ITALIAN PATENT OFFICE

Document No.

102010901902087A1

Publication Date

20120623

Applicant

STMICROELECTRONICS S.R.L.

Title

SENSORE MAGNETORESISTIVO INTEGRATO, IN PARTICOLARE SENSORE MAGNETORESISTIVO TRIASSIALE E SUO PROCEDIMENTO DI FABBRICAZIONE

DESCRIZIONE

del brevetto per invenzione industriale dal titolo:
"SENSORE MAGNETORESISTIVO INTEGRATO, IN PARTICOLARE SENSORE
MAGNETORESISTIVO TRIASSIALE E SUO PROCEDIMENTO DI
FABBRICAZIONE"

di STMICROELECTRONICS S.R.L.

di nazionalità italiana

con sede: VIA C. OLIVETTI, 2

AGRATE BRIANZA (MB)

Inventori: PACI Dario, MORELLI Marco, RIVA Caterina

* * *

riguarda La presente invenzione un magnetoresistivo integrato, in particolare un magnetoresistivo triassiale, e il suo procedimento di fabbricazione. Nella descrizione che seque, si particolare riferimento ad un sensore magnetoresistivo anisotropo (AMR - Anisotropic Magneto-Resistor), senza tuttavia limitarsi a questo e l'invenzione è applicabile anche ad altri tipi di sensori magnetoresistivi, quali il sensore GMR (Giant Magneto-Resistor) e TMR (Tunneling Magneto-Resistor) e altri sensori integrati di magnetico di per sé sensibili a campi magnetici paralleli alla piastrina in cui sono integrati.

Come è noto, i sensori magnetoresistivi sfruttano la capacità di opportuni materiali ferromagnetici (chiamati

1

materiali magnetoresistivi, ad esempio il materiale noto con il nome di "permalloy" costituito da una lega di Fe-Ni) di modificare la propria resistenza in presenza di un campo magnetico esterno.

Attualmente, i sensori magnetoresistivi vengono realizzati а partire da strisce di materiale magnetoresistivo. Durante la fabbricazione, la striscia di materiale magnetoresistivo può essere sottoposta ad un esterno in modo campo magnetico da presentare magnetizzazione preferenziale in una prefissata direzione axis"), (chiamata **"**easv ad esempio la direzione longitudinale della striscia stessa.

Prima della misura del campo magnetico esterno uno di magnetizzazione iniziale lungo l'asse di magnetizzazione preferenziale è imposto tramite un impulso corrente attraverso una bobina di "set/reset". assenza di campi magnetici esterni, la magnetizzazione mantiene la direzione imposta dall'impulso di set/reset, e striscia presenta massima resistenza lungo la direzione. In presenza di campi magnetici esterni aventi direzione differente da quella di magnetizzazione preferenziale, la magnetizzazione della striscia cambia, così come la sua resistenza, come spiegato in seguito con riferimento alla figura 1.

In figura 1, un magnetoresistore 1 è formato da una

striscia di materiale magnetoresistivo avente direzione longitudinale parallela all'asse X, che costituisce anche la direzione di magnetizzazione preferenziale. Il magnetoresistore 1 è attraversato da una corrente I fluente nella direzione longitudinale della striscia. Un campo magnetico esterno Hy è diretto parallelamente all'asse Y e provoca una rotazione della magnetizzazione M per un angolo α rispetto alla corrente I. In questo caso si ha:

$$R = R_{min} + R_d \cos^2 \alpha$$

in cui R_{min} è la resistenza del magnetoresistore in caso di magnetizzazione M parallela all'asse Y (campo magnetico esterno Hy molto elevato), e R_d è la differenza di resistenza $R_{\text{max}}-R_{\text{min}}$, con R_{max} resistenza in caso di magnetizzazione diretta parallelamente alla direzione X.

Per il permalloy, il rapporto R_d/R massimo è dell'ordine di 2-3%.

Ponendo

$$\sin^2 \alpha = \frac{Hy^2}{Ho^2}$$
 per Hy \leq Ho e $\sin^2 \alpha = 1$ per Hy \geq Ho

in cui Ho è un parametro che dipende dal materiale e dalla geometria della striscia 1, si ha:

$$R = R_{\min} + \text{Rd} \left[1 - \left(\frac{Hy}{Ho} \right)^2 \right] \text{ per Hy } \le \text{ Ho}$$
 (1)

La figura 2 mostra con linea tratteggiata l'andamento della resistenza R risultante dalla (1) (curva A).

E' inoltre noto, per linearizzare l'andamento della

3

resistenza R almeno in una porzione operativa della curva, formare, al di sopra della striscia di materiale magnetoresistivo, strisce trasversali 2 (chiamate "barber poles"), di materiale conduttore (ad esempio alluminio), poste a distanza costante e con inclinazione 45° rispetto alla direzione X, come mostrato in figura 3.

In questa situazione, cambia la direzione della corrente I, ma non la magnetizzazione. Di conseguenza, la (1) diventa:

$$R = R_{\min} + \frac{Rd}{2} \pm \frac{Rd}{2} \left(\frac{Hy}{Ho}\right) \sqrt{1 - \left(\frac{Hy}{Ho}\right)^2} \text{ per Hy } \le \text{ Ho}$$
 (2)

avente caratteristica lineare nell'intorno del punto Hy/Ho = 0, come mostrato dalla curva B con linea continua di figura 2.

In pratica, in tale intorno, il termine sotto radice può essere trascurato rispetto a quello lineare e si ha dunque che:

$$R = R_0 \pm k \left(\frac{Hy}{Ho}\right) \tag{3}$$

Il segno \pm nella (3) dipende dall'orientamento delle strisce trasversali 2 ($\pm45^{\circ}$).

La figura 4 mostra un sensore magnetoresistivo 9 includente quattro magnetoresistori 1 aventi strisce trasversali 2 disposte in modo alternato; i magnetoresistori 1 sono collegati in modo da formare un ponte di Wheatstone costituito da due rami 3, 4 fra loro in parallelo definenti terminali di ingresso 5, 6 e terminali

di uscita 7, 8. In dettaglio, in ciascun ramo 3, 4, i due magnetoresistori 1a, 1b hanno strisce trasversali 2 orientate in modo opposto (rispettivamente +45° e -45°); i magnetoresistori 1a, 1b di un ramo sono disposti in modo diametralmente opposto ai corrispondenti dell'altro ramo (il magnetoresistore 1a del primo ramo 3 con strisce trasversali 2 a +45° è collegato al secondo terminale di ingresso 6 e il magnetoresistore 1a del secondo ramo 4 con strisce trasversali 2 a +45° è collegato al primo terminale di ingresso 5; analogamente per i magnetoresistori 1b). Fra i terminali di ingresso 5, 6 viene applicata una tensione di polarizzazione Vb.

Resistori di trimmer possono essere collegati in serie a ciascun ramo 3, 4, in modo non mostrato, in modo che, in assenza di campo magnetico esterno orientato parallelamente alla direzione di rilevamento (qui il campo Hx), la tensione di uscita Vo esistente fra i terminali di uscita 7, 8 è nulla. Viceversa, in caso di magnetizzazione iniziale diretto verticalmente verso il basso, un campo magnetico esterno Hx provoca un aumento della resistività dei magnetoresistori qui le bobine la aventi strisce trasversali 2 dirette a +45° e una corrispondente riduzione della resistività degli altri magnetoresistori lb aventi strisce trasversali 2 dirette a -45°. Di conseguenza, ogni variazione di resistenza dovuta ad un campo esterno

perpendicolare ai magnetoresistori 1a, 1b provoca una corrispondente variazione lineare della tensione di uscita Vo, il cui valore dipende quindi in modo lineare dal campo magnetico esterno Hx.

Data l'alta sensibilità dei sensori magnetoresistivi del tipo indicato, di recente ne è stato proposto l'uso come bussole elettroniche in sistemi di navigazione. In questo caso, il campo esterno da rilevare è costituito dal campo magnetico terrestre. In prima approssimazione, il campo magnetico terrestre può essere considerato parallelo alla superficie terrestre e la lettura della bussola richiede quindi due sensori sensibili alle due direzioni del piano tangente localmente alla superficie terrestre. Dato che tuttavia l'inclinazione della bussola rispetto a tale piano tangente comporta errori di lettura, per correggere tale errore è in pratica necessario avere tre sensori, ciascuno avente asse sensibile diretto secondo i tre assi spaziali X, Y, Z.

A tale scopo, è necessario disporre i tre sensori ruotati di 90° uno rispetto all'altro. Mentre per la realizzazione di un sensore sensibile a campi diretti lungo due direzioni non crea difficoltà, dato che essi giacciono nello stesso piano, il rilevamento della terza direzione è critico, dato che richiede la realizzazione di un terzo sensore posto in un piano perpendicolare rispetto a quello

dei primi due sensori, come mostrato in figura 5, in cui i sensori X e Y sono integrati in una piastrina 10 e il sensore Z è integrato in una differente piastrina 11 e le piastrine 10, 11 sono fissate ad una stessa base o "frame" 12. Infatti, in tal caso, le operazioni di montaggio sono molto più complesse e il dispositivo finito risulta molto più costoso.

Inoltre, le tolleranze di allineamento fra il sensore Z e i sensori X e Y realizzati in diverse piastrine sono maggiori rispetto al caso di sensori integrati in un'unica piastrina, per cui si ottiene una minore precisione per quanto riguarda la determinazione della direzione del campo magnetico, che è fondamentale per le applicazioni di una bussola elettronica.

Inoltre con la riduzione delle dimensioni ("scaling down") delle piastrine, gli incapsulamenti richiesti sono sempre più piccoli (ad es. da 5x5mm² a 3x3mm²); tuttavia l'assemblaggio verticale è incompatibile con la riduzione desiderata.

Le soluzioni proposte al problema indicato non sono però soddisfacenti. Ad esempio la domanda di brevetto US 2009/0027048 descrive un metodo di fabbricazione in cui una magnetoresistenza viene deposta in una trincea a forma di V in modo che lo strato sensibile possa rilevare anche parte della componente perpendicolare alla piastrina. D'altra

parte, questa soluzione rende più difficile la deposizione e la definizione delle strisce trasversali o "barber poles", delle interconnessioni metalliche e delle bobine ausiliarie per la calibrazione e la procedura di "setreset" (cosiddetto "flipping") per la riduzione dell'offset.

Problematiche simili esistono anche nel caso di un di diretti sensore campi magnetici singolo perpendicolarmente al piano orizzontale, quando non è possibile la disposizione verticale del dispositivo includente il sensore o quando, pur volendo rilevare le componenti di campo orizzontali, è necessario disporre il dispositivo in posizione verticale.

Scopo dell'invenzione è quindi mettere a disposizione un sensore magnetoresistivo di tipo integrato, in grado di rilevare campi magnetici esterni diretti trasversalmente al piano dell'elemento magnetoresistivo.

Secondo la presente invenzione vengono realizzati un sensore magnetoresistivo integrato, un dispositivo a bussola elettronica ed un procedimento di fabbricazione di un sensore magnetoresistivo, come definiti nelle rivendicazioni 1, 12 e 13, rispettivamente.

Per la comprensione della presente invenzione ne vengono ora descritte forme di realizzazione preferite, a puro titolo di esempio non limitativo, con riferimento ai

disegni allegati, nei quali:

- la figura 1 mostra un elemento magnetoresistivo, di tipo noto;
- la figura 2 mostra la variazione di resistenza in funzione del campo applicato per gli elementi di figura 1 e 3;
- la figura 3 mostra un differente elemento magnetoresistivo noto;
- la figura 4 presenta un sensore magnetoresistivo realizzato a ponte di Wheatstone;
- la figura 5 una disposizione nota di sensori elementari per il rilevamento di campi magnetici lungo tre assi cartesiani:
- la figura 6 mostra il layout di una forma di realizzazione del presente sensore magnetoresistivo;
- la figura 7 mostra una sezione trasversale attraverso il sensore di figura 6;
- la figura 8 mostra il layout di una diversa implementazione del presente sensore;
- la figura 9 mostra una sezione trasversale del sensore di figura 8;
- la figura 10 mostra l'equivalente elettrico del sensore delle figure 8 e 9;
- le figure 11a-11d sono sezioni trasversali attraverso una fetta di materiale semiconduttore in

successive fasi di fabbricazione del sensore delle figure 8 e 9:

- le figure 12 e 13 mostrano schematicamente due possibili varianti del presente sensore;
- la figura 14 mostra lo schema a blocchi di una bussola elettronica utilizzante il presente sensore magnetoresistivo;
- la figura 15 mostra un'altra forma di realizzazione di una bussola elettronica; e
- la figura 16 mostra l'equivalente elettrico dei sensori magnetoresistivi implementati nella bussola elettronica di figura 15, in una condizione operativa.

Le figure 6 e 7 mostrano un sensore magnetoresistivo 15 formato in una piastrina 16 comprendente un substrato 17 di materiale conduttore, ad esempio silicio, ed uno strato isolante 18, ad esempio di ossido di silicio, formato tipicamente da una pluralità di strati sovrapposti. Il substrato 17 ha una superficie frontale 19 coperta dallo strato isolante 18 ed una superficie posteriore 20. Le superfici frontale 19 e posteriore 20 si estendono parallelamente al piano XY. All'interno del substrato 17 può essere presente almeno un'area attiva 24 alloggiante componenti elettronici 25, mostrati solo schematicamente.

Lo strato isolante 18 alloggia un magnetoresistore 26, ad esempio un magnetoresistore anisotropo AMR, di tipo

planare, estendentesi parallelamente al piano XY e alle superfici 19, 20 e definente quindi un piano sensibilità. Nell'esempio illustrato, il magnetoresistore 26 è formato da una pluralità di strisce magnetoresistive 27, ad esempio di una lega permalloy (NiFe), collegate alle estremità da porzioni di raccordo 28, in modo da costituire una forma a serpentina. Al di sopra delle strisce magnetoresistive 27 sono formate strisce trasversali 29 (chiamate "barber poles"), di materiale conduttore esempio alluminio) e linee di connessione 30, che collegano il magnetoresistore 26 e i componenti elettronici 25 fra loro e all'esterno del magnetoresistore. Qui, le strisce trasversali 29, le porzioni di raccordo 28 e le linee di connessione 30 sono formate in uno stesso livello metallizzazione. Inoltre, possono essere previsti altri livelli di metallizzazione, collegati reciprocamente mediante vie metallizzate, in modo di per sé noto e non mostrato.

Una trincea o cavità 33 si estende all'interno del substrato 17, dalla superficie posteriore 20 fino in prossimità o anche fino alla superficie frontale 19. La trincea 33 è disposta lateralmente sfalsata rispetto al magnetoresistore 26 ed alloggia un concentratore 34 formato da uno strato di materiale ferromagnetico che copre i lati e il fondo della trincea 33. Il concentratore 34 è di un

materiale ferromagnetico "morbido" (cioè, può essere magnetizzato facilmente e non mantiene la magnetizzazione dopo che è stato rimosso il campo magnetico esterno). Ad esempio può essere utilizzata una lega amorfa a base di cobalto oppure una lega permalloy, tipicamente non anisotropa, o almeno con "easy axis" non allineato alla parete verticale (asse Z).

di Nella sezione trasversale figura 7, il concentratore 34 ha forma ad U comprendente due bracci 34a, 34b ed una base 34c. I bracci 34a, 34b coprono e si estendono contigui alle pareti laterali della trincea 33, per la profondità della trincea 33 stessa (nel caso mostrato, per tutto lo spessore del substrato 17); la base 34c copre ed è contigua al fondo della trincea 33 e quindi qui è a filo con la superficie superiore 19 del substrato 17. Come sotto discusso, i bracci 34a, 34b hanno una dimensione principale lungo l'asse Z molto maggiore rispetto al loro spessore. Come si nota, entrambi i bracci 34a, 34b sono verticalmente sfalsati rispetto a tutte le strisce magnetoresistive 27.

Di conseguenza, come rappresentato in figura 7, relativa ad una sezione nel piano Y-Z, quando il sensore 15 è sottoposto ad un campo magnetico esterno H diretto lungo l'asse Z, i bracci 34a, 34b del concentratore 34 provocano una deflessione delle linee di campo H e la generazione di

una componente orizzontale di campo Hy diretta lungo l'asse Y e quindi parallela al piano di sensibilità. La componente orizzontale Hy (e precisamente quella generata per effetto del braccio 34a) può quindi essere rilevata dal magnetoresistore 26 mediante un circuito di lettura esterno in modo noto, dato che essa provoca un cambiamento della magnetizzazione delle strisce magnetoresistive 27 e quindi della resistenza del magnetoresistore 26.

Inoltre, dato che sia il magnetoresistore 26 sia il concentratore 34 sono di materiale ferromagnetico, si crea un circuito magnetico che favorisce l'effetto di concentrazione del campo magnetico e quindi conferisce al sensore 15 elevata sensibilità.

Le figure 8-10 mostrano una forma di realizzazione del sensore magnetoresistivo 15 che è insensibile a campi magnetici diretti parallelamente al piano XY.

In dettaglio, le figure 8 e 9 (nelle quali parti corrispondenti al sensore delle figure 6, 7 sono state dotate degli stessi numeri di riferimento) comprende quattro magnetoresistori 26 formanti rispettivamente resistori R1-R4, complanari e collegati in modo da formare un ponte di Wheatstone 35 (fig. 10). A tale scopo, le linee di connessione 30 collegano primi terminali dei resistori R1, R2 fra loro e ad un ingresso di alimentazione 40 del ponte 35; primi terminali dei resistori R3, R4 fra loro e

ad ingresso di connessione a massa (grounding input) 41; secondi terminali dei resistori R1, R4 ad un primo terminale di uscita 42 e secondi terminali dei resistori R2, R3 ad un secondo terminale di uscita 43. In pratica, i resistori R1 e R4 formano un primo ramo del ponte 35 e i resistori R2 e R3 formano un secondo ramo del ponte 35, e i due rami sono collegati in parallelo fra loro e fra gli ingressi 40 e 41, secondo l'equivalente elettrico di fig. 10.

I resistori R1-R4 sono fra loro uquali per quanto riquarda le caratteristiche geometriche ed elettriche delle strisce magnetoresistive 27 e delle porzioni di raccordo hanno strisce trasversali 29 inclinate a ±45° rispetto all'asse X. In particolare, nell'esempio mostrato, i resistori R1-R4 sono disposti simmetricamente rispetto ad un asse A parallelo all'asse Y, in cui i resistori R1, R4 del primo ramo del ponte 35 hanno strisce trasversali 29 dirette a +45° rispetto all'asse X e sono disposti simmetricamente ai resistori R2, R3 del secondo ramo del ponte 35, aventi strisce trasversali 29 dirette a -45° (+135°) rispetto all'asse X. Inoltre, i resistori R1-R4 sono disposti simmetricamente (a parte l'orientamento delle strisce trasversali 29) intorno ad un asse B parallelo all'asse X. Per il resto, ciascun resistore R1-R4 è realizzato nel modo descritto per il magnetoresistore 26 con riferimento alle figure 6,7.

Nell'esempio considerato, il concentratore 34 si estende longitudinalmente e simmetricamente all'asse B, in modo da avere i resistori R1, R2 su un suo primo lato e i resistori R3, R4 sul lato opposto. Inoltre, fig. 9, il concentratore 34 si estende fra le coppie di resistenze R1-R2 e R3-R4 in modo che le superfici esterne alla U dei bracci 34a, 34b siano sostanzialmente allineati (a meno di tolleranze) al bordo delle strisce magnetoresistive 27 rivolto verso l'asse B. In generale, comunque, i bracci 34a, 34b possono essere distanziati dalle resistenze R1-R4 (nella direzione lungo l'asse Y); tuttavia tale distanza è opportunamente minimizzata e comunque tenuta minore a 5 μ m nel caso peggiore.

Con la configurazione di figura 8, i bracci 34a, 34b focalizzano il flusso magnetico in modo da deflettere le linee di flusso magnetico e creare componenti di campo parallele all'asse Y ma di direzione opposta, dato che esse sono guidate attraverso il materiale ferromagnetico dei magnetoresistori 26, seguendo il percorso a minima riluttanza. Di conseguenza, nell'esempio di fig. 9 con campo magnetico esterno H diretto in direzione Z e magnetizzazione iniziale in direzione -X, i resistori R3, R4 sotto (in fig. 9) al concentratore 34 vedono una componente di campo Hy1 positiva e i resistori R1, R2 sopra

il concentratore 34 vedono una componente di campo Hy2 negativa, con Hy2 = -Hy1. Dato il differente orientamento delle strisce trasversali 29, quindi, sulla base della (3) si ottiene che la resistenza dei resistori R1, R3 diminuisce di Δ R, mentre la resistenza dei resistori R2, R4 aumenta di Δ R. Ne consegue che la tensione di uscita Vo fra le uscite 42 e 43 è pari a:

$$V_o = V_b \Delta R/R_o$$

proporzionale alla variazione di resistenza e quindi al campo magnetico esterno H. Di conseguenza un apposito circuito di lettura, in base al segnale rilevato e alla configurazione geometrica, è in grado di determinare l'ampiezza del campo magnetico esterno H.

Viceversa, se il campo magnetico esterno ha segno opposto, si ha una tensione di uscita

$$V_o = -V_b \Delta R/R_o$$

di segno opposto al precedente.

D'altra parte, un eventuale campo magnetico diretto lungo l'asse Y (ad esempio di segno positivo) provoca uno stesso cambiamento di resistenza (ad es. $+\Delta R$) nei resistori R1 e R4, dato che essi rilevano la stessa componente e hanno strisce trasversali 29 orientate nella stessa direzione. Inoltre, tale campo lungo l'asse Y provoca un cambiamento di resistenza uguale, ma di segno opposto (ad es. $-\Delta R$) nei resistori R2 e R3. Ne consegue che la tensione

di uscita Vo rimane nulla.

Il sensore 15 delle figure 8, 9 viene realizzato come segue.

Inizialmente, figura 11a, una fetta 50 comprendente il substrato 17, ad esempio di silicio, viene sottoposta alle usuali fasi di realizzazione dei componenti 25 visibili in fig. 11a) all'interno dell'area attiva 24; quindi, dopo il deposito di un sottile strato isolante (non mostrato separatamente) sulla superficie superiore 19, vengono realizzati i magnetoresistori 26, con tecniche note. Ad esempio, mediante una fase di deposizione di resist e una fotolitografia standard, viene realizzata una maschera resistori di resist che copre tutta la fetta ad eccezione di finestre dove devono essere realizzate le strisce magnetoresistive 27. Quindi, viene deposta una sottile pellicola di materiale magnetoresistivo, ad esempio di permalloy, il resist della maschera resistori viene dissolto tramite solventi, e il metallo presente al di sopra della maschera resist viene rimosso (tecnica di "lift off"), formando così le strisce magnetoresistive 27. In alternativa, è possibile usare tecniche di attacco a secco o a umido. In seguito, viene deposto uno strato metallico, ad es. di alluminio, e questo viene definito, per formare le strisce trasversali ("barber poles") 29, le porzioni di raccordo 28 e le linee di interconnessione 30. In questo strato metallico, possono essere realizzati eventuali resistori di trimmer, nonché la bobina di set e reset, per la riduzione dell'offset ed eventualmente la bobina di calibrazione. Successivamente, viene deposto almeno uno strato di dielettrico (o più, se sono richiesti vari livelli di metallizzazione), completando così lo strato isolante 18.

Quindi, figura 11b, la trincea 33 viene realizzata a partire dalla superficie posteriore 20 del substrato. La trincea 33 può essere ottenuta ad esempio mediante un attacco ionico reattivo profondo (DRIE - Deep Reactive Ion Etching). Nell'esempio illustrato, la trincea 33 ha pareti laterali verticali, perpendicolari alla superficie posteriore 20, ma è possibile anche realizzare una trincea con pareti inclinate, in modo da formare un angolo minore di 90°, come tratteggiato sul lato destro di figura 11b.

La trincea 33 può avere una lunghezza pari allo spessore del substrato 17 o leggermente minore; ad esempio, L può essere maggiore di 50 μ m, tipicamente L = 300 o 500 μ m. Nel caso che la trincea 33 non attraversi tutto lo spessore del substrato 17, la distanza D fra il fondo della trincea 33 e la superficie superiore 19 del substrato (e, in prima approssimazione, fra il fondo della trincea 33 e le strisce magnetoresistive 27, data la sottigliezza dello strato isolante al di sotto di queste) viene mantenuta più

piccola possibile, ad es. minore di 30 μ m, tipicamente pari a 0,5-10 μ m. Infatti, tanto minore è la distanza D, tanto maggiore è la sensibilità del sensore, dato che lo spazio ("gap") fra il concentratore 34 e i magnetoresistori 26 rappresenta un'interruzione del circuito magnetico in cui si può avere la perdita di alcune linee di flusso.

La larghezza W della trincea 33 dipende dai rapporti di forma ottenibili con il processo di attacco usato. Ad esempio, con un rapporto di forma 1:20, nel caso di L = 400 μ m, W = 20 μ m; nel caso di L = 500 μ m, di ha W = 25 μ m. Nel caso di lunghezza minima L = 50 μ m, la larghezza minima è pari a 12.5 μ m. In una forma di realizzazione, la larghezza W può essere all'incirca uguale alla distanza fra i lati reciprocamente affacciati di due magnetoresistori 26 disposti simmetricamente all'asse A.

Successivamente, figura 11c, uno strato ferromagnetico 52 viene depositato sulla superficie inferiore 20, ad esempio per sputtering, e ricopre le pareti laterali e la parete di fondo della trincea 33. Lo strato ferromagnetico 52 è di un materiale ferromagnetico "soft", preferibilmente una lega amorfa a base di cobalto o permalloy, e può avere uno spessore compreso fra 0,5 e 3 μ m, ad es. 1 μ m. Nel caso di realizzazione mediante placcatura ("plating"), lo strato ferromagnetico 52 può avere spessore maggiore, ad es. fino a 10 μ m.

In seguito, figura 11d, lo strato ferromagnetico 52 viene definito ad esempio tramite attacco a umido o alternativamente mediante attacco secco o "lift-off", in modo da asportarlo dalla superficie inferiore 20 del substrato 17 e formare il concentratore 34. Quindi, la fetta 50 viene tagliata ("diced"), realizzando così una pluralità di piastrine 16.

In alternativa a quanto sopra descritto, la base 34c del concentratore 34 può essere rimossa (figura 12), dato la parte utile per la concentrazione del campo chiusura del circuito magnetico e la magnetico rappresentata dai bracci 34a, 34b. E' inoltre possibile rimuovere anche uno dei due bracci, ad esempio il braccio 34b, come mostrato in figura 12. In questo caso, il braccio 34a rimanente viene posizionato simmetricamente rispetto ai magnetoresistori 26 e i magnetoresistori 26 su opposti rami del ponte 35 (fig. 8) possono essere avvicinati fra loro, ad esempio possono essere posti ad una distanza legata al processo e allo spessore dello strato che forma i 1 concentratore 34. Ad esempio, nel caso di disallineamento fronte-retro di 5 μ m, i magnetoresistori 26 possono essere ravvicinati fino a circa 10 μ m; ma in caso di processo con tolleranze minori, anche la distanza fra i magnetoresistori 26 può ridursi ulteriormente, consentendo un risparmio di area.

Il sensore 15 con il concentratore 34 forma quindi un circuito magnetico che piega un campo magnetico esterno diretto perpendicolarmente (o avente una componente diretta perpendicolarmente) ai magnetoresistori 26 in modo componenti parallele rilevabili dai generare magnetoresistori stessi. Inoltre, esso concentra il flusso magnetico, incrementando la sensibilità del sensore. Con la soluzione singola di figura 6-7, il magnetoresistore 26 rimane sensibile ai campi magnetici paralleli al sensore 15, per cui la soluzione a singolo elemento è tipicamente impiegabile in applicazioni in cui esistano solo campi perpendicolari; viceversa, utilizzando la soluzione a ponte 35 di figura 8-9 è possibile eliminare componenti di campo esterno parallele al sensore.

Integrando inoltre sensori magnetoresistivi noti 9 nella stessa piastrina 16 con il sensore 15, è possibile ottenere un dispositivo magnetoresistivo AMR, GMR o TMR triassiale avente precisione migliorata rispetto a soluzioni non integrate, grazie alla riduzione dei disallineamenti dei magnetoresistori 26.

Inoltre, si ottiene un risparmio di area e maggiore compattezza del sensore triassiale.

L'assemblaggio di un singolo sensore Z sensibile a campi perpendicolari o del sensore triassiale risulta inoltre grandemente semplificato rispetto al caso di

assemblaggio verticale, come prima necessario.

Il concentratore viene realizzato in una fase di postlavorazione rispetto ad un sensore AMR standard e quindi
non pregiudica o influisce sulle fasi di fabbricazione
degli altri componenti del sensore, inclusi componenti
elettronici integrati nella stessa piastrina per
l'elaborazione del segnale fornito dal sensore magnetico,
non deteriorando quindi sostanzialmente l'affidabilità dei
circuiti integrati associati.

Simulazioni FEM agli elementi finiti eseguite dalla richiedente hanno in effetti dimostrato che il sensore 15 ha una sensibilità lungo l'asse Z pari o addirittura maggiore alla sensibilità del sensore noto di fig. 4, se assemblato in direzione verticale, a parità o addirittura riducendo l'area di integrazione necessaria.

Utilizzando il sensore 15 è possibile realizzare un sensore triassiale per applicazioni a bussola elettronica. Ad esempio, una bussola elettronica 60 può essere realizzata in una singola piastrina 16, integrando due sensori magnetoresistivi X e Y di tipo noto, senza concentratore, ruotati uno rispetto all'altro di 90°, lateralmente al sensore 15, come mostrato in figura 14. Qui, la bussola elettronica 60 comprende un primo sensore magnetoresistivo 61 che rileva componenti di campo parallele all'asse X, un secondo sensore magnetoresistivo

62 che rileva componenti di campo parallele all'asse Y e il presente sensore magnetoresistivo 15 (i cui magnetoresistori 26 sono dotati di concentratore) che rileva componenti di campo parallele all'asse Z. Ciascuno dei sensori magnetoresistivi 61, 62 e 15 è collegato ad un proprio stadio amplificatore 63, che effettua anche l'eliminazione dell'offset, e quindi ad uno stadio di calcolo 64 che determina la direzione del campo magnetico in modo di per sé noto.

alternativa, è possibile utilizzare due sensori magnetoresistivi, di cui almeno uno realizzato come il sensore magnetoresistivo 15 di concentratore e usando un sistema di interruttori cambiare la configurazione del ponte. Ad esempio, la figura 15 mostra una forma di realizzazione in cui sono presenti due sensori magnetoresistivi 15a, 15b, ruotati di 90° uno rispetto all'altro. Ciascun sensore magnetoresistivo 15a, 15b comprende un primo interruttore 66 interposto fra il primo resistore R1 e il primo terminale di uscita 42 ed un secondo interruttore 67 interposto fra il secondo resistore R2 e il secondo terminale di uscita 43. In particolare, il primo interruttore 66 ha due posizioni: una prima posizione in cui il primo interruttore 66 collega il primo resistore terminale di uscita 42 ed una primo posizione, in cui esso collega il primo resistore R1 al

secondo terminale di uscita 43. Analogamente, il secondo interruttore 67 ha due posizioni: una prima posizione, in cui il secondo interruttore 67 collega il secondo resistore R2 al secondo terminale di uscita 43 ed una seconda posizione in cui esso collega il primo resistore R1 al primo terminale di uscita 42.

Gli interruttori 66, 67 del primo sensore magnetoresistivo 15a sono comandati da uno stesso segnale gli interruttori 66, 67 del secondo sensore magnetoresistivo 15b sono comandati da uno stesso segnale s2, in modo che i due sensori magnetoresistivi 15a, 15b possono essere comandati indipendentemente. In tal modo, quando gli interruttori 66, 67 sono nella prima posizione, il relativo sensore magnetoresistivo 15a, 15b opera nel modo descritto sopra con riferimento alle fig. 8-10, rilevando la componente Z di un campo esterno, mentre quando gli interruttori 66, 67 sono nella seconda posizione quindi i sensori magnetoresistivi 15a, 15b hanno l'equivalente elettrico mostrato in fig. 16), ciascun sensore magnetoresistivo 15a, 15b misura la rispettiva componente planare (X e Y), essendo insensibile alla componente di campo lungo l'asse Z.

In questo modo, un apposito stadio di controllo 70 integrato nella piastrina 16 può comandare gli interruttori 66, 67 attraverso i segnali s1, s2 per acquisire dapprima

le componenti planari (X, Y) e successivamente le componenti perpendicolari (Z), o viceversa o con qualunque sequenza desiderata.

Ovviamente, nella soluzione dotata di interruttori 66, 67. la disposizione delle strisce trasversali 29 resistori R1, R2 del sensore magnetoresistivo 15a e/o 15b possono essere scambiate fra loro, in modo che, in tale sensore, i magnetoresistori 26 siano simmetrici rispetto all'asse B, invece che all'asse A. In questo caso, pratica, il primo ramo del ponte sarebbe formato dai magnetoresistori R2 e R4 e il secondo ramo del ponte dai magnetoresistori R1 e R3. Di consequenza, disposizione degli interruttori 66, 67 mostrata con linea continua in figura 15, i sensori magnetoresistivi 15a, 15b rilevano componenti di campo magnetico rispettivamente parallelamente all'asse X e all'asse Y e sono in grado di rilevare componenti di campo magnetico dirette parallelamente all'asse Z quando gli interruttori 66, 67 sono nella posizione mostrata tratteggiata.

Inoltre, come indicato, può essere previsto uno solo dei due sensori magnetoresistivi 15a, 15b (che rileva alternativamente la direzione Z e una direzione fra X e Y) e l'altro essere realizzato senza concentratore e senza interruttori, ma ruotato di 90°, in modo da rilevare l'altra fra le direzioni X e Y.

Risulta infine chiaro che al sensore qui descritto ed illustrato possono essere apportate modifiche e varianti per questo uscire dall'ambito protettivo della presente invenzione, come definito nelle rivendicazioni allegate. Ad esempio, i magnetoresistori 26 possono essere realizzati in modo differente, mediante un singolo segmento o sagomando il materiale ferromagnetico in modo che questo definisca qià una forma a serpentina; possono essere utilizzati più di quattro magnetoresistori e/o potrebbe essere previsto più di un concentratore; ad esempio, un magnetoresistenze 26 con gruppo di un concentratore 34 potrebbero essere disposti lateralmente agli elementi mostrati in figura 9. In questo caso i gruppi magnetoresistenze-concentratori di dovrebbero disposti a distanza tale da non influenzarsi reciprocamente e potrebbero essere collegati in modo da formare comunque un ponte di Wheatstone 35 i cui resistori R1-R4 sono formati da coppie di resistori 26 collegati in serie. In questo caso, dato che il campo magnetico concentrato sulle strisce magnetoresistive 27 che compongono ciascun magnetoresistore 26 diminuisce sensibilmente la di dal bordo del concentratore 34, distanza queste dividendo ciascun magnetoresistore 26 in più parti, possibile aumentare la sensibilità, a fronte di un maggiore dispendio d'area. Inoltre, il concentratore potrebbe essere realizzato sul fronte della piastrina, ad esempio in una diversa piastrina fissata ("bonded") allo strato isolante 18. Come indicato, le pareti della trincea 33 potrebbero essere inclinate, anche fino a 45°.

Inoltre, la soluzione della figura 15, con sensori 15a, 15b dotati di interruttori 66, 67 può essere anche utilizzata per dispositivi di rilevamento di campi magnetici tridimensionali con differenti applicazioni.

RIVENDICAZIONI

1. Dispositivo magnetoresistivo integrato, comprendente una piastrina (16) includente un substrato (17) avente una prima ed una seconda superficie (19, 20) ed uno strato isolante (18) coprente la prima superficie (19), un primo magnetoresistore (26) di un primo materiale ferromagnetico estendendosi nello strato isolante e avente un piano di sensibilità,

fatto che caratterizzato dal la piastrina (16)alloggia un concentratore (34) di un secondo materiale ferromagnetico includente almeno un braccio estendentesi in direzione trasversale al piano sensibilità e verticalmente sfalsato rispetto al primo magnetoresistore (26), in modo da deflettere linee di flusso magnetiche dirette perpendicolarmente al piano di sensibilità e generare componenti di campo magnetico dirette parallelamente al piano di sensibilità.

- 2. Dispositivo magnetoresistivo integrato secondo la rivendicazione 1, in cui il substrato (17) presenta una trincea (33) estendentesi dalla seconda superficie (20) verso la prima superficie (19) e il braccio (34a) del concentratore (34) si estende adiacente e copre una parete laterale della trincea.
- 3. Dispositivo magnetoresistivo integrato secondo la rivendicazione 1 o 2, in cui il concentratore (34) è

formato da una coppia di bracci distinti (34a, 34b), estendentisi in direzione trasversale al piano di sensibilità.

- 4. Dispositivo magnetoresistivo integrato secondo una qualsiasi delle rivendicazioni precedenti, in cui il concentratore (34) ha forma ad U in sezione trasversale, e comprende una coppia di bracci distinti (34a, 34b) collegati da una porzione di fondo (34c) sostanzialmente parallela alla prima superficie (19).
- 5. Dispositivo magnetoresistivo integrato secondo una qualsiasi delle rivendicazioni precedenti, in cui il braccio (34a) del concentratore (34) presenta uno spessore compreso fra 0,5 e 10 μ m, ad es. 1 μ m e una lunghezza maggiore di 50 μ m, e la distanza fra il braccio e il primo magnetoresistore (26) in direzione perpendicolare al piano di sensibilità è minore di 30 μ m.
- 6. Dispositivo magnetoresistivo integrato secondo una qualsiasi delle rivendicazioni precedenti, in cui il secondo materiale ferromagnetico è scelto fra una lega a base di cobalto e una lega di Fe-Ni, ad esempio di "permalloy".
- 7. Dispositivo magnetoresistivo integrato secondo una qualsiasi delle rivendicazioni precedenti, comprendente un secondo magnetoresistore (26) estendentesi nello strato isolante (18) e complanare al primo magnetoresistore, in

cui il concentratore (34) è equidistante dal primo e dal secondo magnetoresistore.

8. Dispositivo magnetoresistivo integrato secondo una qualsiasi delle rivendicazioni precedenti, comprendente una prima pluralità di magnetoresistori (R1-R4) collegati a formare un primo ponte di Wheatstone (35) includente un primo ed un secondo ramo collegati reciprocamente in parallelo fra una coppia di terminali di ingresso (40, 41) e definenti una coppia di nodi intermedi costituenti terminali di uscita (42, 43), in cui:

i magnetoresistori (R1, R4) del primo ramo sono disposti simmetricamente ai magnetoresistori (R2, R3) del secondo ramo rispetto ad un primo asse (A) parallelo al piano di sensibilità;

i magnetoresistori comprendono ciascuno almeno una striscia di materiale ferromagnetico (27) estendentesi longitudinalmente parallelamente ad un secondo asse (B) sostanzialmente perpendicolare al primo asse e parallelo al piano di sensibilità e una pluralità di strisce trasversali conduttrici (29) sovrapposte ad una rispettiva striscia di materiale ferromagnetico;

le strisce trasversali conduttrici (29) sono dirette trasversalmente rispetto al primo e al secondo asse, parallelamente al piano di sensibilità;

il concentratore (34) si estende longitudinalmente

parallelamente al secondo asse;

le strisce di materiale ferromagnetico (27) sono disposte simmetricamente rispetto al concentratore; e

le strisce trasversali conduttrici (29) dei magnetoresistori di uno stesso ramo si estendono parallelamente fra loro.

- 9. Dispositivo magnetoresistivo integrato secondo la rivendicazione 8, comprendente una seconda pluralità di magnetoresistori (26) collegati a formare un secondo ponte di Wheatstone (61, 15b), in cui le strisce di materiale ferromagnetico (27) di detti magnetoresistori di detta seconda pluralità sono disposte perpendicolarmente alle strisce di materiale ferromagnetico dei magnetoresistori formanti il primo ponte di Wheatstone (35, 15a).
- 10. Dispositivo magnetoresistivo integrato secondo la rivendicazione 9, di tipo triassiale, in cui il primo ponte di Wheatstone (15a) comprende un primo ed un secondo interruttore (66, 67) disposti rispettivamente sul primo e sul secondo ramo e configurati in modo che, in una prima condizione operativa, il primo interruttore (66) collega un primo magnetoresistore (R1) del primo ramo al primo terminale di uscita (42) e il secondo interruttore (67) collega un secondo magnetoresistore (R2) del secondo ramo al secondo terminale di uscita (43) e, in una seconda condizione operativa, il primo interruttore (66) collega il

primo magnetoresistore (R1) del primo ramo al secondo terminale di uscita (43) e il secondo interruttore (67) collega il secondo magnetoresistore (R2) del secondo ramo al primo terminale di uscita (42).

- 11. Dispositivo magnetoresistivo integrato secondo una qualsiasi delle rivendicazioni precedenti, in cui il substrato è di materiale semiconduttore, in particolare silicio.
- 12. Bussola elettronica integrata, comprendente un dispositivo magnetoresistivo (15) secondo una qualsiasi delle rivendicazioni 8-10, ed un'unità di calcolo (64), collegata ai sensori magnetoresistivi (26) e calcolante l'angolo di una componente di campo magnetico parallela a detto piano di sensibilità.
- 13. Procedimento di fabbricazione di un sensore magnetoresistivo integrato in una piastrina, comprendente le fasi di:

prevedere un substrato (17) avente una prima ed una seconda superficie (19, 20);

formare uno strato isolante (18) sopra la prima superficie;

formare un magnetoresistore (26) di un primo materiale ferromagnetico nello strato isolante, il magnetoresistore definendo un piano di sensibilità,

caratterizzato dal fatto di comprendere le fasi di:

formare un concentratore (34) di un secondo materiale ferromagnetico includente formare almeno un braccio (34a) estendentesi in direzione trasversale al piano di sensibilità e verticalmente sfalsato rispetto al magnetoresistore.

- 14. Procedimento secondo la rivendicazione 13, in cui la fase di formare un concentratore (34) comprende formare una trincea (33) nel substrato a partire dalla seconda superficie (20) del substrato fino in prossimità della prima superficie (19) e rivestire le pareti della trincea con uno strato (52) del secondo materiale ferromagnetico.
- 15. Procedimento secondo la rivendicazione 12, in cui dopo la fase di rivestire le pareti viene eseguita la fase di rimuovere selettivamente lo strato (52) del secondo materiale ferromagnetico dalla seconda superficie (20) in modo che il concentratore (34) abbia forma ad U in sezione trasversale.
- 16. Procedimento secondo la rivendicazione 13, in cui dopo la fase di rivestire le pareti viene eseguita la fase di rimuovere selettivamente lo strato (52) del secondo materiale ferromagnetico dalla seconda superficie (20) e dal fondo della trincea (33) in modo da formare due bracci (34a, 34b) del concentratore rivestenti pareti laterali della trincea.

p.i.: STMICROELECTRONICS S.R.L. Elena CERBARO

CLAIMS

1. An integrated magnetoresistive device, comprising a chip (16) including a substrate (17) having a first and a second surfaces (19, 20) and an insulating layer (18) covering the first surface (19), a first magnetoresistor (26) of a first ferromagnetic material extending in the insulating layer and having a sensitivity plane,

characterized in that the chip (16) accommodates a concentrator (34) of a second ferromagnetic material including at least an arm (34a) extending in a transversal direction to the sensitivity plane and vertically offset to the first magnetoresistor (26), so as to deflect magnetic flux lines directed perpendicularly to the sensitivity plane and to generate magnetic field components directed in a parallel direction to the sensitivity plane.

- 2. An integrated magnetoresistive device according to claim 1, wherein the substrate (17) has a trench (33) extending from the second surface (20) toward the first surface (19) and the arm (34a) of the concentrator (34) is adjacent to and covers a lateral wall of the trench.
- 3. An integrated magnetoresistive device according to claim 1 or 2, wherein the concentrator (34) is formed by a pair of distinct arms (34a, 34b), extending in a transversal direction to the sensitivity plane.
 - 4. An integrated magnetoresistive device according to

any of the previous claims, wherein the concentrator (34) has a U shape in a cross-section, and comprises a pair of distinct arms (34a, 34b) connected by a bottom portion (34c) substantially parallel to the first surface (19).

- 5. An integrated magnetoresistive device according to any of the previous claims, wherein the arm (34a) of the concentrator (34) has a thickness comprised between 0,5 and 10 μm , for example 1 μm and a length greater than 50 μm , and the distance between the arm and the first magnetoresistor (26) in a perpendicular direction to the sensitivity plane is smaller than 30 μm .
- 6. An integrated magnetoresistive device according to any of the previous claims, wherein the second ferromagnetic material is selected between a cobalt alloy and a Fe-Ni alloy, for example of "permalloy".
- 7. An integrated magnetoresistive device according to any of the previous claims, comprising a second magnetoresistor (26) extending in the insulating layer (18) and coplanar to the first magnetoresistor, wherein the concentrator (34) is equidistant from the first and the second magnetoresistors.
- 8. An integrated magnetoresistive device according to any of the previous claims, comprising a first plurality of magnetoresistors (R1-R4) connected to form a first Wheatstone bridge (35) including a first and a second

branch mutually connected in parallel between a pair of input terminals (40, 41) and defining a pair of taps forming output terminals (42, 43), wherein:

the magnetoresistors (R1, R4) of the first branch are arranged symmetrically to the magnetoresistors (R2, R3) of the second branch with respect to a first axis (A) parallel to the sensitivity plane;

the magnetoresistors comprise each at least a ferromagnetic material strip (27) extending longitudinally parallel to a second axis (B) substantially perpendicular to the first axis and parallel to the sensitivity plane and a plurality of conductive transversal strips (29) overlaid to a respective ferromagnetic material strip;

the conductive transversal strips (29) extend transversally to the first and to the second axes, parallel to the sensitivity plane;

the concentrator (34) extends longitudinally parallel to the second axis;

the ferromagnetic material strips (27) are arranged symmetrically with respect to the concentrator; and

the conductive transversal strips (29) of the magnetoresistors of a same branch extend parallel to each other.

9. An integrated magnetoresistive device according to claim 8, comprising a second plurality of magnetoresistors

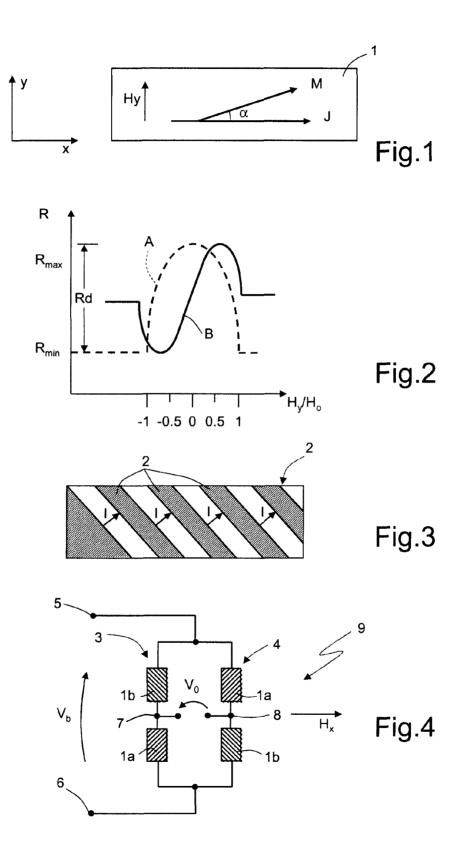
- (26) connected to form a second Wheatstone bridge (61, 15b), wherein the ferromagnetic material strips (27) of said magnetoresistors of said second plurality are arranged perpendicularly to the ferromagnetic material strips of the magnetoresistors forming the first Wheatstone bridge (35, 15a).
- 10. An integrated magnetoresistive device according to claim 9, of a three-axes type, wherein the first Wheatstone bridge (15a) comprises a first and a second switches (66, 67) arranged respectively on the first and on the second branches and configured so that, in a first operative condition, the first switch (66) connects magnetoresistor (R1) of the first branch to the output terminal (42) and the second switch (67) connects a second magnetoresistor (R2) of the second branch to the second output terminal (43) and, in a second operative condition, the first switch (66) connects the magnetoresistor (R1) of the first branch to the second output terminal (43) and the second switch (67) connects the second magnetoresistor (R2) of the second branch to the first output terminal (42).
- 11. An integrated magnetoresistive device according to any of the previous claims, wherein the substrate is of a semiconductor material, in particular silicon.
 - 12. An integrated electronic compass, comprising a

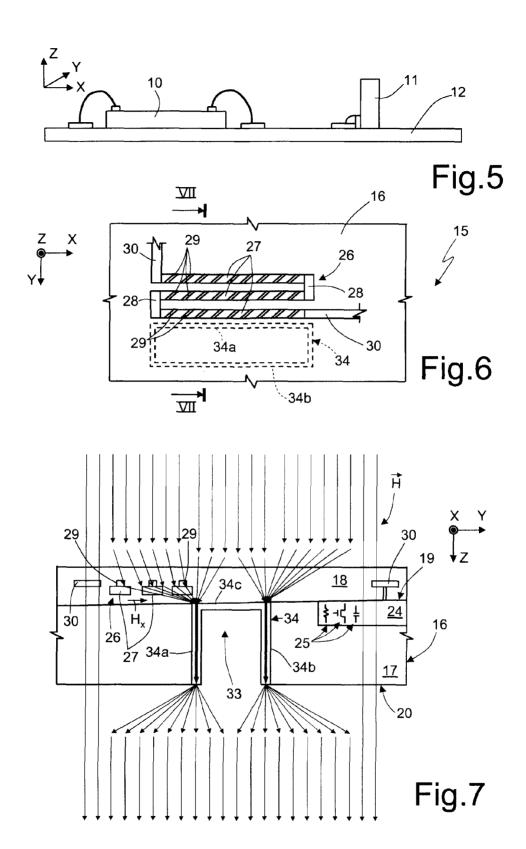
magnetoresistive device (15) according to any of claims 810, and a count unit (64), connected to the magnetoresistive sensors (26) and calculating the angle of a component of magnetic field parallel to said sensitivity plane.

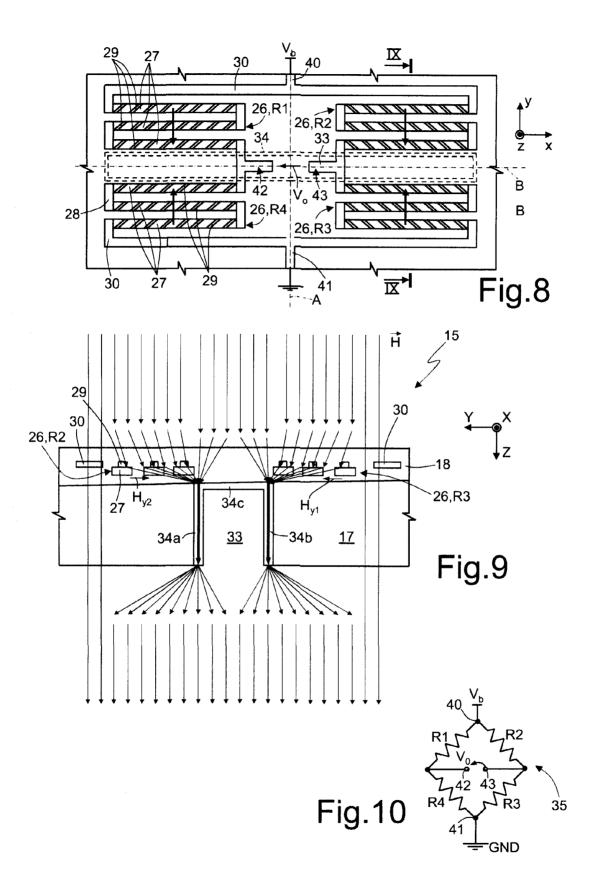
13. A process for manufacturing an magnetoresistive device integrated in a chip, comprising the steps of:

providing a substrate (17) having a first and a second surfaces (19, 20);

forming an insulating layer (18) on top of the first surface;


forming a magnetoresistor (26) of a first ferromagnetic material in the insulating layer, the magnetoresistor defining a sensitivity plane,


characterized by the steps of:


forming a concentrator (34) of a second ferromagnetic material including forming at least an arm (34a) extending in a transverse direction to the sensitivity plane and vertically offset with respect to the magnetoresistor.

14. A process according to claim 13, wherein the step of forming a concentrator (34) comprises forming a trench (33) in the substrate from the second surface (20) of the substrate up to next the first surface (19) and covering the walls of the trench with a layer (52) of the second ferromagnetic material.

- 15. A process according to claim 12, wherein after covering the walls, the step is performed of selectively removing the layer (52) of the second ferromagnetic material from the second surface (20) so that the concentrator (34) has a U shape in cross-section.
- 16. A process according to claim 13, wherein after covering the walls, the step is performed of selectively removing the layer (52) of the second ferromagnetic material from the second surface (20) and from the bottom of the trench (33) so as to form two arms (34a, 34b) of the concentrator covering lateral walls of the trench.

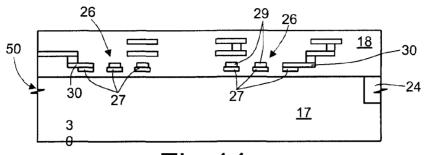


Fig.11a

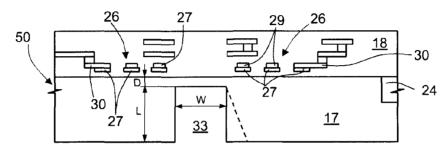
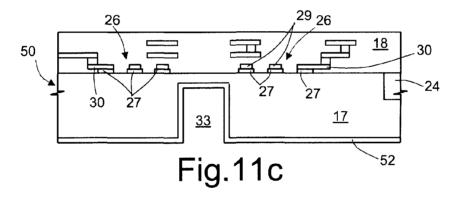



Fig.11b

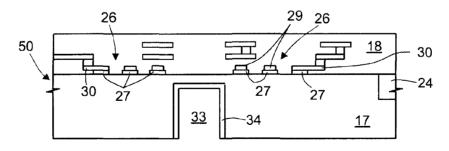
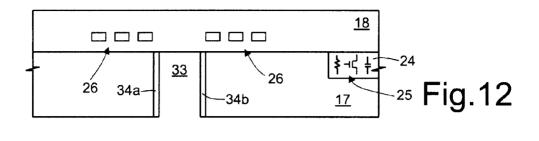
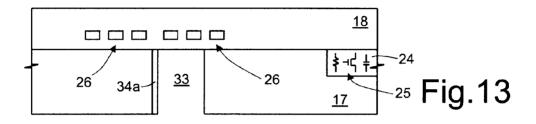




Fig.11d

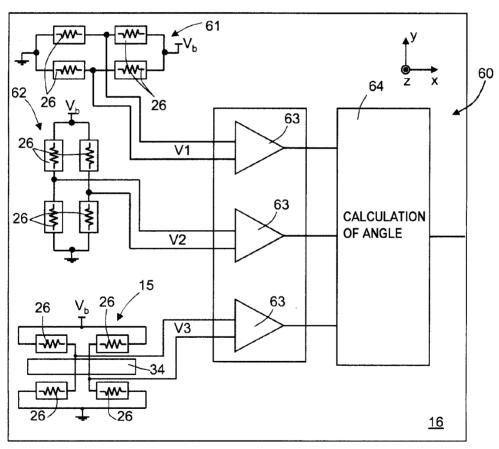
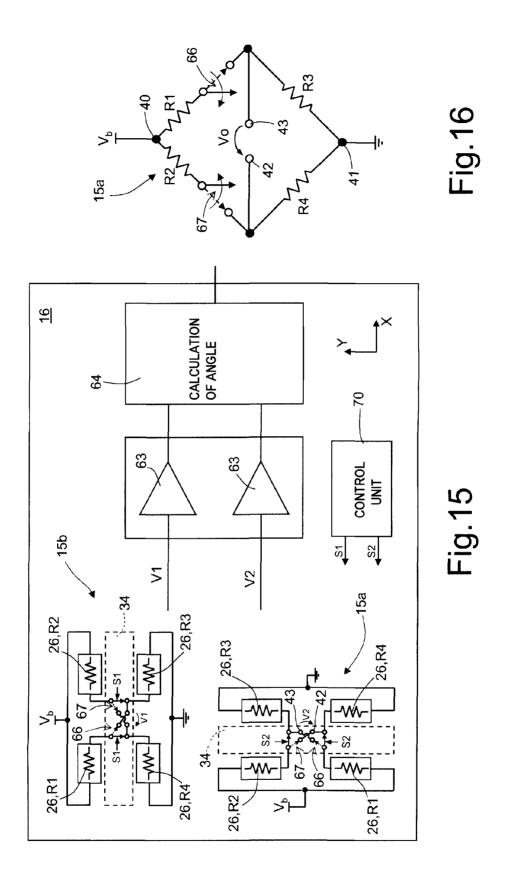



Fig.14

