
(19) United States
US 20030014377A1

(12) Patent Application Publication (10) Pub. No.: US 2003/0014377 A1
Barson et al. (43) Pub. Date: Jan. 16, 2003

(54) FORMING ASIGNATURE OF PARAMETERS
EXTRACTED FROM INFORMATION

(76) Inventors: Paul Colin Barson, Hemel Hempstead
(GB); Phillip William Hobson, Bishops
Stortford (GB); Simon Field,
Harpenden (GB); Peter Hamer,
Bishops Stortford (GB)

Correspondence Address:
FOLEY HOAG LLP
PATENT GROUP, WORLD TRADE CENTER
WEST
155 SEAPORT BOULEVARD
BOSTON, MA 02110-2600 (US)

(21) Appl. No.: 10/183,606

(22) Filed: Jun. 28, 2002

Related U.S. Application Data

(63) Continuation of application No. 08/888,361, filed on
Jul. 3, 1997.

(30) Foreign Application Priority Data

Jan. 21, 1997 (GB)... 97.01.195.1

Publication Classification

(51) Int. Cl." G06F 15/18; G06E 1/00
(52) U.S. Cl. .. 706/20

(57) ABSTRACT

A method of Storing information relating to the transmission
of messages by an entity over a given time period comprises
the step of

creating a signature comprising a plurality of parameters
related to the transmission of messages over that time
period wherein the parameters comprise at least one
parameter related to the transmission of messages over
a portion of the period and also related to the position
of the portion in the period, to enable output data to be
derived from the Stored information. The Signature may
be updated by a weighted averaging process with other
more recent Signatures.

Application in fraud detection where signature representing
information in many call detail records from a particular
Subscriber is fed to a neural network.

ENGINE BOUNDARY

PROCESSED/36 1.
NETWORK DATA

PERFORM
DETECTION

RECENT-37
PROFILE

-- --)
1 PERFORM

DETECTION
(EVENT BASED)

W ENGINE -150
\ \PERFORMANCE

M
w

RETRAINNs
REQUEST

PROFILE
IDENTIFICATION N
AND CATEGORY 4.

48-7 ENGINE
ADMINISTRATION

52

- PROFE GENERATION

VALID PROFILE
N IDENTIFICATION

HISTORICAL-38
PROFILE

3
DATA

TRANSFORMATION
33

DETECTION
DATA -40

NEURA NETWORK
n DEFINITION
N-- 47 1.

1 41
- - - - POTENTIAL ANOALY

CANDIDATES

AWOMAY
THRESHOLD PARAMETERS

Patent Application Publication Jan. 16, 2003. Sheet 1 of 16 US 2003/0014377 A1

NETWORK

CDR-1
DATA

ps are amu.edu be ma m was she as ans an on

KERNEL

TNEURAT/-61
NETWORK

OUTPUT

4

REPORTS

Fig. 1

Patent Application Publication Jan. 16, 2003 Sheet 2 of 16 US 2003/0014377 A1

ANOMALY DETECTION APPLICATIONS

NETWORK MANAGEMENT
PRODUCT SOFTWARE

APPLICATION SPECIFIC
SOFTWARE

ANOMALY DETECTION
ENGINE

NEURAL.
NETWORK

COMPONENTS

Fig.2

Patent Application Publication Jan. 16, 2003 Sheet 3 of 16 US 2003/0014377 A1

ENGINE BOUNDARY -39
------ N 30 mammyramirerrapuru a. th VALID PROFILE

PROCESSED/136 -11 Y-N SENTIFICATION
NETWORK DATA - PROFE \
- GENERATION

PERFORM /
DETECTION

HISTORICAL-38 l RECENT-37
f PROFILE PROFILE

----)--
1 PERFORM

DETECTION TRANSFORMATION
(EVENT BASED) 33

ENGINE-150 DETECTION
V A PERFORMANCE D 5E-40 I

RETRAIN \\
REQUEST

PROFILE
IDENTIFICATION

NEURAL NETWORK /
N DEFINITION /

AND CATEGORY 4. N. Naz J-1
T-7 ENGINE ----- / POTENTIAL ANOMALY

ADMINISTRATION CANDIDATES

52- ANOMALY
THRESHOLD PARAMETERS

Fig.3

Patent Application Publication Jan. 16, 2003 Sheet 4 of 16 US 2003/0014377 A1

5f
APPLICATION 50 DETECTION_f

48 ENGINE - ENGINE ch
34 PROFILE 4C PERFORMANCE ADMINISTRATION IDENTIFICATION

PERFORMANCE awards AND CATEGORY
EVALUATION 1 EVE:JON N 1 ---

43

I CONDITION EXAMPLE
PARAMETERS DATA

N
\- - - - -

M

71 N.
A. A. /

M N 4d
4 RETRAIN N- CREATE
| REQUEST b - NEURAL

TRAN/RETRAIN NETWORK
STATEGY NEURAL NETWORK

APPLICATION DEFINITION N-47

Patent Application Publication Jan. 16, 2003 Sheet 5 of 16 US 2003/0014377 A1

103

NETWORK

/ 10

f06 S

S 16
NETWORK

OUTPUT

f04

REPORTS

Fig.5

Patent Application Publication Jan. 16, 2003 Sheet 6 of 16 US 2003/0014377 A1

Its
SIGNATURE FOR

CDR CUSTOMER 1.

Customer WALUES

PARAMETERS
N-113

SIGNATURE FOR
CDR CUSTOMER n.
For -a-a-ma-e

Customer WALUES

PARAMETERS

Fig.6

US 2003/0014377 A1

…….--HEI-HITTTTTT?/??/O! GO!HE?d 77Od 10ETTOO |------HTTTTTTTT•O?HO ISIH E' l?/Gid?) DTTTTTT-IIIIIII10E; 13C] ? _INE|05||H. E.IV/Cldf? „…HELLIITTITTELLI VIya aOHEJ TIOd 103TTOO |------HITTTTTTOIHOISIH ELLWC|df?

Jan. 16, 2003 Sheet 7 of 16 Patent Application Publication

Patent Application Publication Jan. 16, 2003 Sheet 8 of 16 US 2003/0014377 A1

INTERPRET CALL
DETAL RECORD

INTERPRET
CUTOMER CDR 46

ELEMENT NAME POSITION (FROMO) FORMAT
CALL START DT | 9 ||YYYY-MM-DD HHMMSSss
LONG DUR CALL IND 12 - FIRST 6 HOURS

2- MIDDLE
3- COMPLETED

15 SERVICE FEATURE CODE 00- OTHER
10- THREE WAY CALLING
12 - CALL FORWARDING
14- CALL FORWARD BUSY

ORIG TELNO || 16 CHAR24)
CAL DURATION | 20 MMMMSS
ORIG NNG 22 DDDD
DESTNNG 23 DDDD
DAY OF WEEK 24 1-7(MON-7, SUN-7)

Fig. 10

Patent Application Publication Jan. 16, 2003 Sheet 9 of 16 US 2003/0014377 A1

ENUM(MONDAY, TUESDAY,......, SUNDAY.

f Yaf72 17

Fig.11

Š%NZNY N2Y
Ya

i
S

5

T. 7PMW 7AM 7PM 7AM 7PM 7AM 7PM
192 DAY1 DAY2 DAY3 DAY4

" Fig.13

Patent Application Publication Jan. 16, 2003 Sheet 12 of 16 US 2003/0014377 A1

203

NETWORK
VALIDATED
RESULTS

s
NETWORK

OUTPUT

204

REPORTS

Fig.14

Patent Application Publication Jan. 16, 2003 Sheet 13 of 16 US 2003/0014377 A1

RESULTS

ANOMALY
DETECTOR

222

CHECK IF ANY WALIDATED
RESULTS HAVE BEEN RETAINED.
IF YES THEN UPDATE RESULTS

221

PRESENT RESULS TO USER RETAIN WALIDATED
WIA GUI ACCEPT NEW RESULTS

VALIDATED RESULTS AS INPUT

DECIDE WHETHER
TO RETRAIN

RETRAIN DO NOT RETRAIN

NEW DATA IS NOT
ACCOUNTED FOR

NEW DATA IS ACCOUNTED
FOR IN NEWLY TRAINED

NEURAL NETWORK
220

DELETE RETANED
VALIDATED RESULTS Fig.15

Patent Application Publication Jan. 16, 2003 Sheet 14 of 16 US 2003/0014377 A1

MAKE NEW INSTANTATION
OF SAME TOPOLOGY AS

ORIGINAL NEURAL NETWORK

TRAIN NEW INSTANTATION
USING UPDATED TRAINING

DATA SET

EVALUATE NEWLY TRAINED
INSTANTATION

SEND MESSAGE TO GUI TO
ALET USER TO PRESENCE OF
NEWLY TRAINED INSTANTATION

IF MESSAGE RECEIVED FROM
GUI REQUESTING USE OF NEWLY
TRAINED INSTANTIATION THEN

REPLACE ORIGINAL INSTANTATION
WITH NEWINSTANTATION

DELETE ORIGINAL
INSTANTIATION

Fig.16

Patent Application Publication Jan. 16, 2003 Sheet 15 of 16 US 2003/0014377 A1

File Print Windows Help

File: Date: 31-10-96 11:41 AM
Overall Statistics Selection Statistics

Accounts: 599
Fraudulent Behaviour: 46
Expected Behaviour; 553

Accounts: 16
fraudulent Behaviour: 3
Expected Behaviour: 15

Coverager:{dall {Xsubset KXindividual
Display Selection Criteria Order

KX Fraudulent god All {) Confidence
de

KX Expected {d Confidence(%) e
A. A {X buration

40 Both KXLimit to W

Account if Behavior Confidence (%) Duration (secs) Walidity 240
012794.02460 Fraudulent 99.99 23027 Correct A
01279402012 Expected 99.99
O1279403610 Fraudulent 99.99 91513 241
1279403076 Fraudulent ODiE - O1279402946 Fraudulent 99.99 15859 Fraud 1

O279403252 Fraudulent 99.99 253802 E| 0.127942490 Fraudulent 99.99 23027
0.27940202 Expected 99.98 3027T
0279403210 Fraudulent 99.97 9513

O1279402046 Fraudulent 99.97 15859 1242 oigacies Faudent gigs 25380g Tv
Walidation

star

Fig.17

244

Patent Application Publication Jan. 16, 2003 Sheet 16 of 16 US 2003/0014377 A1

File Print Help

Overra Statistics-a-Selection Statistics
Accounts: 599 Accounts: 16
Fraudulent Behaviour 46 Fraudulent Behaviour: 3
Expected Behaviour; 553 Expected Behaviour: 15

Coverager:{dal g) subset {Xindividual

Display Selection Criteria Order

C> Fraudulent {X All {d Confidence
{X Expected {Confidence (%) Cat

Duration {d Both KXLimit to KX

5.0 24.8 33.6 42.4 5.2 60.0 68.8 77.6 86.4 95.2 1040
Duration (secs)

US 2003/0014377 A1

FORMING ASIGNATURE OF PARAMETERS
EXTRACTED FROM INFORMATION

REFERENCE TO RELATED APPLICATIONS

0001. This application is a continuation of U.S. applica
tion Ser. No. 08/888,361, filed on Jul. 3, 1997, the contents
of which are herein incorporated by reference.

FIELD OF THE INVENTION

0002 This invention relates to methods of storing infor
mation relating to the transmission of messages, to methods
of deriving output data from information relating to the
transmission of messages to corresponding Systems, and to
Software in computer readable form for Such Systems and
methods.

BACKGROUND OF THE INVENTION

0003) Anomalies are any irregular or unexpected patterns
within a data Set. The detection of anomalies is required in
many situations in which large amounts of time-variant data
are available. For example, detection of telecommunications
fraud, detection of credit card fraud, encryption key man
agement Systems and early problem identification.
0004 One problem is that known anomaly detectors and
methods of anomaly detection are designed for used with
only one Such situation. They cannot easily be used in other
Situations. Each anomaly detection situation involves a
Specific type of data and Specific Sources and formats for that
data. An anomaly detector designed for one situation works
Specifically for a certain type, Source and format of data and
it is difficult to adapt the anomaly detector for use in another
Situation. Known methods of adapting an anomaly detector
for used in a new situation have involved carrying out this
adaptation manually. This is a lengthy and expensive task
requiring Specialist knowledge not only of the technology
involved in the anomaly detector but also of the application
domains involved. The risk of errors being made is also
high.

0005 Another problem is that a particular method of
anomaly detection is often most Suitable for one particular
Situation. This means that transfer of a particular anomaly
detector to a new situation may not be appropriate unless
core elements of the anomaly detector method and/or appa
ratus are adapted. This is particularly time consuming and
expensive particularly as the development of a new anomaly
detector from Scratch may often be necessary.
0006. One application for anomaly detection is the detec
tion of telecommunications fraud. Telecommunications
fraud is a multi-billion dollar problem around the world.
Anticipated losses are in excess of S1 billion a year in the
mobile market alone. For example, the Cellular Telecoms
Industry Association estimate that in 1996 the cost to US
carriers of mobile phone fraud alone is S1.6 million per day,
projected to rise to S2.5 million per day by 1997. This makes
telephone fraud an expensive operating cost for every tele
phone Service provider in the World. Because the telecom
munications market is expanding rapidly the problem of
telephone fraud is Set to become larger.
0007 Most telephone operators have some defence
against fraud already in place. These are risk limitation tools
Such as simple aggregation of call-attempts, credit checking

Jan. 16, 2003

and tools to identify cloning, or tumbling. Cloning occurs
where the fraudster gains access to the network by emulating
or copying the identification code of a genuine telephone.
This results in a multiple occurrence of the telephone unit.
Tumbling occurs where the fraudster emulates or copies the
identification codes of Several different genuine telephone
units.

0008 Methods have been developed to detect each of
these particular types of fraud. However, new types of fraud
are continually evolving and it is difficult for Service pro
viders to keep "one-step ahead' of the fraudsters. Also, the
known methods of detecting fraud are often based on Simple
Strategies which can easily be defeated by clever thieves
who realise what fraud-detection techniques are being used
against them.
0009. A number of rule-based systems have been devel
oped, however, they have a Series of limitations. It is now
being acknowledged that each corporate and individual
customer will show different behaviour, and thus a simple
Set of rules is insufficient to adequately monitor network
traffic. To adapt these rule-based Systems to allow each
customer to have their own unique thresholds in not possible
due to the sheer volumes of data involved.

0010. There are a number of difficulties with identifying
fraud, namely:

0011 Fraud is dynamic by nature; fraudulent behav
iour will change over time.

0012. The size of the problem area is vast, due to the
number of users on a network, and the number of
calls made.

0013 Rapid identification of fraud is needed; losses
from a given case of fraud tend to grow exponen
tially.

0014 Some forms of fraud are particularly costly
and should therefore be the Subject of Special atten
tion e.g. international phone calls.

0015 Customer transparency; a customer should not
See the fraud detection System in action.

0016. Another method of detecting telecommunications
fraud involves using neural network technology. One prob
lem with the use of neural networks to detect anomalies in
a data Set lies in pre-processing the information to input to
the neural network. The input information needs to be
represented in a way which captures the essential features of
the information and emphasises these in a manner Suitable
for use by the neural network itself. The neural network
needs to detect fraud efficiently without wasting time main
taining and processing redundant information or simply
detecting “noise' in the data. At the Same time the neural
network needs enough information to be able to detect many
different types of fraud including types of fraud which may
evolve in the future. As well as this the neural network
should be provided with information in a way that it is able
to allow for legitimate changes in behaviour and not identify
these as potential frauds.
0017. A particular problem for any known method of
detecting fraud is that both Static classification and temporal
prediction are required. That is, anomalous use has to be
classified as Such, but only in relation to an emerging

US 2003/0014377 A1

temporal pattern. Over a period of time an individual phone
will generate a macroscopic pattern of use, in which, for
example, intercontinental calls may be rare; however within
this overall pattern there will inevitably be violations-on a
particular day the phone may be used for Several intercon
tinental calls. A pattern of behaviour may only be anomalous
relative to the historical pattern of behaviour.
0.018. Another problem is that a particular type of infor
mation to be analysed by a neural network is often in a
variety of formats. For example, information about indi
vidual telephone calls is typically contained in call detail
records. The content and format of call detail records differs
for different telecommunications Systems and this makes it
difficult for such information to be input directly to a neural
network based System.
0.019 A further problem is that once information has been
provided for input to a neural network based System it is
often not Suitable for other purposes. For example, when a
neural network System is being used to detect fraudsters
much information about the behaviour of customers is
prepared for input to the System. This information could also
be used for marketing purposes to develop a much more
detailed understanding of customer behaviour. However,
this is often not easy to effect because of the format of the
data.

0020. One problem with known methods of fraud detec
tion is that they are often unable to cope adequately with
natural changes in the input data. For example, a customer's
telephone call behaviour may change legitimately over time;
the customer may travel abroad and make more long dis
tance calls. This should not be detected as an anomaly and
be classified as a potential fraud. Because the telecommu
nications market size is increasing, this is a particular
problem for fraud detection in telecommunications.
0021 Known methods of anomaly or fraud detection
which have used neural networks involve first training the
neural network with a training data Set. Once the training
phase is over the neural network is used to process telecoms
data in order to identify fraud candidates. As the behaviour
of customers evolves, new data input to the neural network
may be widely different from the original training data Set.
In these circumstances the neural network may identify
legitimate new patterns in the data as anomalies. Similarly,
real cases of fraud may go unidentified. In this situation it is
necessary to retrain the neural network using an updated
training data Set which is updated to reflect new features of
the data.

0022 Several problems arise as a result of this need for
retraining. For example, a decision needs to be made about
when to retrain. Typically this complex decision is made by
the user who requires Specialist knowledge not only about
telecoms fraud but also about the neural network System.
Because telecoms fraud is an on-going problem which takes
place 24 hours a day, 7 days a week, it is often not possible
for an expert user to be available. This means that the System
may “under perform” for Some time before retraining is
initiated.

0023. Another problem is that the performance of the
neural network System needs to be monitored in order to
determine when the System is “under performing”. This can
be a difficult and lengthy task which takes up valuable time.

Jan. 16, 2003

0024. Another problem is that the process of retraining is
itself a lengthy and computationally expensive process.
Whilst retraining is in progreSS it is not possible to use the
neural network System to detect anomalies. This means that
telecoms fraud may go undetected during the retraining
phase. Also, the retraining proceSS may take up valuable
processing resources which are required for other tasks. This
is especially important in the field of telecommunications
where it may be required to Site the neural network System
at a busy Switch or node in the telecommunications network.
0025 A further problem is that intervention and input
from the user is typically required during the retraining
process. This can be inconvenient when it is necessary to
retrain quickly and also requires a trained user to be avail
able.

SUMMARY OF INVENTION

0026. It is accordingly an object of the present invention
to provide an apparatus and method which overcomes or at
least mitigates one or more of the problems noted above.
0027 According to a first aspect of the present invention,
there is provided a method of Storing information relating to
the transmission of messages by an entity over a given time
period comprising the Step of

0028 creating a signature comprising a plurality of
parameters related to the transmission of messages over
that time period wherein the parameters comprise at
least one parameter related to the transmission of
messages over a portion of the period and also related
to the position of the portion in the period, to enable
output data to be derived from the stored information.
This provides the advantage that information about
both a macroscopic pattern of behaviour over the whole
time period and a microscopic pattern of behaviour
Over part of the time period can be stored. Lengthy
processing times for Signature creation and Storage are
avoided and redundant information is kept to a mini
mum. Advantageously, anomalies in the Stored data can
more easily be detected in relation to an emerging
temporal pattern. A further advantage is that the Stored
data is available for other purposes, for example mar
keting, forecasting and other types of planning.

0029 Preferably, the signature is created in one of a
plurality of predetermined possible formats. This provides
the advantage that the Stored Signatures are Suitable for a
variety of purposes. For example, the Signature can be
provided as inputs to a number of different neural network
instantiations.

0030 Advantageously, the signature is processed using a
predictive model Such as a neural network, which is dynami
cally configured according to the format of the Signature.
This provides the advantage that the method can easily be
reused in a variety of Situations. For example, anomaly
detection for detecting telecommunications fraud could be
one situation and anomaly detection for detecting credit card
fraud could be another Situation. In these two cases the tasks
vary in many respects; the input data is of a different type
and will be provided in different formats and from different
Sources. The method can be used in different Situations Such
as these So that development times and costs are reduced and
the likelihood of errors occurring in the method are reduced.

US 2003/0014377 A1

0.031 Preferably, the said configuration step further com
prises adjusting the topology of the neural network. This
provides that advantage that the neural network topology
can easily be adapted to best Suit different Situations in
which the method is used. Advantageously, the neural net
work topology is adapted to provided the best anomaly
detection ability.
0032. According to a second aspect of the present inven
tion, there is provided a method of deriving output data from
information relating to the transmission of messages by an
entity over time, comprising the Steps of:

0033 (i) creating a first signature comprising a plural
ity of parameters related to the transmission of mes
Sages over a predetermined first time period;

0034 (ii) creating a second signature comprising a
plurality of parameters related to the transmission of
messages over a Second period shorter than the first and
more recent than the first;

0035 (iii) updating the first signature by a weighted
averaging with the Second Signature;

0036) and (iv) deriving said output data using the
Signatures.

0037. This provides the advantage that the stored infor
mation can be updated with more recent information in order
that any emerging temporal patterns in the information can
be allowed for.

0.038 Preferably, said step of updating the first signature
by a weighted averaging with the Second Signature further
comprises the Steps of:

0039 (i) determining a third signature comprising a
plurality of parameters related to the transmission of
messages over a third period shorter than the Second
and more recent than the Second; and (ii) updating the
Second Signature by a weighted averaging with the third
Signature Such that in use an up-to-date comparison of
the Second Signature with the first signature can be
obtained. This provides an advantage when the first and
Second Signatures are provided as inputs to a proceSS
that requires first and Second Signatures of a fixed
format. Available information that cannot be incorpo
rated into the first signature can be incorporated into the
Second signature.

0040 Advantageously the method comprises the steps of:
0041 (i) inputting a series of inputs to the neural
network So as to obtain a Series of corresponding
outputs;

0042 (ii) inputting a set of target output values corre
sponding to a Subset of the outputs;

0043 (iii) generating a set of training data which
comprises information about the target output values,

0044) (iv) determining when a predetermined thresh
old which relates to the level of correspondence
between the output values and their respective target
output values is reached;

0045 (v) automatically retraining the neural network
using the Set of training data. This provides the advan
tage that it is not necessary for the user to make a

Jan. 16, 2003

decision about when to retrain. This removes the need
for an expert user to be available to maintain the System
while it is in use. Also, the retraining process itself is
automatic So that valuable operator time is not wasted
in performing a manual retrain. A further advantage, is
that by making retraining automatic it is ensured that
the outputs of the neural network are as accurate as
possible.

0046 Advantageously the method comprises the steps of:
0047 (i) inputting a series of inputs to the neural
network So as to obtain a Series of corresponding
outputs;

0048 (ii) inputting a set of target output values corre
sponding to a Subset of the outputs, and

0049 (iii) comparing the output values with their
respective target output values to produce a value
indicative of the accuracy of the output values. This
provides the advantage that a value is produced which
indicates the performance of the neural network which
is easy to interpret by a non-expert user. It is not
necessary for a user who has specialist knowledge
about the neural network System to evaluate the per
formance of the neural network manually.

0050 Advantageously, the method comprises the steps
of:

0051 (i) inputting a series of inputs to the first neural
network So as to obtain a Series of corresponding
outputs;

0.052 (ii) inputting a set of target output values corre
sponding to a Subset of the outputs;

0053 (iii) generating a set of training data which
comprises information about the target output values,

0054 (iv) determining when a predetermined thresh
old which relates to the level of correspondence
between the output values and their respective target
output values is reached;

0055 (v) when the predetermined threshold is reached,
creating a Second neural network of the same topology
as the first;

0056 and retraining the second neural network using
Said Set of training data Such that it is possible to
continue processing the input data using the first neural
network whilst the Second neural network is being
retrained. This provides the advantage that the first
neural network can be used to process the data whilst
the Second neural network is being retrained. Also, the
Second neural network may be retrained using Separate
processing resources from those used by the first neural
network. For example, it is possible to train the Second
neural network at a quiet node in a communications
network whilst the first neural network processes data
at a busy node.

0057 Advantageously, if the neural network is imple
mented using an object oriented programming language the
objects can be converted into a form that can be Stored, using
a persistance mechanism. Once converted into data Structure
format the data structure can be moved between processors
which may be nodes in a communications network for

US 2003/0014377 A1

example. This provides the advantage that the neural net
work can be moved to a quiet node to be trained. Also in the
event of a System crash or other Such event, a Stored version
of the neural network can be retained and then recreated into
object form when the System is up and running again.
According to other aspects of the invention, there are
provided corresponding Systems.

0.058 Preferred features as set out in the dependent
claims may be combined with each other or with any aspect
of the invention as appropriate, as would be apparent to a
person skilled in the art.

BRIEF DESCRIPTION OF THE DRAWINGS

0059) The invention will be further described, by way of
example, with reference to the accompanying drawings in
which:

0060 FIG. 1 is a general schematic diagram of an
arrangement for the detection of anomalies in data relating
to the transmission of messages in a communications net
work.

0061 FIG. 2 is a general schematic diagram indicating
how the anomaly detection engine is used with other com
ponents to create an anomaly detection application.
0.062 FIG. 3 shows the main components of an anomaly
detection engine (ADE) and the flow of information between
these components.
0.063 FIG. 4 shows the main components of the engine
administrator and the flow of information between these
components.

0.064 FIG. 5 is a general schematic diagram of an
arrangement for the detection of anomalies in data relating
to the transmission of messages in a communications net
work.

0065 FIG. 6 is a general schematic diagram indicating
how Signatures are created.
0.066 FIG. 7 is a general schematic diagram indicating
the process of profile decay.
0067 FIG. 8 is a general schematic diagram indicating
the process of profile decay.
0068 FIG. 9 is a general schematic diagram indicating
the process whereby each new type of call detail record
inherits from a base class.

0069 FIG. 10 shows an example of a call detail record
Specification.
0070 FIG. 11 shows an example of a target call detail
record format.

0.071)
0.072 FIG. 13 is a general schematic diagram indicating
the different time periods used in calculating the day/night
period.
0.073 FIG. 14 is a general schematic diagram of an
arrangement for the detection of anomalies in data relating
to the transmission of messages in a communications net
work.

0.074 FIG. 15 is a flow diagram indicating how previ
ously-validated candidates are retained.

FIG. 12 shows an example of a profile/signature.

Jan. 16, 2003

0075 FIG. 16 is a flow diagram indicating how auto
matic retraining using a daughter neural network takes place.
0076 FIG. 17 shows an example display screen provided
by the GUI (Graphical User Interface).
0.077 FIG. 18 shows another example display screen
provided by the GUI.

DETAILED DESCRIPTION OF THE
INVENTION

0078 Embodiments of the present invention are
described below by way of example only. These examples
represent the best ways of putting the invention into practice
that are currently known to the Applicant although they are
not the only ways in which this could be achieved.
0079 Definitions:
0080 Call detail record (CDR)-this is a set of informa
tion about an individual telephone call. For example, infor
mation Such as the account number, the date and time of the
call, whether it was long distance or local etc. A CDR is
created whenever a phone call is completed. The content of
a CDR may vary for different telecommunications systems.
0081 CDR interpreter-this examines CDRs and
extracts those fields necessary for anomaly detection.
0082) Detection poll period-this is a time interval dur
ing which information is collected for input to the anomaly
detector.

0083 Profile/signature-this is a set of information sum
marising and describing the behaviour of an individual
customer or account number over a given time period.
0084 Anomaly-this is any irregular or unexpected pat
tern within a data Set.

0085 FCAPS Application Frameworks-systems for
fault management, configuration management, accounting
management, performance management and Security man
agement in a communications network.
0086 Topology of a neural network-this is the number
of units in the neural network, how they are arranged and
how they are connected.
0087 Kernel-this is the part of the anomaly detector
which detects anomalies and performs many other functions.
0088 Graphical user interface (GUI)-this provides
means for communication between the user and the anomaly
detector using display Screens.
0089 FIG. 1 shows schematically how an anomaly
detector 1 can be used to receive information 2 about the
transmission of messages in a communications network 3
and provide reports 4 about potential anomalies in the input
data. The particular instantiation of the anomaly detector 1
is created using a generic anomaly detection engine (ADE)
as shown in FIG. 2. This gives the advantage that the
anomaly detection engine 20 is a reusable component which
can be used in different individual applications.
0090 FIG. 2 shows the anomaly detection engine 20
which contains neural network components 21. The neural
network components 21 learn patterns in the input informa
tion 2 and detect differences in these patterns—the anomaly
candidates. The ADE 20 also comprises many other com

US 2003/0014377 A1

ponents for example, an engine administrator which is also
referred to as an ADE manager.

0.091 The ADE 20 is used in conjunction with applica
tion specific Software 22. This is software which performs
any data transformations that are needed in order to convert
the network data 2 to be analysed into a format that the ADE
20 can use. The application specific software 20 also
includes Software to perform a validation of the anomaly
candidates detected and also any Software to convert the
ADE's results into actions to be performed. If the ADE is
embedded in a network manager 23 then the application
Specific Software 22 includes interface Software to allow the
ADE to be embedded in this way.

0092 Before the ADE can be used it must be instantiated
and integrated into the user's environment. By using an ADE
component 20 in conjunction with application specific Soft
ware 22 a particular instantiation of an anomaly detector 1
is created. This process of creating a particular anomaly
detector is referred to as instantiation. Following instantia
tion, the ADE is integrated into the user's environment. For
example, a graphical user interface (GUI) 7 is added to the
ADE to create a Stand-alone application Such as that shown
in FIG.1. Alternatively, the ADE is integrated into existing
Software Such as a network manager 23, which communi
cates directly with the ADE. The instantiated anomaly
detector can be used by only one element in a communica
tions network 3 or alternatively it may be used by different
network elements. For example, by embedding an ADE in
an FCAPS application framework an anomaly detector
Suitable for use by different communications network ele
ments is obtained.

0093. As previously described the ADE contains neural
network components 21 which learn the data patterns or
behaviour and detect the differences in the behaviour-the
anomalies. For a particular anomaly detection Situation a
particular neural network topology will be most Suitable.
Also, the neural network needs to be trained in order to have
a set of weights that enable anomalies in the input data to be
detected. If the ADE is simply reused in a new situation the
topology and weights of the neural network components 21
may not be appropriate for the new situation. In order to get
round this problem when an ADE is instantiated to form a
particular anomaly detector the topology of the neural
network components 21 can be automatically adjusted. The
neural network components 21 can then be trained or
retrained to achieve a desired set of weights. This provides
the advantage that the ADE can be used in a variety of
situations. The ADE can be applied “cross-product” and
“croSS-data layer. Cross-product means that the ADE can
be applied to more than one type of communications net
work product. Cross-data layer means that the ADE can be
applied to data gathered from the various layers of the
communications network.

0094. A general overview of how the ADE detects
anomalies is now given by way of example. The ADE
receives input information 2 about the transmission of
messages in a communications network 3. This information
2 is in the form of call detail records (CDR's) and is
processed by the ADE to form profiles (also referred to as
Signatures). A profile is a set of information Summarising
and describing the behaviour of an individual customer or
account number over a given time period. Historic and

Jan. 16, 2003

recent profiles are formed where an historic profile relates to
the behaviour of an individual customer Over a certain
period of time and a recent profile relates to the behaviour
over a shorter and more recent period of time. The historic
profiles are assumed to represent non-anomalous behaviour.
By comparing the historic and recent profiles using the
neural network components 21 anomalies in the recent
profile are detected. Many pairs of historic and recent
profiles are created and compared and over time the historic
profiles are updated with non-anomalous information from
the recent profiles.

0095 Before anomaly detection can take place the neural
network components 21 must be trained. The neural network
components comprise a multi-layer perceptron neural net
work. This neural network is trained using a Supervised
training method. This involves inputting a training data Set
to the neural network So that the neural network is able to
build up an internal representation of any patterns inherent
in the data. The training data Set contains profiles and
information about whether these profiles are anomalous or
not. This allows that neural network to learn the typical and
exceptional behaviour profiles that occur in the network data
and to classify them accordingly. Once the neural network
has been trained it is validated to check that the training has
been Successful. This is done by presenting a new set of
profiles, that are known to be anomalous or not, to the
trained neural network. The outputs of the neural network
are then compared with the expected outputs.

0096. The Successfully validated neural network can then
be used to detect anomalies. New communications network
data is presented to the ADE which uses the new data to form
recent profiles. The neural network then compares the recent
profiles with the historical profiles in order to detect anoma
lies. If there is a difference between the recent and historical
profiles then the neural network can indicate whether this is
due to anomalous behaviour by the system or whether it is
Simply due to an acceptable change in the behaviour profile.
If a pattern of data that has never been encountered before
is presented to the neural network then the neural network
produces a best-gueSS result.

0097 As time passes since the neural network was
trained general trends in the data from the communications
network occur. These trends are not taken account of by the
neural network because the neural network was not trained
on this data. In order to get round this problem the neural
network can be retrained. This proceSS can be carried out
automatically using Suitable application Specific Software.

0098. As the ADE is used, further information about
whether anomaly candidates produced by the ADE are real
anomalies or not may be obtained by the user. Provision can
be made for this information to be input to the ADE and used
to update the training data Set and various other information.
This process is described in more detail below.

0099 Main ADE Components

0100. The main components of the ADE are now
described and later the processes of instantiating an ADE
and integrating it ready for use are described in detail with
reference to examples. FIG. 3 shows the main components
of the ADE and also the flow of information between these
components. The main components comprise:

US 2003/0014377 A1

01.01
0102)
0103)
01.04]
01.05

0106 The ADE comprises all components inside the
boundary 30 in FIG. 3. The area outside the boundary 30
refers to the particular instantiation of the ADE in applica
tion specific Software. Data about the transmission of mes
Sages in a communications network that has been pre
processed into a specific format 36 is input to the profile
generator 31. The profile generator 31 forms historic and
recent profiles or signatures 37.38 of the input information
36. If necessary the historic profiles are updated with infor
mation from the recent profiles using the profile decay
proceSS 32. Information about whether anomaly candidates
produced by the anomaly detector are really anomalies or
not 39 can be input to the ADE and used to update the
profiles and for other purposes. These processes are
described further below.

0107. Once the recent profile 37 and the historic profile
38 have been created and updated as required, they are input
to the data transformer 33 which transforms them into a
format required by the detector 5. For example, a recent
profile and a historic profile pair may be concatenated, or the
difference between the two profiles may be calculated. Other
transformations are also possible. The transformed data 40 is
used by the engine administrator 34 and the detector 35.
engine administrator The engine administrator, also referred
to as an ADE manager, is responsible for the following tasks:

a profile generator 31,
a profile decay process 32,

a data transformer 33;

an engine administrator 34,
and a detector 35.

0.108 1. training and/or retraining the neural network;
0109 2. evaluating the performance of the ADE;
0.110) 3. creating the neural network;
0111. 4. managing and maintaining a training data set
and an evaluation or validation data Set.

0112 As shown in FIG. 4 the engine administrator 34
comprises a data manager 41; a training/retraining processor
42; an evaluator 43, and a processor for creating a neural
network 44.

0113) Data Manager 41
0114. The data manager 41 maintains two data sets: an
evaluation data Set 45, and an example data Set 46 which is
also referred to as a training data Set. The data manager
receives inputs of detection data 40 and validated results 48.
The validated results comprise information about whether
anomaly candidates identified by the neural network 47 are
real anomalies or not. These validated results 48 are also
referred to as “profile identification and category' informa
tion; they are used to update the example data 46, the
evaluation data 45 and for other purposes as described
below. The evaluation data set 45 is created by splitting the
detection data set 40 into two parts; an evaluation data set 45
and an example or training Set 46. Both these Sets of data
contain profiles and information about whether each profile
in the Set is anomalous or not.

0115 The example or training data set 46 is used to train
the neural network 47 using the training processor 42.

Jan. 16, 2003

Adding new examples of anomalous behaviour 48 to this
data Set enables the detection to be updated with new
information. This aids the general performance of the ADE;
examples from false positive identifications can be added to
the example data Set to reduce the probability that the false
identification recurs. Adding results from positive identifi
cations reinforces the ability of the neural network 47 to
make Similar positive identifications.

0116 Training/Retaining Process 42

0117 The training process enables the ADE to learn, or
relearn, a particular task. To obtain the optimum perfor
mance from the ADE, a representative data Set 46 needs to
be presented during training. This training data Set 46 should
include examples of anomalous events as well as non
anomalous events and preferably in a proportion that is
representative of the data set to be analysed by the ADE. The
neural network 47 is trained using a learning algorithm.
Many different learning algorithms can be used and in a
preferred example a non-parameterised learning rule, the
known Scaled conjugate gradient algorithm, is used. Con
dition parameters 49 are input to the training/retraining
process 42. These parameters can be input by the user or
may be predefined. They include information specific to the
training/retraining proceSS Such as how many training
epochs should be carried out and whether early stopping
should be invoked. Retraining can be carried out automati
cally without intervention by the user as described below.
This is done by using specially adapted application Specific
Software. The process of retraining can involve the creation
of a Second neural network that has the same topology as the
original neural network 47 and retaining the Second net
work. This is described in detail below.

0118 Performance Evaluator 43

0119. Once the ADE has been trained, a validation pro
cess 43 is used to determine the performance that the ADE
has for the particular task. The performance of the ADE is
determined by presenting the evaluation data Set 45 to the
neural network 47 using the performance evaluator 43. The
evaluation data Set 45 contains profiles and information
about whether these profiles are anomalous or not. The
profiles are presented to the neural network 47 and the
anomaly candidates produced by the neural network 47 are
compared with the expected outputs by the performance
evaluator 43. The performance evaluator 43 then calculates
a value 50 which indicates the level of similarity between the
actual and expected outputs of the neural network. This
value 50 is then provided to application specific Software 51.

0120 Neural Network Creation Process 44

0121 For each instantiation of the ADE a separate neural
network 47 is required. The neural network creation process
44 creates a neural network of a given internal architecture.
The creation process 44 creates a multi-layer perceptron
(MLP) that is either fully connected or not fully connected.
The MLP can be created with different numbers of input,
output and hidden units. The number of hidden layers can
also be varied. It is not essential that the creation process
create a multi-layer perceptron type neural network. Other
types of neural network Such as a Self-organising map could
be created and used to detect anomalies.

US 2003/0014377 A1

0122) Detector 35
0123. Once the data from the two profiles has been
prepared, the neural network has been created and evaluated
by the administrator 34, the neural network 47 is simply
presented with the new detection data 40. Referring to FIG.
3, the detector 35 receives the detection data 40 and using
the trained and validated neural network 47 carries out the
detection process to produce potential anomaly candidates
41. The neural network classifies each recent profile either as
an anomaly or not and the neural network 47 also gives an
asSociated confidence value for each classification. Anomaly
threshold parameters 52 are input to the detector 35 from
application specific Software. These parameters 52 are used
to filter the potential anomaly candidates 41 to remove the
majority of false positive identifications. For example, all
anomaly candidates with a very low confidence rating could
be filtered out.

0.124. Instantiating and Integrating the ADE to Form a
Specific Anomaly Detection Application
0.125 The ADE is a library of Software components
which can be used to detect anomalies in data about the
transmission of messages in a communications network. The
components need to be tailored for each specific application
and once instantiated form an engine which can then be
integrated into a Software System. The ADE has an appli
cation programming interface (API). The application spe
cific Software 22 communicates with the ADE via this API.

0126 Application Programming Interface (API)
0127. The API enables 8 different method calls to be
made on the ADE from the application Specific Software 22.
That is 8 different instructions can be given to the ADE
including:

0128 1. Create Anomaly Detector

0129 2. TrainAD
0130 3. Perform Detection
0131 4. EvaluatePerformance

0132) 5. SwitchADs
0133 6. Add Knowledge

0134)

0135) 8. Delete AD

7. UpdateProfiles

0.136 These instructions are examples only and other
types of instructions could be used. Each of these 8 instruc
tions are now described:

0137) CreateAnomalyDetector
0.138. This instruction requires that information about the
location of an anomaly detector creation Specification and a
training data Set is Supplied when the instruction is made.
This information is Supplied by the application specific
Software 22, for example, it may be input by the user through
a GUI. When this instruction is given to the ADE an
anomaly detector is created which includes a neural network
based on the creation Specification and the training data Set.
The anomaly detector creation Specification contains infor
mation about the minimum size for the training data Set as
well as other information as described below. Once the

Jan. 16, 2003

anomaly detector has been created a Signal is returned to the
application Specific Software 22 to indicate that the neural
network is ready.

0139 TrainAD
0140. This instruction causes the training/retraining pro
ceSS 42 to train or retrain the neural network using the
training data Set and any retraining data that is available.
Once the neural network has been trained or retrained
information is Sent back to the application specific Software.
This includes information about the location of the trained/
retrained neural network and a classification error. The
classification error is a value which indicates the proportion
of inputs that were misclassified by the neural network
during an evaluation of the performance of the neural
network.

0141 PerformDetection

0142. This instruction requires that information about the
location of a detection data set 40 is provided to the ADE.
When this instruction is given the detector 35 in the ADE
performs a detection using the Supplied detection data Set.
This is the normal mode of operation for the engine. A Series
of real presentations are Supplied, which the neural network
attempts to classify as being anomalies or not. When the
detection is completed the ADE returns a data Set to the
application Specific Software 22. This is a list Showing which
category (anomaly or not) the ADE classified each input into
together with a confidence rating for each classification.

0143) Evaluate Performance

0144) When this instruction is given to the ADE the
performance evaluator 43 carries out an evaluation using the
evaluation data set 45. When the performance evaluation is
completed a classification error is returned to the application
Specific Software. This gives an indication as to how many
mis-classifications were made by the neural network. A
mis-classification occurs when the neural network returns a
detection result based on a known input-output pair, which
does not match the correct output for that particular input.

0145 SwitchADs

0146 When this instruction is given to the ADE a
recently trained second neural network (that was created
during the retaining process and is contained in a Second
anomaly detector) is Switched with the current active neural
network. That is, the current active neural network is
replaced by the newly trained neural network. If a Switch is
attempted before a Second neural network has been created
an error message is returned to the application specific
Software 22.

0147 Add Knowledge

0.148. This instruction requires that information about the
location of a data set containing validated results 48.39 is
provided with the instruction. When the instruction is given,
a retraining data Set is created or updated within the ADE
using the new information. When the updating proceSS is
completed information about the location and existence of
the retaining data Set is returned to the application specific
Software.

US 2003/0014377 A1

0149 UpdateProfiles
0150. This instruction requires that information about the
location of the presentation data Set to be provided when the
instruction is given. When the instruction is given the
historic profiles are updated using information from the
recent profiles using the profile decay proceSS32. When the
updating process is completed information about the loca
tion of the updated presentation data Set is returned to the
application Specific Software 22. It is also possible for the
recent profiles to be updated with current information as
described below.

0151. DeleteAD
0152. When this instruction is given the anomaly detector
is deleted. Any memory that was used to Store the anomaly
detector is released.

0153. Preferably the API (and the ADE) is created using
an object oriented programming language Such as C++. An
object referred to as an ApplicationBridge object is provided
which makes available each of the 8 methods or instructions
described above. Each of the 8 methods has an associated
valid “return event method. In order to add further capa
bilities required by a Specific application the user must
create further software which inherits from the Application
Bridge object and overloads the return event methods It is
not essential however for the API and indeed the ADE
Software to be created using an object oriented programming
language. Other programming languages could be used.
0154) Anomaly Detector Creation Specification
O155 This contains three parameters and information
about the location of a neural network creation Specification.
Preferably the anomaly detector creation Specification is an
object created using an object oriented programming lan
guage. It is used by the ADE to instantiate all the C++
objects. The three parameters are:

0156 1. an update factor-this specifies the update
factor that is to be used in the algorithm for updating
profiles as described below.

O157 2. a retrain factor-this is a threshold which
must be met before retaining takes place. For example,
it can be the proportion of retraining data to original
training data required in order to make it worthwhile
retraining.

0158. 3. a minimum training data parameter-this is a
threshold which must be met before training occurs. It
reflects the confidence in the training data and the
neural network's ability to train on a restricted data Set.
This value is the minimum amount of original training
data required before the neural network will be trained.

0159. In order to produce an anomaly detector creation
Specification it is necessary to first construct a neural net
work creation Specification.
0160 Neural Network Creation Specification
0.161 The neural network creation specification contains
information about the location of two other Specifications,
the layered network Specification and the network trainer
Specification. Preferably the neural network creation Speci
fication is formed using an object oriented programming
language and is linked to the anomaly detector creation

Jan. 16, 2003

Specification object, a layered network Specification object
and a network trainer Specification. The layered network
Specification and the network trainer Specification should be
created before the neural network creation specification.
0162 Layered Network Specification
0163 This contains the specification for a particular type
of layered neural network. A list of three values is given
which specify:

0.164 1. the number of units in the input layer;
0.165 2. the number of units in the hidden layer;
0166 3. the number of units in the output layer.

0.167 A list of weights can also be given. This is a list of
values for each of the weights between the connections in
the neural network. If the Specification is for a trained neural
network then a list of weights must be given. If the Speci
fication is for an untrained neural network then no weights
are necessary. The number of input units is determined with
reference to the number of attributes of the input data that
are deemed significant. The number of units in the hidden
layer can be determined either empirically or by Statistical
analysis using known methods. The number of units in the
output layer depends on the number of classifications the
user requires for the particular task. It is also possible to
specify whether the neural network should have a fully
connected architecture or a partially connected architecture.
If a partially connected architecture is Selected the Specific
connections are Specified in the list of weights.
0168 Network Trainer Specification
0169. This contains information required by the neural
network during training. 7 parameters are included:

0.170) 1... target error-this is a threshold error value
which must be achieved before training stops. If the
target error is set to 0 then the threshold is ignored. The
target error is specified as the Sum of Squared errors
Over the training Set. That is, the training Set is pre
Sented to the neural network and the output values are
Subtracted from the expected output values to give a Set
of errors. The Sum of the Squares of these errorS is then
calculated.

0171 2. percentage validation-this specifies the per
centage of training data that will be regarded as Vali
dation data and will not be used for training. This
parameter is only significant if early stopping is used.

0172. 3. is-early-stopping-required-this is a Boolean
value which indicates whether training should be
Stopped early in order to achieve generalisation. In
most cases this is Set to true. Early Stopping means
Stopping the training process earlier than usual So that
Overfitting does not occur. If the neural network is
trained too much it will not be So good at generalising
or producing "best guess' results when new data is
presented. This is because the training data has been
Overfitted or learnt too specifically.

0173 4. number of training cycles-this specifies the
number of training cycles that will be performed. If this
value is Set to Zero the neural network is retrained. That
is, the weights are not randomised before training
begins.

US 2003/0014377 A1

0174 5. random seed-this seeds the random number
generator that is used to initialise the weights and
choose the validation set. When this value is set to -1
the random number generator is seeded using a value
derived from the system clock. This maximises the
unpredictability of the generated numbers and is the
usual value for this parameter. When this value is set to
a positive number this value is used as the Seed. This
option is intended for purposes Such as regression
testing and debugging where the same Sequence of
pseudo-random numbers may be required every time.

0.175 6. max number of steps—this parameter speci
fies the maximum number of Steps that the trainer can
take. If this parameter is Set to Zero then this test is
ignored. This is the usual value for this parameter. A
non Zero value indicates the number of Steps at which
to Stop a training cycle if it has not stopped previously
for Some other reason.

0176 7. fractional tolerance-this value indicates a
threshold for the amount of improvement that should
occur as a result of one training Step. When the thresh
old is reached training Stops. A Zero value indicates that
training should stop when a step produces an effect that
is Small compared with the accuracy of the floating
point calculations. A non Zero value indicates that
training should stop when the relative improvement as
a result of a step is below the value given. For example,
values in the range 10-2 to 10-6 are Suggested.

0177. The ADE is generic in nature and requires an
additional layer of instantiation Software (or application
specific software 22) to provides further functionality. For
example, the instantiation Software may provide a GUI, data
pre/post processing and interfaces to the external World. AS
a minimum requirement the application Specific Software
must allow the user to give any of the 8 API method
instructions or calls to the ADE. The parameters required by
each method call must also be provided in the correct
format. For example, historic and recent profiles must be of
a specified format, as must any Specifications and data Sets.
0.178 The process of instantiating an ADE will now be
described by way of example. In this example the ADE is to
be instantiated and used to detect fraudulent usage on a
mobile telephone or fixed telephone network. Also, the data
to be analysed by the ADE is in the form of call detail
records which have been pre-processed into the format
required by the ADE. The steps involved in the instantiation
proceSS include:

0179 arrange for the application specific Software to
supply the CDRs in the correct format to the ADE

0180 create an anomaly detector creation specifica
tion (this includes the step of creating a neural
network creation specification);

0181)
0182 create the training data set, validation data set
and presentation data Set;

0183)

create the anomaly detector;

train the neural network;

0184. When these steps have been performed the instan
tiated ADE is ready to detect fraudulent telephone accounts.
The application specific Software should also be arranged to

Jan. 16, 2003

allow the other instructions or method calls (add knowledge;
retrain; Switch; delete) to be sent to the ADE.
0185. Create an Anomaly Detector Creation Specification
0186 This entails determining the values for the various
parameters. In this example the ADE is formed using an
object oriented programming language. In this cases a call is
made on an anomaly detector creation Specification object
constructor. This causes the anomaly detector creation Speci
fication to be created. The parameters should be calculated
prior to the creation of the anomaly detector and inserted
into the anomaly detector creation Specification. The opti
mum set of parameter values should be used in order to
obtain the best detection results. For example, the number of
output units for the neural network is determined according
to the type of data being analysed. For fraud detection two
output units can be used, one for fraud and one for non
fraud. The analysis of raw network data is required to help
in the definition of the key attribute/fields and values that are
needed for the anomaly detector Specification.
0187 Create the Anomaly Detector
0188 The anomaly detector objects are created by giving
an instruction to Start the Create Anomaly Detector method
and Supplying information about the location of the anomaly
detector Specification and training data Set.
0189 Create the Training Data Set, Validation Data Set
and Presentation Data Set

0190. The CDR data must be transformed in order to
produce the training, validation and detection data sets. One
approach for doing this involves:

0191 splitting the CDR data into 3 sets, training,
validation and detection, whereby the training Set is
Substantially larger than the validation Set

0.192 deciding on Small arbitrary window sizes for
the historical and recent profiles. The term window
size refers to the time period over which the profiles
represent telephone call behaviour. For example, for
a 3 month supply of CDR data, the historical window
Size could be 5 days and the recent window Size
could be 0.5 days.

0193 Selecting attributes from the CDR data and
forming the profiles as well as labelling each profile
as to whether it is fraudulent or not.

0194 Training the neural network with the new
training data Set and observing the detection results.

0.195. If the neural network performance appears
relatively low, gradually increase the window sizes
and retrain.

0196. If the neural network performance reaches a
level required by the user then the window sizes are
deemed correct and are used for profiles in all data
SetS.

0197) The creation of a historic profile for a new cus
tomer account needs to be done at the instantiation layer
(application specific Software). The historic profile should
be a direct copy of the recent profile with a label to indicate
that it is a new customer account. Also, data for a profile
needs to be consecutive, i.e. if it is determined that a recent
profile required 5 hours of data, then 5 consecutive hours

US 2003/0014377 A1

need to be used for the recent profile, not just any 5 hours.
This means that gaps in the CDR data may cause problems.
However, this depends on the relative size of the “gap' For
example, if there is a one hour gap in a months worth of data
then there is unlikely to be a problem. Another point is that
the window sizes for the historic and recent profiles must be
for consecutive time periods. For example, the historic time
period may be from 1 January to 31 January whilst the recent
profile window is from 31 January to 5 February.

0198 Train the Neural Network
0199 This process involves cyclically adjusting the
weights Stored on the connections between units in the
neural network, until Sufficient training has been performed.
This is done by sending an instruction to the ADE to start the
TrainAD method.

0200. Once the ADE has been instantiated or tailored for
a specific application it is integrated into the System Soft
ware. To do this integration code is used to bridge from the
tailored ADE to the system software. This integration code
is application Specific. Many different possible forms for the
integration code are possible. The integration code should
take account of the following issues:

0201 management issues

0202)

0203)

architecture issues

Software issues

0204 data issues
0205 Management Issues

0206. The integration Software must manage the ADE.
The functions which must be performed are:

0207 Monitoring the performance of the ADE. The
application which the ADE will be used in will need
to determine the appropriate performance measure
ment. The engine will return a mis-classification
value when a performance evaluation is requested.
This mis-classification is obtained by presenting the
training Set together with any additional knowledge
added to the engine, and counting how many of these
are given an incorrect result.

0208 Deciding the threshold performance level for
retraining.

0209 Deciding when to retrain the neural network.

0210 Architecture Issues

0211 Architectural considerations are:
0212 How to access appropriate data Stores in order
to provide necessary input data from which to per
form detection and where to locate data Stores, either
locally or distributed.

0213 How to update the persistent store of the
neural network creation Specifications, which is part
of the anomaly detector Specification, when the ADE
is retrained. The Specification is passed back through
the API when the training is complete.

Jan. 16, 2003

0214 Software Issues
0215. The integration code can have the following func
tionality:

0216) If the ADE is event based it may easily be
converted into call-return form by writing a Small
amount of interface code.

0217 Storage of the anomaly detector specification
data needs to be considered. The anomaly detector
Specification will need to be accessible by the user at
Some point after Start-up in the following situations:
System crash, proceSS killed and needs to be re
Started.

0218 Storage of the historical profiles also needs to
be considered. The historical profiles will be stored
externally of the ADE, and accessed when required.

0219. Storage of the original training data set, and
the additional knowledge (data) gathered through
use of the ADE is also required. The additional
knowledge is needed by the ADE for re-training, in
order to improve its future performance.

0220 Deletion of any objects output from the
ADE-detection results, any data Sets, and the
anomaly detector Specification.

0221) Any objects which are passed into the ADE
will be deleted by the ADE Software-training data
Set, data input to use in detection mode, any knowl
edge added, the profiles, and the anomaly detector
Specification.

0222 Data Issues
0223) The integration software is responsible for:

0224 Maintaining an appropriate set of data for
initially training the ADE. This proceSS must result in
a data Set whose data coverage is Sufficient to allow
Successful training of the ADE.

0225 Maintaining an appropriate data set for
retraining the ADE. Additional knowledge must be
obtained by interaction with the user. This knowl
edge must be obtained by interaction with the user.
This knowledge must be used to form a retraining
data Set which is to be utilised when a request is
made, by the user, to add knowledge back into the
ADE.

0226 Updating historic profiles over time. This is
done by allowing the recent profile data to migrate
into the historical profile. This relies upon the recent
profile being assessed as non-fraudulent, as it would
be counter-productive to allow a non-fraudulent his
torical profile to be updated using a fraudulent recent
profile.

0227 Some form of feedback loop is therefore needed in
order for the fraudulent profiles output by the instantiation
layer to be verified. The resultant fraud candidates will need
to be assessed and the results of the assessment will need to
be fed back into the instantiation layer in order for the
correct profile adjustment to be made. Any non-fraudulent
output will be allowed to update the associated historical
profile without the need for a validation step.

US 2003/0014377 A1

0228 Assessing the raw communications network
data. This can either be a manual or automatic
process of obtaining account details from the appro
priate communications network.

0229. A particular example of an instantiated ADE will
now be described. In this example an anomaly detector is
formed using an ADE together with application specific
Software which makes it possible for automatic retraining of
the neural network components to take place. In this
example, the particular instantiation of the ADE is referred
to as a kernel within the anomaly detector. The major
components of the kernel with respect to the fraud detector
application domain, are set out in Appendix A below.
0230 FIG. 14 shows schematically how the anomaly
detector 201 can be used to receive information 202 about
the transmission of messages in a communications network
203 and provide reports 204 about potential anomalies in the
input data. Validated results 205 can be provided to the
anomaly detector 201 So that the performance of the
anomaly detector can be evaluated. For example, in the case
of telecommunications fraud detection the anomaly detector
201 identifies potential fraud and non-fraud candidates.
Further information 205 about whether these candidates
have been correctly identified as frauds or non-frauds is then
obtained for example from the user, and input to the anomaly
detector. This information is used to evaluate the perfor
mance of the anomaly detector. This provides the advantage
that a measure of the detector's performance can be obtained
easily. Once the performance falls below a certain pre
defined level, action can be taken to improve the perfor
mance as long as certain other criteria are also met. This
action involves retraining a neural network 261 which forms
part of an anomaly detector kernel 206. Once the perfor
mance drops below a specified limit, retraining can be
initiated automatically without any intervention from the
USC.

0231. In the situation where the performance of the
anomaly detector 201 is Satisfactory, no retaining takes
place. This is illustrated in FIG. 15 at 220. In this situation
validation data has been provided although the neural net
work 261 has not been updated using the validated data 205;
that is, because the neural network 261 has not been
retrained it is not able to take account of the new validation
data 205. When further results are obtained from the
anomaly detector 201, these will not reflect the new infor
mation and the user may be presented with results that she
has already corrected before. In order to avoid this problem,
the anomaly detector 201 is able to store validated results
221 between retraining episodes. This store of validated
results is then used, as shown at 222, to update any further
output from the anomaly detector before this is presented to
the user for validation.

0232 The anomaly detector 201 also has the ability to
create a daughter neural network of the same topology as the
parent. This daughter can then be retrained whilst the parent
is still in use. Once the daughter is retrained it can then be
used in place of the parent, if the performance of the
daughter is satisfactory. This is illustrated in FIG. 16.
0233. It is not essential for the validation data 205 to be
provided by a user via a user interface. For example, the
validation data could be obtained automatically and input to
the System directly. Also, it is not essential for the neural

Jan. 16, 2003

network to form part of an anomaly detector. The neural
network could be used for processing data for another
purpose.

0234. The process of monitoring the performance of the
anomaly detector will now be described in more detail. This
comprises:

0235 changing configuration information

0236 performing an anomaly detection

0237 presenting the outputs from the anomaly
detector to the user via a user interface

0238 accepting validated results or target outputs
from the user via the user interface

0239 evaluating the performance of the anomaly
detector

0240 Changing Configuration Information

0241 The user is able to change the following settings
during operation of the anomaly detector:

0242 (I) the evaluation interval i.e. the number of sets
of validated results that must be supplied to the
anomaly detector before retraining can be initiated
automatically;

0243 (ii) the start date and time for performance of an
anomaly detection;

0244 (iii) the performance threshold i.e. the threshold
below which performance of the anomaly detector must
fall before automatic retraining is initiated. This Step of
changing the configuration information is optional.

0245 Performing an Anomaly Detection

0246 The kernel identifies via the system clock that a
detection poll period has been reached. If the kernel is busy
when a poll detection period is reached then when it
becomes available it will get the current time. If this time is
less than the clock interval (plus Some overhead time) then
the detection is Serviced else the poll detection has been
missed and the kernel sends a message back to the graphical
user interface (GUI) to indicate that a poll detection has been
missed.

0247 If a detection is to take place then the kernel sends
information to the GUI to indicate that the kernel cannot
accept any further commands until the detection has been
completed.

0248. The kernel accepts input information that is input
to the anomaly detector. This input information is initially in
the form of call detail records for those customers who have
made calls during the poll period. These call details records
are pre-processed before being input to the kernel. The
kernel also performs any further processing of the input
information before this is provided as input to the neural
network within the kernel. The neural network then per
forms the anomaly detection and outputs a set of results to
the kernel. The kernel then stores these results in a file and
sends information to the GUI indicating that the detection is
complete.

US 2003/0014377 A1

0249 Presenting the Outputs From the Anomaly Detector
to the User via a User-Interface

0250). When the GUI receives information from the ker
nel indicating that a new detection results file has been
created it indicates this to the user. This is done by high
lighting a reload button on a display Screen. By activating
this button, for example by clicking it with a mouse, the user
can display the results file on the screen. FIG. 17 shows an
example of Such a display. The user can manipulate the way
in which the results are displayed using the user interface.
The user is also able to generate a graph displaying the
results information as shown in FIG. 18 and independently
to change the viewing criteria for this graph without affect
ing the table of results.
0251 Accepting Validated Results or Target Outputs
From the User via the User Interface

0252) When viewing the detection results on the table
view as shown in FIG. 17, the user is able to indicate if
individual responses were correct or incorrect. For example,
the table 240 shown in FIG. 17 has one row 241 for each
customer account number. In the various columns of the
table 242 the following information is provided:

0253 the customer account number; whether this
account is identified as a potential fraud or not; the
confidence rating of the fraud/non-fraud classification
and the average duration of a telephone call. Other
information could also be provided, for example the
average duration of long distance calls or information
about geographical location. The validity column 243
displays information that the user has input about the
account number concerned. This information can be
added to the kernels knowledge base. The user is able
to Select individual accounts and validate the anomaly
detector's response. When the user has added valida
tion information for a number of accounts this can be
added to the engine's knowledge base. This is done by
activating the “add knowledge” button 244 on the user
interface as shown in FIG. 17. When the user activates
this button the GUI sends information to the kernel
about the set of validated fraud candidates for all those
accounts which have been validated and all other
non-fraudulent accounts. This is called an add knowl
edge event.

0254. When this information is sent to the kernel the
kernel has Several actions to perform as listed below:

0255 (1) store or retain previously validated candi
dates,

0256 (2) add information about the validated fraud
candidates to the anomaly detector's knowledge base;

0257 (3) update profiles;
0258 (4) evaluate the performance of the anomaly
detector;

0259 (5) retrain the neural network.
0260 Actions 1, 2 and 3 above must be performed
whereas actions 4 and 5 are conditional.

0261 Store or Retain Previously Validated Candidates
0262. When an add knowledge event has been initiated,
the GUI needs to maintain a list of all accounts which have

Jan. 16, 2003

been validated and the condition associated with that
account, for example, whether a fraud was correctly iden
tified as Such. If Subsequent detection take place before the
kernel initiates automatic retraining then the GUI can dis
play to the user what that account has been previously
validated to.

0263. Add Information About the Validated Fraud Can
didates to the Anomaly Detector's Knowledge Base

0264. The kernel adds all the validated fraud candidates
to the anomaly detector's knowledge base. The kernel also
increments the number of add knowledge events which have
been performed.
0265 Update Profiles
0266 The kernel updates the historical profile for those
accounts which are validated as correct non-fraud candidates
and those which are validated as incorrect fraud candidates.
The kernel also updates the historical profiles for the other
non-fraud candidates. The kernel matches the recent profiles
with the customer's historical profile and then provides this
information to another proceSS which updates the historical
profiles with the corresponding recent profiles. The updated
historical profiles are then stored by the kernel.
0267 Evaluate the Performance of the Anomaly Detector
0268 If the number of add knowledge events is equal to
the evaluation interval, the kernel performs an evaluation of
the performance of the anomaly detector. If a performance
evaluation is carried out then the counter for the number of
add knowledge events is reset. The performance evaluation
comprises carrying out a comparison of the candidates and
any corresponding validation results. Retrain the Neural
Network

0269. If the performance evaluation is less than the
performance threshold, the kernel initiates retraining of the
neural network. The kernel will not respond to any events
that are Sent until retraining is complete. No intervention by
the user is required during retraining. The kernel informs the
GUI when retraining is complete and which of the opera
tions listed as 1 above have been performed so that the GUI
can update its representations respectively. If an evaluation
has taken place then the new performance evaluation result
is sent to the GUI. If the neural network has been retrained,
information about this is sent back to the GUI.

0270. When retraining takes place, a new neural network
is created by the kernel. This daughter neural network has
the same topology as its parent. The daughter neural network
is trained instead of retaining the parent.

0271. Once retrained the daughter neural network is
evaluated by the kernel. If the performance of the daughter
is better than the parent then the kernel indicates to the GUI
that a new neural network is available. The GUI asks the
user if this new neural network should be used. The user's
response is Sent to the kernel and if affirmative, the kernel
replaces the parent neural network with the daughter neural
network.

0272 Preferably the anomaly detector and the neural
network are implemented using an object oriented program
ming language, or a non-introspective programming lan
guage. The anomaly detector is implemented using at least
one instantiated object. In order to Store or retain the objects

US 2003/0014377 A1

persistence mechanisms are used. Such mechanisms are
described in appendix B below. The objects or groups of
linked objects are converted into data Structures using the
persistence mechanisms in order that they can be Stored or
retained. The data structures can then be passed between
processors. For example, these may be different nodes on a
communications network. This provides various advantages.
For example, a daughter neural network, once created, can
be stored as a data Structure and moved to a quiet node in the
communications network before being retrained. Also the
neural network part of the anomaly detector can be moved
to a particular node in the communications network whilst
the other parts of the anomaly detector such as the GUI are
held on a different (and perhaps quieter) node.

0273. The anomaly detector discussed in the example
above may also contain application Specific Software for
Storage of information relating to the transmission of mes
Sages in a communications network. Aparticular example of
an anomaly detector which incorporates Such application
Specific Software is discussed below.

0274 FIG. 5 shows schematically how the anomaly
detector 101 can be used to receive information 102 about
the transmission of messages in a communications network
103 and provide reports 104 about potential anomalies in the
input data. For example, in the case of a telecommunications
network the information 102 can be in the form of call detail
records (CDRs). The format of CDRs from different tele
communications systems differs and the anomaly detector is
able to cope with this. In a given time period call detail
records are obtained for telephone calls made during that
time. The anomaly detector collects the individual CDR's
for each customer and generates a Signature for each cus
tomer. This is shown in FIG. 6. A set of CDR's for an
individual customer is obtained 110. Each CDR comprises
several attributes or fields 112 such as the billing account
number, the telephone number associated with the account,
the called telephone number, the date and time of completion
of the call etc. From the set of CDR's for an individual
customer 110 a signature 111 is created for that customer
using information from the fields or attributes 112. Each
Signature 111 comprises Several parameters 113 that are
related to the fields or attributes 112 from the individual set
of CDRS for the customer. For example, a parameter might
be the percentage of local calls made during the time period.
At least one parameter is related to the transmission of
messages over a portion of the period and information
relating to the position of the portion in the period. For
example, Such a parameter might be the percentage of local
calls made between 8 am and 8 p.m. on the third day of the
time period. This has the advantage that a large number of
CDRS have been Summarised into Signatures that capture
essential features of the pattern of telephone calls made by
individual customers over time. By creating two signatures
one for a long period of time and one for a shorter period of
time, it is possible to capture information both about the
macro behaviour relating to a particular account number and
the micro behaviour relating to that account number. For
example, an historic Signature and a recent Signature can be
created with the historic Signature reflecting behaviour over
a longer period of time. By comparing the historic and recent
Signatures (for example using a neural network) recent
changes in behaviour can be detected.

Jan. 16, 2003

0275. In the case when the historic and recent signatures
are compared using a particular instantiation of a neural
network the time periods for the historic and recent Signa
tures, once these have been chosen, are fixed. The neural
network is trained using historic and recent Signatures with
the chosen time periods and thereafter Signatures with the
Same size of time period must be used.
0276. As time passes the historic signature needs to be
updated because calling habits can change over time. This
updating process enables emerging temporal patterns in the
CDR data to be taken into account. The process of updating
a signature is illustrated in FIGS. 7 and 8.
0277. The current historic signature 130 is updated with
the current recent Signature 131 to form an updated historic
Signature 132. A new recent Signature 133 can then be
obtained. As indicated in FIG. 7 the current historic signa
ture 130 is combined with the current recent signature 131
using a weighted averaging procedure to form the updated
historic signature 132. The arrow 134 in FIG. 7 indicates
time and the information emanating from the communica
tions network over time is illustrated by 135.
0278 In the situation where a comparison between an
historic and a recent Signature is required to detect anoma
lies it may be that new information has become available
Since the recent signature was created. For example, if the
historic Signature must always be updated using a recent
Signature that represents 7 days worth of data then 6 days
worth of new information may be available before it is
possible to take this into account. The System must wait until
the end of the short recent period before an update is
possible.

0279. In order to accommodate new information obtained
in-between updates a third dynamic Signature is used. The
third signature is dynamic because it can be taken over a
variable time period as long as this is shorter than the time
period for recent signatures. The dynamic third signature can
then be used to update the recent signature before the
anomaly detection takes place. This has the advantage that
all available data is used in the anomaly detection process.
0280 A signature which can also be referred to as a
profile contains a Statistical representation for each customer
over a period of time. In one example, a profile as shown in
FIG. 12 comprises the following major components:

0281 in items representing the distribution of calls
made during a week,

0282) 21 items representing the distribution of calls
made during particular portions of a week;

0283 of the 21 items 7 items represent the distribution
of calls for each day of the week;

0284 of the 21 items 14 represent the distribution of
calls either for day time use or night time, for each day
of the week.

0285) The process of generating signatures from CDRs
will now be described in more detail. This process com
prises:

O286 arsing a number of different formats of CDR p 9.
file

0287 generating the profile.

US 2003/0014377 A1

0288 Parsing a Number of Different Formats of CDR
File

0289. This is done by defining a specification for the
CDR type to be parsed. A parser for each type of CDR type
is contained in a library of CDR parsers. A base class is
created from which each new type of CDR is able to inherit
as shown in FIG. 9.

0290 For each CDR type which is to be parsed to create
a profile a specification is built of the position of the
important data and the format in which that data is Stored
within the CDR. An example of a CDR specification is
shown in FIG. 10. The CDRS are then converted into the
desired format using information from the CDR specifica
tion. An example of a desired or target call detail record
format is shown in FIG. 11.

0291 Generating the Profile
0292. This involves selecting the appropriate attributes
from each CDR (that has already been parsed into the
desired format) to produce the profile. In this example, the
desired CDR format is as shown in FIG. 11 and the profile
has a basic structure as shown in FIG. 12. As previously
described this contains 7 items for the basic structure 181
and 21 additional fields 182 which represent day-of-week
and time-of-day information. Additional items can be added
to this basic structure. Also, the 21 items 182 used within the
profile shown in FIG. 12 can be expanded to model the time
of day-of-week more closely. There is no restriction on the
Size of the profile which can be generated but the profile size
must remain consistent within a particular instantiation of
the System.
0293. The appropriate attributes from each pre-parsed
CDR are selected to form the profile by taking the following
Steps:

0294 determining when a call was initiated
0295 calculating the call distribution over the week

0296) Determining when a Call was Initiated
0297. In the example target CDR format shown in FIG.
11 there is a Dayof Week field 171. This is used to determine
which day the call was made on. Similarly, the CalTime
field 172 is used to determine the time the call was placed
on that particular day.
0298 Calculating the Call Distribution Over the Week
0299) This is done by:

0300
0301 and calculating the calls made in each day/
night period.

calculating the calls made each day;

0302) Once the time when a call was initiated has been
determined it is possible to create the elements of the profile
which refer to the call distribution pattern i.e. the items
shown at 182 in FIG. 12. Calls are analysed to calculate the
percentage of calls made each day (7 items in the profile of
FIG. 12) and also the percentage of calls made during the
day/night periods (14 items in the profile of FIG. 12). This
gives 21 items relating to the call distribution. In this
example, all the percentages are based on the number of
calls made in the respective period compared with the
number of calls made over a whole week. Also, in this

Jan. 16, 2003

example, all the percentages are Scoped between 0 and 1. For
example, 15% would become 0.15.
0303 Calculating the Calls Made Each Day
0304. This is done by Summing the number of calls made
each day during the time period (in this case one week) and
dividing this sum by the total number of calls made over the
week. Information about the number of calls made each day
is obtained using the Day Of Week field in the CDR, shown
as 171 in FG 11.

0305 Calculating the Calls Made in Each Day/Night
Period

0306 In this example, a night period is defined to include
calls made between 7pm one evening to 7am the following
day. Because a night period can therefore include calls made
on Separate days it is necessary to analyse which hour of the
day the call is made and see which particular period a call
should be classified in. Potentially, calls made over one day
can fall into 3 different periods (91, 92 and 93) as shown in
FIG. 13. The day of the week and the hour that the call was
made are obtained. Then the number of calls made in the
relevant period is divided by the number of calls made over
the whole week to give the percentage of calls made in that
period.

0307. It is not essential that profiles of the form shown in
FIG. 12 are used. Many other items could be included, for
example the percentage of calls made to mobile telephones,
the longest call made within the profile period and the
number of call forwards made. Alternatively, the whole
profile could be taken up with information about calls made
at different times of the day. Many different combinations of
different types of information are possible.
0308 The process of updating a signature or profile is
now described in more detail. AS previously described, an
historic Signature is updated with the corresponding recent
Signature by a proceSS involving a weighted averaging. A
particular example of Such an updating algorithm is given in
the equation below:

Ti = (Ti- (Tix Update Factor) + (Six Update Factor)

WindowSize(S) Update Factor =
WindowSize(T)

0309. In this equation T is the target profile or signature,
which in this case is the historic profile. S is the source
profile which in this case is the recent profile. The term
window size refers to the length of the time period to which
the Signature relates. For example, the Source window Size
may be 1 hour and the target window size 10 hours. Once the
target and Source profiles have been obtained the update
factor is calculated by dividing the Source window Size by
the target window size. If the Source window Size is 1 hour
and the target window Size 10 hours then the update factor
is 0.1. If no Source or recent profile exists a new recent
profile is created. If the number of attributes in a profile is
4 then example Source and target profiles might be: S1,2,
3,4 and T5,6,7,8). T1 which is the first attribute for the
new target profile can then be calculated as follows: T1=
(5-(5x0.1))+(1x0.1)=4.6. Similarly, the other attributes for
the new target profile are calculated. This updating process

US 2003/0014377 A1

can also be used for updating a recent profile with a dynamic
profile. In both cases, once the updating proceSS has been
completed, the more recent profile is removed.
0310. It is not essential to use the exact updating algo
rithm as described in the equations above. Modifications of
this algorithm are possible; any type of weighted averaging
proceSS can be used.
0311. A recent profile can be updated with a third signa
ture or poll profile in the same way as for an historic and
recent profile. Alternatively a different updating algorithm
can be used for the poll to recent update. For example, one
possible preferred update rule for poll to recent updating is
given below:

R = (PE) (1 - k)R = R+k(Pi -R)

0312 where p is the window size for the poll profile or
third signature;

0313 q is the previous normalising period;

0314 P is the polled actual total (i.e. rate per r)... or
average (i.e. rate per q), and

0315 R is the recent average (normalised to rate per q).
0316 For a particular anomaly detector in which the
method and apparatus for creating, storing and updating
profiles or Signatures is to be used then particular values for
the time window sizes, the profile update rates and day-of
week dependencies must be chosen. Different values will be
most Suited to different applications. Some factors which
need to be considered when choosing these values are given
below:

0317 Time Window Size
0318 Setting the time window size too small may result
in insufficient data to expect any reasonable response from
the anomaly detector. Too Small a time period may also
result in the propagation of anomalous behaviour into the
historical profile. If the recent time window Size is too large
the anomalous behaviour may go undetected for a longer
period of time. In order to determine the best window sizes
the effect of different Sampling rates and the Subsequent
Statistical representation of the characteristics of the behav
iour being observed needs to be examined.
0319 Profile Decay Rates
0320 To determine the best profile decay rate an assess
ment of the importance of the historical behaviour relative to
the recent behaviour need to be made.

0321) Day-of-Week Dependencies

0322 The process of determining the window sizes and
the decay rates should also take into account the impact of
the day-of-week dependencies.

0323) A wide range of applications are within the scope
of the invention. For example, detecting telecommunica
tions fraud; detecting credit card fraud; early detection of
faults in a communications network and encryption key

Jan. 16, 2003

management. The invention applies to any situation in which
anomalies need to be detected in a large amount of time
variant data.

0324. A wide range of other applications are within the
Scope of the invention. These include Situations in which
information about both a macroscopic pattern of behaviour
and a microscopic pattern of behaviour must be Stored. For
example, in the area of banking, the detection of credit card
fraud involves the Storage of information about macroscopic
and microscopic patterns of credit card use. Other areas
include computer network Security, trends analysis and
many other fields.
0325 Applications in which stored information must be
updated are also within the Scope of the invention. These
applications include situations where an emerging temporal
pattern must be accounted for. For example, the detection of
credit card fraud, computer network Security mechanisms,
trends analysis and many other fields.
0326. A wide range of other applications which involve
the use of a neural network are within the Scope of the
invention. For example, in the area of banking the neural
networks can be used for detecting credit card fraud and in
this situation the ability to automatically retrain and monitor
the performance of the neural network is vital. Also, in the
area of computer network Security neural networks can play
an important role in detecting anomalous behaviour. Any
Service which involves Sending messages over a telecom
munications network, including entertainment Services Such
as games or video distribution could also benefit from
anomaly detection or trends analysis. Neural networks are
used in many other fields as well as anomaly detection. For
example, Speech recognition, pattern recognition and trends
analysis. In any of these applications the ability to retrain the
neural network without intervention from the user can be
important and these applications fall within the Scope of the
invention.

Appendix A

0327 Kernel
0328 Major Components
0329. This appendix details the major software compo
nents within the fraud detector application domain including
analysis and design details required.
0330. The following is a list of passive objects identified
as part of the analysis phase which will now be described in
more detail using the object numbers in parentheses:

0331 Fraud Detection Client (27)
0332 Interpret Call Detail Record (15)
0333) Add Knowledge Request (23)
0334 Update Historic Profile Request (24)
0335 Performance Evaluation Request (29)
0336 Fraud Detection Request (16)
0337 Poll To Recent Profile Decay (20)
0338 CDR To Profile Tranform (13)
0339) Call Detail Record (12)
0340 Unvalidated Fraud Candidates (25)

US 2003/0014377 A1

0341
0342
0343)
0344)
0345)
0346)
0347)
0348
0349)

Fraud Detector Specification (28)
Validate Request (8)
Candidate Data Set (18)
Validated Fraud Candidate (22)
Fraud Candidate (11)
Presentation Data Set (17)
Fraud Candidate Data Set (21)
Profile Data Presentation (7)
Poll Profile Vector (4)

0350 Recent Profile Vector (34)
0351). Historic Profile Vector (33)

0352 Fraud Detection Client (27)
0353. Description
0354) A representation of a client of a fraud detector. This
controls the fraud detection and performance evaluation
requests of the application.

0355 C++ Class Name
0356) FDFraudDetectionClient
0357 Behaviour Description: CreateFraud Kernel
0358 Upon receiving the Createfraud Kernel creation
event from the GUI terminator, this object will:

0359 link to the specified fraud detector specifica
tion, object 28, which was passed as a parameter
asSociated with the creation event.

0360)
0361 Read customer recent and historical profiles
via the persistence mechanism (See Appendix B)
creating a profile data presentation, object 7, for each
individual customer and added to the presentation
data Set, object 17.

establish a clock polling mechanism.

0362. The set of recent profiles is sent to construct
poll to recent profile decay, object 20.

0363 A handle needs to be kept on both the pre
Sentation data Set, object 17, and poll to recent profile
decay, object 20.

0364. When the creation process is complete this
object will send a KernelCreated event back to the
GUI terminator.

0365. The fraud detection client is now ready to service
other events.

0366 Behaviour Description: UpdateEvaluationInterval
0367 Upon receiving an UpdateEvaluationInterval event
from the GUI terminator the client will modify the
no evaluation period attribute of the Fraud Detector Speci
fication object (28) with the new evaluation interval.
0368 Behaviour Description: UpdateDetectionStartDate
0369. Upon receiving an UpdateDetectionStartDate
event from the GUI terminator the client will modify the
detection start attribute of the Fraud Detector Specification
object (28) with the new date. The client will then stop and

16
Jan. 16, 2003

update the poll clock mechanism with the new detection
time and restart the poll clock mechanism.
0370 Behaviour Description:
reshold

Update PerformanceTh

0371. Upon receiving an UpdatePerformanceThreshold
event from the GUI terminator the client will modify the
evaluation performance attribute of the Fraud Detector
Specification object (28) with the new performance thresh
old.

0372 Behaviour Description: AddKnowledge
0373). Upon receiving an AddKnowledge event from the
GUI terminator which contains a handle to a set of fraud
candidate objects (11), the client will then create an
AddKnowledgeRequest Object (23) with the associated
fraud candidate Set. On completion of the request the client
will be informed by the Add KnowledgeRequest Object (23)
what operations have been completed. These operations will
be detailed by use of an enumeration parameter with an
asSociated real value. The enumeration type contains the
following:

0374). AddKnowledge

0375 PerformanceEvaluation
0376 Retraining

0377 If the enumeration value is “Add Knowledge” then
the associated real value will be Zero, else it will indicate the
current performance of the ADE. These values will then be
used to send a AddKnowledgeComplete event to GUI ter
minator.

0378 Behaviour Description: SwitchEngine
0379 Upon receiving a SwitchEngine event from the
GUI terminator the client will interrogate the event param
eter to establish if a Switch is required. If a Switch is required
then a request will be made to the ADE to Switch to a new
anomaly detector. If a Switch is not required then no request
is made of the ADE. On completion of the Switch process the
client will send a SwitchComplete event to the GUI termi
nator.

0380. Note: The client is required to control the persis
tence of the new ADE on completion.
0381 Behaviour Description: PollTime
0382. Upon receiving a PollTime event from the Process
10 (clock poll mechanism) terminator which indicates that a
detection poll period has been reached. The client will send
a DetectionTakingPlace to the GUI terminator to indicate
that the client cannot except any events until the operation
has been completed. The client will create a fraud detection
request object (16) which will control the detection process.
On completion the client will send a DectionResultsReady
event to GUI terminator. This event includes the time stamp
used to create the results file.

0383) Note: If the kernel is busy when a poll detection
period is reached then when the client becomes available it
will get the current time. If this time is less than the clock
interval (plus Some overhead time) then the detection is
Serviced else the poll detection has been missed and the
kernel sends a Detection Missed message back to the GUI to
indicate that a poll detection has been missed.

US 2003/0014377 A1

0384 Methods
0385) FDFraud DetectionClient (FDFraud Detector
Specification& fraud spec) -FDFraud DetectionClient(
)

0386 static FDFraud DetectionClient CreateFraud K
ernel (FDFraud DetectorSpecification& fraud spec)

0387 Void UpdateEvaluationInterval(int evaluation
interval)

0388 void UpdateDetectionStartDate(date detection
date)

0389 void UpdatePerformanceThreshold(float perfor
mance threshold)

0390 void Add Knowledge(FDFraudCandidate
DataSet& data set)

0391 void SwitchEngine(Bool switch required)
0392) void PollTime()

0393 Assumptions
0394. The bridge will create fraud detector specifi
cation object on Createfraud Kernel.

0395. The bridge will create fraud candidate date set
object hierarchy on

0396 Add Knowledge.
0397 Retraining will alwavs result in an improved 9. y p
performance of the ADE.

0398 Retraining can follow a retraining without a
SwitchEngine event being received.

0399. Ownership
0400 FDFraud DetectorSpecification
0401 FDAddKnowledgeRequest

0402 FDFraud Detection Request
0403) Read Accessors
0404 RWBoolean
COnSt.

04.05 FDPresentationDataSet
DataSet() const;

0406 RWBoolean GetADSwitched() const;
0407. Write Accessors
0408 void SetADSwitched(RWBoolean state);

04.09 Interpret Call Detail Record (15)
0410. Description
0411 The transformation that is required in order to
interpret a comma separated CDR into a CDR.
0412 Note: Not implemented, absorbed into Validate
Request (8).
0413 Add Knowledge Request (23)
0414. Description
0415. A request to add knowledge of fraud candidates.

ISAnomaly DetectorCreated.()

GetPresentation

Jan. 16, 2003

0416) C++ Class Name
0417 FDAddKnowledgeRequest

0418 Behaviour Description
0419 Upon creation the add knowledge request object
(23) is passed a fraud detection data set as a parameter. The
object will:

0420 Sends an APP6AddKnowledge event to the
ADE terminator including the Set of example detec
tion data presentations, object (9), contained within
the Specified data Set. These should only include
those account which have been validated (For more
information See "Enumeration Types on page 53.

0421 Upon completion the ADE generates an
APP14Knowledge Added, which contains a handle
to the new knowledge Set. This object must persist
this information using the new knowledge file

C.

0422 create a update historic profile request, object
24, attaching the Specified data Set.

0423 check if a performance update is required by
interrogating the performance evaluation counter
attribute of the fraud detection client, object (27),
and determining if it equals the number of evalua
tions Specified contained within the fraud detector
Specification, object (28). If a performance update is
required then a performance evaluation request is
created and the performance evaluation counter
attribute is reset to Zero. If a performance update is
not required then the performance evaluation counter
attribute is incremented.

0424 The operation enumeration is set to “Add Knowl
edge” as default.
0425 Methods
0426 FDAddKnowledgeRequest(
0427 FDFraudCandidateDataSet& fraud data set,
0428 String new knowledge filename)
0429 -FDAddKnowledgeRequest()

0430 Assumptions
043.1 Update Historic Profile Request (24) will always be
actioned after an Add Knowledge Request (23).
0432 Ownership

0433) FDUpdateHistRequest
0434 FDPerformanceEvaluation Request

0435 Read Accessors
0436. No public read access methods are required by the
object.

0437. Write Accessors
0438 No public write access methods are required by the
object

0439 Update Historic Profile Request (24)
0440 Description
0441. A request to update historic profiles.

US 2003/0014377 A1

0442 C++ Class Name
0443) FDUpdateHistRequest

0444 Behaviour Description
0445. Upon creation the update historic profile request is
passed a fraud detection data Set as a parameter. This object
will:

0446. Sends an APP7UpdateHistoricProfiles event
to the ADE terminator including the set of profile
data presentations. Only those validated fraud can
didates with a validation category of either; correct
non-fraudulent or incorrect fraud candidates. In addi
tion all the other non-fraud candidates are passed to
the ADE.

0447 Upon completion the ADE generates an
APP15Profiles.Updated, the event contains the
updated profiles. The update historic profiles request
then needs to persist all the updated historical pro
files. This data set can then be removed.

0448 Methods
0449 FDUpdateHistRequest(

0450 FDFraud CandidateDataSet& fraud data set,
0451 String historic profile filename)
0452 FDUpdateHistRequest()

0453 Assumptions
0454) None.
0455. Ownership
0456 Read Accessors
0457. No public read access methods are required by the
object.

0458 Write Accessors
0459 No public write access methods are required by the
object

0460 Performance Evaluation Request (29)
0461) Description
0462. A request to evaluate the performance of the fraud
detector application.
0463 C++ Class Name
0464 FDPerformance Evaluation Request

0465 Behaviour Description
0466 No parameters are sent on construction of this
object. This object will:

0467 Sends an APP3EvaluatePerformance event to
the ADE. Upon completion the ADE generates an
APP11 PerformanceResultsObtained event with the
ADE current performance.

0468. If the resulting performance evaluation is less
than the evaluation threshold attribute of the fraud
detector Specification then the performance evalua
tion request sends an APP4TrainAD event to the

Jan. 16, 2003

ADE. Upon completion the ADE generates an
APP12Anomaly DetectorTrained with the a new per
formance from the ADE.

0469 The operation enumeration type object
attribute of the add knowledge request needs to be
set to either “PerformanceEvaluation” or "Retrain
ing to indicate which operation has been performed.

0470 The new performance is returned to the add
knowledge request object.

0471) Methods
0472 FDPerformanceEvaluationRequest()
0473 -FDPerformanceEvaluation Request()

0474 Assumptions
0475). None.
0476) Ownership
0477 Read Accessors
0478. No public read access methods are required by the
object.

0479. Write Accessors
0480. No public write access methods are required by the
object

0481 Fraud Detection Request (16)
0482 Description
0483. A request to perform a detection of fraud on a
presentation data Set. The resultant fraud candidates are
contained in the associated candidate data Set.

0484 C++ Class Name
0485 FDFraud Detection Request

0486 Behaviour Description
0487. Upon creation the fraud detection request is passed
a presentation data Set as a parameter. This object will:

0488 Creates CDR to profile tranform, object 13,
with cSV filename and poll detection period.

0489 CDR to profile tranform, object 13, returns a
list of poll detection profiles, object 4.

0490 Creates fraud candidate, object 11, to be popu
lated with the results from the ADE.

0491) Sends an APP2Perform Detection event to the
ADE terminator, with profile data presentations,
object 7, where the profile modified attribute is true.

0492. Once the ADE has completed the detection
eVent the ADE generates
APP1ODetectionComplete. The fraud candidate,
object 11 is populated with candidate presentations,
object 6, matching with the associated recent profile,
object 4.

0493) The profile modified attribute within profile
data presentation, object 7, for all those Sent to the
ADE terminator need to be set back to false.

0494 The fraud candidate, object 11, persistence
mechanism to write the results to a file. The time

US 2003/0014377 A1

Stamp at time of creation of this file needs to added
to the top of the file and maintained to be sent back
to the client, object 27.

0495 Once the results file has been created the fraud
candidate, object 11, can be removed.

0496 CDR Extraction, Poll Profile Creation and Search
Algorithm

0497 while(not end of file)
0498) {
0499 Read(next line of file)
0500 cdr=CreateCDR(next line of file)
0501 if(account no l=cdr.account no)
0502 poll profile=Create PollProfile(cdr)
0503 else
0504) poll profile=Accumulate PollProfile(cdr)
0505)
0506 Decay.Recent(poll profile)
0507) DeletePollProfile(poll profile)
0508) }

0509) Note: Assumption that the CDR file is sorted by
account number. Decay profile will provide a binary Search
technique to locate the recent profile.
0510 Methods

account no=cdr.account no

0511 FDFraud Detection Request(
0512 FDPresentationDataSet& presentation data set
0513 FDPollToRecentProfileDecay& profile decay
0514 String results filename,
0515 String csv filename
0516 Time poll detection period
0517 Time recent profile period)
0518) -FDFraud Detection Request()

0519) Assumptions
0520 None.
0521) Ownership
0522 Read Accessors
0523 No public read access methods are required by the
object.

0524 Write Accessors
0525 No public write access methods are required by the
object

0526) Poll To Recent Profile Decay (20)
0527 Description
0528. The decay transform for decaying a poll period
profile into a recent profile.
0529 C++ Class Name
0530 FDPollToRecentProfileDecay

19
Jan. 16, 2003

0531 Behaviour Description
0532. Upon creation this object is given recent profile
vectors object (4). This object will:

0533. Create relationships to all recent profiles.
0534 Calculate update factor using poll detection
period for Source and recent profile period for target.

0535 Upon a DecayProfile event search for the
corresponding recent profile. If no recent profile
exists create new recent profile.

0536 Update the target profiles behaviour with the
Source target behaviour using the algorithm below.
0537. Once the recent profile has been updated the poll
detection profile can be removed.
0538 Modifies the profile modified attribute within the
asSociated profile data presentation, object 7, to true.
0539 Methods
0540 FDPollToRecentProfileDecay.(

0541) RWTPtrDlist<FDRecentProfileVectors &
recent profile,

0542 Time poll detection period,
0543) Time recent profile period)
0544 -FDPollToRecentProfileDecay()
0545 void DecayProfile(FDProfileVector& poll pro

file)
0546 Assumptions
0547. None.
0548. Updating Profiles Algorithm

T'=(TxUpdateFactor))+(Six UpdateFactor)

0549. For all i Where T is the target profile (e.g. recent
profile) and S is the Source profile (e.g. poll detection period
profile.)

WindowSize(S)
WindowSize(T)

Update Factor =

0550 Read Accessors
0551. No public read access methods are required by the
passive object.

0552) Write Accessors
0553 No public write access methods are required by the
passive object

0554) CDR To Profile Tranform (13)
0555. Description
0556. A request to perform a detection of fraud on a
presentation data Set. The resultant fraud candidates are
contained in the associated candidate data Set.

0557 C++ Class Name
0558 FDCDRProfileTranform

US 2003/0014377 A1

0559) Behaviour Description
0560. Upon creation CDR profile transform. This object

will:

0561 For each call detail record, object 12, this
object either constructs a poll profile, object 4, or
updates the existing poll profile.

0562. This object sends the poll detection profile to
poll to recent profile decay, object 20, with poll
detection period and recent profile period.

0563 Methods
0564 FDCDRProfileTranform(String csv filename,
0565 int poll detection period)
0566 -FDCDRProfileTranform()

0567 Assumptions
0568 Operates on an ordered input file.
0569. Ownership

0570) FDProfileVector (Poll detection profiles only).
0571 Read Accessors
0572. No public read access methods are required by the
passive object.

0573 Write Accessors
0574. No public write access methods are required by the
passive object

0575 Call Detail Record (12)
0576 Description
0577 A Software representation of a telecommunication
call detail record.

0578 C++ Class Name
0579 FDCall DetailRecord

0580 Methods
0581 FDCall DetailRecord(String csv filename)
0582 -FDCallDetailRecord()
0583 FDCall DetailRecord ReadCall DetailRecord()

0584)
0585)
0586)
0587)
0588)
0589)
0590
0591 An unvalidated association of a customers recent
profile and the results of a detection process.
0592 C++ Class Name
0593 FDUnvalidated FraudCandidates

0594)
0595 FDFraud Candidate

ASSumptions

The source CDR file is ordered by account number.
Ownership
Read Accessors

Write Accessors

Unvalidated Fraud Candidates (25)
Description

Inheritance

20
Jan. 16, 2003

0596) Methods
0597 FDUnvalidated Fraud Candidates.(
0598. FDProfileVector& recent profile,
0599 ADCandidatePresentation& candidate presen
tation)

0600)
0601)
0602)
0603)
0604)
0605)
0606. No public read access methods are required by the
passive object.

0607. Write Accessors

-FDUnvalidated Fraud Candidates()
ASSumptions
None.

Ownership
None.

Read Accessors

0608 No public write access methods are required by the
passive object

0609 Fraud Detector Specification (28)
0610 Description
0611. The specification of the fraud detector application.
0612 C++ Class Name

0613 FDFraud DetectorSpecification

0614 Methods
0615 FDFraud DetectorSpecification(String Default

results filename
0616)
0617)
0618)
0619
0620)
0621)
0622)
0623)
0624
0625)
0626)
0627)
0628)
0629)

0630
0631
0632)
0633)
0634)
0635 StringGetDefaultResultsFilename(

String cSV filename
String recentprofile filename
String historical profile filename
String ade. Spec filename
Date detection start
int evaluation interval
int evaluation counter
int performance threshold
int recent window size
int historical window size
int detection time interval
int input size
int recent size)
-FDFraud DetectorSpecification()

ASSumptions
None.

Ownership
None.

Read Accessors

US 2003/0014377 A1

0636)
0637)
0638)
0639)
0640
0641)
0642)

C

0643)
0644)
0645)
0646) int
formance threshold)

0647 int
torical window size)

0648)
0649) int
interval)

0650)
0651)

0652) Write Accessors
0653) void SetDefaultResultsFilename(String default

results filename)
0654) void SetCSVFilename(String csv filename)
0655 void SetRecentProfileFilename(String recent

profile filename)
0656 void SetHistorical ProfileFilename(String his
torical profile filename)

0657 void SetADESpecFilename(String ade spec
filename

default results filename)
String GetCSVFilename(cSV filename)
String GetRecentProfileFilename(
recent profile filename)
String GetHistoricalProfileFilename(
historical profile filename)
String GetADESpecifilename (ade spec file

Date GetDetectionStart(detection start)
int GetEvaluationInterval(evaluation interval)
int GetEvaluation Counter(evaluation counter)

GetPerformanceThreshold(per

GetHistoricalWindowSize(his

int GetRecentWindowSize(recent window size)
GetDetectionTimeInterval(detection time

int GetInputSize(input size)
int GetRecentSize(recet size)

0658 void SetDetectionStart(Date detection start)
0659 void SetevaluationInterval(int evaluation inter
val)

0660 void
counter)

SetevaluationCounter(int evaluation

0661 void SetPerformanceThreshold(int performan
ce threshold)

0662 void SetHistoricalWindowSize(int historical
window size)

0663 void SetRecentWindowSize(int recent window
size)

0664 void SetDetectionTimeInterval(int detection
time interval)

0665 void SetInputSize(int input size)
0666 void SetRecentSize(int recent size)

0667) Validate Request (8)
0668) Description

Jan. 16, 2003

0669 A request to create a validated set of fraud candi
dates.

0670) Note: Not implemented, absorbed into Fraud
Detection Request (16).
0671 Candidate Data Set (18)
0672)
0673)
0674)
0675 FDCandidateDataSet

0676 Methods
0677 FDCandidateDataSet(
0678 RWTPtrDlist<ADCandidatePresentation>
0679 &candidate presentation ids)
0680 FDCandidateDataSet()

0681 Assumptions
0682. Ownership
0683 Read Accessors

0684)
0685 Write Accessors
0686 void SetNumberOfPresentations(int number of

presentations);

0687 Validated Fraud Candidate (22)
0688. Description

Description
A Set of candidate presentations.
C++ Class Name

int GetNumberOfPresentations() const;

0689 An association of a customers recent profile and the
validated results of a detection process.
0690 C++ Class Name

0691 FDValidated Fraud Candidate
0692)
0693 FDFraud Candidate

0694 Methods
0695) FDValidated FraudCandidate(
0696 FDProfileVector& recent profile,
0697 NNExampleDataPresentation&
Sentation);

0.698) -FDValidated FraudCandidate()
0699 Enumeration Types
0700
0701) {
0702 UNVALIDATED,
0703 CORRECT FRAUD,
0704) INCORRECT FRAUD,
0705 CORRECT NONFRAUD,
0706 INCORRECT NON FRAUD
0707) };

0708 Assumptions

Inheritance

example pre

enum ValidationStatus

US 2003/0014377 A1

0709)
0710)
0711)
0712)
0713)
0714 void SetValidationCategory(ValidationStatus

None.

Ownership
Read Accessors

ValidationStatus GetValidationCategory() const;
Write Accessors

0715 validation category);
0716) Fraud Candidate (11)
0717 Description
0718. An association of a customers recent profile and the
results of a detection process, (either validated or unvali
dated).
0719 C++ Class Name
0720 FDFraud Candidate

0721 Methods
0722 FDFraud Candidate(FDProfile Vector&

profile)

0723 -FDFraudCandidate()
0724)
0725)
0726)
0727 No public read access methods are required by the
passive object.

0728 Write Accessors

recent

ASSumptions
Ownership
Read Accessors

0729 No public write access methods are required by the
passive object

0730 Presentation Data Set (17)
0731)
0732)
0733)

0734) FDPresentationDataSet
0735 Methods
0736 FDPresentationDataSet(FDPro
fileDataPresentation&

0737)
0738)
0739)
0740
0741)

0742 Assumptions
0743 Ownership
0744 Read Accessors

0745)
0746) Write Accessors

Description
A Set of profile data presentations.
C++ Class Name

profile data presentation id)

FDPresentation DataSet(
RWTPtrDlist<FDProfileDataPresentation>&

profile data presentation ids)

FDPresentation DataSet()

int GetNumberOfPresentations() const;

22
Jan. 16, 2003

0747 void SetNumberOfPresentations(int number of
presentations);

0748) Fraud Candidate Data Set (21)
0749)
0750)
0751)

0752 FDFraudCandidateDataSet
0753 Methods

0754) FDFraud CandidateDataSet()
0755 -FDFraudCandidateDataSet()

0756 Assumptions
0757. Ownership
0758 Read Accessors
0759 int GetNumberOfPresentations() const;

0760 Write Accessors
0761 void SetNumberOfPresentations(int number of
presentations);
0762) Profile Data Presentation (7)
0763)
0764)
VectOr.

O765)
0766 FDProfileDataPresentation

0767 Behaviour Description

Description
A container of fraud candidates.

C++ Class Name

Description

Combination of a historic and a recent profile data

C++ Class Name

0768 Each recent profile is matched with it respective
historical profiles and sent to the ADE. This representation
is used for both detection (object 16) and profile decay
(object 24).
0769 Methods

0770) FDProfileDataPresentation.(
0771)
0772
0773)
0774)
0775

file)
0776)

0777)
0778)
0779)
0780)

0781) Bool GetProfile Modified() const;
0782) Write Accessors
0783 void SetProfileModified(Bool

fied);
0784 Poll Profile Vector (4)

FDProfileVector& recent profile,
FDProfileVector historical profile)
FDProfileDataPresentation(
FDProfileVector& recent profile,
RWTPtrDlist<FDProfileVectors& historical ro

-FDProfileDataPresentation()
ASSumptions
None.

Ownership
Read Accessors

profile modi

US 2003/0014377 A1

0785) Description
0786) Describes the structure of a profile data vector.
0787 C++ Class Name
0788 FDPollProfile Vector

0789)
0790. NNVector

0791) Methods
0792 FDPollProfile Vector(String account number,
0793 FDCall DetailRecord& call detail record)
0794) FDPollProfileVector()

0795 Assumptions
0796) Ownership
0797 Read Accessors
0798 String GetAccountNumber() const;

0799 Write Accessors

Inheritance

0800 void SetAccountNumber(String account num
ber);

0801 Recent Profile Vector (34)
0802. Description
0803. Describes the structure of a recent profile data
VectOr.

0804 C++ Class Name
0805 FDRecentProfileVector

0806)
0807 ADRecentProfileVector

0808 Behaviour Description
0809. After the poll profiles have been used to
update the recent profile, the updated recent profiles
then needs to be persisted to the recent profile file
using the persistence mechanism.

0810) Methods

Inheritance

0811 FDRecentProfileVector(String account number,
0812 NNVector& data vector)
0813 -FDRecentProfile Vector()
0814 Persist(String recent profile filename)

0815) Assumptions
0816 Ownership
0817 Read Accessors
0818 String GetAccountNumber() const;

0819. Write Accessors
0820 void SetAccountNumber(String account num
ber);

0821) Historic Profile Vector (33)
0822. Description
0823 Describes the structure of a profile data vector.

Jan. 16, 2003

0824 C++ Class Name
0825 FDHistoricProfile Vector

0826)
0827 ADHistorical Profile Vector

0828 Methods
0829 FDHistoricProfile Vector(String
ber,

0830. NNVector& data vector)

Inheritance

account num

0831 -FDHistoricProfileVector()
0832 Assumptions
0833) Ownership
0834 Read Accessors P0 String GetAccountNumber()
COnSt.

0835 Write Accessors
0836 void SetAccountNumber(String account num
ber);

Appendix B:

0837 Persistence
0838) Overview
0839 Tools.h++ version 7.0 Users Guide, 1996, Rogue
Wave Software, defines that a object can have one of four
levels of persistence:

0840 No persistence. There is no mechanism for
Storage and retrieval of the object.

0841 Simple persistence. A level of persistence that
provides Storage and retrieval of individual objects to
and from a stream or file. Simple persistence does
not preserve pointer relationships among the per
Sisted

0842) Isomorphic persistence. A level of persistence
that preserves the pointer relationships among the
persisted objects.

0843 Polymorphic persistence. The highest level of
persistence. Polymorphic persistence preserves
pointer relationships among the persisted objects and
allows the restoring process to restore an object
without prior knowledge of that objects type.

0844. This appendix provides information about the use
of Isomorphic persistence through descriptions, examples,
and procedures for designing persistent classes. To imple
ment other levels of persistence it is recommended that the
reader consult the relevant Tools.h++ manual pages.
0845 Persistence Mechanism
0846 Isomorphic persistence is the storage and retrieval
of objects to and from a stream Such that the pointer
relationships between the objects are preserved. If there are
no pointer relationships, isomorphic persistence effectively
Saves and restores objects the same way as Simple persis
tence. When a collection is isomorphically persisted, all
objects within that collection are assumed to have the same
type.

US 2003/0014377 A1

0847 The isomorphic persistence mechanism uses a
table to keep track of pointers it has saved. When the
isomorphic persistence mechanism encounters a pointer to
an unsaved object, it copies the object data, Saves that object
data NOT the pointer to the stream, then keeps track of the
pointer in the Save table. If the isomorphic persistence
mechanism later encounters a pointer to the same object,
instead of copying and Saving the object data, the mecha
nism Saves the Save table's reference to the pointer.
0848. When the isomorphic persistence mechanism
restores pointers to objects from the Stream, the mechanism
uses a restore table to reverse the process. When the iso
morphic persistence mechanism encounters a pointer to an
unrestored object, it recreates the object with data from the
Stream, then changes the restored pointer to point to the
recreated object. The mechanism keeps track of the pointer
in the restore table. If the isomorphic persistence mechanism
later encounters a reference to an already-restored pointer,
then the mechanism looks up the reference in the restore
table, and updates the restored pointer to point to the object
referred to in the table.

0849 Class Requirements For Persistence
0850. To create a class that supports isomorphic persis
tence the class must meet the following requirements. The
class must have appropriate default and copy constructors
defined or generated by the compiler:

0851 PClass(); // default constructor
0852. PClass(T& t); // copy constructor

0853. The class must have an assignment operator
defined as a member OR as a global function:

0854 PClass& operator=(const PClass& pc); // mem
ber function

0855 PClass& operator=(PClass& Ihs,
PClass& rhs); // global function

COnSt

0856. The class cannot have any non-type template
parameters. For example, in RWTBitVec-size>,
“Size' is placeholder for a value rather than a type.
No present compiler accepts function templates with
non-type template parameters, and the global func
tions used to implement isomorphic persistence
(rwRestoreGuts and RWSaveCuts) are function tem
plates when they are used to persist templatized
classes.

0857 All the data necessary to recreate an instance
of the class must be globally available (have accessor
functions).

0858 Creating a Persistent Class
0859. To create an isomorphically persistent class or to
add isomorphic persistence to an existing class, follow these
Steps:

0860) 1. Make all necessary class data available.

0861) 2. Add RWDECLARE PERSISTABLE to your
header file.

0862) #include <rw/edefs.h>

0863. RWDECLARE PERSISTABLE(YourClass)

24
Jan. 16, 2003

0864 3. Add RWDEFINE PERSISTABLE to one
Source file.

0865 #include <rw/epersist.h>

0866 RWDEFINE PERSISTABLE(YourClass)

0867 4. Define rwSaveCuts and rwRestoreCuts.
Methods rwSaveCuts and rwRestoreGuts will be used
to Save and restore the internal State of the class. These
methods are called by the operator- and operatores
that were declared and defined by the macros in 2 & 3.

0868 For non-templatized classes, define the following
functions:

0869 void rwSaveCuts(RWFile&f, const YourClass&
t){* */

0870 void rwSaveCuts(RWvostream& s,
YourClass& t) {(/* */

COnSt

0871 void rwRestoreGuts(RWFile&f, YourClass& t)
{/* */

0872) void rwRestoreGuts(RWvistream& S,
YourClass& t) {/* */

0873. For templatized classes with a single template
parameter T, define the following functions:

0874) template.<class Ts void

0875 rwSaveCuts(RWFile&f, const YourClass.<T>&
t){/* *}

0876 template.<class Ts void

0877 rwSaveCuts(RWvostream& S, COnSt
YourClass.<T>& t) {* */

0878 template.<class Ts void

0879 rwRestoreCuts(RWFile& f, YourClass-Ts& t)

0880 template.<class Ts void

0881 rwRestoreCuts(RWvistream& S,
YourClass.<T>& t) {/* */

0882 For templatized classes with more than one tem
plate parameter, define rwRestoreGuts and rwSave Guts with
the appropriate number of template parameters.

0883 Function rwSaveCuts saves the state of each class
member necessary persistence to an RWvoStream or an
RWFile. If the members of your class can be persisted and
if the necessary class members are accessible to rWSave G
uts, you can use operator-to Save the class members.

0884) Function rwRestoreGuts restores the state of each
class member necessary for persistence from an RWvistream
or an RWFile. Provided that the members of your class are
types that can be persisted, and provided that the members
of your class are accessible to rWRestoreGuts, you can use
operatords to restore the class members.

US 2003/0014377 A1
25

0885 Example of a Persistent Class

PClass Header Fle

#include <rwfcstring.h>
#include <rwiedefs.h>
#include <rwirwfile.h>
#include <rw/epersist.h>
class PClass
{

public:
PClass ();
PClass (const RWCString& string attribute,

int int attribute,
float float attribute,
PClass ptr to attribute);

~PClass ();
If Persistance operations
friend void rwRestoreGuts(RWvistream& is, PClass& obj);
friend void rwRestoreGuts(RWFile& file, PClass& obi);
friend void rwSaveCuts(RWvostream& Os, const PClass& obj);
friend void rwSaveCuts(RWFile& file, const PClass& obj);
If Stream operations
friend ostream & operator-(ostream& Os, const PClass & obi);

private:
RWCString String Attribute;
int IntAttribute:
float Float Attribute:
PClass PtrToAttribute;

}:
RWDECLARE PERSISTABLE(PClass)
PClass Implementation File

#include <PClass.His
PClass::PClass ()
{

IntAttribute = 0;
Float Attribute = 0;
PtrToAttribute = 0;

PClass::PClass(const RWCString& string attribute,
int int attribute,
float float attribute,
PClass* ptr to attribute)

{
String Attribute = string attribute;
IntAttribute = int attribute:
Float Attribute = float attribute:
PtrToAttribute = ptr to attribute;

PClass:-PClassO

RWDEFINE PERSISTABLE(PClass)
void rwRestoreGuts(RWvistream& is, PClass& obj)

is >> obj. String Attribute; // Restore String.
is >> obj.IntAttribute; If Restore Int.
is >> objFloatAttribute; If Restore Float.
RWBoolean ptr;

if (ptr)

void rwRestoreGuts(RwFile& file, PClass& obj)

is >> obj.PtrToAttribute;

file >> objString Attribute; // Restore String.
file >> obj.IntAttribute; If Restore Int.
file >> objFloatAttribute; // Restore Float.
RWBoolean ptr;
file >> ptr;
if (ptr)

file >> obj.PtrToAttribute;

Jan. 16, 2003

US 2003/0014377 A1 Jan. 16, 2003
26

-continued

void rwSaveCuts(RWvostream& Os, const PClass& ob)
{

OS << objStringAttribute; if Save String.
os >> obj.IntAttribute; If Save Int.
os >> objFloatAttribute; If Save Float.
if (obj.PtrToAttribute == rwinil)

os << FALSE: // No pointer.

else

os << TRUE: If Save Pointer
os << *(obj.PtrToAttribute);

void rwSaveCuts(RWFile& file, const PClass& ob)
{

file << objString Attribute; // Save String.
file << obj.IntAttribute; If Save Int.
file << objFloatAttribute; // Save Float.
if (obj.PtrToAttribute == rwinil)

file << FALSE: // No pointer.

else

file <<TRUE; If Save Pointer
file << *(obj.PtrToAttribute);

ostream& operator-(ostream& Os, const PClass& ob)

os << “\nStringAttribute:
<<objStringAttribute <<“\n';

os << “IntAttribute:
<< obi. IntAttribute <<“\n';

os << "FloatAttribute:
<<objFloatAttribute <<\n';

OS << “PtrToAttribute:
<< (void*)obj.PtrTo Attribute <<"\n";

if (obj. PtrTo Attribute)

os << “Value at Pointer:
<<*(objPtrToAttribute) <<"\n";

return OS;

Use of PClass
#include <iostream.h>
#include <PClass.His
void main()
{

// Create object that will be pointed to by
If persistent object.
RWCString s1(“persist pointer object);
PClass persist pointer object(s1, 1, 1.0, 0);
RWCString s2(“persist class 1);
PClass persist class 1(s2, 2, 2.0, &persist pointer object);
cout <<"persist class1 (before save):” <<endl

<<persist class1 <<end1 <<endl;
// Save object in file “test.dat.
RWFile file(“test.dat);
file <<persist class1;
PClass persist class2;
// Restore object from file “test.dat.
{
RWFile file(“test.dat);
file >> persist class2;

cout <<"persist class2 (after restore):” <<endl
<<persist class2 <<end1 <<endl;

US 2003/0014377 A1

0886) Special Care with Persistence
0887. The persistence mechanism is a useful quality, but
requires care in Some areas. Here are a few things to look out
for when using persist classes.
0888 1. Always Save an Object by Value Before Saving
the Identical Object by Pointer.
0889. In the case of both isomorphic and polymorphic
persistence of objects, never Stream out an object by pointer
before streaming out the identical object by value. Whenever
designing a class that contains a value and a pointer to that
value, the SaveCuts and restoreGuts member functions for
that class should always Save or restore the value then the
pointer.

0890) 2. Don't Save Distinct Objects with the Same
Address.

0891) Be careful not to isomorphically save distinct
objects that may have the same address. The internal tables
that are used in isomorphic and polymorphic persistence use
the address of an object to determine whether or not an
object has already been Saved.
0892) 3. Don't Use Sorted RWCollections to Store Het
erogeneous RWCollectables.
0893 When you have more than one different type of
RWCollectable stored in an RWCollection, you can’t use a
sorted RWCollection. For example, this means that if you
plan to store RWCollectableStrings and RWCollectable
Dates in the same RWCollection, you can't store them in a
Sorted RWCollection Such as RWBtree. The Sorted RWC
ollections are RWBinaryTree, RWBtree, RWBTreeDic
tionary, and RWSorted Vector. The reason for this restriction
is that the comparison functions for sorted RWCollections
expect that the objects to be compared will have the same
type.

0894 4. Define All RWCollectables That Will be
Restored.

0895. These declarations are of particular concern when
you save an RWCollectable in a collection, then attempt to
take advantage of polymorphic persistence by restoring the
collection in a different program, without using the RWC
ollectable that you Saved. If you don’t declare the appropri
ate variables, during the restore attempt the RWFactory will
throw an RW NOCREATE exception for some RWCollect
able class ID that you know exists. The RWFactory won’t
throw an RW NOCREATE exception when you declare
variables of all the RWCollectables that could be polymor
phically restored.
0896. The problem occurs because the compiler's linker
only links the code that RWFactory needs to create the
missing RWCollectable when that RWCollectable is spe
cifically mentioned in your code. Declaring the missing
RWCollectables gives the linker the information it needs to
link the appropriate code needed by RWFactory.

1. A method of forming a classifier, the method compris
ing:

providing a first time period,

providing a distinct Second time period wherein the
distinct Second time period is consecutive to the first

27
Jan. 16, 2003

time period, shorter than the first time period, and more
recent than the first time period,

forming a first Signature from data collected during a
period based on the first time period,

forming a distinct Second Signature from data collected
during a period based on the distinct Second time
period,

training a first neural network based on the first Signature
and the distinct Second signature.

2. A method according to claim 1, further comprising
providing an architecture for the first neural network.

3. (Once Amended) A method according to claim 1,
further comprising evaluating the performance of the first
neural network.

4. A method according to claim 1, further comprising
retraining the first neural network.

5. A method according to claim 1, further comprising:
providing a performance threshold, and,
retraining the first neural network based on a comparison

of the performance threshold and a performance evalu
ation of the neural network.

6. (Once Amended) A method according to claim 1,
further comprising updating the first signature based on a
weighted average of the first Signature and the distinct
Second signature.

7. A method according to claim 1, further comprising,
training a distinct Second neural network based on an

updated version of the first Signature.
8. (Once Amended) A method according to claim 7,

further comprising

evaluating the distinct Second neural network, and
based on the evaluation, utilizing the distinct Second

neural network as a replacement for the first neural
network.

9. A method according to claim 1, wherein at least one of
forming a first signature and forming a distinct Second
Signature include collecting call detail records (CDRS).

10. A method according to claim 1, wherein at least one
of forming a first signature and forming a distinct Second
Signature include Specifying parameters upon which at least
one of the first signature and the distinct Second Signature are
to be formed.

11. (Once Amended) A method according to claim 1,
wherein at least one of the first Signature and the distinct
Second Signature is based on at least one of a percentage of
calls made and a position of a portion in the corresponding
time period during which the corresponding data is received.

12. (Once Amended) A method of classifying data, the
method comprising:

training a first neural network based on a first Signature
and a distinct Second Signature, the first signature based
on data from a first time period, the distinct Second
Signature based on data from a distinct Second time
period that is consecutive to the first time period,
shorter than the first time period, and more recent than
the first time period,

forming a recent Signature based on data collected during
a recent time period of the same duration as the distinct
Second time period, and,

US 2003/0014377 A1

presenting the recent Signature to the first neural network.
13. A method according to claim 12, further comprising

retraining the first neural network.
14. A method according to claim 12, further comprising:
providing a performance threshold, and,
retraining the first neural network based on a comparison

of the performance threshold and a performance evalu
ation of the neural network.

15. (Once Amended) A method according to claim 12,
further comprising updating the first Signature based on at
least one of a weighted average of the first Signature and the
distinct Second Signature and a weighted average of the first
Signature and the recent signature.

16. A method according to claim 12, further comprising,
training a distinct Second neural network based on an

updated version of the first Signature.
17. A method according to claim 16, further comprising
evaluating the distinct Second neural network, and

28
Jan. 16, 2003

based on the evaluation, utilizing the distinct Second
neural network as a replacement for the first neural
network.

18. (Once Amended) A method according to claim 12,
wherein at least one of the first Signature and the distinct
Second Signature are formed based on call detail records
(CDRs).

19. A method according to claim 12, further including
Specifying parameters upon which at least one of the first
Signature and the distinct Second Signature are to be formed.

20. (Once Amended) A method according to claim 12,
wherein at least one of the first Signature and the distinct
Second signature are formed based on at least one of a
percentage of calls made and a position of a portion in the
corresponding time period during which the corresponding
data is received.

