Title: ANCHORING BASE FOR ROAD SIGN POSTS AND SIMILAR

Abstract

Anchoring base for road sign posts and similar, its object being to provide a post of such kind, which is easy to mount, and which easily can be remounted after the post has been prostrated, by way of example having been run onto by a vehicle. The anchoring base comprises an upwards cup-shaped bottom component (1, 21) and a weight (2, 22), which in mounted condition of the post (3, 23) is placed in the cavity of the bottom component, said weight in its turn supporting the post in question. The weight and the bottom component are in between them held together by means of a vertical breakable connecting pin (10, 30) inserted in between them coaxially located cavities of the two components.
For the purposes of information only

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>Code</th>
<th>Country</th>
<th>Code</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>DE</td>
<td>Germany, Federal Republic of</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td>SU</td>
<td>Soviet Union</td>
</tr>
<tr>
<td>GB</td>
<td>United Kingdom</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>HU</td>
<td>Hungary</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>JP</td>
<td>Japan</td>
<td>US</td>
<td>United States of America</td>
</tr>
</tbody>
</table>
Anchoring base for road sign posts and similar

The present invention relates to a base for road sign posts, and similar.

It is a principal object of the invention to provide a base of the kind mentioned, which is easy to erect, either it is intended for permanent or temporary use. It is further an object of the invention to provide a base, which is built in such a manner that as little damage as possible will be caused by a vehicle running into the post supported by the base.

This object is reached by means of the invention, which essentially is characterized by the anchoring base comprising an upwards open cup-shaped bottom component and in mounted condition of the post a weight housed in the hollow space of said bottom component, which weight in its turn supports the post in question, the weight and the base being mutually connected by means of a breakable connecting pin inserted into mutually coaxially located holes of said two components.

The invention will be described in the following, reference being made to the accompanying drawings, in which

Fig. 1 is a cross-sectional view of a base made in accordance with a first example of embodiment of the invention,

Fig. 2 is a schematic view of the same cross-section showing the post in different prostrating stages,

Fig. 3 is an exploded view of the same base,

Fig. 4 is a cross-sectional view corresponding to the one of Fig. 1 through the mid portion of a base made according to a second example of embodiment of the invention,

Fig. 5 is a cross-sectional view corresponding to the one of Fig. 4 through a base according to a third
example of embodiment,

Fig. 6 is a view of a detail illustrated in
Fig. 4 and seen in direction to its underside, and

Fig. 7 is a top view of the same detail illus-
strated in Fig. 4.

The base illustrated in Figs. 1-3 and made
in accordance with the invention comprises a bottom compo-
ent 1, a top component 2 of heavy material acting as a weight,
and a post 3 supported by said top component, the lower port-
on of said post being shown in the drawings. The weight 2
is provided with a central hole, which substantially exhibits
the same diameter as the outer diameter of the post 3. The
weight 2 is held to the post 3 by means of radially inter-
spaced pins 4, which traverse the weight 2 and radial bores
made in the post 3. A body 5 of annular shape is provided in
the interior of the post at its lower end, into which body
the pins 4 also extend. The annular body exhibits a central
bore, in which a centre-sleeve 10 is in the mounted condition
inserted, said centre-sleeve also extending down through a
corresponding bore of the bottom component 1. The weight 2
rests in a recess 6 in the bottom component 1. This recess
exhibits a comparatively flat bottom portion 6a, a sloping
bottom portion 6b, which has the form of the convex surface
portion of a frustrum of a cone, and a substantially vertical
top portion 6c. The semispherical weight 2 exhibits a top side,
which is substantially extending in radial direction relative
to the post 3. In order to impede that rainwater and dirt
will penetrate into the recess 6 of the bottom component,
the interspace between the weight 2 and the wall portion of
the bottom component 1 is bridged by a lid 7, in cross-section
exhibiting the form of an inverted U, the inner flange 7a of
said lid extending down into an annular groove in the weight
2 and the outer flange 7b of said lid extending downwards
along the outside 8 of the bottom component. A central bore
9 is made in the bottom component and extends coaxially to
the sleeve 10, said bore in the first place being intended
for wire laying, but which of course also can serve the purpose of a drainage means. The bore 9 exhibits a diameter, which is smaller than the one of the bore, to which it connects, and in which the sleeve 10 is inserted. By this arrangement a shoulder is formed at the passage between the two bores, against which shoulder the lower end of the sleeve rests. The bottom component 1 is suitably made of a comparatively heavy material, by way of example such material as concrete, and may either be cast in position in the road bed or be provisionally placed on top of the same. The weight 2 is likewise suitably made of concrete. It can of course also be imagined to make the weight of any other suitable material. The sleeve 10 forms a breakable connecting pin between the weight 2 and the bottom component 1, and if wire laying is not desired, it can be made of solid material. However, the pin 10 shall be so weak that it is broken off, when the post 3 is subjected to a comparatively violent force, which is for example the case, when a vehicle is running into it. The spherical outer surface of the weight 2 will slide against the sloping bottom portion 6b of the recess 6 and occupy a position indicated with continuous lines in Fig. 2, in which position the post 3 rests against the upper edge portion of the bottom component. If the vehicle having run into the post should continue its movement and tend to carry along the post in its travelling direction, the top side 2a of the weight 2 will strike at the surface 6c of the bottom component, whereby the weight is prevented from falling out of said bottom component. If the movement of the vehicle should continue past this position, the breakable pins 4 will be shorn off, and the vehicle only carries along the post 3. Thanks to the cooperation between the weight 2 and the recess 6 a possibly existing wiring in the post will remain intact in case the post is only pivoted down and not carried along bringing in its train that it emerges from the weight 2. In order to prevent an unauthorized removal of the post from its base, the sleeve 10 can suitably exhibit a comparatively
great vertical extension, so that the post has to be lifted high up in order to permit being carried away from the pin.

The mounting of a post according to the kind described above can by way of example take place in such a way that the bottom component 1 is placed on top of the road bed or is cast into the same. Thereafter the post with its weight 2 in mounted condition can be threaded over the sleeve 10.

The base illustrated in the Figs. 4, 6 and 7 differs from the base shown in the preceding figures, viz. principally with respect to for one thing the central sleeve 30, which connects the post 23 and the weight 22 with the bottom component 21, and for another thing the gripping means of the sleeve.

The weight 22 in a central position exhibits a sleeve 41, which is embedded or in any other suitable manner fastened to the same, said sleeve suitably being made of metal or plastics. The inner diameter of the sleeve 41 corresponds to the outer diameter of the post 23, which is designed as a tube. The sleeve 30 exhibits two end portions 30a and 30b with different diameters and are mutually connected via an intermediate portion 30c, which forms a radially projecting flange. According to Fig. 4 the outer diameter of the upper sleeve portion 30a corresponds to the inner diameter of the tubular post 23. The lower portion 30b of the sleeve is suitably made with a diameter, which corresponds to some other dimension of tubular posts in the market, by way of example as will be described in connection with Fig. 5. Both end portions of the sleeves 30a and 30b are provided with hook-shaped tongues 42 and 43 respectively and interspaced round the periphery of the sleeve, each one of said tongues exhibiting a nose 42a and 43a respectively projecting outside of the periphery of the sleeve, said nose forming a shoulder 42a' and 43a' respectively facing away from the flange 30c. In the example of embodiment shown the tongues are cast of the same material as and integrated with the other part of the
sleeve 30. The end portions 30a and 30b near to the flange exhibit peripherical cuts 44 and 45 respectively, which constitute fraction indications, by means of which the rupture point on the sleeve, when the post is prostrated, can be determined. In the central hole 29 in the bottom component 21, which hole is comparatively large compared with the central hole 9, which is shown in Fig. 1, a filling ring 46 is pressed in, the inner diameter of which corresponds to the outer diameter of the sleeve portion 30b. The filling ring in its upper portion exhibits a chamfer 46a. The end portions of the sleeve 30 are provided with axially extending slits 47, 49, which extend from the free ends to the cut located at the flange. In the wall of the tubular post 23 engagement openings 48 are made, which are interspaced along the periphery of the tube in the same manner as the engaging tongues 42 and at a distance from the lower end of the tube 23, which corresponds to the distance between the flange 30a and the shoulder 42a' of the engaging tongues 42.

The mounting of the post is suitably carried out in such a way that it is inserted into the weight 22 reaching to the position illustrated in Fig. 4, whereafter the sleeve 30 is inserted so far that the engaging tongues 42 snap in in the corresponding engaging recesses 48. The flange 30c is then lying against the lower terminal edge of the tube 23 and the weight 22. The filling ring 46 has suitably beforehand been pressed-in into the central hole 29 of the bottom component 21. When the post together with the weight 22 and the sleeve 30 are brought down into the bottom component, and the end position 30b of the sleeve is through the center-hole 46a introduced into the position shown in Fig. 4, the nose portions 43a of the engaging tongues 43 snap in below the filling ring, whereafter the post is firmly held in upright position.

When the post is subjected to a prostrating movement, which by way of example can occur, when a vehicle
is running into it, the lower sleeve portion 30b below the flange 30c is broken off at the point of attenuation. Due to the longitudinally extending slits the components forming part of the sleeve portion in question fall down, so that their engagement ceases and they can be removed to permit the insertion of a new sleeve in order to again mount the post. The peripheral portions of the bottom component 21 and the weight 22, not shown in Fig. 4, can have a similar design as the corresponding parts in Figs. 1 and 2. By this arrangement a counter-acting force is created against a run-down post being carried along by the vehicle, which has run into it, the performance being similar to the manner described in connection with the previous example of embodiment. Because of the fact that in connection with light pulling forces working on the post 23, after it has been prostrated, the flange still lies against the underside of the weight, the post and the weight are by means of the remaining sleeve portion kept together. Only in connection with a more powerful pull at the post, also the sleeve will burst at the point of attenuation located above the flange, and the post will be drawn out of the weight.

A tubular post 23 is illustrated in Fig. 5, and its inner diameter corresponds to the outer diameter of the thinner portion of the sleeve 30 in Fig. 4. In this case the sleeve has been turned upside down relative to Fig. 4, and a thinner filling ring 46 has been pressed-in in the bore 29 of the bottom component 21. Thus, one and the same sleeve 30 can be used for two different diameters of the tubular post 23. Corresponding parts have been given the same indications of reference in Fig. 4 and Fig. 5.

The invention is not limited to the anchoring base described above and illustrated in the drawings by way of example only, but can be varied as to its details within the scope of the following claims without therefore departing from the fundamental idea of the invention. The weight indi-
cated with 2 needs not to be made of as heavy material as concrete or metal. However, it is important that it does not fall out of the recess of the bottom component, when the post is rapidly prostrated. The invention can of course be applied to all kinds of posts, which may be subjected to violent lateral stresses such as for example being run into by a vehicle.
Claims

1. Anchoring base for road sign posts and similar, characterized by comprising an upwards cup-shaped bottom component (1, 21) and one in mounted condition of the post in the cavity of the bottom component placed weight (2, 22), which in its turn supports the post etc. in question, the weight and the base being held together mutually by means of a vertical breakable connecting pin (10, 30) inserted into coaxially located cavities made in the two components.

2. Anchoring base according to claim 1, characterized by the cavity of the bottom component as well as the one of the weight being symmetrical with respect to rotation and the connecting pin being centrally placed in these components.

3. Anchoring base according to claim 1 or 2, characterized by the inside of the bottom component (1, 21) being adapted to form shoulders cooperating with the weight (2, 22), when the connecting pin (10, 30) is in broken condition, and the post is in a prostrated condition.

4. Anchoring base according to claim 3, characterized by the post (3, 23) being connected with the weight (2, 22) by a breakable coupling means.

5. Anchoring base according to claim 4, characterized by the breakable coupling means comprising radial pins (4).

6. Anchoring base according to anyone of the preceding claims, characterized by the weight (2, 22) substantially being semispherical and with its spherical convex surface resting against a sloping bottom portion of the recess of the bottom component (1, 21).

7. Anchoring base according to anyone of the preceding claims, characterized by the weight
(2, 22) exhibiting a top side substantially extending in radial direction to the post, and by the base exhibiting an upper edge portion with a steeply sloping, preferably substantially vertical, inside.

8. Anchoring base according to claim 4, characterized by the breakable means comprising a breakable sleeve (30), of which one end portion extends into the lower end portion of the post (23), and the other portion of which sleeve extends into a central bore (29) in the bottom component.

9. Anchoring base according to claim 8, characterized by the sleeve exhibiting a flange-like intermediate portion (30c), which interconnects its two end portions (30a, 30b), and a peripheral indication (44, 45) on at least one side of the flange-like intermediate portion, which in mounted condition forms a shoulder against the terminal edges of the tubular post (23) as well as of the weight (22).

10. Anchoring base according to claim 8 or 9, characterized by the sleeve or corresponding cavities engaged by the same exhibiting laterally spring biased snap-in hooks (42, 43), and by the cavities and the sleeve respectively exhibiting snap-in recesses (48) cooperating with said snap-in hooks.

11. Anchoring base according to claim 9 or 10, characterized by the end portions (30a, 30b) of the sleeve (30) being split.
INTERNATIONAL SEARCH REPORT
International Application No PCT/SE80/00095

I. CLASSIFICATION OF SUBJECT MATTER
According to International Patent Classification (IPC) or to both National Classification and IPC

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC(^3)</td>
<td>E01F 9/00-9/02, E04H 12/22</td>
</tr>
<tr>
<td>US Cl</td>
<td>404: 6,9-14, 52: 295-298</td>
</tr>
</tbody>
</table>

II. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC(^3)</td>
<td>E01F 9/00-9/02, E04H 12/22</td>
</tr>
<tr>
<td>US Cl</td>
<td>404: 6,9-14, 52: 295-298</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched

SE, NO, DK, FI classes as above.

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US, A, 3 212 415 published 1965, October 19, Ray B Byrd</td>
<td>1, 2</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 3 442 187 published 1969, May 6, Josef Hauserg</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>NO, A, 109 876 published 1966, November 28, Erling Cornelius</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>SE, B, 391 209 published 1974, January 8, Möller Gates AS, Höyden och Presiasjon Hek verkstad AS</td>
<td></td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
 "A" document defining the general state of the art
 "E" earlier document but published on or after the International filing date
 "L" document cited for special reason other than those referred to in the other categories
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the International filing date but on or after the priority date claimed
 "T" later document published on or after the International filing date or priority date and not in conflict with the application, but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance

IV. CERTIFICATION

Date of the Actual Completion of the International Search \(^5\)	Date of Mailing of this International Search Report \(^5\)

International Searching Authority \(^1\)	Signature of Authorized Officer \(^2\)
Swedish Patent Office | Olofsson

Form PCT/ISA/210 (second sheet) (October 1977)