EP 01/10954

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
GB 818459	A	19-08-1959	KEINE		
GB 2054356	A	18-02-1981	KEINE		
DE 29803113	U	09-04-1998	DE	29803113 U1	09-04-1998
US 5797501	A	25-08-1998	AU GB WO	5726598 A 2335475 A ,B 9829011 A1	31-07-1998 22-09-1999 09-07-1998
EP 0855157	A	29-07-1998	EP	0855157 A1	29-07-1998

(54) 標題：層架

(57) 摘要：此層架有一結構性的定型桿(11)架件，定型桿用全屬薄片制成。定型桿在架件某部分用加強條(12)加強。加強部分的定型桿可承受重荷。由於加強條(12)並不伸延至結構件的全長，因此可以較低的重量荷重。結構性的層件是，例如：架柱(1)，其下部(7)有加強條(12)。架柱的上部(6)沒有加強條。結構件也可以是一橫向的十字桿(2)，其中有加強條設於中央部位。