Office de la Propriete Canadian CA 2598584 C 2015/05/12

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 598 584
Findustie Canada Industry Ganada 12 BREVET CANADIEN
CANADIAN PATENT
(13) C
(86) Date de depot PCT/PCT Filing Date: 2006/02/21 (51) Cl.Int./Int.Cl. GO6F 17/00 (2006.01)
(87) Date publication PCT/PCT Publication Date: 2006/09/28 (72) Inventeurs/Inventors:
(45) Date de delivrance/lssue Date: 2015/05/12 F1SH, ERICIAN, US,
CORBIN, SCOTT ROGER, US;
(85) Entree phase nationale/National Entry: 200//08/22 SHEPHERD, JOEL, US;
(86) N° demande PCT/PCT Application No.: US 2006/005702 PEARSON, GEORGE ALLEN, US;

RATHBUN, TIMOTHY LEE, US

PP (73) Propriéetaire/Owner:
(30) Prioritée/Priority: 2005/03/18 (US11/084,855) ORACLE INTERNATIONAL CORPORATION US

(74) Agent: SMART & BIGGAR

(87) N° publication PCT/PCT Publication No.: 2006/101633

(54) Titre : APPAREIL ET PROCEDE PERMETTANT L'IDENTIFICATION DE DONNEES ASYNCHRONES DANS DES MEMOIRES DE
DONNEES REDONDANTES, ET LA RESYNCHRONISATION DE CELLES-CI

(54) Title: APPARATUS AND METHOD FOR IDENTIFYING ASYNCHRONOUS DATA IN REDUNDANT DATA STORES AND FOR RE-
SYNCHRONIZING SAME

]00—\ 108

104
102 l Network
Connection
150 / 152
CPU .
Hash module 1
Hash data 1

110 772

154

156 Conditional synch |— 138
check module

116~
Synch re-check 160 106 130 132
module | r
N
queue
Re-synch 164
138 DB?
140 Hash module 2
136

(57) Abrege/Abstract:
A computer readable medium includes executable instruction to compare databases. The executable instructions are configured to
iIdentify when a segment of a first database Is conditionally out of synchronization with a corresponding segment of a second

B

.

'

e
ok [[f
RO . e s
. M "c'-'-.n:‘-:{\: .«me . m s
.
.

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

(57) Abrege(suite)/Abstract(continued):
database to establish a conditionally out of synchronization state at a first time.

CA 2598584 C 2015/05/12

anen 2 598 584
(13) C

—xecutable instructions allow a latency period after

the first time In which changes are made to the first database and the second database. Executable instructions also determine
after the latency period whether the segment of the first database Is In synchronization with the corresponding segment of the
second database. Executable instructions also populate a resynchronization table, which Is used by a replication mechanism to

bring asynchronous rows into synchronization.

6/101633 A2 010000 D 001 O R 0RO L

CA 02598584 2007-08-22

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization |3

International Bureau

(43) International Publication Date
28 September 2006 (28.09.20006)

(51) International Patent Classification:
GOG6F 17/00 (2006.01)

(21) International Application Number:
PCT/US2006/005702

(22) International Filing Date:
21 February 2006 (21.02.2006)

English
English

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
11/084,855 18 March 2005 (18.03.2005) US

(71) Applicant (for all designated States except US): GOLD-
ENGATE SOFTWARE, INC. [US/US]; 301 Howard
Street, Suite 2100, San Francisco, California 94105 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): FISH, Eric, Ian
[US/US]; 10 Rock Road, Kentfield, California 94904
(US). CORBIN, Scott, Roger [US/US]; N4520 County
Highway K, Spooner, WI 54801 (US). SHEPHERD,
Joel [US/US]; 767 Ellis Street, Golden, CO 80401 (US).
PEARSON, George, Allen [US/US]; 314 Valley High
Drive, Pleasant Hill, California 94523 (US). RATHBUN,
Timothy, Lee [US/US]; 827 Camino Amigo, Danville,
California 94526 (US).

(10) International Publication Number

WO 2006/101633 A2

(74) Agents: GALLIANI, William, S. et al.; ¢/o COOLEY
GODWARD, LLP, Five Palo Alto Square, 3000 El.
Camino Road, Palo Alto, California 94306-2155 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KL,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
/W), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, I,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BEF, BJ, CFE, CG, CI, CM, GA,

GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:
as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

[Continued on next page]

(54) Title: APPARATUS AND METHOD FOR IDENTIFYING ASYNCHRONOUS DATA IN REDUNDANT DATA STORES

AND FOR RE-SYNCHRONIZING SAME

100\

102
N

V.

CPU
154~

Conditional synch |— 758

check module

Synch re—check_l, 160
modiile

156 ~—u-

-— 162

"—]64

Out-of-synch
queue

I Re-synch
r module

15 152
e |
Network
Connection

132

¥
134~

138~
1.0 —
742~

|/

J36—

DB2
Hash module 2 |
Hash data 2

m

(57) Abstract: A computer readable medium includes executable instruction to compare databases. The executable instructions
& are configured to identify when a segment of a first database is conditionally out of synchronization with a corresponding segment
& of a second database to establish a conditionally out of synchronization state at a first time. Executable instructions allow a latency
e\ period after the first time in which changes are made to the first database and the second database. Executable instructions also
determine after the latency period whether the segment of the first database is in synchronization with the corresponding segment of
the second database. Executable instructions also populate a resynchronization table, which is used by a replication mechanism to

bring asynchronous rows into synchronization.

CA 02598584 2007-08-22

WO 2006/101633 A2 [HIHHVA!H FARO A0 AR 0 A ARt A

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished ance Notes on Codes and Abbreviations" appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gazette.

CA 02598584 2007-08-22
WO 2006/101633 PCT/US2006/005702

APPARATUS AND METHOD FOR IDENTIFYING ASYNCHRONOUS DATA
IN REDUNDANT DATA STORES AND FOR RE-SYNCHRONIZING SAME

BRIEF DESCRIPTION OF THE INVENTION
[0001] This invention relates generally to electronic data storage. More particularly, this
vention relates to a technique for identifying asynchronous data in two different computer

network locations that are supposed to maintain identical data. Further, the invention relates

to re-synchronizing identified asynchronous data.

BACKGROUND OF THE INVENTION

[0002] Many enterprises store the same electronic data in more than one location. Reasons
for this include improving the security and availability of this information in the event of
computer outage, malfunction or disaster, as well as the ability for multiple entities and
applications to manage the same information independently. As a consequence, when data
changes in one data source it often needs to be copied to one or more secondary data sources,
through a variety of possible mechanisms, including data replication. There are a number of
challenges associated with data replication. For example, it is important to be able to
independently verify that a replication mechanism is accurate. That is, it is important to
contirm that data that should be copied from one location to another is indeed copied. When
~data sources are out of synchronization (i.e., asynchronous), it is important to re-synchronize
them as efficiently as possible. These comparison and re-synchronization activities need to
be performed in the context of the following constraints: high activity/rate of change in the
data source, a dynamic environment in which there is no opportunity to turn off the
application or database to perform a static comparison, and geographic separation
accompanied by limited bandwidth between data sources.

[0003] In view of the foregoing, it would be highly desirable to provide an improved

technique for data comparison and re-synchronization operations.

SUMMARY OF THE INVENTION
[0004] The invention includes a computer readable medium with executable instruction to
compare databases. The executable instructions are configured to identify when a segment of

a first database 1s conditionally out of synchronization with a corresponding segment of a

10

15

20

235

30

CA 02598584 2014-06-11

second database to establish a conditionally out of synchronization state at a first time.
Executable instructions allow a latency period after the first time in which changes are made
to the first database and the second database. Executable instructions also determine after the
latency period whether the segment of the first database is in synchronization with the
corresponding segment of the second database.

[0005] The 1invention provides an efficient mechanism for comparing structurally similar or
dissimilar tables over connections that support limited bandwidth and/or where the volume of
data transported over the connection is very large. The invention facilitates the processing of
segments or subsets of databases over time. The invention also efficiently accommodates "in
flight" table data by using a latency period to confirm an asynchronous state.

[0006] The invention provides an enterprise infrastructure software platform to enable data
movement, data management, and data integration at high speeds, high volumes, and across
diverse environments. The invention is successfully used in connection with banking,
financial services, healthcare, cable, telephone, public sector, and aerospace industries.
[0006a] In accordance with one aspect of the invention there is provided a computer readable
medium having stored thereon executable instructions for directing a processor to compare
databases, the executable instructions including executable instructions to direct the

processor to 1dentify a segment of a first database comprising a batch of rows of the first
database, compress the batch of rows, and identify non-key data and key data in the batch of
rows, including a begin key value and an end key value and perform a hash on the non-key

data to create first hash data. The executable instructions also include executable instructions
for directing the processor to process at least the begin key value the end key value to
1dentify a corresponding segment of a second database, perform a hash on at least a portion
of the corresponding segment of the second database to create second hash data and compare
the first hash data with the second hash data to identify when a segment of a first database is

conditionally out of synchronization with a corresponding segment of a second database to
establish a conditionally out of synchronization state at a first time. The executable
instructions also include executable instructions for directing the processor to allow a latency
period after the first time for the first database and the second database to synchronize

through existing synchronization mechanisms determine after the latency period
2

10

15

20

25

CA 02598584 2014-06-11

that the segment of the first database is not in synchronization with the corresponding
segment of the second database to form a post-latency out of synchronization state and re-
synchronize, in response to the post-latency out of synchronization state, the segment of the
first database with the corresponding segment of the second database during dynamic
operation of the first database and the second database.

[0006b] The executable instructions may direct the processor to establish a common format
for the segment of the first database and the corresponding segment of the second database.
[0006¢] The executable instructions may direct the processor to establish a common format
between the first database and the second database accounting for at least one of: overlapping
columns, overlapping rows, mapped data, and heterogeneous data stores.

[0006d] The executable instructions may direct the processor to augment the hash data with
user-specified non- key data.

[0006¢] The executable instructions may direct the processor to establish whether the
segment of the first database includes rows or columns that at least partially overlap with
corresponding rows or columns of the corresponding segment of the second database.

[0006f] The executable instructions may direct the processor to compare sub-segments of the
segment of the first database to corresponding sub-segments of the second database in
parallel.

[0006g] The computer readable medium may further include executable instructions to direct
the processor to use the begin key value and the end key value to 1dentify within the first

database and the second database the set of rows corresponding to the segments of the first

and second database that are conditionally out of synchronization at the first time.

[0006h] The computer readable medium may further include executable instructions to direct
the processor to compare individual rows of the set of rows to 1dentify rows that are
conditionally out of synchronization.

[00061] Re-synchronizing may be achieved by executable instructions that direct the
processor to retrieve values from the segment of the first database, lock the segment, and

store the values 1in a marker table associated with the first database.

2a

10

15

20

25

30

CA 02598584 2014-06-11

[0006j] The computer readable medium may further include executable instructions to direct
the processor to use a replication mechanism to propagate the values from the marker table to
the corresponding segment of the second database.

[0006k] The computer readable medium may further include executable instructions to direct
the processor to use the replication mechanism to sequence changes to the first database.
[00061] The executable instructions to re-synchronize may include executable instructions to
direct the processor to access an out-of-synchronization queue specifying information about
out-of-synchronization database segments.

[0006m] The executable instructions to re-synchronize may include executable instructions
to direct the processor to determine data directional flow.

[0006n] The executable instructions to re-synchronize may include executable 1nstructions to
direct the processor to re-synchronize through a direct application technique that relies upon
native methods associated with either the first database or the second database.

[00060] The executable instructions to re-synchronize may include executable instructions to
direct the processor to re-synchronize using replication markers.

[0006p] The executable instructions to re-synchronize may include executable instructions to
direct the processor to re-synchronize using a source row update technique.

[0006q] In accordance with another aspect of the invention there is provided a method
involving causing at least one processor at a first computer system to identify, at the
computer system, a segment of a first database comprising a batch of rows of the first
database, compress the batch of rows, identify non-key data and key data in the batch of
rows, including a begin key value and an end key value and perform a hash on the non-key
data to create first hash data. The method also involves causing at least one processor at a
first computer system to process at least the begin key value the end key value to 1dentity a
corresponding segment of a second database, perform a hash on at least a portion of the
corresponding segment of the second database to create second hash data and compare the
first hash data with the second hash data to identify when the segment of the first database 1s
conditionally out of synchronization with the corresponding segment of the second database
to establish a conditionally out of synchronization state at a first time. The method also

involves causing at least one processor at a first computer system to allow a latency period

2b

10

15

20

25

30

CA 02598584 2014-06-11

after the first time for the first database and the second database to synchronize through
existing synchronization mechanisms, determine after the latency period that the segment of
the first database 1s not in synchronization with the corresponding segment of the second
database to form a post-latency out of synchronization state and re-synchronize, in response
to the post-latency out of synchronization state, the segment of the first database with the
corresponding segment of the second database during dynamic operation of the first database
and the second database.

[0006r] In accordance with another aspect of the invention there 1s provided a computer
system 1ncluding a processor and a memory in communication with the processor, the
memory having stored thereon computer code executable by the computer system, the
computer code including executable instructions to direct the processor to identify a segment
of a first database comprising a batch of rows of the first database, to compress the batch of
rows, 1dentify non-key data and key data in the batch of rows, including a begin key value
and an end key value and to perform a hash on the non-key data to create first hash data. The
executable instructions also direct the processor to process at least the begin key value the
end key value to 1dentify a corresponding segment of a second database, and to perform a
hash on at least a portion of the corresponding segment of the second database to create
second hash data and to compare the first hash data with the second hash data to identify
when the segment of the first database is conditionally out of synchronization with the
corresponding segment of the second database to establish a conditionally out of

synchronization state at a first time. The executable instructions also direct the processor to

allow a latency period after the first time for the first database and the second database to
synchronize through existing synchronization mechanisms, and to determine after the latency
period that the segment of the first database 1s not in synchronization with the corresponding
segment of the second database to form a post-latency out of synchronization state and to re-
synchronize, in response to the post-latency out of synchronization state, the segment of the

first database with the corresponding segment of the second database during dynamic

operation of the first database and the second database.

2C

10

15

20

CA 02598584 2014-06-11

BRIEF DESCRIPTION OF THE FIGURES

[0007] The invention 1s more fully appreciated in connection with the following detailed
description taken in conjunction with the accompanying drawings, in which:

[0008] FIGURE 1 1llustrates a network implementing an embodiment of the invention.

[0009] FIGURE 2 1illustrates processing operations associated with an embodiment of the
tnvention.

Like reterence numerals refer to corresponding parts throughout the several views of the

drawings.

DETAILED DESCRIPTION OF THE INVENTION

[0010] Figure 1 1llustrates a computer network 100 configured in accordance with an
embodiment of the invention. The network 100 includes a first computer 102, a second
computer 104, and a third computer 106. The computers 102, 104, and 106 are linked by a

transmission medium 108, which may be any wired or wireless network.

[0011] Computer 104 includes standard computer components, including a network
connection circuit 110 and a central processing unit 112 connected by a bus 114. Also
connected to the bus 114 1s a memory. The memory stores a first database (DBI) 118. Also
stored in the memory 116 1s a hash module 120, which 1s configured as a set of executable

instructions to perform a hash operation on a segment of the database 118, as discussed

2d

CA 02598584 2007-08-22
WO 2006/101633 PCT/US2006/005702

further below. The hash module 120 produces hash data 122. The hash module 120 conveys
the hash data 122 to computer 102.

[0012] Computer 106 also includes standard computer components, including a network
connection circuit 130 and a central processing unit 132 connected by a bus 134. Memory
136 stores a second database (DB2) 138. Memory 136 also stores an executable hash module
140, which produces hash data 142 from a segment of data in the second database 138. The
segment of data in the second database 138 corresponds to the segment of data in the first
database 118, which was processed to produce the first set of hash data 122. The hash
module 140 includes executable instructions to convey the second hash data 142 to the
computer 102. Thus, the computer 102 receives the results of the first hash operation
performed on computer 104 and the results of the second hash operation performed on
computer 106. Since corresponding portions of the first database 118 and the second
database 138 were processed, the hash data should correspond if the contents of the two
database segments are identical. If the segments are different, then it is very likely that the
hashes will be different. Observe that the transmission of hash data significantly reduces
network traffic and otherwise facilitates an expeditious technique for comparing database
contents.

[0013] Computer 102 includes standard components of a central processing unit 150, a
network connection circuit 152, and a system bus 154. The computer 102 also has a memory
156, which stores executable programs configured to implement operations of the invention.
In one embodiment of the invention, the memory 156 stores a conditional synchronization
check module 158. This module 158 compares the first hash data 122 to the second hash data
142. It the hash data is not equivalent, then a conditionally out of synchronization state
exists. The conditional synchronization check module 158 then creates a pause to allow for a
latency period following the identification of the conditionally out of synchronization state.
The latency period allows the databases to potentially synchronize through existing
synchronization mechanisms. After the latency period, the hash modules 120 and 140 supply
hash data 122 and 142 to the computer 102 and the synchronization re-check module 160 is
invoked. This module 160 compares the most recently received hash data 122 and 142. If
the hash values are identical, then the databases are no longer considered to be conditionally
out of synchronization. On the other hand, if the hash results are inconsistent, then the
databases are considered to be out of synchronization. At this point, the synchronization re-
check module 160 loads information about the database segments into an out-of-

synchronization queue 162. A re-synchronization module 164 then performs various

CA 02598584 2007-08-22
WO 2006/101633 PCT/US2006/005702

processing operations to establish synchronization between the databases, details of which are
discussed below.

[0014] Figure 2 illustrates processing operations associated with an embodiment of the
mvention. The first processing operation of Figure 2 is to determine whether the databases
are conditionally out-of-synchronization 200. As previously discussed, the conditional
synchronization check module 158 may be used to implement this operation. If the databases
are not out of synchronization, processing returns to block 200. If the databases are
conditionally out of synchronization, a pause or latency period is invoked 202. Afterwards, it
is determined whether the databases are still out of synchronization (block 204). If not, then
processing returns to block 200. If so, then information regarding the database segments is
loaded into an out of synchronization queue 206. The synchronization re-check module 160
may perform these operations. The re-synchronization module 164 may then be invoked to
re-synchronize the contents within the out of synchronization queue 208.

[0015] Many variations of the processing of Figure 2 may be utilized in accordance with
embodiments of the invention. For example, if processing is being performed on a row-by-
row basis, one will initially determine at block 200 if there are more database segments or
rows m the database. If so, a determination is made to see if the database segment is out of
synchronization. If so, then pause 202. If a lack of synchronization persists 204, the segment
1s loaded 1nto the queue 206. At this point, the next row is fetched and processing returns to
block 200.

[0016] Primary operations associated with an embodiment of the invention have been
described. Attention now turns to more detailed discussions of various embodiments of the
invention. It should be appreciated that all descriptions of the invention are for the purpose
of disclosing the nature of the invention and therefore should not be interpreted as limiting
the invention to the particular embodiment disclosed. For example, the network
configuration of Figure 1 is exemplary. The databases and executable modules may be
distributed in any number of ways in a networked environment. It is the operations of the
ivention that are significant, not where those operations are performed.

[0017] The techniques of the invention are applicable to a variety of data storage
mechanisms. However, by way of example, the invention is disclosed in the context of
databases. That 1s, the invention is disclosed in the context of techniques used to compare
and synchronize rows within tables, and tables within databases. The terms rows, tables and
databases are used to describe general methods for storing related information. A common

example ot a database is a relational database. The invention is also applicable to other types

CA 02598584 2007-08-22

WO 2006/101633 PCT/US2006/005702

of databases, such as a hierarchical database (e.g. IBM® IMS) or a key-based database (e.g.,
HP® Enscribe). With these types of databases, rows are often referred to as records, and
columns as fields.

[0018] In addition, a table might also be thought of as an eXtendable Markup Language
(XML) document or even a section within an XML document or similar “semi-structured”
data that offers a consistent way of delineating “rows”, “columns” and “tables”. This could
also include spreadsheets and other document and file types. A table can also be thought of
as a logical union of related data or subset of data, such as an SQL view.

[0019] Tables 1 and 2 are examples of database tables respectively specifying products and

orders.

PRODUCT Table (columns are Product Number, Product Name, Number of Wheels)

Product Product Name | Number of
Number Wheels
Row 1 100 Car 4
Row 2 200 Boat 0
Row 3 300 Truck 13
Table 1

ORDER Table (columns are Order Number, Product Number, Price)

Order Number | Product Price
Number
Row 1 1 100 20000
Row 2 1 200 15000
Row 3 2 200 9000
Row 4 5 100 30000
Table 2

[(0020] A “unique key” (UK) in each table is a set of columns within the table used to
uniquely identify each row within the table. For example, in the PRODUCT table, Product
Number 1s a unique key because it never repeats in the table. In the ORDER table, Order
Number 1s not unique because it repeats (the value 1 appears twice). However, a
combination ot Order Number and Product Number constitutes a unique key (there are no

repetitions 1n (1,100), (1,200), (2,200), (5,100)).

CA 02598584 2007-08-22

WO 2006/101633 PCT/US2006/005702

[0021] An access method provides a way of retrieving data from tables within a database.
Retrieval options include methods for retrieving all rows from the database, specific Tows
based on key, specific columns and computations on row and column subsets. Example
access methods include SQL, ODBC, ISAM, Oracle OCI, stored procedures and many
others. Access methods can also be thought of as a way to retrieve data from documents that
have some of the same characteristics as databases (such as XML documents and
spreadsheets).
[0022] As used herein, the terms source and target are used to describe the direction of data
flow of redundant data from one database to another or one table to another. Often this 1s a
predefined one-way flow. For example, if replication is being used to move data from
database PRIMARY to database BACKUP, database PRIMARY and tables within it are
considered to be a “source” and BACKUP and tables within it are considered to be the
“target”.
10023] In addition, the data flow between source and target may be specified in other ways,
such as:
- a specific subset of rows (as defined by a unique key) 1s designated the “source” 1n
TABLE] and the “target” in TABLE2, while another subset of rows i1s designated the
“source” in TABLE2 and the “target” in TABLEI

. either table can modify any row, and that row is then copied to the other system

10024] Table comparison involves two tables. Two tables are synchronized (i.e., “in sync”)

if the following conditions are true:
. all rows in one table can be found in the other table, as identified by a unique key
(corresponding rows)

_ all columns within each row match all columns in the corresponding row in the other

table

[0025] This definition covers tables that have the same structure and row contents. Consider

the following tables.

CA 02598584 2007-08-22

WO 2006/101633 PCT/US2006/005702

PRODUCT1 Table

Product Product Name | Number of
Number Wheels
Row 1 100 Car 4
Row 2 200 Boat 0
Row 3 300 Truck 18
Row 4 400 Bicycle 2
Table 3
PRODUCT?2 Table
Product Product Name | Number of
Number Wheels
Row 1 100 Car 4
Row 2 150 Motorcycle 2
Row 3 200 Boat 0
Row 4 300 Truck 6
Table 4
[0026] In this example, the two tables are out of synchronization (synch):
1. Rows 1 and 2 in PRODUCT1 match Rows 1 and 3 in PRODUCT?2 (the unique key
Product Number matches in each, and the other columns match as well)
2. There is no corresponding entry for Row 4 in PRODUCT]1 inside PRODUCT?2, so
that row is out-of-sync (Product Number 400 cannot be found in PRODUCT?2)
3. There 1s no corresponding entry for Row 2 of PRODUCT2 inside PRODUCT1
(Product Number 150 not found) — that row is out of sync
4. Product Number 300 if found in both tables (PRODUCT1 Row 3, PRODUCT?2 Row

4) — but the Number of Wheels 1s different — that row is out of sync

[0027] Attention now turns to some examples of “similarly structured” or “overlapping”

tables.

Even though data is not exactly the same in these types of tables, selected data

(columns and/or rows) flows between the tables to ensure that overlapping data is kept in

sync appropriately.

CA 02598584 2007-08-22

WO 2006/101633 PCT/US2006/005702

[0028] Consider the following example, which relates to the case of overlapping columns. In

this example, some columns are the same, while some are different.

PROD Table
Product Product Name | Number of | In Stock
Number Wheels
Row 1 100 Car 4 Yes
Row 2 200 Boat O Yes
Table 5
PRODUCT Table
Product Product Name | Description Wheel Count
Number
Row 1 100 Car Land Vehicle 4
Row 2 200 Boat Good for Water: 0
Table 6

[0029] In this example, the two tables are not exactly the same, but could be considered in
sync, because “overlapping” columns are in sync (Product Number and Number of
Wheels/Wheel Count). In these types of cases, which columns are overlapping is defined by
the users of the tables, rather than in the obvious case above where everything is exactly the
same.

10030] Now consider overlapping rows. Overlapping row sets can be considered in sync.

BASEBALL TEAMS Table

Team Name Region Wins
Row 1 Gilants WEST 82
Row 2 Yankees EAST 75
Row 3 Dodgers WEST 63
Row 4 Red Sox EAST 74
Table 7

CA 02598584 2007-08-22

WO 2006/101633 PCT/US2006/005702

WEST TEAMS Table

Team Name Wins Team Type
Row 1 Giants 82 Baseball
Row 2 Dodgers 60 Baseball
Row 3 [.akers 20 Basketball
Table 8

[0031] In this case, a subset of teams in the BASEBALL TEAMS table (rows where region
is “WEST”) is compared with the rows in the WEST_TEAMS table where the team type 1S
“Baseball”. In this example, only one row would be out-of-sync ((Dodgers, 63), (Dodgers,
60)). Rows 2 and 4 are excluded from the row set returned for BASEBALL TEAMS
because corresponding row information is not expected in the WEST TEAMS table.
Similarly, row 3 in WEST TEAMS is not expected to have an entry in the
BASEBALL TEAMS table because it is a basketball team. In addition, a subset of columns
is used (Region is not part of WEST TEAMS, and Team lype is not part of
BASEBALL TEAMS). Note that combinations of overlapping columns and overlapping
rows could be compared as well.

[0032] Consider now a mapped data case. The following example illustrates different data

values that mean the same thing. As data flows from one system to another, this 1s known as
“Data Mapping”. To extend the above example, the NATIONAL LEAGUE Table might
look like this:

Team Name Wins Short Region
Row 1 Giants 82 W
Row 2 Dodgers 60 W
Table 9

In this case, the Region in ALL TEAMS is equivalent to Short Region 1n
NATIONAL LEAGUE even though the precise values are different.
[0033] The invention may be used in connection with heterogeneous data stores.

Heterogeneous data stores may store the exact same information differently. For example:

CA 02598584 2007-08-22
WO 2006/101633 PCT/US2006/005702

ORACLE ORDER Table

Order ID Order Date
Row 1 00100 04AUG2004
Row 2 00200 10NOV2003
Table 10

SYBASE ORDER Table

Order ID Order Date

Row 1 100.00 2004-08-04

Row 2 200.00 2003-11-10
Table 11

[0034] In each of these tables, the value of the data is actually the same, but represented
differently.

[0035] One aspect of the invention is to compare tables using a row hash technique.
Consider the situation where the table data to be compared resides in database 1 (DB1) and
database 2 (DB2). A Compare Client (CC) process (e.g., implemented as the conditional
synchronization check module 158) establishes connectivity to two Host Server (HS)
processes (e€.g., on computers 104 and 106), one for each table to compare. One Host Server
process is used to retrieve table data for each table to be compared. For maximum efficiency,
the connection between the HS and DB is usually on the same system or over a very high-
speed network, because potentially high amounts of data are flowing between each HS and
DB.

[0036] The HS processes and CC process may be located anywhere in a network (including
on the same systems as each other, some on the same system, or all on different systems). It
1s also possible that the CC and HS components on one of the systems run in the same
process (as ditferent threads or in the same thread).

[0037] Each HS process then retrieves each row from its corresponding table, sorted in
unique key order. Each row retrieved consists of one or more columns of data (as defined by
the database itself or via user-supplied metadata). Row retrieval is accomplished in a variety

of ways depending on the type of database and the access methods it provides (examples

include SQL, ODBC, Oracle OCI, ISAM, etc.).

10.

CA 02598584 2007-08-22
WO 2006/101633 PCT/US2006/005702

[0038] The HS then “packs” the following data for each row into a memory buffer. That is,
the HS packs all columns that make up a unique key for the row and the HS also packs a
“row hash” of the remaining columns in the row.

[0039] A hash is defined here as a numerical computation over a set of bytes that is always
the same for that given set of bytes (in a particular order), but that has a very low probability
of being the same for a different set of bytes (for example, the set of bytes “AB” is
considered different than any of the sets of bytes “123”, “BA”, “ABC”). In this case, the set
of bytes is the data for each column, where each column is converted into a standard format
tor the data type of the column. The hash is used to reduce the amount of data that needs to
be transferred in order for a comparison of two rows to take place.

[0040] One example of a hash computation is a cyclical redundancy check (CRC). For
example, a 32 bit CRC could be computed over 500 bytes of row data, reducing the amount
of data to be transferred for that row from 500 bytes to 4 bytes. In such a scenario, 4 bytes
for each row could be compared to determine whether two rows are in sync, rather than 500
bytes. This effectively shrinks the total amount of data to transfer dramatically, and
proportionally enlarges the amount of data that can be compared over a given network in a
~ given time period.

[0041] In addition, the HS packs the individual row information — unique keys plus hashes —
into larger blocks of rows, which are in turn compressed and transferred in larger messages
over the network, back to the CC. Compression techniques include widely available
algorithms such as the Ziv/Lempel algorithm, among others. Compression and blocking of
small rows into larger messages also has the effect of reducing the amount of data that needs
to be transferred over the network significantly, and proportionally enlarges the capacity of
data to compare.

[0042] As it receives compressed row hash blocks, the CC decompresses the blocks and de-
blocks the messages into individual rows. The CC may perform all communications and de-
blocking activity for each HS process in a separate processing thread to maximize parallelism
and throughput of the compare (getting multiple processors to work on comparison tasks at
the same time). Rows are sorted in unique key order from both DB1 and DB2.

[0043] The row comparison thread within the CC then compares rows from table 1 with rows
In table 2. Table 1 is designated as the “source table” (ST) and table 2 is designated the

“target table” (TT). The comparison proceeds as follows:

- out-of-sync rows are accumulated, in order, to a “maybe out of sync queue”
(MOOSQ)

11.

CA 02598584 2007-08-22

WO 2006/101633 PCT/US2006/005702

O

O

O

the keys and hashes for the rows compared are stored
a timestamp of when the comparison was performed is stored
the MOOSQ can be a memory queue, a file, or equivalent mechanism for

storing row comparison data as rows are found out of sync

- 1mtially, a row from both ST and TT is retrieved

- the comparison then performs the following loop until no more rows are available

from either ST or TT

O

O

O

current row 1s designated row(ST) or row(TT)
next row (tollowing current) is next row(ST) or next row(TT)
unique key of current row is key(ST) or key(TT)
hash of current row is hash(ST) or hash(TT)
if key(ST) is less than key(TT) or no more rows are available from TT
" queue row(ST) as a “missing insert” operation into MOOSQ (see
below) — this means that to bring tables in sync, the row(ST) must be
mserted into TT
* 1ow(ST) becomes next row(ST)
if key(ST) is greater than key(TT) or no more rows are available from ST
" queuerow(1T) as a “missing delete” operation into MOOSQ — to bring
tables 1 sync, row(TT) must be deleted
= row(TT) becomes next row(TT)
if key(ST) 1s equal to key(TT)
= 1fhash(ST) 1s different then hash(TT)
e queue row(ST) as a “missing update” operation into MOOSQ —
to bring tables in sync, row(ST) must replace row(TT)
» 1f hash(ST) is equal to hash(TT)

e nothing to do, rows are in sync

m in both cases, row(ST) becomes next row(ST) and row(TT) becomes

next row(TT)

[0044] After the comparison, the MOOSQ holds the keys to all rows that were found to be

out of sync. FEach of these keys can then be used to select the full row image from the

database, to produce a list of rows that are out-of-sync.
[0045] Consider the following example, which relies upon the Source Table (ST) of Table 12
and the Target Table (TT) of Table 13.

12.

WO 2006/101633

CA 02598584 2007-08-22

PCT/US2006/005702
Source Table (ST)
Product Product Name | Number of | Row Hash
Number Wheels
Row 1 100 Car 4 123456738
Row 2 200 Boat 0 63482133
Row 3 300 Truck 18 34747426
Row 4 400 Bicycle 2 08765342
Row 5 500 Helicopter 3 08878972
Table 12
Target Table (TT)
Product Product Name | Number of | Row Hash
Number Wheels
Row 1 100 Car 4 12345678
Row 2 150 Motorcycle 2 23823283
Row 3 200 Boat 0 63482133
Row 4 300 Truck 6 49347234
Row 5 500 Plane 3 23823932
Table 13
Comparison Steps
Source Row | Target Row | Source Target Row | Operation Type
Key Key Row Hash | Hash
1 | 100 100 12345678 | 12345678 equal
2 1200 150 63482133 | 23823283 missing delete
3 {200 200 63482133 | 63482133 equal
4 | 300 300 34747426 | 49347234 missing update
5 | 400 500 08765342 | 23823932 missing insert
6 | 500 500 08878972 | 23823932 missing update
7 | no more Nno more (done)
Table 14

13.

WO 2006/101633

CA 02598584 2007-08-22

MOOSQ Contents after Comparison

PCT/US2006/005702

Source Target Source Target Operation Type | Compare Timestamp
Row Key | Row Key | Row Hash | Row Hash
1 150 63482133 | 23823283 | missing delete | 2004-05-04 08:33:32
2 | 300 300 34747426 | 49347234 | missing update | 2004-05-04 08:34:10
3 |400 98765342 missing insert 2004-05-04 08:37:58
4 | 500 500 98878972 | 23823932 | missing update | 2004-05-04 08:39:00
Table 15

[0046] The above row hash technique can be applied to the overlapping table scenarios
described earlier, including:

- overlapping columns case

- overlapping rows case

- mapped data case

- heterogeneous data stores

[0047] In the overlapping columns and mapped data cases, the user of the system supplies the
overlapping column list, which acts as a comparison filter. As another alternative, the
column list could also be derived automatically from an index used on the table, or a view on
the table. Each column in the overlapping column list has the same information in each table
(for in-sync rows), and limits the row hash calculation to those columns only, filtering out the

columns that are different.

[0048] Consider the Overlapping Columns Case described earlier. The overlapping columns

list would be the following:

Source Table Column | Target Table Column
(PROD) (PRODUCT)
1 | Product Number Product Number
2 | Product Name Product Name
3 | Number of Wheels Wheel Count
Table 16

[0049] Note that even though Number of Wheels and Wheel Count have different names,
they represent the same information. In addition, In Stock has been omitted from the PROD

table list because it does not overlap with any column in PRODUCT, and Description is

14.

CA 02598584 2007-08-22
WO 2006/101633 PCT/US2006/005702

omitted from the PRODUCT table list because it does not have an overlapping column in
PROD.
[0050] In the overlapping rows case, the user of the system applies a filter definition to the
row set returned for comparison. This could be an SQL statement WHERE clause, an
identifier specifying the name of a physical or logical partition within the table, or other type
of mechanism used to retrieve and present specific subsets of rows from the tables in the
comparison.
[0051] Using the Overlapping Rows Example presented earlier, the following filters would
be applied:

- on the BASEBALL_TEAMS table, only select rows where Region is equal to

“WEST”
- onthe WEST TEAMS table, only select rows where Team Type is equal to Baseball

[0052] In addition, only the Team Name and Wins columns overlap. The resulting row sets

to compare would be:

BASEBALL TEAMS Table

Team Name Wins
Row 1 (Giants 82
Row 3 Dodgers 63
Table 17

(rows 2 and 4 filtered out because Region not equal to “WEST”, Region column filtered

because it does not overlap)

WEST TEAMS Table

Team Name Wins '
Row 1 (1ants 82
Row 2 Dodgers 60
Table 18

1s5.

CA 02598584 2007-08-22
WO 2006/101633 PCT/US2006/005702

(row 3 filtered out because Team Type does not equal “Baseball”, Team Type column
filtered out because it does not overlap) |
[0053] With Heterogeneous Data Stores, each column must be converted to a standard
representation for its basic “type” before performing the hash calculation. Otherwise, column
data that means the same thing but is represented differently will result in unequal hash
values for corresponding rows.
]0054) In the example provided earlier, numbers and dates are converted to a standard
format. Standard formats can vary widely, but need to be defined for the following data types
minimally:

- numbers

- dates ,

- character columns that have trailing spaces

[0055] As long as the standard selected is consistently applied for both tables, and therefore
that data is represented consistently for both tables, accurate hash calculation and comparison
can take place.
[0056] One example format for number representation is the following:

- truncate leading zeros

- truncate trailing zeros to the right of the decimal point

[0057] An example format for date representation is:

- 4 digit year, followed by 2 digit month, followed by 2 digit day of month
(YYYYMMDD)

[0058] Using the Heterogeneous Data Stores example, data is standardized for both
ORACLE ORDER and SYBASE ORDER tables as follows.

Order 1D Order Date
Row 1 100 20040804
Row 2 200 20031110
Table 19

[0059] In some cases, tables with large numbers of rows spread over a number of disk drives

(partitioned tables) can be processed more quickly if the comparison process is broken into

16.

CA 02598584 2007-08-22
WO 2006/101633 PCT/US2006/005702

multiple pieces, each one of which focuses on one or more table partitions. This can be done
by creating multiple logical comparisons for a partitioned table, each of which is responsible

for a given range of data. This method is similar to the Overlapping Rows case, where a filter

1s used for each comparison. For example:

Source Table (ST):
Last Name
Partition 1 “A” —“M”
Partition 2 “N” — 72
Table 20
Target Table (TT):
L.ast Name
Partition 1 “A” ~-*G”
Partition 2 “H” - “R”
Partition 3 “S” -7
Table 21

[0060] The comparison on this table could be broken up into two comparisons:
- comparison 1: select rows from both ST and TT where last name is between “A”’and
VG
- comparison 2: select rows from both ST and TT where last name is between “N”’and
ey

If the “split comparisons” are run at the same time, retrieval of row ranges “A” — “M” and
“N” — “Z” can occur in parallel, because they access different disk drives. Note that the
partitions don’t have to be identical in order to implement a split comparison.

[0061] The row hash technique illustrates an efficient method for determining out-of-sync
rows. However, 1t the row hash technique is applied while the underlying tables are
changing, it can produce inconclusive results. This is due to the fact that underlying row
values change while a comparison takes place, and therefore, the comparison can identify
rows as out of sync that actually became in sync during the comparison; any underlying

replication mechanism used to keep tables in sync may introduce a delay (latency) between

17.

CA 02598584 2007-08-22
WO 2006/101633 PCT/US2006/005702

the time at which a source row changes and the time when that change is applied at the target
table.

[0062] One technique associated with the invention is used to complement the row hash
technique and produce accurate results in changing environments. This is known as
“Confirm Out of Sync” Processing (COOS), which may be implemented with the
synchronization re-check module 160. The goal of this processing is to reveal the rows that

remain out of sync after a period of time, in any of the following formats (but not limited to
these):

- areport to be reviewed by the user
- a queue or file (confirm out of sync queue, or COOSQ) that contains a list of out of
sync and possibly out of sync rows that can be processed by another mechanism, such
as a program to resynchronize the tables on a row-by-row basis
o the COOSQ can also be used as input to another COOS process to see which
rows remain out of sync after another period of time or after a

resynchronization step is applied

[0063] In one embodiment of the invention, there are three possible statuses for rows
processed 1n the COOS step:
- “persistently out of sync” —means that the row has not been updated since the row
hash comparison took place, and therefore can be assumed to be out of sync

- “in flight” — means that the target row that was out of sync in the row hash step has
since been updated, and therefore that work has been performed on this row by
replication or other mechanism, but it has not been confirmed that the rows were in
SYync

- “In sync” — means that the source row was applied to the target via the replication

mechanism

[0064] Note that even a status of “in sync” does not guarantee that the rows are currently in
sync, if the underlying tables are continuously changing. But it does indicate that replication

or other associated processing to keep rows in sync is working.

[0065] COOS processing assumes:
- that there is another active mechanism for keeping rows in sync (for example,

database replication) - known generically as a “replication mechanism”

18.

CA 02598584 2007-08-22
WO 2006/101633 PCT/US2006/005702

- that there is a high probability for the replication mechanism to apply application of a
change in one table to the other table within a certain window of time (known as
“replication latency’)

o this latency can be determined programmatically by reviewing latency

statistics from the replication mechanism, or manually by a user in the absence

of such a mechanism

[0066] In one embodiment, COOS Processing works as follows:
- while there are MOOSQ records left to process
o get the next record from the MOOSQ
o 1f out of sync operation type (optype) is
= “missing delete”

e use key(TT) to select the full row(TT) from TT

e if row(IT) is not found, then status becomes “in sync”,
otherwise, row(TT) is “persistently out of sync”
" “missing insert”
e use key(ST) to select the full row(TT) from TT

e 1if row(TT) is not found, then status becomes “persistently out
of sync”
e 1frow(TT) is found, compute hash(TT)
o 1f hash(TT) 1s the same as hash(ST), then status

becomes “in sync”
o 1f hash(TT) 1s different than hash(ST), then status
becomes “in flight”
" “missing update”
e compute hash(TT)
e if hash(ST) is equal to hash(TT), then status becomes “in sync”
o if hash(ST) is not equal to hash(TT)
o compare the old hash(TT) with new hash(TT)
» it the same, then status becomes “persistently
out of sync”
= 1t different, then status becomes “in flight” (if
the hash changed, it means that the target row

value changed, and that the database replication

19.

CA 02598584 2007-08-22

WO 2006/101633 PCT/US2006/005702

mechanism if any has updated the row and is
likely working, but it has not been confirmed

that the data is the same)

o forrows that are persistently out of sync, and optionally in flight
" COOS can use key(TT) to lookup all corresponding columns values for
row(1'T), and key(ST) to lookup all corresponding column values for
row(ST)

e only the key and hash were available in the MOOSQ, and

therefore, to see the whole row image this is a necessary step

e lookup is done using standard database access methods such as
SQL SELECT...WHERE

[0067] At this point, the COOSQ and/or COOS report contains or displays the contents of all
rows that are persistently out of sync, and if desired, those rows that are in flight.

[0068] Note that the COOS processing can occur simultaneously with the row hash or other
initial comparison technique, as long as the COOS processing waits to perform each row
confirmation step until after replication latency has expired. For example, if replication
latency is 60 seconds, and the initial compare revealed an out of sync row at 9:30, then the
contirmation step for that row is not performed until 9:31 (even if the initial comparison for

all rows 1n the table is not complete until 9:33).

[0069] Consider the following example. Expected latency is set by the user to be 60 seconds.

MOOSQ Contents after Row Hash Comparison

20.

Source Row | Target Row | Source Target Row | Operation Type | Time
Key Key Row Hash | Hash
1 150 63482133 | 23823283 missing delete | 08:33:32
2 {300 300 34747426 | 49347234 missing update | 08:34:10
3 400 08765342 missing 1nsert 08:37:58
4 1500 500 98873972 | 23823932 missing update | 08:39:00
Table 22

CA 02598584 2007-08-22

WO 2006/101633 PCT/US2006/005702
Replication Activity
Source Row | Target Row | Source Target Row | Activity Time
Key Key Row Hash | Hash
1 150 23823283 applied delete | 08:33:50
2 300 300 34747426 | 34747426 applied update | 08:34:20
3 | 500 300 08878972 | 66554443 applied update | 08:34:20
Table 23
COOS Activity
Source | Target | Time Operation | Result New Status
Row Row
Key Key
1 150 08:34:33 | lookup TT | Record not found in sync
key=150
2 | 300 300 08:35:11 | lookup TT | Record found, new hash(TT) equals | in sync
key=300 [hash(ST)
3 1400 08:38:59 | lookup TT | Record not found persisently
key=400 out of sync
4 1500 500 08:40:01 | lookup TT | Record found, new hash(TT) not equal | in flight
key=500 | to hash(ST), but new hash(TT) not
equal to old hash(TT)
Table 24

Description of COOS Activity
retrieve MOOSQ record 1

o wait until current time (8:33:33) is greater than compare time plus latency

(8:33:32 + 60) to allow replication a chance to apply operation

o uses target row key value of 150 to perform a lookup into the target table

o does not find the target record, so assumes delete has been applied

o marks the operation as now “in sync”

retrieve MOOSQ record 2

o wait until current time (8:35:11) is greater than compare time plus latency

(8:34:10 + 60) to allow replication a chance to apply operation

o uses target row key value of 300 to perform a lookup into the target table

o finds the target record; computes a row hash (new hash) on the target table

21.

CA 02598584 2007-08-22
WO 2006/101633 PCT/US2006/005702

o compares the hash of the source row with the new hash of the target row, they
are the same
o marks the operation as now “in sync”
- retrieve MOOSQ record 3
o wait until current time (8:38:59) 1s greater than compare time plus latency
(8:38:58 + 60) to allow replication a chance to apply operation
o uses source row key value of 400 to perform a lookup into the target table
o does not find the target record, so assumes missing insert has not been applied
o marks the operation as “persistently out of sync”
- retrieve MOOSQ record 4
o wait until current time (8:40:01) is greater than compare time plus latency
(8:39:00 + 60) to allow replication a chance to apply operation
o uses target row key value of 500 to perform a lookup into the target table
o finds the target record; computes a row hash (new hash) on the target table
o compares the hash of the source row with the new hash of the target row, they
are different, but since the new hash has changed in the target row since the
initial compare, the row must have changed since the initial compare, and so

the operation 1s marked as “in flight”

[0070] As described, the COOS Processing technique can be performed using the MOOSQ
output from the Row Hash technique as input. COOS Processing uses the row keys, hashes
and related information produced by the Row Hash technique to determine which rows are
possibly out of sync, and to then use that information to lookup the detailed row data after
probable replication latency has expired.

[0071] However, COOS Processing is not limited to Row Hash technique input. COOS
Processing can be applied to any input in which the key of the out of sync data is supplied,
for those rows that are only found in the source table (missing insert) or the target table
(missing delete). For those rows that are in both tables, but that have different values in non-
key columns, the data for the non-key columns does not have to be a row hash — it can be
anything that represents the value of those columns, including the column values themselves.
As long as the data is represented consistently on source and target, this is sufficient for the

confirmation processing to take place.

22,

CA 02598584 2007-08-22
WO 2006/101633 PCT/US2006/005702

[0072] In an alternative embodiment of the invention, tables are compared using a batch hash
technique. In one embodiment, the batch hash technique is broken into two phases for
descriptive purposes (although they may be run simultaneously):

1. Bad Batch Determination

2. Row Detail Fetch and Compare
Once these phases are completed, a MOOSQ holds the “maybe out of sync” row set (as with
the Row Hash technique). From there, the confirm out of sync (COOS) step described earlier
can be run to determine the row set that remains persistently out of sync, even while the
underlying databases continue to change.
[0073] Bad Batch Determination may be implemented as follows. As with the Row Hash
technique, Host Server processes retrieve rows from the source and target tables. The column
data for each row is standardized after selection to allow for heterogeneous cases, as
illustrated earlier. In addition, features enabling overlapping rows and columns apply equally

to the Batch Hash technique - specific row and column subsets can be selected from each

table.
[0074] The aim of this technique is to reduce network traffic even further than the Row Hash.
In a batch hash, the flow of data occurs as follows. Rows retrieved from the source and target
tables (ideally in parallel) are loaded into row read buffers in each HS process:

- rows are retrieved from the source table in unique key order, as with the Row Hash

technique

- ideally, row retrieval from source and target tables will occur in parallel in HS1 (e.g.,

DB1 118) and HS? (e.g., DB2 138)

[0075] Using the retrieved rows, HS1 subsequently builds and sends batches of row
information to HS2:
- afixed number N is chosen for the “source batch size” (for example, 10 rows)
- the first N rows in the row read buffers on HS1 are packed into a “batch row record”,
in the following manner:
o the beginning key column values (row 1)
o the ending key column values (row N)
o a hash, computed over all columns (or selected columns) in the N rows, using
the hash techniques illustrated in the row hash technique (for example, a CRC)
- the batch row record is queued into a batch hash block

- this is repeated for rows N + 1 through 2N, 2N + 1 through 3N, and so on

23.

CA 02598584 2007-08-22

WO 2006/101633 PCT/US2006/005702

o the last batch is a special case, and the final source batch row record has an
ending key value denoted as “end of file”
- whenever the batch hash block is full, or when local row read buffers are at or near
full, the batch hash block is sent to the HS2 process
o fullness should be configurable and is typically optimized to achieve the
maximum throughput of data on a network, or when row reading buffers are at
or near full

o the blocks may be compressed for further etficiency

[0076] HS2 reads and compares the batch row records with its own rows (from the target
table):
. HS?2 reads the row data for the target table in unique key order
. each batch row record is de-blocked from the incoming message from HS1
- for each batch row record coming from HS1:
o HS?2 determines the boundaries of the batch row comparison, i.e. the set of
rows in HS2 that need to be matched with the source batch row record
» the beginning row of the target batch row record is the first available
row from the target table (TT)
« the ending row of the target batch row record is the row with a key less
than or equal to the last row of the source batch row record
» HS?2 also computes a hash over all rows in its set of rows
o HS2 then compares the hash of the source batch row record with the hash of
the target batch row record
o if they are different, the batch is declared “bad” — this means that at least one
row in the underlying row set is out of sync, and perhaps more; a bad batch
record is then created, which consists of:
= the “lesser” of the keys that begin the source and target batch row
records — the begin bad batch value
= the “greater” of the keys that end the source and target batch row
records — the end bad batch value (note that this must always be the
same as the ending key values of source batch row record)
« if the source batch row record indicates “end of file” as the ending key
value, the target batch row record must also indicate “end of file” as its

ending key value

24.

CA 02598584 2007-08-22
WO 2006/101633 PCT/US2006/005702

o the bad batch record is sent (or buffered for sending) to the CC process

[0077] The CC process in turn writes the bad batch record into the Maybe Out of Sync queue
(MOOSQ). The MOOSQ holds the boundaries for batches that are out of sync. This means
that at least one row per batch was out of sync, and perhaps more.

[0078] At this point, a second step occurs to determine the exact row set that is out of sync.
This step is known as “row detail fetch”. This step can be performed after determining all
bad batches or during that process. Determining the rows that are out-of-sync after

determining each bad batch follows much of the same logic as the row hash technique. The

processing occurs as follows:

- bad batches are retrieved by the CC

- the CC requests the underlying row detail (each row’s columns) from both the source
(HS1) and the target (HS2)

- each HS process formulates a query to return each row that is in the range of the bad
batch record; for example, if a bad batch record has a beginning record with key ‘B’
and ending record with key ‘E’, then anything between those key values (inclusive)
will be returned (for example, B,C,D,E)

o alternatively, if the same HS processes are used in both the batch retrieval step
and the row detail fetch step, the HS process can cache the detailed row data
during batch retrieval, anticipating that the detail might be required

- the rows are returned to the CC

- the CC compares each row, as in the row hash step, and if the rows don’t match, the
CC outputs the bad row values to the MOOSQ

[0079] At that point, the MOOSQ contains the rows that “maybe out-of-sync” (as in the row
hash technique). From there, if the underlying tables are being updated continuously, the
technique for “Evaluating Out-of-Sync Conditions for Continuously Changing Tables” can be
applied after a period of configurable latency, as described earlier.

[0080] The Batch Row technique is more fully appreciated in connection with the following

example. Consider:

Batch Size = 3
Blocking = 1 bad batch record (for simplicity)
Source Table (ST) Contents

25.

CA 02598584 2007-08-22

WO 2006/101633 PCT/US2006/005702
Key | Other | Batch | Batch row record | Comments
Values | # contents
A 1 1
B 2 1
C 3 1 A,C,Hash(1,2,3) | End of batch 1 (count = batch size)
D 4 2
F 5 2
G 6 2 D,G,Hash(4,5,6) | End of batch 2 (count = batch size)
H 7 3 H,EOF,Hash(7) | End of batch 3 = EOF

Table 25

Target Table (1T) Contents

Key | Other | Batch | Batch row record | Comments

Values | # contents

A 1 1 <= end key of source batch 1 (C)

C |3 1 A,C,Hash(1,3) <= end key of source batch 1 - mismatched
batch row records (Hash(1,2,3) not equal to
Hash(1,3) — output to BBQ

D 4 2 > end key of source batch 1, <= end key of
source batch 2 (G)

F 5 2 <= end key of source batch 2 (G)

G 6 2 D.G,Hash(4,5,6) | <= end key of source batch 2 (G) — matched

batch row records (Hash(4,5,6) in both source,
target) — good batch (throw out)

H 7 3 > end key of source batch 2, <= end key of
source batch 3 (EOF)
I 8 3 H,EOF,Hash(7,8) | <= end key of source batch 3 (EOF) —

mismatched batch row records (Hash(7) not
equal to Hash(7,8) — output to BBQ

Table 26

[0081] HS1 extracts the first 3 records from ST — keys = A,B,C — and computes the hash over
those three records. The batch row record contains:
- begin key columns value - A

- end key columns value — C

- hash (1,2,3)

20.

CA 02598584 2007-08-22
WO 2006/101633 PCT/US2006/005702

[0082] HST sends the batch row record to HS2. HS2 performs the following processing:

- reads the first row from TT (key=A) and compares it to the end key value (C) of the
bad batch row from HS2 — since it is less or equal to end key C, the row is included in
the current batch for the target

- reads the second row from TT (key = C) — also includes this row, since it is less than
or equal to end key C

- reads the third row from TT (key = D) — saves this for the next batch comparison

- computes the hash over records A, C — and this is different than the source batch row
record hash (hash(1,3)), because a row is missing in the target batch that existed in the
source (key = B)

- the batch row record containing A, C is output to the Bad Batch Queue (BBQ)

10083] HS1 then builds the next batch record from the next 3 rows in ST
- beginkey=D
- endkey=G
- hash (4,5,6)

10084] HS1 sends the batch row record to HS2. HS2 performs the following processing:
- uses the remaining row from TT that didn’t make it into the prior batch (key = D)
- accumulates rows until it finds one greater than the end key from the source batch

record (key = H); includes every row up to and including G in the target batch row

record

- computes the target row hash — hash(4,5,6) — which matches the source batch row

record hash, and determines that this batch is “good”

[0085] HS1 builds and sends the last batch to HS2. The batch contains the following:

- beginkey=H
- end key = EOF
- hash (7)

[0086] HS2 includes all remaining rows in its batch row record calculations, because the end
key from the source batch row record is EOF. These records don’t match because the target

batch row hash is hash (7,8). This record is put into the BBQ.

27.

WO 2006/101633

|0087]

CA 02598584 2007-08-22
PCT/US2006/005702

In the row detail fetch step, each bad batch record is retrieved from the BBQ by the

CC. The CC retrieves the row detail for the implied row set bounded by begin and end key

values,

from each of HS1 and HS2. Once rows have been retrieved, they are compared in the

order retrieved.

Comparison Processing

Bad Batch | Source | Target | Result
Record Values | Row | Row
(begin key, end | Detail | Detail
key)
A,C A,l Al Equal
B,2 C,3 Missing Insert (B < C) — output B,2 to MOOSQ
C,3 C,3 Equal
H,EOF H,7 H,7 Equal
EOF L8 Missing Delete — output 1,8 to MOOSQ
EOF EOF Done
Table 27
[0088] The MOOSQ at this point contains the rows that maybe out of sync. A subsequent

comparison can be performed after a period of latency, as described subsequent to the row

hash above, to identify the rows that remain out of sync (and were not brought into sync by

replication or a similar mechanism).

|0089]
should

The compare techniques illustrate methods for identifying rows in two tables that

be in sync, but are not. These techniques also identify ways to do so when the

underlying data is changing constantly.

10090]

Once two tables are identified as out-of-sync, it is a frequent requirement to bring

them back into synchronization. This involves:

o

deciding which rows should be synchronized (either on a row-by-row basis, using a
data-driven rule, or all rows) — known as the “resync rowset”

for each row in the resync rowset, deciding which table is the true source of change
information (this may be on a row-by-row basis, a data-driven rule, or all rows
flowing in one direction)

actually moviing the change information from source to target, or triggering this

movement, bringing individual rows into sync

28.

CA 02598584 2007-08-22
WO 2006/101633 PCT/US2006/005702

[0091] In one embodiment of the invention, an Out-of-Sync Queue (OOSQ) is used as input
to the resynchronization process. The OOSQ provides at least the minimally necessary
attributes, including each row key and operation type, for those rows that may possibly be
resynchronized. Many different types of processes may generate the OOSQ, including the
compare processes that generate the MOOSQ and COOSQ queues described above.

[0092] Determining the resync rowset and directional flow of data to synchronize is the first
step in bringing tables back into sync. The final set of rows to resync is known as the
“Resync Queue” E(RQ). This can take many forms, including files and queues, but contains
the essential information needed to affect the resynchronization process for the necessary
rows. The RQ and OOSQ can even be the same files. The RQ can also be thought of as a
logical concept if the application of changes is made immediately upon determination of
whether and how to apply each change.

[0093] Determining the contents of the Resync Queue can be done in the following ways.
Detault action 1s one approach. During the comparison process, one table is designated as the
source and the other table is the designated target. The default action is to flow every row in
the resync rowset from the source to the target. Another approach is to present rows to the
user for manual inspection and determination. In this method, the system presents data from
the OOSQ described above to the user of the system. If the operation was a missing insert,
the source row is displayed; for missing deletes, the target row is displayed, and for missing
updates, both source and target rows are displayed, with one option being to highlight the
out-of-sync columns for the user’s attention.

[0094] As the user inspects each row, he can determine 1) whether to resynchronize that row
and 2) in which direction to send the row (i.e. determine the “true” source). Note that while a
source and target for the comparison have been assumed, the manual inspection process can
reverse this relationship on a case-by-case basis. The system stores these settings into the RQ
(which 1s possibly the OOSQ itself or a new file/memory queue) so that the row can be
synchronized later. Alternatively, the system can execute these changes directly after the
review 1s complete without storing the directional information.

[0095] Another method of determining whether to apply the row, and in which direction, is
using data-driven rules. In this scenario, the system provides a mechanism by which users
can specity subsets of rows within the OOSQ to apply. There are many options for
implementing a syntax that enables this function, or providing a user interface that prompts

for this information.

29.

WO 2006/101633

[0096] Consider the following example.
ALL CITIES WEST should have the same data.

CA 02598584 2007-08-22

PCT/US2006/005702

When in sync, ALL CITIES_EAST and
Assume ALL CITIES_EAST was

designated the source table, and ALL_CITIES_WEST the target. Also assume that data on a

given city always originates in the copy of the table for that region (for example, data on New

York always originates in ALL_CITIES _EAST).

ALL CITIES EAST Table (designated source table)

City Region Weather
1 | New York East Rain
2 | Miami East Sunny
3 | Chicago Central Windy
Table 28

ALL CITIES WEST Table (designated target table)

City Region Weather
1 | Seattle West Rain
2 | Philadelphia East Snow
3 | Miami East Cloudy
Table 29
OO0OSQ Contents and Desired Outcome
City Region | OOSQ Operation | Desired Operation
1 | New York East missing insert insert TOW into
ALL CITIES WEST
2 | Philadelphia | East missing delete delete oW from
ALL CITIES WEST
3 | Miami East missing update replace row n
ALL CITIES WEST
4 | Seattle West missing delete insert oW into
‘ ALL CITIES EAST
5 | Chicago Central | missing insert do nothing

[0097] Note that in all cases except #4 and #5 of Table 30, data is flowing in the direction

Table 30

from the designated source to target. However, in case #4, since Seattle is in the West region,

30.

CA 02598584 2007-08-22
WO 2006/101633 PCT/US2006/005702

that data should be inserted into ALL_CITIES_EAST, rather than having the row deleted
irom ALL _CITIES WEST. Case #5 is used to illustrate a case where one might not want to
apply data in either direction. Therefore, an automatic rule for determining directional data
tlow might be as follows:
- for each record in the OOSQ
o 1if Region is East, direction of change is from ALL CITIES EAST to
ALL CITIES WEST
o 1f Region is West, direction of change is from ALL CITIES WEST to
ALL CITIES EAST

o 1f Region 1s Other, do not apply change in either direction

[0098] The system can enable rules that involve Boolean logic on a combination of the table
data, operation type, compare timestamp and other information, enabling or disabling
resynchronization for row sets and determining the directional flow of those rows. A more
sophisticated rule example:
- 1f Region is East, and OOSQ Operation is not missing delete, or city 1s New York,
then apply change to ALL CITIES WEST

1. Combination of Rule Based and Manual Review Techniques

[0099] The system can also provide the option of extending the rules specification
capabilities to enable manual inspection and determination for rows that are not determined
by the rules themselves. Using the above example, a rule might specify:

- for each record in the OOSQ

o 1t Region is East, direction of change is from ALL CITIES EAST to
ALL CITIES WEST

o 1f Region is West, direction of change is from ALL CITIES WEST to
ALL CITIES EAST

o 1f Region 1s Other, make a manual determination
[00100] Rows may also be resynchronized through a direct application technique.

In one embodiment, this technique involves the following:

- read the RQ for each intended change

31.

CA 02598584 2007-08-22
WO 2006/101633 PCT/US2006/005702

- using the column values, key information and operation type, update either the source

or target table, using the native methods available for that database

[00101] For SQL databases, this involves the following steps:
- for missing inserts, build the following syntax:

o 1insert into <table> (<columnl> [,<column2>...]) values (<column valuel> [,
<column value2>...])

o example: msert into PRODUCT (Name, Price) values (‘CAR’, 32000)

- for missing updates, build the following syntax:

o update <table> set <columnl> = <column valuel> [,<column2>= <column
value2>] where <key columnl> = <key columnl value> [and <key column2>
= <key column?2 value>

o example: update PRODUCT set Price = 32000 where Name = ‘CAR’

- ftor missing deletes, build the following syntax:

o delete from <table> where <key column1> = <key columnl value> [and <key

column2> = <key column2 value>

o example: delete from PRODUCT Name = ‘CAR’

<column 1>...<column n> is the list of columns in the table, whose values were available in
the original comparison step. <column value 1>...<column value n> are the corresponding

column values.

<key column 1>...<key column n> is the list of columns that comprise the unique key used in

the comparison. <key value 1>...<key value n> are the corresponding values.

[0100] In one embodiment, rows are resynchronized by:
- build the SQL statement syntax
- send the SQL statement to the database’s SQL executor

- commit each operation either independently or as part of a larger group of operations
10101] Other databases support similar functionality to SQL for deleting, inserting and

updating particular rows. These include various ISAM methods and different database APIs.
The same general methods for applying row changes apply for these types of tables. Methods

32.

CA 02598584 2007-08-22
WO 2006/101633 PCT/US2006/005702

for setting particular columns or fields and updating these types of databases are commonly
known and available.

[0102] In many common environments and architectures, two databases are kept closely in
sync at any given time using database replication methods. In these types of scenarios, when
a row change 1s applied at the data source, it is typically applied by the replication
mechanism at the target after some delay (ranging from milliseconds to days).

[0103] Data applied this way presents challenges for a resynchronization mechanism.

Consider the following set of events.

Time | Event Source Key, | Target Key,
Column Value | Column Value

1 TOWS 1N Sync 100, CAR 100, CAR

2 source row update 100, TRUCK 100, CAR

3 compare detects | 100, TRUCK 100, CAR
missing update
condition

4 target row updated by | 100, TRUCK 100, TRUCK
replication

5 source row update 100, PLANE 100, TRUCK

6 target row update by | 100, PLANE 100, PLANE
replication

7 resync applies old | 100, PLANE 100, TRUCK
source row values

Table 31

[0104] In this example, the comparison process correctly detects an out-of-sync condition at
time 3 (replication has not yet applied the change from CAR to TRUCK to the target row).
At time 4, the update on the source row at time 2 is finally applied to the target. Subsequent
activity updates the source row values (time 5), and replication applies the new (correct)
version of the data at time 6.

[0105] However, at time 7, the resynchronization step applies an outdated change to the
target, erroneously overwriting the newest version of the record with an older version. This
ensures data inaccuracy in the target row, at least until the next comparison and
resynchronization take place, or until the row 1s updated and replicated again without
intervening comparison and resync activities.

[0106] One aspect of the invention ensures an orderly change application in a replication
environment. Because database replication can cause intervening updates of new information

to a given row, the system needs to coordinate resync activities in order to prevent anomalies.

33.

CA 02598584 2007-08-22

WO 2006/101633 PCT/US2006/005702

The essential mechanism for accomplishing this is to cause the replication system to detect

and apply the change itself.

[0107] Replication mechanisms typically detect operations in the order they are performed on

the source database, and apply those changes in the same order at the target database. This

guarantees that the target row will (eventually, after replication latency is accounted for),

contain accurate information.

10108] One mechanism to enable orderly application of changes is a source row update

technique. Such a technique may be implemented as follows:

get the key tor the row that is out of sync from the RQ

using the key value, update all columns in the row to themselves

this triggers the database to log the current row values into the database transaction
log or a simtlar mechanism (such as a change log maintéined by triggers)

subsequently the replication system reads and interprets the change event, and

replicates the change into the target database

[0109] Consider the following example:

Time | Event Source Key, | Target Key,
Column Value | Column Value

] rOwSs 11 Sync 100, CAR 100, CAR

2 source row update 100, TRUCK 100, CAR

3 compare detects missing | 100, TRUCK 100, CAR
update condition

4 target row updated by | 100, TRUCK 100, TRUCK
replication

5 source row update 100, PLANE 100, TRUCK

6 resync updates source row | 100, PLANE 100, TRUCK
to 1tselt (causing the current
row values to be logged)

7 replication detects the row | 100, PLANE 100, PLANE

values in the log and applies
them to the target

Table 32

[0110] Note that, in contrast with the Direct Apply technique, here the accurate version of the

row is applied, because replication found and applied the correct version of the row. Also

note that the replication mechanism must have the following additional capabilities:

34.

CA 02598584 2007-08-22
WO 2006/101633 PCT/US2006/005702

- the resync event is always an update to the row (setting the values to themselves);
therefore, the replication mechanism must be able to detect whether or not the row
actually exists at the target, and apply the row as an insert if it does not exist at the
target

[0111] One embodiment of the invention uses a source row marker technique. This
technique 1s used because the Source Row Update technique is limited in the following
manner:

- missing delete records cannot be recreated by updating the source row — therefore
another mechanism is required for creating and handling deletes

- updates to rows can cause other unintended events to fire, such as database triggers

- there is no easy way to delineate between what activity was caused by the resync
mechanism, and that which was caused by the application — either at the source end or

by replication at the target

[0112] The Source Row Marker technique accounts for these limitations. This technique also
works in conjunction with replication to guarantee that changes are applied in the proper
order. The technique works as follows:
- get the key for the row that is out of sync (from the RQ)
- 1f the operation type is a missing insert or missing update
o using the key value, select all of the columns from theu source row, while

locking that row (as an example, using SELECT FOR UPDATE or READ
WITH LOCK)

o at a minimum, record the column values, along with the table name, and
operation type into a RESYNC MARKER table

- 1f'the operation is a missing delete
o using the key value, select all of the columns from the source row, while

locking that row (as an example, using SELECT FOR UPDATE or READ
WITH LOCK)

o if the row exists, do nothing
o if the row does not exist, at a minimum, record the key column values, along

With the table name, operation type or current time of day into a
RESYNC MARKER table

- commut the database transaction (either individually or in groups of resync operations)

- unlock any rows selected or read with locks

35.

CA 02598584 2007-08-22

WO 2006/101633 PCT/US2006/005702

[0113] The invention may be implemented with a RESYNC MARKER table with the

following characteristics:

rows created within the table must be logged to either the database transaction log or
equivalent (the replication change data source) — the transaction log must be the same
as the transaction log used by the underlying source table

it can store data for different table structures - 1t does not have to be the same
structure as the underlying source table(s), as long as it can store the column values of

the source table in some way, such as stringing them together into one large column

[0114] Additional requirements for the replication mechanism:

it must track changes made to the RESYNC MARKER table

1t must know the purpose of the RESYNC MARKER table and interpret its contents
differently than it does for other tables - i.e., it translates the contents of each
RESYNC MARKER row (which is mostly likely a packing of multiple columns into
a single column) into the appropriate source table format (unpacks the single column
into the intended multiple columns)

it must be able to take the contents of each RESYNC MARKER row, and rebuild the
corresponding row/column values and equivalent change records internally

it does not need to process delete rows in the RESYNC MARKER table

[0115] After this processing occurs for a particular row, the replication mechanism can

process the data as it would a normal change record for the underlying row.

[0116] Finally, because the RESYNC MARKER rows are only needed until replication has
processed them, the replication mechanism can periodically delete no longer needed

RESYNC MARKER rows on a periodic basis.

30.

CA 02598584 2007-08-22

WO 2006/101633

PCT/US2006/005702
Example:
Time | Event Source Key, | Target Key,
Column Value | Column Value
1 rOWS 1N Sync 100, CAR 100, CAR
2 source row update 100, TRUCK 100, CAR
3 compare detects missing update | 100, TRUCK 100, CAR
condition
4 target row updated by replication 100, TRUCK 100, TRUCK
5 source row update 100, PLANE 100, TRUCK
6 resync selects the current values of | 100, PLANE 100, TRUCK
the source row (with lock), then
creates a RESYNC MARKER row
with those values
7 resync commits and unlocks the | 100, PLANE 100, TRUCK
RESYNC MARKER row
8 source row update 100, BOAT 100, TRUCK
9 resync marker row processed by | 100, BOAT 100, PLANE
replication
10 source row update processed by | 100, BOAT 100, BOAT
replication
Table 33

[0117] Note that in this example, the source row update at time 8 had to wait for the lock to
be released for the source row read established at time 6 to ensure that the
RESYNC MARKER row is recorded in the database log. This guarantees that steps at times
9 and 10 will be performed in the correct order. ﬁ

[0118] The foregoing discussion describes a technique in which a replication mechanism 18
used to facilitate both the ongoing synchronization of databases, as well as the
resynchronization of those databases, in the event that a table comparison reveals out of sync
rows. Assuming that the replication mechanism can also support synchronization for the
heterogeneous and overlapping cases described earlier, and assuming that the mechanism
supports the Source Row Marker technique above, the mechanism can also be used to
synchronize heterogeneous tables and/or overlapping row/column sets. This 1s due to the fact
that once a replication system has correctly interpreted the source row marker data,
subsequent operations appear to the replication system as though they had or1 ginated in the

underlying source table itself. Therefore, any heterogeneous and overlapping data

37.

CA 02598584 2007-08-22
WO 2006/101633 PCT/US2006/005702

differences that are already accommodated by the replication mechanism are transparently
extended to the combined resync/replication mechanism.
10119] The replication mechanism can also be used to create an audit trail of changes for
rows created by the resync process. This allows users of the resync mechanism to delineate
between rows produced by resync, and rows produced by replication or external applications.
[0120] The following steps, performed by the replication mechanism, establish an audit
record in the target database transaction 1o g for a particular row:

- the RESYNC MARKER row is fetched

- the row data is interpreted, and converted to resemble the underlying source row

- the target row is updated

- within the context of the same database transaction, a RESYNC APPLY MARKER

row 1s created in the target database (its only purpose is to identify the transaction as

having been caused by resync activities)

[0121] Once the record has been created in the target database transaction log, there are two

ways for a user to access the data:

1. by looking at the RESYNC APPLY MARKER table itself:

2. by mining the transaction data from the target database transaction log; because an
operation on the RESYNC APPLY MARKER table appears in the transaction, it can
be assumed that all other operations in the transaction must have been produced by
resync activities

[0122] The second step above also has the advantage of not requiring redundant storage for
the column information, since it is contained in the transaction log records (by virtue of the
application of that row into the target database).

[0123] An embodiment of the present invention relates to a computer storage product with a
computer-readable medium having computer code thereon for performing various computer-
implemented operations. The media and computer code may be those specially designed and
constructed for the purposes of the present invention, or they may be of the kind well known
and available to those having skill in the computer software arts. Examples of computer-
readable media include, but are not limited to: magnetic media such as hard disks, floppy
disks, and magnetic tape; optical media such as CD-ROMs and holographic devices;
magneto-optical media such as floptical disks; and hardware devices that are specially
contigured to store and execute program code, such as application-specific integrated circuits

(FASICs”), programmable logic devices (“PLDs”) and ROM and RAM devices. Examples of

3.

CA 02598584 2007-08-22
WO 2006/101633 PCT/US2006/005702

computer code include machine code, such as produced by a compiler, and files containing
higher-level code that are executed by a computer using an interpreter. For example, an
embodiment of the invention may be implemented using Java, C++, or other object-oriented
programming language and development tools. Another embodiment of the invention may be
implemented in hardwired circuitry in place of, or in combination with, machine-executable
software 1nstructions.

[0124] The foregoing description, for purposes of explanation, used specific nomenclature to
provide a thorough understanding of the invention. However, it will be apparent to one
skilled in the art that specific details are not required in order to practice the invention. Thus,
the foregoing descriptions of specific embodiments of the invention are presented for
purposes of illustration and description. They are not intended to be exhaustive or to limit the
invention to the precise forms disclosed; obviously, many modifications and variations are
possible in view of the above teachings. The embodiments were chosen and described in
order to best explain the principles of the invention and its practical applications, they thereby
enable others skilled in the art to best utilize the invention and various embodiments with
various modifications as are suited to the particular use contemplated. It is intended that the

following claims and their equivalents define the scope of the invention.

39.

CA 02598584 2014-06-11

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

1. A computer readable medium having stored thereon executable instructions for
directing a processor to compare databases, the executable instructions comprising

executable instructions to direct the processor to:

10

15

20

235

30

identify a segment of a first database comprising a batch of rows of the first

database:

compress said batch of rows;

identify non-key data and key data in said batch of rows, including a begin

key value and an end key value;

perform a hash on said non-key data to create first hash data;

process at least said begin key value said end key value to identity a

corresponding segment of a second database;

perform a hash on at least a portion of said corresponding segment of said

second database to create second hash data;

compare said first hash data with said second hash data to identify when a
segment of a first database 1s conditionally out of synchronization with a
corresponding segment of a second database to establish a conditionally out of

synchronization state at a first time;

allow a latency period after said first time for said first database and said

second database to synchronize through existing synchronization mechanisms
40

10

15

20

25

30

CA 02598584 2014-06-11

determine after said latency period that said segment of said first database is

not in synchronization with said corresponding segment of said second

database to form a post-latency out of synchronization state; and

re-synchronize, in response to said post-latency out of synchronization state,
sald segment of said first database with said corresponding segment of said

second database during dynamic operation of said first database and said

second database.

The computer readable medium of claim 1 wherein said executable instructions to
identify include executable instructions to direct the processor to establish a common

format for said segment of said first database and said corresponding segment of said

second database.

The computer readable medium of claim 2 wherein said executable instructions to
identify include executable instructions to direct the processor to establish a common
format between said first database and said second database accounting for at least
one of: overlapping columns, overlapping rows, mapped data, and heterogeneous data

stores.

The computer readable medium of claim 1 wherein said executable instructions to

direct the processor to identify include executable instructions to direct the processor

to augment said hash data with user-specified non- key data.

The computer readable medium of claim 1 wherein said executable instructions to

direct the processor to identify include executable instructions to establish whether

sald segment of said first database includes rows or columns that at least partially
overlap with corresponding rows or columns of said corresponding segment of said

second database.

41

10

15

20

25

30

CA 02598584 2014-06-11

The computer readable medium of claim 1 wherein said executable instructions to

direct the processor to identify include executable instructions to direct the processor
to compare sub-segments of said segment of said first database to corresponding sub-

segments of said second database 1n parallel.

The computer readable medium of claim 1 further comprising executable instructions
to direct the processor to use said begin key value and said end key value to i1dentity
within said first database and said second database the set of rows-corresponding to
the segments of the first and second database that are conditionally out of

synchronization at the first time.

The computer readable medium of claim 7 further comprising executable instructions
to direct the processor to compare individual rows of said set of rows to identify rows

that are conditionally out of synchronization.

The computer readable medium of claim 1 wherein the instructions that direct the

processor to re-synchronize include executable instructions to direct the processor to:

retrieve values from said segment of said first database;

lock said segment; and

store said values 1n a marker table associated with said first database.

The computer readable medium of claim 9 further comprising executable instructions

to direct the processor to:

use a replication mechanism to propagate said values from said marker table

to said corresponding segment of said second database.

42

11.
> 12,
10 13.
14.

15
1S.

20
16.

25

CA 02598584 2014-06-11

The computer readable medium of claim 10 further comprising executable

instructions to direct the processor to use said replication mechanism to sequence

changes to said first database.

The computer readable medium of claim 1 wherein said executable instructions to
direct the processor to re-synchronize include executable instructions to direct the
processor to access an out-of-synchronization queue specifying information about

out-of-synchronization database segments.

The computer readable medium of claim 12 wherein said executable instructions to
direct the processor to re-synchronize include executable instructions to direct the

processor to determine data directional flow.

The computer readable medium of claim 1 wherein said executable instructions to
direct the processor to re-synchronize include executable instructions to direct the
processor to re-synchronize through a direct application technique that relies upon

native methods associated with either said first database or said second database.

The computer readable medium of claim 1 wherein said executable instructions to

direct the processor to re-synchronize include executable instructions to direct the

processor to re-synchronize using replication markers.

The computer readable medium of claim 1 wherein said executable instructions to
direct the processor to re-synchronize include executable instructions to direct the

processor to re-synchronize using a source row update technique.

43

10

15

20

25

17.

CA 02598584 2014-06-11

A method, comprising:

causing at least one processor at a first computer system to identify, at the
computer system, a segment of a first database comprising a batch of rows of

the first database;:

causing said at least one processor to compress said batch of rows;

causing said at least one processor to identify non-key data and key data in

said batch of rows, including a begin key value and an end key value;

causing said at least one processor to perform a hash on said non-key data to

create first hash data;

causing said at least one processor to process at least said begin key value said

end key value to 1dentify a corresponding segment of a second database;

causing said at least one processor to perform a hash on at least a portion of

said corresponding segment of said second database to create second hash

data;

causing said at least one processor to compare said first hash data with said
second hash data to identify when said segment of said first database is
conditionally out of synchronization with said corresponding segment of said

second database to establish a conditionally out of synchronization state at a

first time;

44

10

15

20

25

30

18.

CA 02598584 2014-06-11

causing said at least one processor to allow a latency period after said first

time for said first database and said second database to synchronize through
existing synchronization mechanisms;

causing said at least one processor to determine after said latency period that
sald segment of said first database is not in synchronization with said
corresponding segment of said second database to form a post-latency out of

synchronization state; and

causing said at least one processor to re-synchronize, in response to said post-
latency out of synchronization state, said segment of said first database with
said corresponding segment of said second database during dynamic operation

of said first database and said second database.

A computer system comprising a processor and a memory in communication with the
processor, the memory having stored thereon computer code executable by the
processor, the computer code comprising executable instructions to direct the

processor to:

identity a segment of a first database comprising a batch of rows of the first

database;

compress said batch of rows;

identify non-key data and key data in said batch of rows, including a begin

key value and an end key value;

perform a hash on satd non-key data to create first hash data;

process at least said begin key value said end key value to identify a

corresponding segment of a second database;
45

10

15

20

CA 02598584 2014-06-11

perform a hash on at least a portion of said corresponding segment of said

second database to create second hash data;

compare said first hash data with said second hash data to identity when said
segment of said first database is conditionally out of synchronization with said
corresponding segment of said second database to establish a conditionally out

of synchronization state at a first time;

allow a latency period after said first time for said first database and said
second database to synchronize through existing synchronization mechanisms;
determine after said latency period that said segment of said first database 1s
not 1n synchronmization with said corresponding segment of said second

database to form a post-latency out of synchronization state; and

re-synchronize, in response to said post-latency out of synchronization state,
said segment of said first database with said corresponding segment of said
second database during dynamic operation of said first database and said

second database.

46

CA 02598584 2007-08-22

WO 2006/101633 PCT/US2006/005702
1/2
100 \ 108

104 /110 112

102 I Network

Connection
150 y 152
Network 114
:IZO Hash module 1
154 _ 792 -
156 Conditional synch [— 158 tash data_l
check module .
116 —

Synch re-check 160 106 ~— 130 132

module . . | -'

N k

Out-of-synch 162
queue
Re-synch 164 7
module

134~ '
140 Hash module 2
142

Hash data 2

136

FIG. 1

CA 02598584 2007-08-22
WO 2006/101633 PCT/US2006/005702

2/2

200

" Databases
conditionally >
out-of-sync?

202

204

“" Databases
still out-of-sync?

Yes

Load out-of-sync 206
segments into queue
Re-synch queue 208
contents

riG. 2

100‘\ 708

102

150 —152

Connection

154—

156 Conditional synch [— 158
check module

Synch re-check 160
module .

Out-of-synch 162
queue

Re-synch 164
module

110 112

104
l Network
Connection
114~

118 —
.]20 Hash module 1
122 Hash data. |
116~
106 130 132

Network

Connection CPU

"l

134—
z
140 Hash module 2

3
i« Hash data 2

136

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - abstract
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - claims
	Page 49 - claims
	Page 50 - claims
	Page 51 - claims
	Page 52 - claims
	Page 53 - claims
	Page 54 - claims
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - abstract drawing

