
No. 818,061.

PATENTED APR. 17, 1906.

G. D. TOY, Jr., R. H. TOY & H. T. TOY. LAND ANCHOR.

APPLICATION FILED NOV. 13, 1905.

Witnesses: C.J. Bassett, M.A. Milad Inventors

George D. Toy Jr.

Robert N. Toy,

Hugh J. Toy,

Trederick Sinjamine
(Atti

UNITED STATES PATENT OFFICE.

GEORGE D. TOY, JR., ROBERT H. TOY, AND HUGH T. TOY, OF SIDNEY, OHIO.

LAND-ANCHOR.

No. 818,061.

Specification of Letters Patent.

Patented April 17, 1906.

Application filed November 13, 1905. Serial No. 287,094.

To all whom it may concern:

Be it known that we, GEORGE D. Tox, Jr., ROBERT H. Toy, and HUGH T. Toy, citizens of the United States, residing at Sidney, in the county of Shelby and State of Ohio, have invented certain new and useful Improvements in Land-Anchors, of which the following is a specification.

Our invention relates to improvements in 10 devices for securing the ends of guy-ropes or cables in the land and for analogous uses, such as are commonly known as "land-an-

chors.

The especial objects of our improvements 15 are to produce a device which can be cheaply manufactured, which will be strong, easily anchored or driven in the ground, and which will have a maximum efficiency for the purpose for which it is intended.

In the accompanying drawings we have shown and will hereinafter describe in detail

a preferred form of our invention.

In said drawings, Figure 1 shows in eleva-tion our improved land-anchor in its complete form. Fig. 2 is a vertical section taken through the lower end of the anchor and showing a slightly-modified form of socket. Fig. 3 is a plan view of the socket which forms a feature of our invention. Fig. 4 is 30 an elevation of the socket. Fig. 5 is an elevation of a collar which cooperates with the socket, and Fig. 6 is a plan view of the collar.

Referring to the several parts of our invention by reference characters, a represents a 35 two-way cast-iron tubular coupling, in the lower branch of which is fixed the upper end of a pipe b and in the horizontal branches of which are secured the handles cc. The lower end of the pipe b is exteriorly threaded and 40 screwed into a tubular socket e, which is threaded to receive said pipe. As shown in Fig. 2, this socket is formed with a spiral flange e', which extends horizontally from the body of the socket; but, as indicated in 45 Figs. 1 and 4, the flange is omitted. From the lower spirally-formed edge e^3 of the socket

project downwardly lugs e^2 .

Adapted to be passed freely through the coupling-pipe a, the pipe b, and the socket e is 50 a wrought iron or steel rod d, to the lower end of which is suitably secured a point d', which is preferably formed with squared cheeks, as

resting on the shoulder or upper face of the point is a collar g, which is formed with a spi- 55 ral upper edge g^2 , which corresponds in pitch to the edge e^3 of the socket described. Extending downwardly from the spiral edge g^2 recesses g' are formed in the collar to receive the lugs e^2 when the parts are assembled in 60

operative positions.

The earth-engaging member of our anchor consists of a metal disk f, which is centrally perforated to permit the passage of the rod dand is cut on a radial line from the center 65 opening to the periphery, so that it may be bent to a helical plane, as shown in Figs. 1 and 2, whereby it will conform to the contour of the edges e^3 and g^2 of the socket and collar, respectively, between which it is ar- 70 ranged and held when in operative position. This disk is also provided with suitable holes on opposite sides of its central opening to receive the lugs e^2 , which pass therethrough into the recesses g'.

The upper end of the rod d extends through

the coupling a and has formed therethrough an eye to receive a wedge d^2 , which when in place serves to lock the rod to the pipe through the coupling, as will be readily un- 80

derstood.

The flanges e' on the socket serve as a backing or stiffening means for the disk, thus permitting the use of relatively light material in the construction of said disk, such as sheet- 85 steel, for instance. It will be apparent that the spiral disk forms a screw which draws the device into the earth as the handles are operated in the usual manner and that when the anchor has been sunk to a sufficient depth by 90 knocking out the key d2 the coupling, handles, pipe, and socket may be drawn upwardly, leaving the rod d, the collar g, and the spiral disk embedded in the earth to serve as an anchor for a cable, which may be 95 attached to the eye in the upper end of the rod in any suitable manner, a cable not being shown, as it forms no part of our invention.

One of the advantages resulting especially from the construction shown in Fig. 2 is that 100 spiral disks of relatively great diameters can be applied effectively, as they are given an extensive area of support by the flanged

socket.

It will be apparent that instead of making 105 shown. Fitting loosely on the rod d and the recesses in the collar and the lugs in the

socket we may reverse such arrangement without altering the interlocking principle indicated.

Having thus illustrated and described the principles of construction and operation embodied in our invention and without intending to have our patent protection limited to the mechanical details set forth, what we

claim is-1. In a device of the character described, a spirally-formed earth-engaging member having a central opening therethrough and holes on each side of said opening, a rod passing through said central opening, and collars sur-15 rounding said rod above and below said

member respectively, said collars provided with portions adapted to interlock with each other and with the holes in said member. 2. In a device of the character described, a

20 rod adapted to be driven into the ground, a collar on said rod, a socket removably mounted on said rod, an earth-engaging element arranged between said collar and socket, means for interlocking said collar, earth-engaging 25 element and socket, a pipe secured to said

socket, and means for interlocking said pipe and rod.

3. In a device of the character described, a rod adapted to be driven into the ground, a 30 collar on said rod having a spiral upper edge, a socket removably mounted on said rod and having a spiral lower edge, an earth-engaging element arranged between said collar and socket, means for interlocking said collar, earth-engaging means, and socket, and means 35 for turning said socket.

4. In a device of the character described, a rod provided with a point and a bearing, an earth-engaging element arranged on said rod and resting on said bearing, a socket loosely 40 mounted on said rod and having portions interlocking with said earth-engaging element. and its bearing, and means for operating said socket.

5. In a device of the character described, a 45 rod having a point on its lower end and an eye in its upper end, a collar loosely mounted on said rod above its point and having a spiral upper edge, a spiral earth-engaging blade surrounding said rod and resting on said col- 50 lar, said blade having holes therethrough, a socket loosely mounted on said rod, and having its lower edge conforming to and normally resting upon the upper face of said spiral blade, means for interlocking said socket, 55 blade and collar, a pipe surrounding said rod and secured at its lower end to said socket, handles secured to said pipe, and removable means for locking said pipe against upward movement on said rod.

In testimony whereof we affix our signa-

tures in presence of two witnesses.

GEORGE D. TOY, JR.

ROBERT H. TOY. HUGH T. TOY.

Witnesses:

D. OLDHAM, John Oldham.