NEW EUROPEAN PATENT SPECIFICATION
After opposition procedure

(45) Date of publication and mention of the opposition decision:

(45) Mention of the grant of the patent:
15.11.2006 Bulletin 2006/46

(21) Application number: 03711759.5

(22) Date of filing: 08.04.2003

(51) Int Cl.:
A61K 9/50 (2006.01) A23L 33/115 (2016.01)
A23P 10/30 (2016.01) B01J 13/10 (2006.01)

(86) International application number:
PCT/CA2003/000520

(87) International publication number:

(54) ENCAPSULATED AGGLOMERATION OF MICROCAPSULES AND METHOD FOR THE PREPARATION THEREOF

EINGEKAPSELTEN ANLAGERUNG VON MIKROKAPSELN UND IHRE HERSTELLUNG
AGGLOMERATION ENCAPSULEE DE MICROCAPSULES ET PROCEDE DE FABRICATION CORRESPONDANT

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IT LI LU MC NL PT RO SE SI SK TR

(30) Priority: 11.04.2002 US 120621

(43) Date of publication of application:
05.01.2005 Bulletin 2005/01

(60) Divisional application:
06020381.7 / 1 736 060

(73) Proprietor: DSM Nutritional Products AG
4303 Kaiseraugst (CH)

(72) Inventor: YAN, Nianxi
Appleton, Wisconsin 54911 (US)

(74) Representative: Teipel, Stephan
Lederer & Keller
Patentanwälte Partnerschaft mbB
Unsöldstrasse 2
80538 München (DE)

(56) References cited:

Remarks:
The file contains technical information submitted after the application was filed and not included in this specification
Description

Field of the Invention

[0001] This invention relates to microcapsules.

Background of the Invention

[0002] Microcapsules are defined as small particles of solids, or droplets of liquids, inside a thin coating of a shell material such as beeswax, starch, gelatine or polyacrylic acid. They are used, for example, to prepare liquids as free-flowing powders or compressed solids, to separate reactive materials, to reduce toxicity, to protect against oxidation and/or to control the rate of release of a substance such as an enzyme, a flavour, a nutrient, a drug, etc.

[0003] Over the past fifty years, the prior art has concentrated on so-called "single-core" microcapsules. However, one of the problems with single-core microcapsules is their susceptibility to rupture. To increase the strength of microcapsules, it is known in the art to increase the thickness of the microcapsule wall. However, this leads to a reduction in the loading capacity of the microcapsule. Another approach has been to create so-called "multi-core" microcapsules. For example, United States patent 5,780,056 discloses a "multi-core" microcapsule having gelatine as a shell material. These microcapsules are formed by spray cooling an aqueous emulsion of oil or carotenoid particles such that the gelatine hardens around "cores" of the oil or carotenoid particles. Yoshida et al. (Chemical Abstract 1990:140735 or Japanese patent publication JP 01-148338 published June 9, 1989) discloses a complex coacervation process for the manufacture of microcapsules in which an emulsion of gelatine and paraffin wax is added to an arabic rubber solution and then mixed with a surfactant to form "multi-core" microcapsules. Ijichi et al. (J. Chem. Eng. Jpn. (1997) 30(5):793-798) discloses a complex coacervation process for the manufacture of microcapsules in which an emulsion of gelatine and paraffin wax is added to an arabic rubber solution and then mixed with a surfactant to form "multi-core" microcapsules.

Summary of the Invention

[0004] There is provided a microcapsule comprising an agglomeration of primary microcapsules, each individual primary microcapsule having a primary shell and the agglomeration being encapsulated by an outer shell as defined in claim 1.

[0005] Microcapsules of the present invention may be used to contain a loading substance for a variety of applications.

Brief Description of the Drawings

[0006] Figure 1 is an optical micrograph (400 X) of encapsulated agglomerations of microcapsules in accordance with the invention.

Detailed Description

Composition:

[0007] The loading substance is a hydrophobic liquid, such as grease, oil or a mixture thereof. Typical oils may be fish oils, vegetable oils, mineral oils, derivatives thereof or mixtures thereof. The loading substance may comprise a purified or partially purified oily substance such as a fatty acid, a triglyceride or a mixture thereof. Omega-3 fatty acids, such as α-linolenic acid (18:3n3), octadecatetraenoic acid (18:4n3), eicosapentaenoic acid (20:5n3) (EPA) and docosahexaenoic acid (22:6n3) (DHA), and derivatives thereof and mixtures thereof, are preferred. Many types of derivatives are well known to one skilled in the art. Examples of suitable derivatives are esters, such as phytosterol esters, branched
substances include antioxidants, such as CoQ10 and vitamin E.

[0008] The shell material forms a microcapsule around the loading substance of interest. The shell material comprises gelatine A. A particularly preferred form of gelatine type A has a Bloom strength of 50-350, more preferably a Bloom strength of 275.

[0009] The shell material is a complex coacervate between two polymer components. Component A is gelatine type A. Component B is gelatine type B, polyphosphate, gum arabic, alginate, chitosan, carrageenan, pectin or carboxymethylcellulose. The molar ratio of component A:component B that is used depends on the type of components but is typically from 1:5 to 15:1. For example, when gelatine type A and polyphosphate are used as components A and B respectively, the molar ratio of component A:component B is preferably 8:1 to 12:1; when gelatine type A and gelatine type B are used as components A and B respectively, the molar ratio of component A:component B is preferably 2:1 to 1:2; and when gelatine type A and alginate are used as components A and B respectively, the molar ratio of component A:component B is preferably 3:1 to 8:1.

[0010] Processing aids may be included in the shell material. Processing aids may be used for a variety of reasons. For example, they may be used to promote agglomeration of the primary microcapsules, control microcapsule size and/or to act as an antioxidant. Antioxidant properties are useful both during the process (e.g. during coacervation and/or spray drying) and in the microcapsules after they are formed (i.e. to extend shelf-life, etc). Preferably a small number of processing aids that perform a large number of functions is used. For example, ascorbic acid or a salt thereof may be used to promote agglomeration of the primary microcapsules, to control microcapsule size and to act as an antioxidant. The ascorbic acid or salt thereof is preferably used in an amount of about 100 ppm to about 12,000 ppm, more preferably about 1000 ppm to about 5000 ppm. A salt of ascorbic acid, such as sodium or potassium ascorbate, is particularly preferred in this capacity.

[0011] The structure of encapsulated agglomerations of microcapsules in accordance with the present invention may be seen in Figures 1 and 2, which show that smaller (primary) microcapsules have agglomerated together and that the agglomeration is surrounded by shell material to form a larger microcapsule. Each individual primary microcapsule has its own distinct shell called the primary shell. Furthermore, any space that may be between the smaller microcapsules is filled with more shell material to hold and surround the smaller microcapsules thereby providing an extremely strong outer shell of the larger microcapsule in addition to the primary shell that forms the smaller microcapsules within the larger microcapsule. In one sense, the encapsulated agglomeration of microcapsules may be viewed as an agglomeration of walled bubbles suspended in a matrix of shell material, i.e. a "foam-like" structure. Such an encapsulated agglomeration of microcapsules provides a stronger, more rupture-resistant structure than is previously known in the art, in conjunction with achieving high loads of loading substance.

[0012] The primary microcapsules (primary shells) typically have an average diameter of about 40 nm to about 10 μm, more particularly from about 0.1 μm to about 5 μm, even more particularly about 1 μm. The encapsulated agglomerations (outer shells) have an average diameter of from 50 μm to 100 μm.

[0013] The encapsulated agglomerations of microcapsules prepared by a process described below typically have a combination of payload and structural strength that are better than multi-core microcapsules of the prior art. For example, payloads of loading substance can be as high as about 70% by weight in microcapsules of the present invention having an average size of about 10 μm for the outer shells and an average size of about 1 μm for the primary shells.

Process:

[0014] In the process for preparing microcapsules, an aqueous mixture of a loading substance, a first polymer component of the shell material and a second polymer component of the shell material is formed. Since a hydrophobic liquid is used as loading material, the aqueous mixture is an emulsion of the loading material and the polymer components.

[0015] In a more preferred aspect, a first polymer component is provided in aqueous solution, preferably together with processing aids, such as antioxidants. A loading substance may then be dispersed into the aqueous mixture, for example, by using a homogenizer. An emulsion is formed in which a fraction of the first polymer component begins to deposit around individual droplets of loading substance to begin the formation of primary shells. At this point, another aqueous solution of a second polymer component may be added to the aqueous mixture.

[0016] Droplets of the loading substance in the aqueous mixture preferably have an average diameter of less than 100 μm, more preferably less than 50 μm, even more preferably less than 25 μm. Droplets of the loading substance having an average diameter less than 10 μm or less than 5 μm or less than 3 μm or less than 1 μm may be used.
The amount of the polymer components of the shell material provided in the aqueous mixture is typically sufficient to form both the primary shells and the outer shells of the encapsulated agglomeration of microcapsules. Preferably, the loading substance is provided in an amount of from about 1% to about 15% by weight of the aqueous mixture, more preferably from about 3% to about 8% by weight, and even more preferably about 6% by weight.

The pH, temperature, concentration, mixing speed or a combination thereof is then adjusted to accelerate the formation of the primary shells around the droplets or particles of the loading substance. Complex coacervation will occur between the components to form a coacervate, which further deposits around the loading substance to form primary shells of shell material. The pH adjustment depends on the type of shell material to be formed. As gelatine type A is a polymer component, the pH may be adjusted to a value from 3.5-5.0, preferably from 4.0-5.0. If the pH of the mixture starts in the desired range, then little or no pH adjustment is required. The initial temperature of the aqueous mixture is preferably set to a value of from about 40°C to about 60°C, more preferably at about 50°C. Mixing is preferably adjusted so that there is good mixing without breaking the microcapsules as they form. Particular mixing parameters depend on the type of equipment being used. Any of a variety of types of mixing equipment known in the art may be used. Particularly useful is an axial flow impeller, such as Lightnin™ A310 or A510.

The aqueous mixture may then be cooled under controlled cooling rate and mixing parameters to permit agglomeration of the primary shells to form encapsulated agglomerations of primary shells. The encapsulated agglomerations are discrete particles themselves. It is advantageous to control the formation of the encapsulated agglomerations at a temperature above the gel point of the shell material, and to let excess shell material form a thicker outer shell. It is also possible at this stage to add more polymer components, either of the same kind or a different kind, in order to thicken the outer shell and/or produce microcapsules having primary and outer shells of different composition. The temperature is preferably lowered at a rate of 1°C/10 minutes until it reaches a temperature of from about 5°C to about 10°C, preferably about 5°C. The outer shell encapsulates the agglomeration of primary shells to form a rigid encapsulated agglomeration of microcapsules.

At this stage, a cross-linker may be added to further increase the rigidity of the microcapsules by cross-linking the shell material in both the outer and primary shells and to make the shells insoluble in both aqueous and oily media. Any suitable cross-linker may be used and the choice of cross-linker depends somewhat on the choice of shell material. Preferred cross-linkers are enzymatic cross-linkers (e.g. transglutaminase), aldehydes (e.g. formaldehyde or gluteraldehyde), tannic acid, alum or a mixture thereof. When the microcapsules are to be used to deliver a biologically active substance to an organism, the cross-linkers are preferably non-toxic or of sufficiently low toxicity. The amount of cross-linker used depends on the type of shell material and may be adjusted to provide more or less structural rigidity as desired. As gelatine type A is used in the shell material, the cross-linker may be conveniently used in an amount of about 1.0% to about 5.0%, preferably about 2.5%, by weight of the gelatine type A. In general, one skilled in the art may routinely determine the desired amount in any given case by simple experimentation.

Finally, the microcapsules may be washed with water and/or dried to provide a free-flowing powder. Drying may be accomplished by a number of methods known in the art, such as freeze drying, drying with ethanol or spray drying. Spray drying is a particularly preferred method for drying the microcapsules. Spray drying techniques are disclosed in "Spray Drying Handbook", K. Masters, 5th edition, Longman Scientific Technical UK, 1991, the disclosure of which is hereby incorporated by reference.

Uses:

The microcapsules produced by the above process may be used to prepare liquids as free-flowing powders or compressed solids, to store a substance, to separate reactive substances, to reduce toxicity of a substance, to protect a substance against oxidation, to deliver a substance to a specified environment and/or to control the rate of release of a substance. In particular, the microcapsules may be used to deliver a biologically active substance to an organism for nutritional or medical purposes. The biologically active substance may be, for example, a nutritional supplement, a flavour, a drug and/or an enzyme. The organism is preferably a mammal, more preferably a human. Microcapsules containing the biologically active substance may be included, for example, in foods or beverages or in drug delivery systems. Use of the microcapsules of the present invention for formulating a nutritional supplement into human food is particularly preferred.

Microcapsules of the present invention have good rupture strength to help reduce or prevent breaking of the microcapsules during incorporation into food or other formulations. Furthermore, the microcapsule’s shells are insoluble in both aqueous and oily media, and help reduce or prevent oxidation and/or deterioration of the loading substance during preparation of the microcapsules, during long-term storage, and/or during incorporation of the microcapsules into a formulation vehicle, for example, into foods, beverages, nutraceutical formulations or pharmaceutical formulations.
Examples

Example 1:

[0024] 54.5 grams gelatine 275 Bloom type A (isoelectric point of about 9) was mixed with 600 grams of deionized water containing 0.5% sodium ascorbate under agitation at 50°C until completely dissolved. 5.45 grams of sodium polyphosphate was dissolved in 104 grams of deionized water containing 0.5% sodium ascorbate. 90 grams of a fish oil concentrate containing 30% eicosapentaenoic acid ethyl ester (EPA) and 20% docosahexaenoic acid ethyl ester (DHA) (available from Ocean Nutrition Canada Ltd.) was dispersed with 1.0% of an antioxidant (blend of natural flavour, tocopherols and citric acid available as Duralox™ from Kalsec™) into the gelatine solution with a high speed Polytron™ homogenizer. An oil-in-water emulsion was formed. The oil droplet size had a narrow distribution with an average size of about 1 μm measured by Coulter™ LS230 Particle Size Analyzer. The emulsion was diluted with 700 grams of deionized water containing 0.5% sodium ascorbate at 50°C. The sodium polyphosphate solution was then added into the emulsion and mixed with a Lightnin™ agitator at 600 rpm. The pH was then adjusted to 4.5 with a 10% aqueous acetic acid solution. During pH adjustment and the cooling step that followed pH adjustment, a coacervate formed from the gelatine and polyphosphate coated onto the oil droplets to form primary microcapsules. Cooling was carried out to above the gel point of the gelatine and polyphosphate and the primary microcapsules started to agglomerate to form lumps under agitation. Upon further cooling of the mixture, polymer remaining in the aqueous phase further coated the lumps of primary microcapsules to form an encapsulated agglomeration of microcapsules having an outer shell and having an average size of 50 μm. Once the temperature had been cooled to 5°C, 2.7 grams of 50% gluteraldehyde was added into the mixture to further strengthen the shell. The mixture was then warmed to room temperature and kept stirring for 12 hours. Finally, the microcapsule suspension washed with water. The washed suspension was then spray dried to obtain a free-flowing powder. A payload of 60% was obtained.

Example 2:

[0025] Encapsulated agglomerations of microcapsules were formed in accordance with the method of Example 1 except that 0.25% sodium ascorbate was used. A payload of 60% was obtained.

Example 3:

[0026] Encapsulated agglomerations of microcapsules were formed in accordance with the method of Example 1 except that no ascorbate was used. A payload of 60% was obtained.

Example 4:

[0027] Encapsulated agglomerations of microcapsules were formed in accordance with the method of Example 1 except that 105 grams of fish oil concentrate was used and a payload of 70% was obtained.

Example 5:

[0028] Encapsulated agglomerations of microcapsules were formed in accordance with the method of Example 1 except that it was applied to triglyceride (TG) fish oil (available from Ocean Nutrition Canada Ltd.) rather than ethyl ester fish oil.

Example 6:

[0029] Encapsulated agglomerations of microcapsules were formed in accordance with the method of Example 1 except that gelatine (type A) and gum arabic were used as polymer components of the shell material.

Example 7:

[0030] Encapsulated agglomerations of microcapsules were formed in accordance with the method of Example 1 except that 150 Bloom gelatine (type A) and polyphosphate were used as polymer components of the shell material and 105 grams of fish oil concentrate was used to obtain a payload of 70%.
Example 8:

[0031] Encapsulated agglomerations of microcapsules were formed in accordance with the method of Example 1 except that transglutaminase was used to cross-link the shell material.

Example 9: Evaluation of microcapsules

[0032] The microcapsules of Examples 1-8 were evaluated for mechanical strength, encapsulated oil quality and oxidative stability.

[0033] Microcapsule shell strength was evaluated by centrifuging a given amount of the prepared microcapsule powders from each of the Examples 1-8 at 34,541 g at 25°C for 30 minutes in a Sorvall™ Super T-21 centrifuge. The original and the centrifuged powders were washed with hexane to extract oil released from the microcapsules due to shell breakage under centrifuge force. The ratio of percent free oil of the centrifuged powders to that of the original powders is used as an indicator of the shell strength. The lower the ratio, the stronger is the microcapsule’s shell.

[0034] Oil quality in microcapsules was evaluated by crushing the shells of the prepared microcapsule powders from each of Examples 1-8 with a grinder. The encapsulated oil was then extracted with hexane. Peroxide Value (PV) was analyzed with American Oil Chemist Society Method (AOCS Official Method Cd 8-53: Peroxide value). A high PV indicates a higher concentration of primary oxidation products in the encapsulated oil.

[0035] Accelerated oxidative stability was evaluated by placing the prepared microcapsule powders from each of Examples 1-8 in an oxygen bomb (Oxipres™, MIKROLAB AARHUS A/S, Denmark) with an initial oxygen pressure of 5 bar at a constant temperature of 65°C. When the encapsulated fish oil started to oxidize, the oxygen pressure dropped. The time at which the oxygen pressure started to drop is called Induction Period. A longer Induction Period means that the contents of the microcapsules are better protected towards oxidation.

[0036] Results are shown in Table 1. The results indicate that the agglomerated microcapsules prepared in accordance with the present invention have excellent strength and resistance to oxidation of the encapsulated loading substance.

<table>
<thead>
<tr>
<th>run #</th>
<th>load (%)</th>
<th>ascorbate (%)</th>
<th>Induction period (hr)</th>
<th>PV value</th>
<th>free oil ratio</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60</td>
<td>0.50</td>
<td>38</td>
<td>3.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>0.25</td>
<td>34</td>
<td>4.1</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>0.0</td>
<td>26</td>
<td>7.8</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>70</td>
<td>0.50</td>
<td>38</td>
<td>3.2</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>60</td>
<td>0.50</td>
<td>37</td>
<td>0.28</td>
<td>3.0</td>
<td>TG oil</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>0.50</td>
<td>30</td>
<td>3.4</td>
<td>1.5</td>
<td>gum arabic</td>
</tr>
<tr>
<td>7</td>
<td>70</td>
<td>0.50</td>
<td>38</td>
<td>4.4</td>
<td>2.2</td>
<td>150 bloom gelatin</td>
</tr>
<tr>
<td>8</td>
<td>60</td>
<td>0.50</td>
<td>33</td>
<td>3.2</td>
<td>1.1</td>
<td>enzymatic cross linking</td>
</tr>
</tbody>
</table>

[0037] Other advantages which are obvious and which are inherent to the invention will be evident to one skilled in the art. It will be understood that certain features and sub-combinations are of utility and may be employed without reference to other features and sub-combinations. This is contemplated by and is within the scope of the claims. Since many possible embodiments may be made of the invention without departing from the scope thereof, it is to be understood that all matter herein set forth or shown in the accompanying drawings is to be interpreted as illustrative and not in a limiting sense.

Claims

1. A microcapsule comprising an agglomeration of primary microcapsules, each individual primary microcapsule having a primary shell around a loading substance which is a hydrophobic liquid, and the agglomeration being encapsulated by an outer shell, wherein the primary shell and the outer shell are each formed from a complex coacervate between two polymer components wherein one polymer component is gelatine type A and the other is selected from the group consisting of gelatine type B, polyphosphate, gum arabic, alginate, chitosan, carrageenan, pectin, and carboxymethylcellulose, wherein the outer shell has an average diameter of from 50 µm to 100 µm.
2. The microcapsule according to claim 1, wherein the outer shell is a matrix of a shell material that surrounds the agglomeration to form a foam-like structure.

3. The microcapsule according to claim 2, wherein the shell material is a complex coacervate between gelatine A and polyphosphate.

4. The microcapsule according to claim 2, wherein the shell material further comprises an antioxidant.

5. The microcapsule according to claim 4, wherein the antioxidant is ascorbic acid or a salt thereof.

6. The microcapsule according to claim 4, wherein the antioxidant is sodium ascorbate.

7. The microcapsule according to claim 2, wherein the primary shells have an average diameter of from about 40 nm to about 10 \(\mu \text{m} \).

8. The microcapsule according to claim wherein the primary shells have an average diameter of from about 0.1 \(\mu \text{m} \) to about 5 \(\mu \text{m} \).

9. The microcapsule according to claim 2, wherein the primary shells have an average diameter of about 1 \(\mu \text{m} \).

10. The microcapsule according to claim 2 having a payload of loading substance of up to about 70% by weight.

11. The microcapsule according to claim 2, wherein said loading substance is a biologically active substance.

12. The microcapsule according to claim 2, wherein said loading substance is a nutritional supplement.

13. The microcapsule according to claim 2, wherein said loading substance is a triglyceride, an omega-3 fatty acid, an ester of an omega-3 fatty acid and/or mixtures thereof.

14. The microcapsule according to claim 2, wherein said loading substances is a phytosterol ester of docosahexaenoic acid and/or eicosapentaenoic acid, a C\(_{1}\)-C\(_{6}\) alkyl ester of docosahexaenoic acid and/or eicosapentaenoic acid, and/or a mixture thereof.

Patentansprüche

1. Mikrokapsel, umfassend eine Agglomeration von primären Mikrokapseln, wobei jede einzelne Mikrokapsel eine Primärhülle aufweist, die eine Ladesubstanz umgibt, welche eine hydrophobe Flüssigkeit ist, und die Agglomeration von einer Außenhülle eingeschlossen ist, wobei die Primärhülle und die Außenhülle jeweils durch ein komplexes Koazervat zwischen zwei Polymer-Komponenten gebildet ist, wobei eine Polymer-Komponente Gelatine vom Typ A ist und die andere ausgewählt ist aus der Gruppe bestehend aus Gelatine vom Typ B, Polyphosphat, Gummi arabicum, Alginat, Chitosan, Carrageen, Pektin und Carboxymethylcellulose, wobei die Außenhülle einen mittleren Durchmesser von 50 \(\mu \text{m} \) bis 100 \(\mu \text{m} \) ausweist.

2. Mikrokapsel nach Anspruch 1, worin die Außenhülle eine Matrix aus Hüllenmaterial ist, das die Agglomeration umgibt, um eine schaumartige Struktur zu bilden.

5. Mikrokapsel nach Anspruch 4, worin das Antioxidans Ascorbinsäure oder ein Salz davon ist.

6. Mikrokapsel nach Anspruch 4, worin das Antioxidans Natriumascorbat ist.

7. Mikrokapsel nach Anspruch 2, worin die Primärhüllen einen mittleren Durchmesser von etwa 40 nm bis etwa 10 \(\mu \text{m} \) aufweisen.
8. Mikrokapsel nach Anspruch 2, worin die Primärhüllen einen mittleren Durchmesser von etwa 0.1 \(\mu m \) bis etwa 5 \(\mu m \) aufweisen.

9. Mikrokapsel nach Anspruch 2, worin die Primärhüllen einen mittleren Durchmesser von etwa 1 \(\mu m \) aufweisen.

10. Mikrokapsel nach Anspruch 2 mit einer Tragefähigkeit für eine Ladesubstanz von bis zu etwa 70 Gew.-%.

11. Mikrokapsel nach Anspruch 2, eine Ladesubstanz umfassend, worin die Ladesubstanz eine biologisch aktive Substanz ist.

12. Mikrokapsel nach Anspruch 2, eine Ladesubstanz umfassend, worin die Ladesubstanz eine Nahrungsergänzung ist.

13. Mikrokapsel nach Anspruch 2, eine Ladesubstanz umfassend, worin die Ladesubstanz ein Triglycerid, eine Omega-3-Fettsäure, ein Ester einer Omega-3-Fettsäure und/oder Gemischen daraus ist.

14. Mikrokapsel nach Anspruch 2, eine Ladesubstanz umfassend, worin die Ladesubstanz ein Phytosteroleseter von Docosahexaensäure und/oder Eicosapentaensäure, ein \(C_{17} - C_{20} \)-Alkylester von Docosahexaensäure und/oder Eicosapentaensäure und/oder ein Gemisch daraus ist.

Revendications

1. Microcapsule comprenant une agglomération de microcapsules primaires, chaque microcapsule primaire individuelle ayant une coque primaire autour d’une substance de chargement qui est un liquide hydrophobe, et l’agglomération étant encapsulée par une coque externe, la coque primaire et la coque externe chacune étant formée par un coacervat complexe entre deux composants polymères, un composant polymère étant de la gélatine de type A et l’autre étant choisi dans le groupe consistant en la gélatine de type B, un polyphosphate, la gomme arabique, l’alginate, le chitosan, la carragénine, la pectine et la carboxyméthylcellulose, dans laquelle la coque externe a un diamètre moyen de 50 \(\mu m \) à 100 \(\mu m \).

2. Microcapsule selon la revendication 1, dans laquelle la coque externe est une matrice de matériau de coque qui entoure l’agglomération pour former une structure de type mousse.

3. Microcapsule selon la revendication 2, dans laquelle le matériau de coque est un coacervat complexe entre la gélatine A et un polyphosphate.

4. Microcapsule selon la revendication 2, dans laquelle le matériau de coque comprend en outre un antioxydant.

5. Microcapsule selon la revendication 4, dans laquelle l’antioxydant est l’acide ascorbique ou un sel de celui-ci.

6. Microcapsule selon la revendication 4, dans laquelle l’antioxydant est l’ascorbate de sodium.

7. Microcapsule selon la revendication 2, dans laquelle les coques primaires ont un diamètre moyen d’environ 40 nm à environ 10 \(\mu m \).

8. Microcapsule selon la revendication 2, dans laquelle les coques primaires ont un diamètre moyen d’environ 0,1 \(\mu m \) à environ 5 \(\mu m \).

9. Microcapsule selon la revendication 2, dans laquelle les coques primaires ont un diamètre moyen d’environ 1 \(\mu m \).

10. Microcapsule selon la revendication 2, ayant une charge utile de substance de chargement allant jusqu’à environ 70 % en poids.

11. Microcapsule selon la revendication 2, dans laquelle ladite substance de chargement est une substance biologiquement active.

12. Microcapsule selon la revendication 2, dans laquelle ladite substance de chargement est un complément nutritionnel.
13. Microcapsule selon la revendication 2, dans laquelle ladite substance de chargement est un triglycéride, un acide gras omega-3, un ester d’un acide gras omega-3 et/ou des mélanges de ceux-ci.

14. Microcapsule selon la revendication 2, dans laquelle ladite substance de chargement est un ester de phytostérol d’acide docosahexaénoïque et/ou d’acide eïcosapentaénoïque, un ester alkyle en C₁ à C₆ d’acide docosahexaénoïque et/ou d’acide eïcosapentaénoïque, et/ou un mélange de ceux-ci.
Fig. 1

Fig. 2
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

Non-patent literature cited in the description
