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(57) ABSTRACT 

A method of Storing information relating to the transmission 
of messages by an entity over a given time period comprises 
the step of 

creating a signature comprising a plurality of parameters 
related to the transmission of messages over that time 
period wherein the parameters comprise at least one 
parameter related to the transmission of messages over 
a portion of the period and also related to the position 
of the portion in the period, to enable output data to be 
derived from the Stored information. The Signature may 
be updated by a weighted averaging process with other 
more recent Signatures. 

Application in fraud detection where signature representing 
information in many call detail records from a particular 
Subscriber is fed to a neural network. 
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FORMING ASIGNATURE OF PARAMETERS 
EXTRACTED FROM INFORMATION 

REFERENCE TO RELATED APPLICATIONS 

0001. This application is a continuation of U.S. applica 
tion Ser. No. 08/888,361, filed on Jul. 3, 1997, the contents 
of which are herein incorporated by reference. 

FIELD OF THE INVENTION 

0002 This invention relates to methods of storing infor 
mation relating to the transmission of messages, to methods 
of deriving output data from information relating to the 
transmission of messages to corresponding Systems, and to 
Software in computer readable form for Such Systems and 
methods. 

BACKGROUND OF THE INVENTION 

0003) Anomalies are any irregular or unexpected patterns 
within a data Set. The detection of anomalies is required in 
many situations in which large amounts of time-variant data 
are available. For example, detection of telecommunications 
fraud, detection of credit card fraud, encryption key man 
agement Systems and early problem identification. 
0004 One problem is that known anomaly detectors and 
methods of anomaly detection are designed for used with 
only one Such situation. They cannot easily be used in other 
Situations. Each anomaly detection situation involves a 
Specific type of data and Specific Sources and formats for that 
data. An anomaly detector designed for one situation works 
Specifically for a certain type, Source and format of data and 
it is difficult to adapt the anomaly detector for use in another 
Situation. Known methods of adapting an anomaly detector 
for used in a new situation have involved carrying out this 
adaptation manually. This is a lengthy and expensive task 
requiring Specialist knowledge not only of the technology 
involved in the anomaly detector but also of the application 
domains involved. The risk of errors being made is also 
high. 

0005 Another problem is that a particular method of 
anomaly detection is often most Suitable for one particular 
Situation. This means that transfer of a particular anomaly 
detector to a new situation may not be appropriate unless 
core elements of the anomaly detector method and/or appa 
ratus are adapted. This is particularly time consuming and 
expensive particularly as the development of a new anomaly 
detector from Scratch may often be necessary. 
0006. One application for anomaly detection is the detec 
tion of telecommunications fraud. Telecommunications 
fraud is a multi-billion dollar problem around the world. 
Anticipated losses are in excess of S1 billion a year in the 
mobile market alone. For example, the Cellular Telecoms 
Industry Association estimate that in 1996 the cost to US 
carriers of mobile phone fraud alone is S1.6 million per day, 
projected to rise to S2.5 million per day by 1997. This makes 
telephone fraud an expensive operating cost for every tele 
phone Service provider in the World. Because the telecom 
munications market is expanding rapidly the problem of 
telephone fraud is Set to become larger. 
0007 Most telephone operators have some defence 
against fraud already in place. These are risk limitation tools 
Such as simple aggregation of call-attempts, credit checking 
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and tools to identify cloning, or tumbling. Cloning occurs 
where the fraudster gains access to the network by emulating 
or copying the identification code of a genuine telephone. 
This results in a multiple occurrence of the telephone unit. 
Tumbling occurs where the fraudster emulates or copies the 
identification codes of Several different genuine telephone 
units. 

0008 Methods have been developed to detect each of 
these particular types of fraud. However, new types of fraud 
are continually evolving and it is difficult for Service pro 
viders to keep "one-step ahead' of the fraudsters. Also, the 
known methods of detecting fraud are often based on Simple 
Strategies which can easily be defeated by clever thieves 
who realise what fraud-detection techniques are being used 
against them. 
0009. A number of rule-based systems have been devel 
oped, however, they have a Series of limitations. It is now 
being acknowledged that each corporate and individual 
customer will show different behaviour, and thus a simple 
Set of rules is insufficient to adequately monitor network 
traffic. To adapt these rule-based Systems to allow each 
customer to have their own unique thresholds in not possible 
due to the sheer volumes of data involved. 

0010. There are a number of difficulties with identifying 
fraud, namely: 

0011 Fraud is dynamic by nature; fraudulent behav 
iour will change over time. 

0012. The size of the problem area is vast, due to the 
number of users on a network, and the number of 
calls made. 

0013 Rapid identification of fraud is needed; losses 
from a given case of fraud tend to grow exponen 
tially. 

0014 Some forms of fraud are particularly costly 
and should therefore be the Subject of Special atten 
tion e.g. international phone calls. 

0015 Customer transparency; a customer should not 
See the fraud detection System in action. 

0016. Another method of detecting telecommunications 
fraud involves using neural network technology. One prob 
lem with the use of neural networks to detect anomalies in 
a data Set lies in pre-processing the information to input to 
the neural network. The input information needs to be 
represented in a way which captures the essential features of 
the information and emphasises these in a manner Suitable 
for use by the neural network itself. The neural network 
needs to detect fraud efficiently without wasting time main 
taining and processing redundant information or simply 
detecting “noise' in the data. At the Same time the neural 
network needs enough information to be able to detect many 
different types of fraud including types of fraud which may 
evolve in the future. As well as this the neural network 
should be provided with information in a way that it is able 
to allow for legitimate changes in behaviour and not identify 
these as potential frauds. 
0017. A particular problem for any known method of 
detecting fraud is that both Static classification and temporal 
prediction are required. That is, anomalous use has to be 
classified as Such, but only in relation to an emerging 
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temporal pattern. Over a period of time an individual phone 
will generate a macroscopic pattern of use, in which, for 
example, intercontinental calls may be rare; however within 
this overall pattern there will inevitably be violations-on a 
particular day the phone may be used for Several intercon 
tinental calls. A pattern of behaviour may only be anomalous 
relative to the historical pattern of behaviour. 
0.018. Another problem is that a particular type of infor 
mation to be analysed by a neural network is often in a 
variety of formats. For example, information about indi 
vidual telephone calls is typically contained in call detail 
records. The content and format of call detail records differs 
for different telecommunications Systems and this makes it 
difficult for such information to be input directly to a neural 
network based System. 
0.019 A further problem is that once information has been 
provided for input to a neural network based System it is 
often not Suitable for other purposes. For example, when a 
neural network System is being used to detect fraudsters 
much information about the behaviour of customers is 
prepared for input to the System. This information could also 
be used for marketing purposes to develop a much more 
detailed understanding of customer behaviour. However, 
this is often not easy to effect because of the format of the 
data. 

0020. One problem with known methods of fraud detec 
tion is that they are often unable to cope adequately with 
natural changes in the input data. For example, a customer's 
telephone call behaviour may change legitimately over time; 
the customer may travel abroad and make more long dis 
tance calls. This should not be detected as an anomaly and 
be classified as a potential fraud. Because the telecommu 
nications market size is increasing, this is a particular 
problem for fraud detection in telecommunications. 
0021 Known methods of anomaly or fraud detection 
which have used neural networks involve first training the 
neural network with a training data Set. Once the training 
phase is over the neural network is used to process telecoms 
data in order to identify fraud candidates. As the behaviour 
of customers evolves, new data input to the neural network 
may be widely different from the original training data Set. 
In these circumstances the neural network may identify 
legitimate new patterns in the data as anomalies. Similarly, 
real cases of fraud may go unidentified. In this situation it is 
necessary to retrain the neural network using an updated 
training data Set which is updated to reflect new features of 
the data. 

0022 Several problems arise as a result of this need for 
retraining. For example, a decision needs to be made about 
when to retrain. Typically this complex decision is made by 
the user who requires Specialist knowledge not only about 
telecoms fraud but also about the neural network System. 
Because telecoms fraud is an on-going problem which takes 
place 24 hours a day, 7 days a week, it is often not possible 
for an expert user to be available. This means that the System 
may “under perform” for Some time before retraining is 
initiated. 

0023. Another problem is that the performance of the 
neural network System needs to be monitored in order to 
determine when the System is “under performing”. This can 
be a difficult and lengthy task which takes up valuable time. 
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0024. Another problem is that the process of retraining is 
itself a lengthy and computationally expensive process. 
Whilst retraining is in progreSS it is not possible to use the 
neural network System to detect anomalies. This means that 
telecoms fraud may go undetected during the retraining 
phase. Also, the retraining proceSS may take up valuable 
processing resources which are required for other tasks. This 
is especially important in the field of telecommunications 
where it may be required to Site the neural network System 
at a busy Switch or node in the telecommunications network. 
0025 A further problem is that intervention and input 
from the user is typically required during the retraining 
process. This can be inconvenient when it is necessary to 
retrain quickly and also requires a trained user to be avail 
able. 

SUMMARY OF INVENTION 

0026. It is accordingly an object of the present invention 
to provide an apparatus and method which overcomes or at 
least mitigates one or more of the problems noted above. 
0027 According to a first aspect of the present invention, 
there is provided a method of Storing information relating to 
the transmission of messages by an entity over a given time 
period comprising the Step of 

0028 creating a signature comprising a plurality of 
parameters related to the transmission of messages over 
that time period wherein the parameters comprise at 
least one parameter related to the transmission of 
messages over a portion of the period and also related 
to the position of the portion in the period, to enable 
output data to be derived from the stored information. 
This provides the advantage that information about 
both a macroscopic pattern of behaviour over the whole 
time period and a microscopic pattern of behaviour 
Over part of the time period can be stored. Lengthy 
processing times for Signature creation and Storage are 
avoided and redundant information is kept to a mini 
mum. Advantageously, anomalies in the Stored data can 
more easily be detected in relation to an emerging 
temporal pattern. A further advantage is that the Stored 
data is available for other purposes, for example mar 
keting, forecasting and other types of planning. 

0029 Preferably, the signature is created in one of a 
plurality of predetermined possible formats. This provides 
the advantage that the Stored Signatures are Suitable for a 
variety of purposes. For example, the Signature can be 
provided as inputs to a number of different neural network 
instantiations. 

0030 Advantageously, the signature is processed using a 
predictive model Such as a neural network, which is dynami 
cally configured according to the format of the Signature. 
This provides the advantage that the method can easily be 
reused in a variety of Situations. For example, anomaly 
detection for detecting telecommunications fraud could be 
one situation and anomaly detection for detecting credit card 
fraud could be another Situation. In these two cases the tasks 
vary in many respects; the input data is of a different type 
and will be provided in different formats and from different 
Sources. The method can be used in different Situations Such 
as these So that development times and costs are reduced and 
the likelihood of errors occurring in the method are reduced. 
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0.031 Preferably, the said configuration step further com 
prises adjusting the topology of the neural network. This 
provides that advantage that the neural network topology 
can easily be adapted to best Suit different Situations in 
which the method is used. Advantageously, the neural net 
work topology is adapted to provided the best anomaly 
detection ability. 
0032. According to a second aspect of the present inven 
tion, there is provided a method of deriving output data from 
information relating to the transmission of messages by an 
entity over time, comprising the Steps of: 

0033 (i) creating a first signature comprising a plural 
ity of parameters related to the transmission of mes 
Sages over a predetermined first time period; 

0034 (ii) creating a second signature comprising a 
plurality of parameters related to the transmission of 
messages over a Second period shorter than the first and 
more recent than the first; 

0035 (iii) updating the first signature by a weighted 
averaging with the Second Signature; 

0036) and (iv) deriving said output data using the 
Signatures. 

0037. This provides the advantage that the stored infor 
mation can be updated with more recent information in order 
that any emerging temporal patterns in the information can 
be allowed for. 

0.038 Preferably, said step of updating the first signature 
by a weighted averaging with the Second Signature further 
comprises the Steps of: 

0039 (i) determining a third signature comprising a 
plurality of parameters related to the transmission of 
messages over a third period shorter than the Second 
and more recent than the Second; and (ii) updating the 
Second Signature by a weighted averaging with the third 
Signature Such that in use an up-to-date comparison of 
the Second Signature with the first signature can be 
obtained. This provides an advantage when the first and 
Second Signatures are provided as inputs to a proceSS 
that requires first and Second Signatures of a fixed 
format. Available information that cannot be incorpo 
rated into the first signature can be incorporated into the 
Second signature. 

0040 Advantageously the method comprises the steps of: 
0041 (i) inputting a series of inputs to the neural 
network So as to obtain a Series of corresponding 
outputs; 

0042 (ii) inputting a set of target output values corre 
sponding to a Subset of the outputs; 

0043 (iii) generating a set of training data which 
comprises information about the target output values, 

0044) (iv) determining when a predetermined thresh 
old which relates to the level of correspondence 
between the output values and their respective target 
output values is reached; 

0045 (v) automatically retraining the neural network 
using the Set of training data. This provides the advan 
tage that it is not necessary for the user to make a 

Jan. 16, 2003 

decision about when to retrain. This removes the need 
for an expert user to be available to maintain the System 
while it is in use. Also, the retraining process itself is 
automatic So that valuable operator time is not wasted 
in performing a manual retrain. A further advantage, is 
that by making retraining automatic it is ensured that 
the outputs of the neural network are as accurate as 
possible. 

0046 Advantageously the method comprises the steps of: 
0047 (i) inputting a series of inputs to the neural 
network So as to obtain a Series of corresponding 
outputs; 

0048 (ii) inputting a set of target output values corre 
sponding to a Subset of the outputs, and 

0049 (iii) comparing the output values with their 
respective target output values to produce a value 
indicative of the accuracy of the output values. This 
provides the advantage that a value is produced which 
indicates the performance of the neural network which 
is easy to interpret by a non-expert user. It is not 
necessary for a user who has specialist knowledge 
about the neural network System to evaluate the per 
formance of the neural network manually. 

0050 Advantageously, the method comprises the steps 
of: 

0051 (i) inputting a series of inputs to the first neural 
network So as to obtain a Series of corresponding 
outputs; 

0.052 (ii) inputting a set of target output values corre 
sponding to a Subset of the outputs; 

0053 (iii) generating a set of training data which 
comprises information about the target output values, 

0054 (iv) determining when a predetermined thresh 
old which relates to the level of correspondence 
between the output values and their respective target 
output values is reached; 

0055 (v) when the predetermined threshold is reached, 
creating a Second neural network of the same topology 
as the first; 

0056 and retraining the second neural network using 
Said Set of training data Such that it is possible to 
continue processing the input data using the first neural 
network whilst the Second neural network is being 
retrained. This provides the advantage that the first 
neural network can be used to process the data whilst 
the Second neural network is being retrained. Also, the 
Second neural network may be retrained using Separate 
processing resources from those used by the first neural 
network. For example, it is possible to train the Second 
neural network at a quiet node in a communications 
network whilst the first neural network processes data 
at a busy node. 

0057 Advantageously, if the neural network is imple 
mented using an object oriented programming language the 
objects can be converted into a form that can be Stored, using 
a persistance mechanism. Once converted into data Structure 
format the data structure can be moved between processors 
which may be nodes in a communications network for 
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example. This provides the advantage that the neural net 
work can be moved to a quiet node to be trained. Also in the 
event of a System crash or other Such event, a Stored version 
of the neural network can be retained and then recreated into 
object form when the System is up and running again. 
According to other aspects of the invention, there are 
provided corresponding Systems. 

0.058 Preferred features as set out in the dependent 
claims may be combined with each other or with any aspect 
of the invention as appropriate, as would be apparent to a 
person skilled in the art. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0059) The invention will be further described, by way of 
example, with reference to the accompanying drawings in 
which: 

0060 FIG. 1 is a general schematic diagram of an 
arrangement for the detection of anomalies in data relating 
to the transmission of messages in a communications net 
work. 

0061 FIG. 2 is a general schematic diagram indicating 
how the anomaly detection engine is used with other com 
ponents to create an anomaly detection application. 
0.062 FIG. 3 shows the main components of an anomaly 
detection engine (ADE) and the flow of information between 
these components. 
0.063 FIG. 4 shows the main components of the engine 
administrator and the flow of information between these 
components. 

0.064 FIG. 5 is a general schematic diagram of an 
arrangement for the detection of anomalies in data relating 
to the transmission of messages in a communications net 
work. 

0065 FIG. 6 is a general schematic diagram indicating 
how Signatures are created. 
0.066 FIG. 7 is a general schematic diagram indicating 
the process of profile decay. 
0067 FIG. 8 is a general schematic diagram indicating 
the process of profile decay. 
0068 FIG. 9 is a general schematic diagram indicating 
the process whereby each new type of call detail record 
inherits from a base class. 

0069 FIG. 10 shows an example of a call detail record 
Specification. 
0070 FIG. 11 shows an example of a target call detail 
record format. 

0.071) 
0.072 FIG. 13 is a general schematic diagram indicating 
the different time periods used in calculating the day/night 
period. 
0.073 FIG. 14 is a general schematic diagram of an 
arrangement for the detection of anomalies in data relating 
to the transmission of messages in a communications net 
work. 

0.074 FIG. 15 is a flow diagram indicating how previ 
ously-validated candidates are retained. 

FIG. 12 shows an example of a profile/signature. 
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0075 FIG. 16 is a flow diagram indicating how auto 
matic retraining using a daughter neural network takes place. 
0076 FIG. 17 shows an example display screen provided 
by the GUI (Graphical User Interface). 
0.077 FIG. 18 shows another example display screen 
provided by the GUI. 

DETAILED DESCRIPTION OF THE 
INVENTION 

0078 Embodiments of the present invention are 
described below by way of example only. These examples 
represent the best ways of putting the invention into practice 
that are currently known to the Applicant although they are 
not the only ways in which this could be achieved. 
0079 Definitions: 
0080 Call detail record (CDR)-this is a set of informa 
tion about an individual telephone call. For example, infor 
mation Such as the account number, the date and time of the 
call, whether it was long distance or local etc. A CDR is 
created whenever a phone call is completed. The content of 
a CDR may vary for different telecommunications systems. 
0081 CDR interpreter-this examines CDRs and 
extracts those fields necessary for anomaly detection. 
0082) Detection poll period-this is a time interval dur 
ing which information is collected for input to the anomaly 
detector. 

0083 Profile/signature-this is a set of information sum 
marising and describing the behaviour of an individual 
customer or account number over a given time period. 
0084 Anomaly-this is any irregular or unexpected pat 
tern within a data Set. 

0085 FCAPS Application Frameworks-systems for 
fault management, configuration management, accounting 
management, performance management and Security man 
agement in a communications network. 
0086 Topology of a neural network-this is the number 
of units in the neural network, how they are arranged and 
how they are connected. 
0087 Kernel-this is the part of the anomaly detector 
which detects anomalies and performs many other functions. 
0088 Graphical user interface (GUI)-this provides 
means for communication between the user and the anomaly 
detector using display Screens. 
0089 FIG. 1 shows schematically how an anomaly 
detector 1 can be used to receive information 2 about the 
transmission of messages in a communications network 3 
and provide reports 4 about potential anomalies in the input 
data. The particular instantiation of the anomaly detector 1 
is created using a generic anomaly detection engine (ADE) 
as shown in FIG. 2. This gives the advantage that the 
anomaly detection engine 20 is a reusable component which 
can be used in different individual applications. 
0090 FIG. 2 shows the anomaly detection engine 20 
which contains neural network components 21. The neural 
network components 21 learn patterns in the input informa 
tion 2 and detect differences in these patterns—the anomaly 
candidates. The ADE 20 also comprises many other com 
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ponents for example, an engine administrator which is also 
referred to as an ADE manager. 

0.091 The ADE 20 is used in conjunction with applica 
tion specific Software 22. This is software which performs 
any data transformations that are needed in order to convert 
the network data 2 to be analysed into a format that the ADE 
20 can use. The application specific software 20 also 
includes Software to perform a validation of the anomaly 
candidates detected and also any Software to convert the 
ADE's results into actions to be performed. If the ADE is 
embedded in a network manager 23 then the application 
Specific Software 22 includes interface Software to allow the 
ADE to be embedded in this way. 

0092 Before the ADE can be used it must be instantiated 
and integrated into the user's environment. By using an ADE 
component 20 in conjunction with application specific Soft 
ware 22 a particular instantiation of an anomaly detector 1 
is created. This process of creating a particular anomaly 
detector is referred to as instantiation. Following instantia 
tion, the ADE is integrated into the user's environment. For 
example, a graphical user interface (GUI) 7 is added to the 
ADE to create a Stand-alone application Such as that shown 
in FIG.1. Alternatively, the ADE is integrated into existing 
Software Such as a network manager 23, which communi 
cates directly with the ADE. The instantiated anomaly 
detector can be used by only one element in a communica 
tions network 3 or alternatively it may be used by different 
network elements. For example, by embedding an ADE in 
an FCAPS application framework an anomaly detector 
Suitable for use by different communications network ele 
ments is obtained. 

0093. As previously described the ADE contains neural 
network components 21 which learn the data patterns or 
behaviour and detect the differences in the behaviour-the 
anomalies. For a particular anomaly detection Situation a 
particular neural network topology will be most Suitable. 
Also, the neural network needs to be trained in order to have 
a set of weights that enable anomalies in the input data to be 
detected. If the ADE is simply reused in a new situation the 
topology and weights of the neural network components 21 
may not be appropriate for the new situation. In order to get 
round this problem when an ADE is instantiated to form a 
particular anomaly detector the topology of the neural 
network components 21 can be automatically adjusted. The 
neural network components 21 can then be trained or 
retrained to achieve a desired set of weights. This provides 
the advantage that the ADE can be used in a variety of 
situations. The ADE can be applied “cross-product” and 
“croSS-data layer. Cross-product means that the ADE can 
be applied to more than one type of communications net 
work product. Cross-data layer means that the ADE can be 
applied to data gathered from the various layers of the 
communications network. 

0094. A general overview of how the ADE detects 
anomalies is now given by way of example. The ADE 
receives input information 2 about the transmission of 
messages in a communications network 3. This information 
2 is in the form of call detail records (CDR's) and is 
processed by the ADE to form profiles (also referred to as 
Signatures). A profile is a set of information Summarising 
and describing the behaviour of an individual customer or 
account number over a given time period. Historic and 
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recent profiles are formed where an historic profile relates to 
the behaviour of an individual customer Over a certain 
period of time and a recent profile relates to the behaviour 
over a shorter and more recent period of time. The historic 
profiles are assumed to represent non-anomalous behaviour. 
By comparing the historic and recent profiles using the 
neural network components 21 anomalies in the recent 
profile are detected. Many pairs of historic and recent 
profiles are created and compared and over time the historic 
profiles are updated with non-anomalous information from 
the recent profiles. 

0095 Before anomaly detection can take place the neural 
network components 21 must be trained. The neural network 
components comprise a multi-layer perceptron neural net 
work. This neural network is trained using a Supervised 
training method. This involves inputting a training data Set 
to the neural network So that the neural network is able to 
build up an internal representation of any patterns inherent 
in the data. The training data Set contains profiles and 
information about whether these profiles are anomalous or 
not. This allows that neural network to learn the typical and 
exceptional behaviour profiles that occur in the network data 
and to classify them accordingly. Once the neural network 
has been trained it is validated to check that the training has 
been Successful. This is done by presenting a new set of 
profiles, that are known to be anomalous or not, to the 
trained neural network. The outputs of the neural network 
are then compared with the expected outputs. 

0096. The Successfully validated neural network can then 
be used to detect anomalies. New communications network 
data is presented to the ADE which uses the new data to form 
recent profiles. The neural network then compares the recent 
profiles with the historical profiles in order to detect anoma 
lies. If there is a difference between the recent and historical 
profiles then the neural network can indicate whether this is 
due to anomalous behaviour by the system or whether it is 
Simply due to an acceptable change in the behaviour profile. 
If a pattern of data that has never been encountered before 
is presented to the neural network then the neural network 
produces a best-gueSS result. 

0097 As time passes since the neural network was 
trained general trends in the data from the communications 
network occur. These trends are not taken account of by the 
neural network because the neural network was not trained 
on this data. In order to get round this problem the neural 
network can be retrained. This proceSS can be carried out 
automatically using Suitable application Specific Software. 

0098. As the ADE is used, further information about 
whether anomaly candidates produced by the ADE are real 
anomalies or not may be obtained by the user. Provision can 
be made for this information to be input to the ADE and used 
to update the training data Set and various other information. 
This process is described in more detail below. 

0099 Main ADE Components 

0100. The main components of the ADE are now 
described and later the processes of instantiating an ADE 
and integrating it ready for use are described in detail with 
reference to examples. FIG. 3 shows the main components 
of the ADE and also the flow of information between these 
components. The main components comprise: 
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01.01 
0102) 
0103) 
01.04] 
01.05 

0106 The ADE comprises all components inside the 
boundary 30 in FIG. 3. The area outside the boundary 30 
refers to the particular instantiation of the ADE in applica 
tion specific Software. Data about the transmission of mes 
Sages in a communications network that has been pre 
processed into a specific format 36 is input to the profile 
generator 31. The profile generator 31 forms historic and 
recent profiles or signatures 37.38 of the input information 
36. If necessary the historic profiles are updated with infor 
mation from the recent profiles using the profile decay 
proceSS 32. Information about whether anomaly candidates 
produced by the anomaly detector are really anomalies or 
not 39 can be input to the ADE and used to update the 
profiles and for other purposes. These processes are 
described further below. 

0107. Once the recent profile 37 and the historic profile 
38 have been created and updated as required, they are input 
to the data transformer 33 which transforms them into a 
format required by the detector 5. For example, a recent 
profile and a historic profile pair may be concatenated, or the 
difference between the two profiles may be calculated. Other 
transformations are also possible. The transformed data 40 is 
used by the engine administrator 34 and the detector 35. 
engine administrator The engine administrator, also referred 
to as an ADE manager, is responsible for the following tasks: 

a profile generator 31, 
a profile decay process 32, 

a data transformer 33; 

an engine administrator 34, 
and a detector 35. 

0.108 1. training and/or retraining the neural network; 
0109 2. evaluating the performance of the ADE; 
0.110) 3. creating the neural network; 
0111. 4. managing and maintaining a training data set 
and an evaluation or validation data Set. 

0112 As shown in FIG. 4 the engine administrator 34 
comprises a data manager 41; a training/retraining processor 
42; an evaluator 43, and a processor for creating a neural 
network 44. 

0113) Data Manager 41 
0114. The data manager 41 maintains two data sets: an 
evaluation data Set 45, and an example data Set 46 which is 
also referred to as a training data Set. The data manager 
receives inputs of detection data 40 and validated results 48. 
The validated results comprise information about whether 
anomaly candidates identified by the neural network 47 are 
real anomalies or not. These validated results 48 are also 
referred to as “profile identification and category' informa 
tion; they are used to update the example data 46, the 
evaluation data 45 and for other purposes as described 
below. The evaluation data set 45 is created by splitting the 
detection data set 40 into two parts; an evaluation data set 45 
and an example or training Set 46. Both these Sets of data 
contain profiles and information about whether each profile 
in the Set is anomalous or not. 

0115 The example or training data set 46 is used to train 
the neural network 47 using the training processor 42. 
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Adding new examples of anomalous behaviour 48 to this 
data Set enables the detection to be updated with new 
information. This aids the general performance of the ADE; 
examples from false positive identifications can be added to 
the example data Set to reduce the probability that the false 
identification recurs. Adding results from positive identifi 
cations reinforces the ability of the neural network 47 to 
make Similar positive identifications. 

0116 Training/Retaining Process 42 

0117 The training process enables the ADE to learn, or 
relearn, a particular task. To obtain the optimum perfor 
mance from the ADE, a representative data Set 46 needs to 
be presented during training. This training data Set 46 should 
include examples of anomalous events as well as non 
anomalous events and preferably in a proportion that is 
representative of the data set to be analysed by the ADE. The 
neural network 47 is trained using a learning algorithm. 
Many different learning algorithms can be used and in a 
preferred example a non-parameterised learning rule, the 
known Scaled conjugate gradient algorithm, is used. Con 
dition parameters 49 are input to the training/retraining 
process 42. These parameters can be input by the user or 
may be predefined. They include information specific to the 
training/retraining proceSS Such as how many training 
epochs should be carried out and whether early stopping 
should be invoked. Retraining can be carried out automati 
cally without intervention by the user as described below. 
This is done by using specially adapted application Specific 
Software. The process of retraining can involve the creation 
of a Second neural network that has the same topology as the 
original neural network 47 and retaining the Second net 
work. This is described in detail below. 

0118 Performance Evaluator 43 

0119. Once the ADE has been trained, a validation pro 
cess 43 is used to determine the performance that the ADE 
has for the particular task. The performance of the ADE is 
determined by presenting the evaluation data Set 45 to the 
neural network 47 using the performance evaluator 43. The 
evaluation data Set 45 contains profiles and information 
about whether these profiles are anomalous or not. The 
profiles are presented to the neural network 47 and the 
anomaly candidates produced by the neural network 47 are 
compared with the expected outputs by the performance 
evaluator 43. The performance evaluator 43 then calculates 
a value 50 which indicates the level of similarity between the 
actual and expected outputs of the neural network. This 
value 50 is then provided to application specific Software 51. 

0120 Neural Network Creation Process 44 

0121 For each instantiation of the ADE a separate neural 
network 47 is required. The neural network creation process 
44 creates a neural network of a given internal architecture. 
The creation process 44 creates a multi-layer perceptron 
(MLP) that is either fully connected or not fully connected. 
The MLP can be created with different numbers of input, 
output and hidden units. The number of hidden layers can 
also be varied. It is not essential that the creation process 
create a multi-layer perceptron type neural network. Other 
types of neural network Such as a Self-organising map could 
be created and used to detect anomalies. 
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0122) Detector 35 
0123. Once the data from the two profiles has been 
prepared, the neural network has been created and evaluated 
by the administrator 34, the neural network 47 is simply 
presented with the new detection data 40. Referring to FIG. 
3, the detector 35 receives the detection data 40 and using 
the trained and validated neural network 47 carries out the 
detection process to produce potential anomaly candidates 
41. The neural network classifies each recent profile either as 
an anomaly or not and the neural network 47 also gives an 
asSociated confidence value for each classification. Anomaly 
threshold parameters 52 are input to the detector 35 from 
application specific Software. These parameters 52 are used 
to filter the potential anomaly candidates 41 to remove the 
majority of false positive identifications. For example, all 
anomaly candidates with a very low confidence rating could 
be filtered out. 

0.124. Instantiating and Integrating the ADE to Form a 
Specific Anomaly Detection Application 
0.125 The ADE is a library of Software components 
which can be used to detect anomalies in data about the 
transmission of messages in a communications network. The 
components need to be tailored for each specific application 
and once instantiated form an engine which can then be 
integrated into a Software System. The ADE has an appli 
cation programming interface (API). The application spe 
cific Software 22 communicates with the ADE via this API. 

0126 Application Programming Interface (API) 
0127. The API enables 8 different method calls to be 
made on the ADE from the application Specific Software 22. 
That is 8 different instructions can be given to the ADE 
including: 

0128 1. Create Anomaly Detector 

0129 2. TrainAD 
0130 3. Perform Detection 
0131 4. EvaluatePerformance 

0132) 5. SwitchADs 
0133 6. Add Knowledge 

0134) 

0135) 8. Delete AD 

7. UpdateProfiles 

0.136 These instructions are examples only and other 
types of instructions could be used. Each of these 8 instruc 
tions are now described: 

0137) CreateAnomalyDetector 
0.138. This instruction requires that information about the 
location of an anomaly detector creation Specification and a 
training data Set is Supplied when the instruction is made. 
This information is Supplied by the application specific 
Software 22, for example, it may be input by the user through 
a GUI. When this instruction is given to the ADE an 
anomaly detector is created which includes a neural network 
based on the creation Specification and the training data Set. 
The anomaly detector creation Specification contains infor 
mation about the minimum size for the training data Set as 
well as other information as described below. Once the 
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anomaly detector has been created a Signal is returned to the 
application Specific Software 22 to indicate that the neural 
network is ready. 

0139 TrainAD 
0140. This instruction causes the training/retraining pro 
ceSS 42 to train or retrain the neural network using the 
training data Set and any retraining data that is available. 
Once the neural network has been trained or retrained 
information is Sent back to the application specific Software. 
This includes information about the location of the trained/ 
retrained neural network and a classification error. The 
classification error is a value which indicates the proportion 
of inputs that were misclassified by the neural network 
during an evaluation of the performance of the neural 
network. 

0141 PerformDetection 

0142. This instruction requires that information about the 
location of a detection data set 40 is provided to the ADE. 
When this instruction is given the detector 35 in the ADE 
performs a detection using the Supplied detection data Set. 
This is the normal mode of operation for the engine. A Series 
of real presentations are Supplied, which the neural network 
attempts to classify as being anomalies or not. When the 
detection is completed the ADE returns a data Set to the 
application Specific Software 22. This is a list Showing which 
category (anomaly or not) the ADE classified each input into 
together with a confidence rating for each classification. 

0143) Evaluate Performance 

0144) When this instruction is given to the ADE the 
performance evaluator 43 carries out an evaluation using the 
evaluation data set 45. When the performance evaluation is 
completed a classification error is returned to the application 
Specific Software. This gives an indication as to how many 
mis-classifications were made by the neural network. A 
mis-classification occurs when the neural network returns a 
detection result based on a known input-output pair, which 
does not match the correct output for that particular input. 

0145 SwitchADs 

0146 When this instruction is given to the ADE a 
recently trained second neural network (that was created 
during the retaining process and is contained in a Second 
anomaly detector) is Switched with the current active neural 
network. That is, the current active neural network is 
replaced by the newly trained neural network. If a Switch is 
attempted before a Second neural network has been created 
an error message is returned to the application specific 
Software 22. 

0147 Add Knowledge 

0.148. This instruction requires that information about the 
location of a data set containing validated results 48.39 is 
provided with the instruction. When the instruction is given, 
a retraining data Set is created or updated within the ADE 
using the new information. When the updating proceSS is 
completed information about the location and existence of 
the retaining data Set is returned to the application specific 
Software. 
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0149 UpdateProfiles 
0150. This instruction requires that information about the 
location of the presentation data Set to be provided when the 
instruction is given. When the instruction is given the 
historic profiles are updated using information from the 
recent profiles using the profile decay proceSS32. When the 
updating process is completed information about the loca 
tion of the updated presentation data Set is returned to the 
application Specific Software 22. It is also possible for the 
recent profiles to be updated with current information as 
described below. 

0151. DeleteAD 
0152. When this instruction is given the anomaly detector 
is deleted. Any memory that was used to Store the anomaly 
detector is released. 

0153. Preferably the API (and the ADE) is created using 
an object oriented programming language Such as C++. An 
object referred to as an ApplicationBridge object is provided 
which makes available each of the 8 methods or instructions 
described above. Each of the 8 methods has an associated 
valid “return event method. In order to add further capa 
bilities required by a Specific application the user must 
create further software which inherits from the Application 
Bridge object and overloads the return event methods It is 
not essential however for the API and indeed the ADE 
Software to be created using an object oriented programming 
language. Other programming languages could be used. 
0154) Anomaly Detector Creation Specification 
O155 This contains three parameters and information 
about the location of a neural network creation Specification. 
Preferably the anomaly detector creation Specification is an 
object created using an object oriented programming lan 
guage. It is used by the ADE to instantiate all the C++ 
objects. The three parameters are: 

0156 1. an update factor-this specifies the update 
factor that is to be used in the algorithm for updating 
profiles as described below. 

O157 2. a retrain factor-this is a threshold which 
must be met before retaining takes place. For example, 
it can be the proportion of retraining data to original 
training data required in order to make it worthwhile 
retraining. 

0158. 3. a minimum training data parameter-this is a 
threshold which must be met before training occurs. It 
reflects the confidence in the training data and the 
neural network's ability to train on a restricted data Set. 
This value is the minimum amount of original training 
data required before the neural network will be trained. 

0159. In order to produce an anomaly detector creation 
Specification it is necessary to first construct a neural net 
work creation Specification. 
0160 Neural Network Creation Specification 
0.161 The neural network creation specification contains 
information about the location of two other Specifications, 
the layered network Specification and the network trainer 
Specification. Preferably the neural network creation Speci 
fication is formed using an object oriented programming 
language and is linked to the anomaly detector creation 

Jan. 16, 2003 

Specification object, a layered network Specification object 
and a network trainer Specification. The layered network 
Specification and the network trainer Specification should be 
created before the neural network creation specification. 
0162 Layered Network Specification 
0163 This contains the specification for a particular type 
of layered neural network. A list of three values is given 
which specify: 

0.164 1. the number of units in the input layer; 
0.165 2. the number of units in the hidden layer; 
0166 3. the number of units in the output layer. 

0.167 A list of weights can also be given. This is a list of 
values for each of the weights between the connections in 
the neural network. If the Specification is for a trained neural 
network then a list of weights must be given. If the Speci 
fication is for an untrained neural network then no weights 
are necessary. The number of input units is determined with 
reference to the number of attributes of the input data that 
are deemed significant. The number of units in the hidden 
layer can be determined either empirically or by Statistical 
analysis using known methods. The number of units in the 
output layer depends on the number of classifications the 
user requires for the particular task. It is also possible to 
specify whether the neural network should have a fully 
connected architecture or a partially connected architecture. 
If a partially connected architecture is Selected the Specific 
connections are Specified in the list of weights. 
0168 Network Trainer Specification 
0169. This contains information required by the neural 
network during training. 7 parameters are included: 

0.170) 1... target error-this is a threshold error value 
which must be achieved before training stops. If the 
target error is set to 0 then the threshold is ignored. The 
target error is specified as the Sum of Squared errors 
Over the training Set. That is, the training Set is pre 
Sented to the neural network and the output values are 
Subtracted from the expected output values to give a Set 
of errors. The Sum of the Squares of these errorS is then 
calculated. 

0171 2. percentage validation-this specifies the per 
centage of training data that will be regarded as Vali 
dation data and will not be used for training. This 
parameter is only significant if early stopping is used. 

0172. 3. is-early-stopping-required-this is a Boolean 
value which indicates whether training should be 
Stopped early in order to achieve generalisation. In 
most cases this is Set to true. Early Stopping means 
Stopping the training process earlier than usual So that 
Overfitting does not occur. If the neural network is 
trained too much it will not be So good at generalising 
or producing "best guess' results when new data is 
presented. This is because the training data has been 
Overfitted or learnt too specifically. 

0173 4. number of training cycles-this specifies the 
number of training cycles that will be performed. If this 
value is Set to Zero the neural network is retrained. That 
is, the weights are not randomised before training 
begins. 
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0174 5. random seed-this seeds the random number 
generator that is used to initialise the weights and 
choose the validation set. When this value is set to -1 
the random number generator is seeded using a value 
derived from the system clock. This maximises the 
unpredictability of the generated numbers and is the 
usual value for this parameter. When this value is set to 
a positive number this value is used as the Seed. This 
option is intended for purposes Such as regression 
testing and debugging where the same Sequence of 
pseudo-random numbers may be required every time. 

0.175 6. max number of steps—this parameter speci 
fies the maximum number of Steps that the trainer can 
take. If this parameter is Set to Zero then this test is 
ignored. This is the usual value for this parameter. A 
non Zero value indicates the number of Steps at which 
to Stop a training cycle if it has not stopped previously 
for Some other reason. 

0176 7. fractional tolerance-this value indicates a 
threshold for the amount of improvement that should 
occur as a result of one training Step. When the thresh 
old is reached training Stops. A Zero value indicates that 
training should stop when a step produces an effect that 
is Small compared with the accuracy of the floating 
point calculations. A non Zero value indicates that 
training should stop when the relative improvement as 
a result of a step is below the value given. For example, 
values in the range 10-2 to 10-6 are Suggested. 

0177. The ADE is generic in nature and requires an 
additional layer of instantiation Software (or application 
specific software 22) to provides further functionality. For 
example, the instantiation Software may provide a GUI, data 
pre/post processing and interfaces to the external World. AS 
a minimum requirement the application Specific Software 
must allow the user to give any of the 8 API method 
instructions or calls to the ADE. The parameters required by 
each method call must also be provided in the correct 
format. For example, historic and recent profiles must be of 
a specified format, as must any Specifications and data Sets. 
0.178 The process of instantiating an ADE will now be 
described by way of example. In this example the ADE is to 
be instantiated and used to detect fraudulent usage on a 
mobile telephone or fixed telephone network. Also, the data 
to be analysed by the ADE is in the form of call detail 
records which have been pre-processed into the format 
required by the ADE. The steps involved in the instantiation 
proceSS include: 

0179 arrange for the application specific Software to 
supply the CDRs in the correct format to the ADE 

0180 create an anomaly detector creation specifica 
tion (this includes the step of creating a neural 
network creation specification); 

0181) 
0182 create the training data set, validation data set 
and presentation data Set; 

0183) 

create the anomaly detector; 

train the neural network; 

0184. When these steps have been performed the instan 
tiated ADE is ready to detect fraudulent telephone accounts. 
The application specific Software should also be arranged to 
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allow the other instructions or method calls (add knowledge; 
retrain; Switch; delete) to be sent to the ADE. 
0185. Create an Anomaly Detector Creation Specification 
0186 This entails determining the values for the various 
parameters. In this example the ADE is formed using an 
object oriented programming language. In this cases a call is 
made on an anomaly detector creation Specification object 
constructor. This causes the anomaly detector creation Speci 
fication to be created. The parameters should be calculated 
prior to the creation of the anomaly detector and inserted 
into the anomaly detector creation Specification. The opti 
mum set of parameter values should be used in order to 
obtain the best detection results. For example, the number of 
output units for the neural network is determined according 
to the type of data being analysed. For fraud detection two 
output units can be used, one for fraud and one for non 
fraud. The analysis of raw network data is required to help 
in the definition of the key attribute/fields and values that are 
needed for the anomaly detector Specification. 
0187 Create the Anomaly Detector 
0188 The anomaly detector objects are created by giving 
an instruction to Start the Create Anomaly Detector method 
and Supplying information about the location of the anomaly 
detector Specification and training data Set. 
0189 Create the Training Data Set, Validation Data Set 
and Presentation Data Set 

0190. The CDR data must be transformed in order to 
produce the training, validation and detection data sets. One 
approach for doing this involves: 

0191 splitting the CDR data into 3 sets, training, 
validation and detection, whereby the training Set is 
Substantially larger than the validation Set 

0.192 deciding on Small arbitrary window sizes for 
the historical and recent profiles. The term window 
size refers to the time period over which the profiles 
represent telephone call behaviour. For example, for 
a 3 month supply of CDR data, the historical window 
Size could be 5 days and the recent window Size 
could be 0.5 days. 

0193 Selecting attributes from the CDR data and 
forming the profiles as well as labelling each profile 
as to whether it is fraudulent or not. 

0194 Training the neural network with the new 
training data Set and observing the detection results. 

0.195. If the neural network performance appears 
relatively low, gradually increase the window sizes 
and retrain. 

0196. If the neural network performance reaches a 
level required by the user then the window sizes are 
deemed correct and are used for profiles in all data 
SetS. 

0197) The creation of a historic profile for a new cus 
tomer account needs to be done at the instantiation layer 
(application specific Software). The historic profile should 
be a direct copy of the recent profile with a label to indicate 
that it is a new customer account. Also, data for a profile 
needs to be consecutive, i.e. if it is determined that a recent 
profile required 5 hours of data, then 5 consecutive hours 
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need to be used for the recent profile, not just any 5 hours. 
This means that gaps in the CDR data may cause problems. 
However, this depends on the relative size of the “gap' For 
example, if there is a one hour gap in a months worth of data 
then there is unlikely to be a problem. Another point is that 
the window sizes for the historic and recent profiles must be 
for consecutive time periods. For example, the historic time 
period may be from 1 January to 31 January whilst the recent 
profile window is from 31 January to 5 February. 

0198 Train the Neural Network 
0199 This process involves cyclically adjusting the 
weights Stored on the connections between units in the 
neural network, until Sufficient training has been performed. 
This is done by sending an instruction to the ADE to start the 
TrainAD method. 

0200. Once the ADE has been instantiated or tailored for 
a specific application it is integrated into the System Soft 
ware. To do this integration code is used to bridge from the 
tailored ADE to the system software. This integration code 
is application Specific. Many different possible forms for the 
integration code are possible. The integration code should 
take account of the following issues: 

0201 management issues 

0202) 

0203) 

architecture issues 

Software issues 

0204 data issues 
0205 Management Issues 

0206. The integration Software must manage the ADE. 
The functions which must be performed are: 

0207 Monitoring the performance of the ADE. The 
application which the ADE will be used in will need 
to determine the appropriate performance measure 
ment. The engine will return a mis-classification 
value when a performance evaluation is requested. 
This mis-classification is obtained by presenting the 
training Set together with any additional knowledge 
added to the engine, and counting how many of these 
are given an incorrect result. 

0208 Deciding the threshold performance level for 
retraining. 

0209 Deciding when to retrain the neural network. 

0210 Architecture Issues 

0211 Architectural considerations are: 
0212 How to access appropriate data Stores in order 
to provide necessary input data from which to per 
form detection and where to locate data Stores, either 
locally or distributed. 

0213 How to update the persistent store of the 
neural network creation Specifications, which is part 
of the anomaly detector Specification, when the ADE 
is retrained. The Specification is passed back through 
the API when the training is complete. 
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0214 Software Issues 
0215. The integration code can have the following func 
tionality: 

0216) If the ADE is event based it may easily be 
converted into call-return form by writing a Small 
amount of interface code. 

0217 Storage of the anomaly detector specification 
data needs to be considered. The anomaly detector 
Specification will need to be accessible by the user at 
Some point after Start-up in the following situations: 
System crash, proceSS killed and needs to be re 
Started. 

0218 Storage of the historical profiles also needs to 
be considered. The historical profiles will be stored 
externally of the ADE, and accessed when required. 

0219. Storage of the original training data set, and 
the additional knowledge (data) gathered through 
use of the ADE is also required. The additional 
knowledge is needed by the ADE for re-training, in 
order to improve its future performance. 

0220 Deletion of any objects output from the 
ADE-detection results, any data Sets, and the 
anomaly detector Specification. 

0221) Any objects which are passed into the ADE 
will be deleted by the ADE Software-training data 
Set, data input to use in detection mode, any knowl 
edge added, the profiles, and the anomaly detector 
Specification. 

0222 Data Issues 
0223) The integration software is responsible for: 

0224 Maintaining an appropriate set of data for 
initially training the ADE. This proceSS must result in 
a data Set whose data coverage is Sufficient to allow 
Successful training of the ADE. 

0225 Maintaining an appropriate data set for 
retraining the ADE. Additional knowledge must be 
obtained by interaction with the user. This knowl 
edge must be obtained by interaction with the user. 
This knowledge must be used to form a retraining 
data Set which is to be utilised when a request is 
made, by the user, to add knowledge back into the 
ADE. 

0226 Updating historic profiles over time. This is 
done by allowing the recent profile data to migrate 
into the historical profile. This relies upon the recent 
profile being assessed as non-fraudulent, as it would 
be counter-productive to allow a non-fraudulent his 
torical profile to be updated using a fraudulent recent 
profile. 

0227 Some form of feedback loop is therefore needed in 
order for the fraudulent profiles output by the instantiation 
layer to be verified. The resultant fraud candidates will need 
to be assessed and the results of the assessment will need to 
be fed back into the instantiation layer in order for the 
correct profile adjustment to be made. Any non-fraudulent 
output will be allowed to update the associated historical 
profile without the need for a validation step. 
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0228 Assessing the raw communications network 
data. This can either be a manual or automatic 
process of obtaining account details from the appro 
priate communications network. 

0229. A particular example of an instantiated ADE will 
now be described. In this example an anomaly detector is 
formed using an ADE together with application specific 
Software which makes it possible for automatic retraining of 
the neural network components to take place. In this 
example, the particular instantiation of the ADE is referred 
to as a kernel within the anomaly detector. The major 
components of the kernel with respect to the fraud detector 
application domain, are set out in Appendix A below. 
0230 FIG. 14 shows schematically how the anomaly 
detector 201 can be used to receive information 202 about 
the transmission of messages in a communications network 
203 and provide reports 204 about potential anomalies in the 
input data. Validated results 205 can be provided to the 
anomaly detector 201 So that the performance of the 
anomaly detector can be evaluated. For example, in the case 
of telecommunications fraud detection the anomaly detector 
201 identifies potential fraud and non-fraud candidates. 
Further information 205 about whether these candidates 
have been correctly identified as frauds or non-frauds is then 
obtained for example from the user, and input to the anomaly 
detector. This information is used to evaluate the perfor 
mance of the anomaly detector. This provides the advantage 
that a measure of the detector's performance can be obtained 
easily. Once the performance falls below a certain pre 
defined level, action can be taken to improve the perfor 
mance as long as certain other criteria are also met. This 
action involves retraining a neural network 261 which forms 
part of an anomaly detector kernel 206. Once the perfor 
mance drops below a specified limit, retraining can be 
initiated automatically without any intervention from the 
USC. 

0231. In the situation where the performance of the 
anomaly detector 201 is Satisfactory, no retaining takes 
place. This is illustrated in FIG. 15 at 220. In this situation 
validation data has been provided although the neural net 
work 261 has not been updated using the validated data 205; 
that is, because the neural network 261 has not been 
retrained it is not able to take account of the new validation 
data 205. When further results are obtained from the 
anomaly detector 201, these will not reflect the new infor 
mation and the user may be presented with results that she 
has already corrected before. In order to avoid this problem, 
the anomaly detector 201 is able to store validated results 
221 between retraining episodes. This store of validated 
results is then used, as shown at 222, to update any further 
output from the anomaly detector before this is presented to 
the user for validation. 

0232 The anomaly detector 201 also has the ability to 
create a daughter neural network of the same topology as the 
parent. This daughter can then be retrained whilst the parent 
is still in use. Once the daughter is retrained it can then be 
used in place of the parent, if the performance of the 
daughter is satisfactory. This is illustrated in FIG. 16. 
0233. It is not essential for the validation data 205 to be 
provided by a user via a user interface. For example, the 
validation data could be obtained automatically and input to 
the System directly. Also, it is not essential for the neural 
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network to form part of an anomaly detector. The neural 
network could be used for processing data for another 
purpose. 

0234. The process of monitoring the performance of the 
anomaly detector will now be described in more detail. This 
comprises: 

0235 changing configuration information 

0236 performing an anomaly detection 

0237 presenting the outputs from the anomaly 
detector to the user via a user interface 

0238 accepting validated results or target outputs 
from the user via the user interface 

0239 evaluating the performance of the anomaly 
detector 

0240 Changing Configuration Information 

0241 The user is able to change the following settings 
during operation of the anomaly detector: 

0242 (I) the evaluation interval i.e. the number of sets 
of validated results that must be supplied to the 
anomaly detector before retraining can be initiated 
automatically; 

0243 (ii) the start date and time for performance of an 
anomaly detection; 

0244 (iii) the performance threshold i.e. the threshold 
below which performance of the anomaly detector must 
fall before automatic retraining is initiated. This Step of 
changing the configuration information is optional. 

0245 Performing an Anomaly Detection 

0246 The kernel identifies via the system clock that a 
detection poll period has been reached. If the kernel is busy 
when a poll detection period is reached then when it 
becomes available it will get the current time. If this time is 
less than the clock interval (plus Some overhead time) then 
the detection is Serviced else the poll detection has been 
missed and the kernel sends a message back to the graphical 
user interface (GUI) to indicate that a poll detection has been 
missed. 

0247 If a detection is to take place then the kernel sends 
information to the GUI to indicate that the kernel cannot 
accept any further commands until the detection has been 
completed. 

0248. The kernel accepts input information that is input 
to the anomaly detector. This input information is initially in 
the form of call detail records for those customers who have 
made calls during the poll period. These call details records 
are pre-processed before being input to the kernel. The 
kernel also performs any further processing of the input 
information before this is provided as input to the neural 
network within the kernel. The neural network then per 
forms the anomaly detection and outputs a set of results to 
the kernel. The kernel then stores these results in a file and 
sends information to the GUI indicating that the detection is 
complete. 
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0249 Presenting the Outputs From the Anomaly Detector 
to the User via a User-Interface 

0250). When the GUI receives information from the ker 
nel indicating that a new detection results file has been 
created it indicates this to the user. This is done by high 
lighting a reload button on a display Screen. By activating 
this button, for example by clicking it with a mouse, the user 
can display the results file on the screen. FIG. 17 shows an 
example of Such a display. The user can manipulate the way 
in which the results are displayed using the user interface. 
The user is also able to generate a graph displaying the 
results information as shown in FIG. 18 and independently 
to change the viewing criteria for this graph without affect 
ing the table of results. 
0251 Accepting Validated Results or Target Outputs 
From the User via the User Interface 

0252) When viewing the detection results on the table 
view as shown in FIG. 17, the user is able to indicate if 
individual responses were correct or incorrect. For example, 
the table 240 shown in FIG. 17 has one row 241 for each 
customer account number. In the various columns of the 
table 242 the following information is provided: 

0253 the customer account number; whether this 
account is identified as a potential fraud or not; the 
confidence rating of the fraud/non-fraud classification 
and the average duration of a telephone call. Other 
information could also be provided, for example the 
average duration of long distance calls or information 
about geographical location. The validity column 243 
displays information that the user has input about the 
account number concerned. This information can be 
added to the kernels knowledge base. The user is able 
to Select individual accounts and validate the anomaly 
detector's response. When the user has added valida 
tion information for a number of accounts this can be 
added to the engine's knowledge base. This is done by 
activating the “add knowledge” button 244 on the user 
interface as shown in FIG. 17. When the user activates 
this button the GUI sends information to the kernel 
about the set of validated fraud candidates for all those 
accounts which have been validated and all other 
non-fraudulent accounts. This is called an add knowl 
edge event. 

0254. When this information is sent to the kernel the 
kernel has Several actions to perform as listed below: 

0255 (1) store or retain previously validated candi 
dates, 

0256 (2) add information about the validated fraud 
candidates to the anomaly detector's knowledge base; 

0257 (3) update profiles; 
0258 (4) evaluate the performance of the anomaly 
detector; 

0259 (5) retrain the neural network. 
0260 Actions 1, 2 and 3 above must be performed 
whereas actions 4 and 5 are conditional. 

0261 Store or Retain Previously Validated Candidates 
0262. When an add knowledge event has been initiated, 
the GUI needs to maintain a list of all accounts which have 

Jan. 16, 2003 

been validated and the condition associated with that 
account, for example, whether a fraud was correctly iden 
tified as Such. If Subsequent detection take place before the 
kernel initiates automatic retraining then the GUI can dis 
play to the user what that account has been previously 
validated to. 

0263. Add Information About the Validated Fraud Can 
didates to the Anomaly Detector's Knowledge Base 

0264. The kernel adds all the validated fraud candidates 
to the anomaly detector's knowledge base. The kernel also 
increments the number of add knowledge events which have 
been performed. 
0265 Update Profiles 
0266 The kernel updates the historical profile for those 
accounts which are validated as correct non-fraud candidates 
and those which are validated as incorrect fraud candidates. 
The kernel also updates the historical profiles for the other 
non-fraud candidates. The kernel matches the recent profiles 
with the customer's historical profile and then provides this 
information to another proceSS which updates the historical 
profiles with the corresponding recent profiles. The updated 
historical profiles are then stored by the kernel. 
0267 Evaluate the Performance of the Anomaly Detector 
0268 If the number of add knowledge events is equal to 
the evaluation interval, the kernel performs an evaluation of 
the performance of the anomaly detector. If a performance 
evaluation is carried out then the counter for the number of 
add knowledge events is reset. The performance evaluation 
comprises carrying out a comparison of the candidates and 
any corresponding validation results. Retrain the Neural 
Network 

0269. If the performance evaluation is less than the 
performance threshold, the kernel initiates retraining of the 
neural network. The kernel will not respond to any events 
that are Sent until retraining is complete. No intervention by 
the user is required during retraining. The kernel informs the 
GUI when retraining is complete and which of the opera 
tions listed as 1 above have been performed so that the GUI 
can update its representations respectively. If an evaluation 
has taken place then the new performance evaluation result 
is sent to the GUI. If the neural network has been retrained, 
information about this is sent back to the GUI. 

0270. When retraining takes place, a new neural network 
is created by the kernel. This daughter neural network has 
the same topology as its parent. The daughter neural network 
is trained instead of retaining the parent. 

0271. Once retrained the daughter neural network is 
evaluated by the kernel. If the performance of the daughter 
is better than the parent then the kernel indicates to the GUI 
that a new neural network is available. The GUI asks the 
user if this new neural network should be used. The user's 
response is Sent to the kernel and if affirmative, the kernel 
replaces the parent neural network with the daughter neural 
network. 

0272 Preferably the anomaly detector and the neural 
network are implemented using an object oriented program 
ming language, or a non-introspective programming lan 
guage. The anomaly detector is implemented using at least 
one instantiated object. In order to Store or retain the objects 
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persistence mechanisms are used. Such mechanisms are 
described in appendix B below. The objects or groups of 
linked objects are converted into data Structures using the 
persistence mechanisms in order that they can be Stored or 
retained. The data structures can then be passed between 
processors. For example, these may be different nodes on a 
communications network. This provides various advantages. 
For example, a daughter neural network, once created, can 
be stored as a data Structure and moved to a quiet node in the 
communications network before being retrained. Also the 
neural network part of the anomaly detector can be moved 
to a particular node in the communications network whilst 
the other parts of the anomaly detector such as the GUI are 
held on a different (and perhaps quieter) node. 

0273. The anomaly detector discussed in the example 
above may also contain application Specific Software for 
Storage of information relating to the transmission of mes 
Sages in a communications network. Aparticular example of 
an anomaly detector which incorporates Such application 
Specific Software is discussed below. 

0274 FIG. 5 shows schematically how the anomaly 
detector 101 can be used to receive information 102 about 
the transmission of messages in a communications network 
103 and provide reports 104 about potential anomalies in the 
input data. For example, in the case of a telecommunications 
network the information 102 can be in the form of call detail 
records (CDRs). The format of CDRs from different tele 
communications systems differs and the anomaly detector is 
able to cope with this. In a given time period call detail 
records are obtained for telephone calls made during that 
time. The anomaly detector collects the individual CDR's 
for each customer and generates a Signature for each cus 
tomer. This is shown in FIG. 6. A set of CDR's for an 
individual customer is obtained 110. Each CDR comprises 
several attributes or fields 112 such as the billing account 
number, the telephone number associated with the account, 
the called telephone number, the date and time of completion 
of the call etc. From the set of CDR's for an individual 
customer 110 a signature 111 is created for that customer 
using information from the fields or attributes 112. Each 
Signature 111 comprises Several parameters 113 that are 
related to the fields or attributes 112 from the individual set 
of CDRS for the customer. For example, a parameter might 
be the percentage of local calls made during the time period. 
At least one parameter is related to the transmission of 
messages over a portion of the period and information 
relating to the position of the portion in the period. For 
example, Such a parameter might be the percentage of local 
calls made between 8 am and 8 p.m. on the third day of the 
time period. This has the advantage that a large number of 
CDRS have been Summarised into Signatures that capture 
essential features of the pattern of telephone calls made by 
individual customers over time. By creating two signatures 
one for a long period of time and one for a shorter period of 
time, it is possible to capture information both about the 
macro behaviour relating to a particular account number and 
the micro behaviour relating to that account number. For 
example, an historic Signature and a recent Signature can be 
created with the historic Signature reflecting behaviour over 
a longer period of time. By comparing the historic and recent 
Signatures (for example using a neural network) recent 
changes in behaviour can be detected. 
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0275. In the case when the historic and recent signatures 
are compared using a particular instantiation of a neural 
network the time periods for the historic and recent Signa 
tures, once these have been chosen, are fixed. The neural 
network is trained using historic and recent Signatures with 
the chosen time periods and thereafter Signatures with the 
Same size of time period must be used. 
0276. As time passes the historic signature needs to be 
updated because calling habits can change over time. This 
updating process enables emerging temporal patterns in the 
CDR data to be taken into account. The process of updating 
a signature is illustrated in FIGS. 7 and 8. 
0277. The current historic signature 130 is updated with 
the current recent Signature 131 to form an updated historic 
Signature 132. A new recent Signature 133 can then be 
obtained. As indicated in FIG. 7 the current historic signa 
ture 130 is combined with the current recent signature 131 
using a weighted averaging procedure to form the updated 
historic signature 132. The arrow 134 in FIG. 7 indicates 
time and the information emanating from the communica 
tions network over time is illustrated by 135. 
0278 In the situation where a comparison between an 
historic and a recent Signature is required to detect anoma 
lies it may be that new information has become available 
Since the recent signature was created. For example, if the 
historic Signature must always be updated using a recent 
Signature that represents 7 days worth of data then 6 days 
worth of new information may be available before it is 
possible to take this into account. The System must wait until 
the end of the short recent period before an update is 
possible. 

0279. In order to accommodate new information obtained 
in-between updates a third dynamic Signature is used. The 
third signature is dynamic because it can be taken over a 
variable time period as long as this is shorter than the time 
period for recent signatures. The dynamic third signature can 
then be used to update the recent signature before the 
anomaly detection takes place. This has the advantage that 
all available data is used in the anomaly detection process. 
0280 A signature which can also be referred to as a 
profile contains a Statistical representation for each customer 
over a period of time. In one example, a profile as shown in 
FIG. 12 comprises the following major components: 

0281 in items representing the distribution of calls 
made during a week, 

0282) 21 items representing the distribution of calls 
made during particular portions of a week; 

0283 of the 21 items 7 items represent the distribution 
of calls for each day of the week; 

0284 of the 21 items 14 represent the distribution of 
calls either for day time use or night time, for each day 
of the week. 

0285) The process of generating signatures from CDRs 
will now be described in more detail. This process com 
prises: 

O286 arsing a number of different formats of CDR p 9. 
file 

0287 generating the profile. 
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0288 Parsing a Number of Different Formats of CDR 
File 

0289. This is done by defining a specification for the 
CDR type to be parsed. A parser for each type of CDR type 
is contained in a library of CDR parsers. A base class is 
created from which each new type of CDR is able to inherit 
as shown in FIG. 9. 

0290 For each CDR type which is to be parsed to create 
a profile a specification is built of the position of the 
important data and the format in which that data is Stored 
within the CDR. An example of a CDR specification is 
shown in FIG. 10. The CDRS are then converted into the 
desired format using information from the CDR specifica 
tion. An example of a desired or target call detail record 
format is shown in FIG. 11. 

0291 Generating the Profile 
0292. This involves selecting the appropriate attributes 
from each CDR (that has already been parsed into the 
desired format) to produce the profile. In this example, the 
desired CDR format is as shown in FIG. 11 and the profile 
has a basic structure as shown in FIG. 12. As previously 
described this contains 7 items for the basic structure 181 
and 21 additional fields 182 which represent day-of-week 
and time-of-day information. Additional items can be added 
to this basic structure. Also, the 21 items 182 used within the 
profile shown in FIG. 12 can be expanded to model the time 
of day-of-week more closely. There is no restriction on the 
Size of the profile which can be generated but the profile size 
must remain consistent within a particular instantiation of 
the System. 
0293. The appropriate attributes from each pre-parsed 
CDR are selected to form the profile by taking the following 
Steps: 

0294 determining when a call was initiated 
0295 calculating the call distribution over the week 

0296) Determining when a Call was Initiated 
0297. In the example target CDR format shown in FIG. 
11 there is a Dayof Week field 171. This is used to determine 
which day the call was made on. Similarly, the CalTime 
field 172 is used to determine the time the call was placed 
on that particular day. 
0298 Calculating the Call Distribution Over the Week 
0299) This is done by: 

0300 
0301 and calculating the calls made in each day/ 
night period. 

calculating the calls made each day; 

0302) Once the time when a call was initiated has been 
determined it is possible to create the elements of the profile 
which refer to the call distribution pattern i.e. the items 
shown at 182 in FIG. 12. Calls are analysed to calculate the 
percentage of calls made each day (7 items in the profile of 
FIG. 12) and also the percentage of calls made during the 
day/night periods (14 items in the profile of FIG. 12). This 
gives 21 items relating to the call distribution. In this 
example, all the percentages are based on the number of 
calls made in the respective period compared with the 
number of calls made over a whole week. Also, in this 
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example, all the percentages are Scoped between 0 and 1. For 
example, 15% would become 0.15. 
0303 Calculating the Calls Made Each Day 
0304. This is done by Summing the number of calls made 
each day during the time period (in this case one week) and 
dividing this sum by the total number of calls made over the 
week. Information about the number of calls made each day 
is obtained using the Day Of Week field in the CDR, shown 
as 171 in FG 11. 

0305 Calculating the Calls Made in Each Day/Night 
Period 

0306 In this example, a night period is defined to include 
calls made between 7pm one evening to 7am the following 
day. Because a night period can therefore include calls made 
on Separate days it is necessary to analyse which hour of the 
day the call is made and see which particular period a call 
should be classified in. Potentially, calls made over one day 
can fall into 3 different periods (91, 92 and 93) as shown in 
FIG. 13. The day of the week and the hour that the call was 
made are obtained. Then the number of calls made in the 
relevant period is divided by the number of calls made over 
the whole week to give the percentage of calls made in that 
period. 

0307. It is not essential that profiles of the form shown in 
FIG. 12 are used. Many other items could be included, for 
example the percentage of calls made to mobile telephones, 
the longest call made within the profile period and the 
number of call forwards made. Alternatively, the whole 
profile could be taken up with information about calls made 
at different times of the day. Many different combinations of 
different types of information are possible. 
0308 The process of updating a signature or profile is 
now described in more detail. AS previously described, an 
historic Signature is updated with the corresponding recent 
Signature by a proceSS involving a weighted averaging. A 
particular example of Such an updating algorithm is given in 
the equation below: 

Ti = (Ti- (Tix Update Factor) + (Six Update Factor) 

WindowSize(S) Update Factor = 
WindowSize(T) 

0309. In this equation T is the target profile or signature, 
which in this case is the historic profile. S is the source 
profile which in this case is the recent profile. The term 
window size refers to the length of the time period to which 
the Signature relates. For example, the Source window Size 
may be 1 hour and the target window size 10 hours. Once the 
target and Source profiles have been obtained the update 
factor is calculated by dividing the Source window Size by 
the target window size. If the Source window Size is 1 hour 
and the target window Size 10 hours then the update factor 
is 0.1. If no Source or recent profile exists a new recent 
profile is created. If the number of attributes in a profile is 
4 then example Source and target profiles might be: S1,2, 
3,4 and T5,6,7,8). T1 which is the first attribute for the 
new target profile can then be calculated as follows: T1= 
(5-(5x0.1))+(1x0.1)=4.6. Similarly, the other attributes for 
the new target profile are calculated. This updating process 
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can also be used for updating a recent profile with a dynamic 
profile. In both cases, once the updating proceSS has been 
completed, the more recent profile is removed. 
0310. It is not essential to use the exact updating algo 
rithm as described in the equations above. Modifications of 
this algorithm are possible; any type of weighted averaging 
proceSS can be used. 
0311. A recent profile can be updated with a third signa 
ture or poll profile in the same way as for an historic and 
recent profile. Alternatively a different updating algorithm 
can be used for the poll to recent update. For example, one 
possible preferred update rule for poll to recent updating is 
given below: 

R = (PE) (1 - k)R = R+k(Pi -R) 

0312 where p is the window size for the poll profile or 
third signature; 

0313 q is the previous normalising period; 

0314 P is the polled actual total (i.e. rate per r)... or 
average (i.e. rate per q), and 

0315 R is the recent average (normalised to rate per q). 
0316 For a particular anomaly detector in which the 
method and apparatus for creating, storing and updating 
profiles or Signatures is to be used then particular values for 
the time window sizes, the profile update rates and day-of 
week dependencies must be chosen. Different values will be 
most Suited to different applications. Some factors which 
need to be considered when choosing these values are given 
below: 

0317 Time Window Size 
0318 Setting the time window size too small may result 
in insufficient data to expect any reasonable response from 
the anomaly detector. Too Small a time period may also 
result in the propagation of anomalous behaviour into the 
historical profile. If the recent time window Size is too large 
the anomalous behaviour may go undetected for a longer 
period of time. In order to determine the best window sizes 
the effect of different Sampling rates and the Subsequent 
Statistical representation of the characteristics of the behav 
iour being observed needs to be examined. 
0319 Profile Decay Rates 
0320 To determine the best profile decay rate an assess 
ment of the importance of the historical behaviour relative to 
the recent behaviour need to be made. 

0321) Day-of-Week Dependencies 

0322 The process of determining the window sizes and 
the decay rates should also take into account the impact of 
the day-of-week dependencies. 

0323) A wide range of applications are within the scope 
of the invention. For example, detecting telecommunica 
tions fraud; detecting credit card fraud; early detection of 
faults in a communications network and encryption key 
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management. The invention applies to any situation in which 
anomalies need to be detected in a large amount of time 
variant data. 

0324. A wide range of other applications are within the 
Scope of the invention. These include Situations in which 
information about both a macroscopic pattern of behaviour 
and a microscopic pattern of behaviour must be Stored. For 
example, in the area of banking, the detection of credit card 
fraud involves the Storage of information about macroscopic 
and microscopic patterns of credit card use. Other areas 
include computer network Security, trends analysis and 
many other fields. 
0325 Applications in which stored information must be 
updated are also within the Scope of the invention. These 
applications include situations where an emerging temporal 
pattern must be accounted for. For example, the detection of 
credit card fraud, computer network Security mechanisms, 
trends analysis and many other fields. 
0326. A wide range of other applications which involve 
the use of a neural network are within the Scope of the 
invention. For example, in the area of banking the neural 
networks can be used for detecting credit card fraud and in 
this situation the ability to automatically retrain and monitor 
the performance of the neural network is vital. Also, in the 
area of computer network Security neural networks can play 
an important role in detecting anomalous behaviour. Any 
Service which involves Sending messages over a telecom 
munications network, including entertainment Services Such 
as games or video distribution could also benefit from 
anomaly detection or trends analysis. Neural networks are 
used in many other fields as well as anomaly detection. For 
example, Speech recognition, pattern recognition and trends 
analysis. In any of these applications the ability to retrain the 
neural network without intervention from the user can be 
important and these applications fall within the Scope of the 
invention. 

Appendix A 

0327 Kernel 
0328 Major Components 
0329. This appendix details the major software compo 
nents within the fraud detector application domain including 
analysis and design details required. 
0330. The following is a list of passive objects identified 
as part of the analysis phase which will now be described in 
more detail using the object numbers in parentheses: 

0331 Fraud Detection Client (27) 
0332 Interpret Call Detail Record (15) 
0333) Add Knowledge Request (23) 
0334 Update Historic Profile Request (24) 
0335 Performance Evaluation Request (29) 
0336 Fraud Detection Request (16) 
0337 Poll To Recent Profile Decay (20) 
0338 CDR To Profile Tranform (13) 
0339) Call Detail Record (12) 
0340 Unvalidated Fraud Candidates (25) 
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0341 
0342 
0343) 
0344) 
0345) 
0346) 
0347) 
0348 
0349) 

Fraud Detector Specification (28) 
Validate Request (8) 
Candidate Data Set (18) 
Validated Fraud Candidate (22) 
Fraud Candidate (11) 
Presentation Data Set (17) 
Fraud Candidate Data Set (21) 
Profile Data Presentation (7) 
Poll Profile Vector (4) 

0350 Recent Profile Vector (34) 
0351). Historic Profile Vector (33) 

0352 Fraud Detection Client (27) 
0353. Description 
0354) A representation of a client of a fraud detector. This 
controls the fraud detection and performance evaluation 
requests of the application. 

0355 C++ Class Name 
0356) FDFraudDetectionClient 
0357 Behaviour Description: CreateFraud Kernel 
0358 Upon receiving the Createfraud Kernel creation 
event from the GUI terminator, this object will: 

0359 link to the specified fraud detector specifica 
tion, object 28, which was passed as a parameter 
asSociated with the creation event. 

0360) 
0361 Read customer recent and historical profiles 
via the persistence mechanism (See Appendix B) 
creating a profile data presentation, object 7, for each 
individual customer and added to the presentation 
data Set, object 17. 

establish a clock polling mechanism. 

0362. The set of recent profiles is sent to construct 
poll to recent profile decay, object 20. 

0363 A handle needs to be kept on both the pre 
Sentation data Set, object 17, and poll to recent profile 
decay, object 20. 

0364. When the creation process is complete this 
object will send a KernelCreated event back to the 
GUI terminator. 

0365. The fraud detection client is now ready to service 
other events. 

0366 Behaviour Description: UpdateEvaluationInterval 
0367 Upon receiving an UpdateEvaluationInterval event 
from the GUI terminator the client will modify the 
no evaluation period attribute of the Fraud Detector Speci 
fication object (28) with the new evaluation interval. 
0368 Behaviour Description: UpdateDetectionStartDate 
0369. Upon receiving an UpdateDetectionStartDate 
event from the GUI terminator the client will modify the 
detection start attribute of the Fraud Detector Specification 
object (28) with the new date. The client will then stop and 
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update the poll clock mechanism with the new detection 
time and restart the poll clock mechanism. 
0370 Behaviour Description: 
reshold 

Update PerformanceTh 

0371. Upon receiving an UpdatePerformanceThreshold 
event from the GUI terminator the client will modify the 
evaluation performance attribute of the Fraud Detector 
Specification object (28) with the new performance thresh 
old. 

0372 Behaviour Description: AddKnowledge 
0373). Upon receiving an AddKnowledge event from the 
GUI terminator which contains a handle to a set of fraud 
candidate objects (11), the client will then create an 
AddKnowledgeRequest Object (23) with the associated 
fraud candidate Set. On completion of the request the client 
will be informed by the Add KnowledgeRequest Object (23) 
what operations have been completed. These operations will 
be detailed by use of an enumeration parameter with an 
asSociated real value. The enumeration type contains the 
following: 

0374). AddKnowledge 

0375 PerformanceEvaluation 
0376 Retraining 

0377 If the enumeration value is “Add Knowledge” then 
the associated real value will be Zero, else it will indicate the 
current performance of the ADE. These values will then be 
used to send a AddKnowledgeComplete event to GUI ter 
minator. 

0378 Behaviour Description: SwitchEngine 
0379 Upon receiving a SwitchEngine event from the 
GUI terminator the client will interrogate the event param 
eter to establish if a Switch is required. If a Switch is required 
then a request will be made to the ADE to Switch to a new 
anomaly detector. If a Switch is not required then no request 
is made of the ADE. On completion of the Switch process the 
client will send a SwitchComplete event to the GUI termi 
nator. 

0380. Note: The client is required to control the persis 
tence of the new ADE on completion. 
0381 Behaviour Description: PollTime 
0382. Upon receiving a PollTime event from the Process 
10 (clock poll mechanism) terminator which indicates that a 
detection poll period has been reached. The client will send 
a DetectionTakingPlace to the GUI terminator to indicate 
that the client cannot except any events until the operation 
has been completed. The client will create a fraud detection 
request object (16) which will control the detection process. 
On completion the client will send a DectionResultsReady 
event to GUI terminator. This event includes the time stamp 
used to create the results file. 

0383) Note: If the kernel is busy when a poll detection 
period is reached then when the client becomes available it 
will get the current time. If this time is less than the clock 
interval (plus Some overhead time) then the detection is 
Serviced else the poll detection has been missed and the 
kernel sends a Detection Missed message back to the GUI to 
indicate that a poll detection has been missed. 
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0384 Methods 
0385) FDFraud DetectionClient (FDFraud Detector 
Specification& fraud spec) -FDFraud DetectionClient( 
) 

0386 static FDFraud DetectionClient CreateFraud K 
ernel (FDFraud DetectorSpecification& fraud spec) 

0387 Void UpdateEvaluationInterval(int evaluation 
interval) 

0388 void UpdateDetectionStartDate(date detection 
date) 

0389 void UpdatePerformanceThreshold(float perfor 
mance threshold) 

0390 void Add Knowledge(FDFraudCandidate 
DataSet& data set) 

0391 void SwitchEngine(Bool switch required) 
0392) void PollTime() 

0393 Assumptions 
0394. The bridge will create fraud detector specifi 
cation object on Createfraud Kernel. 

0395. The bridge will create fraud candidate date set 
object hierarchy on 

0396 Add Knowledge. 
0397 Retraining will alwavs result in an improved 9. y p 
performance of the ADE. 

0398 Retraining can follow a retraining without a 
SwitchEngine event being received. 

0399. Ownership 
0400 FDFraud DetectorSpecification 
0401 FDAddKnowledgeRequest 

0402 FDFraud Detection Request 
0403) Read Accessors 
0404 RWBoolean 
COnSt. 

04.05 FDPresentationDataSet 
DataSet() const; 

0406 RWBoolean GetADSwitched() const; 
0407. Write Accessors 
0408 void SetADSwitched(RWBoolean state); 

04.09 Interpret Call Detail Record (15) 
0410. Description 
0411 The transformation that is required in order to 
interpret a comma separated CDR into a CDR. 
0412 Note: Not implemented, absorbed into Validate 
Request (8). 
0413 Add Knowledge Request (23) 
0414. Description 
0415. A request to add knowledge of fraud candidates. 

ISAnomaly DetectorCreated.( ) 

GetPresentation 
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0416) C++ Class Name 
0417 FDAddKnowledgeRequest 

0418 Behaviour Description 
0419 Upon creation the add knowledge request object 
(23) is passed a fraud detection data set as a parameter. The 
object will: 

0420 Sends an APP6AddKnowledge event to the 
ADE terminator including the Set of example detec 
tion data presentations, object (9), contained within 
the Specified data Set. These should only include 
those account which have been validated (For more 
information See "Enumeration Types on page 53. 

0421 Upon completion the ADE generates an 
APP14Knowledge Added, which contains a handle 
to the new knowledge Set. This object must persist 
this information using the new knowledge file 

C. 

0422 create a update historic profile request, object 
24, attaching the Specified data Set. 

0423 check if a performance update is required by 
interrogating the performance evaluation counter 
attribute of the fraud detection client, object (27), 
and determining if it equals the number of evalua 
tions Specified contained within the fraud detector 
Specification, object (28). If a performance update is 
required then a performance evaluation request is 
created and the performance evaluation counter 
attribute is reset to Zero. If a performance update is 
not required then the performance evaluation counter 
attribute is incremented. 

0424 The operation enumeration is set to “Add Knowl 
edge” as default. 
0425 Methods 
0426 FDAddKnowledgeRequest( 
0427 FDFraudCandidateDataSet& fraud data set, 
0428 String new knowledge filename) 
0429 -FDAddKnowledgeRequest() 

0430 Assumptions 
043.1 Update Historic Profile Request (24) will always be 
actioned after an Add Knowledge Request (23). 
0432 Ownership 

0433) FDUpdateHistRequest 
0434 FDPerformanceEvaluation Request 

0435 Read Accessors 
0436. No public read access methods are required by the 
object. 

0437. Write Accessors 
0438 No public write access methods are required by the 
object 

0439 Update Historic Profile Request (24) 
0440 Description 
0441. A request to update historic profiles. 
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0442 C++ Class Name 
0443) FDUpdateHistRequest 

0444 Behaviour Description 
0445. Upon creation the update historic profile request is 
passed a fraud detection data Set as a parameter. This object 
will: 

0446. Sends an APP7UpdateHistoricProfiles event 
to the ADE terminator including the set of profile 
data presentations. Only those validated fraud can 
didates with a validation category of either; correct 
non-fraudulent or incorrect fraud candidates. In addi 
tion all the other non-fraud candidates are passed to 
the ADE. 

0447 Upon completion the ADE generates an 
APP15Profiles.Updated, the event contains the 
updated profiles. The update historic profiles request 
then needs to persist all the updated historical pro 
files. This data set can then be removed. 

0448 Methods 
0449 FDUpdateHistRequest( 

0450 FDFraud CandidateDataSet& fraud data set, 
0451 String historic profile filename) 
0452 FDUpdateHistRequest() 

0453 Assumptions 
0454) None. 
0455. Ownership 
0456 Read Accessors 
0457. No public read access methods are required by the 
object. 

0458 Write Accessors 
0459 No public write access methods are required by the 
object 

0460 Performance Evaluation Request (29) 
0461) Description 
0462. A request to evaluate the performance of the fraud 
detector application. 
0463 C++ Class Name 
0464 FDPerformance Evaluation Request 

0465 Behaviour Description 
0466 No parameters are sent on construction of this 
object. This object will: 

0467 Sends an APP3EvaluatePerformance event to 
the ADE. Upon completion the ADE generates an 
APP11 PerformanceResultsObtained event with the 
ADE current performance. 

0468. If the resulting performance evaluation is less 
than the evaluation threshold attribute of the fraud 
detector Specification then the performance evalua 
tion request sends an APP4TrainAD event to the 
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ADE. Upon completion the ADE generates an 
APP12Anomaly DetectorTrained with the a new per 
formance from the ADE. 

0469 The operation enumeration type object 
attribute of the add knowledge request needs to be 
set to either “PerformanceEvaluation” or "Retrain 
ing to indicate which operation has been performed. 

0470 The new performance is returned to the add 
knowledge request object. 

0471) Methods 
0472 FDPerformanceEvaluationRequest() 
0473 -FDPerformanceEvaluation Request() 

0474 Assumptions 
0475). None. 
0476) Ownership 
0477 Read Accessors 
0478. No public read access methods are required by the 
object. 

0479. Write Accessors 
0480. No public write access methods are required by the 
object 

0481 Fraud Detection Request (16) 
0482 Description 
0483. A request to perform a detection of fraud on a 
presentation data Set. The resultant fraud candidates are 
contained in the associated candidate data Set. 

0484 C++ Class Name 
0485 FDFraud Detection Request 

0486 Behaviour Description 
0487. Upon creation the fraud detection request is passed 
a presentation data Set as a parameter. This object will: 

0488 Creates CDR to profile tranform, object 13, 
with cSV filename and poll detection period. 

0489 CDR to profile tranform, object 13, returns a 
list of poll detection profiles, object 4. 

0490 Creates fraud candidate, object 11, to be popu 
lated with the results from the ADE. 

0491) Sends an APP2Perform Detection event to the 
ADE terminator, with profile data presentations, 
object 7, where the profile modified attribute is true. 

0492. Once the ADE has completed the detection 
eVent the ADE generates 
APP1ODetectionComplete. The fraud candidate, 
object 11 is populated with candidate presentations, 
object 6, matching with the associated recent profile, 
object 4. 

0493) The profile modified attribute within profile 
data presentation, object 7, for all those Sent to the 
ADE terminator need to be set back to false. 

0494 The fraud candidate, object 11, persistence 
mechanism to write the results to a file. The time 
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Stamp at time of creation of this file needs to added 
to the top of the file and maintained to be sent back 
to the client, object 27. 

0495 Once the results file has been created the fraud 
candidate, object 11, can be removed. 

0496 CDR Extraction, Poll Profile Creation and Search 
Algorithm 

0497 while(not end of file) 
0498) { 
0499 Read(next line of file) 
0500 cdr=CreateCDR(next line of file) 
0501 if(account no l=cdr.account no) 
0502 poll profile=Create PollProfile(cdr) 
0503 else 
0504) poll profile=Accumulate PollProfile(cdr) 
0505) 
0506 Decay.Recent(poll profile) 
0507) DeletePollProfile(poll profile) 
0508) } 

0509) Note: Assumption that the CDR file is sorted by 
account number. Decay profile will provide a binary Search 
technique to locate the recent profile. 
0510 Methods 

account no=cdr.account no 

0511 FDFraud Detection Request( 
0512 FDPresentationDataSet& presentation data set 
0513 FDPollToRecentProfileDecay& profile decay 
0514 String results filename, 
0515 String csv filename 
0516 Time poll detection period 
0517 Time recent profile period) 
0518) -FDFraud Detection Request() 

0519) Assumptions 
0520 None. 
0521) Ownership 
0522 Read Accessors 
0523 No public read access methods are required by the 
object. 

0524 Write Accessors 
0525 No public write access methods are required by the 
object 

0526) Poll To Recent Profile Decay (20) 
0527 Description 
0528. The decay transform for decaying a poll period 
profile into a recent profile. 
0529 C++ Class Name 
0530 FDPollToRecentProfileDecay 

19 
Jan. 16, 2003 

0531 Behaviour Description 
0532. Upon creation this object is given recent profile 
vectors object (4). This object will: 

0533. Create relationships to all recent profiles. 
0534 Calculate update factor using poll detection 
period for Source and recent profile period for target. 

0535 Upon a DecayProfile event search for the 
corresponding recent profile. If no recent profile 
exists create new recent profile. 

0536 Update the target profiles behaviour with the 
Source target behaviour using the algorithm below. 
0537. Once the recent profile has been updated the poll 
detection profile can be removed. 
0538 Modifies the profile modified attribute within the 
asSociated profile data presentation, object 7, to true. 
0539 Methods 
0540 FDPollToRecentProfileDecay.( 

0541) RWTPtrDlist<FDRecentProfileVectors & 
recent profile, 

0542 Time poll detection period, 
0543) Time recent profile period) 
0544 -FDPollToRecentProfileDecay( ) 
0545 void DecayProfile(FDProfileVector& poll pro 

file) 
0546 Assumptions 
0547. None. 
0548. Updating Profiles Algorithm 

T'=(TxUpdateFactor))+(Six UpdateFactor) 

0549. For all i Where T is the target profile (e.g. recent 
profile) and S is the Source profile (e.g. poll detection period 
profile.) 

WindowSize(S) 
WindowSize(T) 

Update Factor = 

0550 Read Accessors 
0551. No public read access methods are required by the 
passive object. 

0552) Write Accessors 
0553 No public write access methods are required by the 
passive object 

0554) CDR To Profile Tranform (13) 
0555. Description 
0556. A request to perform a detection of fraud on a 
presentation data Set. The resultant fraud candidates are 
contained in the associated candidate data Set. 

0557 C++ Class Name 
0558 FDCDRProfileTranform 
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0559) Behaviour Description 
0560. Upon creation CDR profile transform. This object 

will: 

0561 For each call detail record, object 12, this 
object either constructs a poll profile, object 4, or 
updates the existing poll profile. 

0562. This object sends the poll detection profile to 
poll to recent profile decay, object 20, with poll 
detection period and recent profile period. 

0563 Methods 
0564 FDCDRProfileTranform(String csv filename, 
0565 int poll detection period) 
0566 -FDCDRProfileTranform() 

0567 Assumptions 
0568 Operates on an ordered input file. 
0569. Ownership 

0570) FDProfileVector (Poll detection profiles only). 
0571 Read Accessors 
0572. No public read access methods are required by the 
passive object. 

0573 Write Accessors 
0574. No public write access methods are required by the 
passive object 

0575 Call Detail Record (12) 
0576 Description 
0577 A Software representation of a telecommunication 
call detail record. 

0578 C++ Class Name 
0579 FDCall DetailRecord 

0580 Methods 
0581 FDCall DetailRecord(String csv filename) 
0582 -FDCallDetailRecord() 
0583 FDCall DetailRecord ReadCall DetailRecord() 

0584) 
0585) 
0586) 
0587) 
0588) 
0589) 
0590 
0591 An unvalidated association of a customers recent 
profile and the results of a detection process. 
0592 C++ Class Name 
0593 FDUnvalidated FraudCandidates 

0594) 
0595 FDFraud Candidate 

ASSumptions 

The source CDR file is ordered by account number. 
Ownership 
Read Accessors 

Write Accessors 

Unvalidated Fraud Candidates (25) 
Description 

Inheritance 
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0596) Methods 
0597 FDUnvalidated Fraud Candidates.( 
0598. FDProfileVector& recent profile, 
0599 ADCandidatePresentation& candidate presen 
tation) 

0600) 
0601) 
0602) 
0603) 
0604) 
0605) 
0606. No public read access methods are required by the 
passive object. 

0607. Write Accessors 

-FDUnvalidated Fraud Candidates() 
ASSumptions 
None. 

Ownership 
None. 

Read Accessors 

0608 No public write access methods are required by the 
passive object 

0609 Fraud Detector Specification (28) 
0610 Description 
0611. The specification of the fraud detector application. 
0612 C++ Class Name 

0613 FDFraud DetectorSpecification 

0614 Methods 
0615 FDFraud DetectorSpecification(String Default 

results filename 
0616) 
0617) 
0618) 
0619 
0620) 
0621) 
0622) 
0623) 
0624 
0625) 
0626) 
0627) 
0628) 
0629) 

0630 
0631 
0632) 
0633) 
0634) 
0635 StringGetDefaultResultsFilename( 

String cSV filename 
String recentprofile filename 
String historical profile filename 
String ade. Spec filename 
Date detection start 
int evaluation interval 
int evaluation counter 
int performance threshold 
int recent window size 
int historical window size 
int detection time interval 
int input size 
int recent size) 
-FDFraud DetectorSpecification() 

ASSumptions 
None. 

Ownership 
None. 

Read Accessors 
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0636) 
0637) 
0638) 
0639) 
0640 
0641) 
0642) 

C 

0643) 
0644) 
0645) 
0646) int 
formance threshold) 

0647 int 
torical window size) 

0648) 
0649) int 
interval) 

0650) 
0651) 

0652) Write Accessors 
0653) void SetDefaultResultsFilename(String default 

results filename) 
0654) void SetCSVFilename(String csv filename) 
0655 void SetRecentProfileFilename(String recent 

profile filename) 
0656 void SetHistorical ProfileFilename(String his 
torical profile filename) 

0657 void SetADESpecFilename(String ade spec 
filename 

default results filename) 
String GetCSVFilename(cSV filename) 
String GetRecentProfileFilename( 
recent profile filename) 
String GetHistoricalProfileFilename( 
historical profile filename) 
String GetADESpecifilename (ade spec file 

Date GetDetectionStart(detection start) 
int GetEvaluationInterval(evaluation interval) 
int GetEvaluation Counter(evaluation counter) 

GetPerformanceThreshold(per 

GetHistoricalWindowSize(his 

int GetRecentWindowSize(recent window size) 
GetDetectionTimeInterval(detection time 

int GetInputSize(input size) 
int GetRecentSize(recet size) 

0658 void SetDetectionStart(Date detection start) 
0659 void SetevaluationInterval(int evaluation inter 
val) 

0660 void 
counter) 

SetevaluationCounter(int evaluation 

0661 void SetPerformanceThreshold(int performan 
ce threshold) 

0662 void SetHistoricalWindowSize(int historical 
window size) 

0663 void SetRecentWindowSize(int recent window 
size) 

0664 void SetDetectionTimeInterval(int detection 
time interval) 

0665 void SetInputSize(int input size) 
0666 void SetRecentSize(int recent size) 

0667) Validate Request (8) 
0668) Description 
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0669 A request to create a validated set of fraud candi 
dates. 

0670) Note: Not implemented, absorbed into Fraud 
Detection Request (16). 
0671 Candidate Data Set (18) 
0672) 
0673) 
0674) 
0675 FDCandidateDataSet 

0676 Methods 
0677 FDCandidateDataSet( 
0678 RWTPtrDlist<ADCandidatePresentation> 
0679 &candidate presentation ids) 
0680 FDCandidateDataSet() 

0681 Assumptions 
0682. Ownership 
0683 Read Accessors 

0684) 
0685 Write Accessors 
0686 void SetNumberOfPresentations(int number of 

presentations); 

0687 Validated Fraud Candidate (22) 
0688. Description 

Description 
A Set of candidate presentations. 
C++ Class Name 

int GetNumberOfPresentations( ) const; 

0689 An association of a customers recent profile and the 
validated results of a detection process. 
0690 C++ Class Name 

0691 FDValidated Fraud Candidate 
0692) 
0693 FDFraud Candidate 

0694 Methods 
0695) FDValidated FraudCandidate( 
0696 FDProfileVector& recent profile, 
0697 NNExampleDataPresentation& 
Sentation); 

0.698) -FDValidated FraudCandidate() 
0699 Enumeration Types 
0700 
0701) { 
0702 UNVALIDATED, 
0703 CORRECT FRAUD, 
0704) INCORRECT FRAUD, 
0705 CORRECT NONFRAUD, 
0706 INCORRECT NON FRAUD 
0707) }; 

0708 Assumptions 

Inheritance 

example pre 

enum ValidationStatus 
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0709) 
0710) 
0711) 
0712) 
0713) 
0714 void SetValidationCategory(ValidationStatus 

None. 

Ownership 
Read Accessors 

ValidationStatus GetValidationCategory() const; 
Write Accessors 

0715 validation category); 
0716) Fraud Candidate (11) 
0717 Description 
0718. An association of a customers recent profile and the 
results of a detection process, (either validated or unvali 
dated). 
0719 C++ Class Name 
0720 FDFraud Candidate 

0721 Methods 
0722 FDFraud Candidate(FDProfile Vector& 

profile) 

0723 -FDFraudCandidate() 
0724) 
0725) 
0726) 
0727 No public read access methods are required by the 
passive object. 

0728 Write Accessors 

recent 

ASSumptions 
Ownership 
Read Accessors 

0729 No public write access methods are required by the 
passive object 

0730 Presentation Data Set (17) 
0731) 
0732) 
0733) 

0734) FDPresentationDataSet 
0735 Methods 
0736 FDPresentationDataSet(FDPro 
fileDataPresentation& 

0737) 
0738) 
0739) 
0740 
0741) 

0742 Assumptions 
0743 Ownership 
0744 Read Accessors 

0745) 
0746) Write Accessors 

Description 
A Set of profile data presentations. 
C++ Class Name 

profile data presentation id) 

FDPresentation DataSet( 
RWTPtrDlist<FDProfileDataPresentation>& 

profile data presentation ids) 

FDPresentation DataSet() 

int GetNumberOfPresentations( ) const; 
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0747 void SetNumberOfPresentations(int number of 
presentations); 

0748) Fraud Candidate Data Set (21) 
0749) 
0750) 
0751) 

0752 FDFraudCandidateDataSet 
0753 Methods 

0754) FDFraud CandidateDataSet() 
0755 -FDFraudCandidateDataSet() 

0756 Assumptions 
0757. Ownership 
0758 Read Accessors 
0759 int GetNumberOfPresentations() const; 

0760 Write Accessors 
0761 void SetNumberOfPresentations(int number of 
presentations); 
0762) Profile Data Presentation (7) 
0763) 
0764) 
VectOr. 

O765) 
0766 FDProfileDataPresentation 

0767 Behaviour Description 

Description 
A container of fraud candidates. 

C++ Class Name 

Description 

Combination of a historic and a recent profile data 

C++ Class Name 

0768 Each recent profile is matched with it respective 
historical profiles and sent to the ADE. This representation 
is used for both detection (object 16) and profile decay 
(object 24). 
0769 Methods 

0770) FDProfileDataPresentation.( 
0771) 
0772 
0773) 
0774) 
0775 

file) 
0776) 

0777) 
0778) 
0779) 
0780) 

0781) Bool GetProfile Modified() const; 
0782) Write Accessors 
0783 void SetProfileModified(Bool 

fied); 
0784 Poll Profile Vector (4) 

FDProfileVector& recent profile, 
FDProfileVector historical profile) 
FDProfileDataPresentation( 
FDProfileVector& recent profile, 
RWTPtrDlist<FDProfileVectors& historical ro 

-FDProfileDataPresentation() 
ASSumptions 
None. 

Ownership 
Read Accessors 

profile modi 
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0785) Description 
0786) Describes the structure of a profile data vector. 
0787 C++ Class Name 
0788 FDPollProfile Vector 

0789) 
0790. NNVector 

0791) Methods 
0792 FDPollProfile Vector(String account number, 
0793 FDCall DetailRecord& call detail record) 
0794) FDPollProfileVector() 

0795 Assumptions 
0796) Ownership 
0797 Read Accessors 
0798 String GetAccountNumber() const; 

0799 Write Accessors 

Inheritance 

0800 void SetAccountNumber(String account num 
ber); 

0801 Recent Profile Vector (34) 
0802. Description 
0803. Describes the structure of a recent profile data 
VectOr. 

0804 C++ Class Name 
0805 FDRecentProfileVector 

0806) 
0807 ADRecentProfileVector 

0808 Behaviour Description 
0809. After the poll profiles have been used to 
update the recent profile, the updated recent profiles 
then needs to be persisted to the recent profile file 
using the persistence mechanism. 

0810) Methods 

Inheritance 

0811 FDRecentProfileVector(String account number, 
0812 NNVector& data vector) 
0813 -FDRecentProfile Vector() 
0814 Persist(String recent profile filename) 

0815) Assumptions 
0816 Ownership 
0817 Read Accessors 
0818 String GetAccountNumber() const; 

0819. Write Accessors 
0820 void SetAccountNumber(String account num 
ber); 

0821) Historic Profile Vector (33) 
0822. Description 
0823 Describes the structure of a profile data vector. 
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0824 C++ Class Name 
0825 FDHistoricProfile Vector 

0826) 
0827 ADHistorical Profile Vector 

0828 Methods 
0829 FDHistoricProfile Vector(String 
ber, 

0830. NNVector& data vector) 

Inheritance 

account num 

0831 -FDHistoricProfileVector() 
0832 Assumptions 
0833) Ownership 
0834 Read Accessors P0 String GetAccountNumber() 
COnSt. 

0835 Write Accessors 
0836 void SetAccountNumber(String account num 
ber); 

Appendix B: 

0837 Persistence 
0838) Overview 
0839 Tools.h++ version 7.0 Users Guide, 1996, Rogue 
Wave Software, defines that a object can have one of four 
levels of persistence: 

0840 No persistence. There is no mechanism for 
Storage and retrieval of the object. 

0841 Simple persistence. A level of persistence that 
provides Storage and retrieval of individual objects to 
and from a stream or file. Simple persistence does 
not preserve pointer relationships among the per 
Sisted 

0842) Isomorphic persistence. A level of persistence 
that preserves the pointer relationships among the 
persisted objects. 

0843 Polymorphic persistence. The highest level of 
persistence. Polymorphic persistence preserves 
pointer relationships among the persisted objects and 
allows the restoring process to restore an object 
without prior knowledge of that objects type. 

0844. This appendix provides information about the use 
of Isomorphic persistence through descriptions, examples, 
and procedures for designing persistent classes. To imple 
ment other levels of persistence it is recommended that the 
reader consult the relevant Tools.h++ manual pages. 
0845 Persistence Mechanism 
0846 Isomorphic persistence is the storage and retrieval 
of objects to and from a stream Such that the pointer 
relationships between the objects are preserved. If there are 
no pointer relationships, isomorphic persistence effectively 
Saves and restores objects the same way as Simple persis 
tence. When a collection is isomorphically persisted, all 
objects within that collection are assumed to have the same 
type. 
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0847 The isomorphic persistence mechanism uses a 
table to keep track of pointers it has saved. When the 
isomorphic persistence mechanism encounters a pointer to 
an unsaved object, it copies the object data, Saves that object 
data NOT the pointer to the stream, then keeps track of the 
pointer in the Save table. If the isomorphic persistence 
mechanism later encounters a pointer to the same object, 
instead of copying and Saving the object data, the mecha 
nism Saves the Save table's reference to the pointer. 
0848. When the isomorphic persistence mechanism 
restores pointers to objects from the Stream, the mechanism 
uses a restore table to reverse the process. When the iso 
morphic persistence mechanism encounters a pointer to an 
unrestored object, it recreates the object with data from the 
Stream, then changes the restored pointer to point to the 
recreated object. The mechanism keeps track of the pointer 
in the restore table. If the isomorphic persistence mechanism 
later encounters a reference to an already-restored pointer, 
then the mechanism looks up the reference in the restore 
table, and updates the restored pointer to point to the object 
referred to in the table. 

0849 Class Requirements For Persistence 
0850. To create a class that supports isomorphic persis 
tence the class must meet the following requirements. The 
class must have appropriate default and copy constructors 
defined or generated by the compiler: 

0851 PClass(); // default constructor 
0852. PClass(T& t); // copy constructor 

0853. The class must have an assignment operator 
defined as a member OR as a global function: 

0854 PClass& operator=(const PClass& pc); // mem 
ber function 

0855 PClass& operator=(PClass& Ihs, 
PClass& rhs); // global function 

COnSt 

0856. The class cannot have any non-type template 
parameters. For example, in RWTBitVec-size>, 
“Size' is placeholder for a value rather than a type. 
No present compiler accepts function templates with 
non-type template parameters, and the global func 
tions used to implement isomorphic persistence 
(rwRestoreGuts and RWSaveCuts) are function tem 
plates when they are used to persist templatized 
classes. 

0857 All the data necessary to recreate an instance 
of the class must be globally available (have accessor 
functions). 

0858 Creating a Persistent Class 
0859. To create an isomorphically persistent class or to 
add isomorphic persistence to an existing class, follow these 
Steps: 

0860) 1. Make all necessary class data available. 

0861) 2. Add RWDECLARE PERSISTABLE to your 
header file. 

0862) #include <rw/edefs.h> 

0863. RWDECLARE PERSISTABLE(YourClass) 
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0864 3. Add RWDEFINE PERSISTABLE to one 
Source file. 

0865 #include <rw/epersist.h> 

0866 RWDEFINE PERSISTABLE(YourClass) 

0867 4. Define rwSaveCuts and rwRestoreCuts. 
Methods rwSaveCuts and rwRestoreGuts will be used 
to Save and restore the internal State of the class. These 
methods are called by the operator- and operatores 
that were declared and defined by the macros in 2 & 3. 

0868 For non-templatized classes, define the following 
functions: 

0869 void rwSaveCuts(RWFile&f, const YourClass& 
t){* */ 

0870 void rwSaveCuts(RWvostream& s, 
YourClass& t) {(/* */ 

COnSt 

0871 void rwRestoreGuts(RWFile&f, YourClass& t) 
{/* */ 

0872) void rwRestoreGuts(RWvistream& S, 
YourClass& t) {/* */ 

0873. For templatized classes with a single template 
parameter T, define the following functions: 

0874) template.<class Ts void 

0875 rwSaveCuts(RWFile&f, const YourClass.<T>& 
t){/* *} 

0876 template.<class Ts void 

0877 rwSaveCuts(RWvostream& S, COnSt 
YourClass.<T>& t) {* */ 

0878 template.<class Ts void 

0879 rwRestoreCuts(RWFile& f, YourClass-Ts& t) 

0880 template.<class Ts void 

0881 rwRestoreCuts(RWvistream& S, 
YourClass.<T>& t) {/* */ 

0882 For templatized classes with more than one tem 
plate parameter, define rwRestoreGuts and rwSave Guts with 
the appropriate number of template parameters. 

0883 Function rwSaveCuts saves the state of each class 
member necessary persistence to an RWvoStream or an 
RWFile. If the members of your class can be persisted and 
if the necessary class members are accessible to rWSave G 
uts, you can use operator-to Save the class members. 

0884) Function rwRestoreGuts restores the state of each 
class member necessary for persistence from an RWvistream 
or an RWFile. Provided that the members of your class are 
types that can be persisted, and provided that the members 
of your class are accessible to rWRestoreGuts, you can use 
operatords to restore the class members. 
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0885 Example of a Persistent Class 

PClass Header Fle 

#include <rwfcstring.h> 
#include <rwiedefs.h> 
#include <rwirwfile.h> 
#include <rw/epersist.h> 
class PClass 
{ 

public: 
PClass (); 
PClass (const RWCString& string attribute, 

int int attribute, 
float float attribute, 
PClass ptr to attribute); 

~PClass (); 
If Persistance operations 
friend void rwRestoreGuts(RWvistream& is, PClass& obj); 
friend void rwRestoreGuts(RWFile& file, PClass& obi); 
friend void rwSaveCuts(RWvostream& Os, const PClass& obj); 
friend void rwSaveCuts(RWFile& file, const PClass& obj); 
If Stream operations 
friend ostream & operator-(ostream& Os, const PClass & obi); 

private: 
RWCString String Attribute; 
int IntAttribute: 
float Float Attribute: 
PClass PtrToAttribute; 

}: 
RWDECLARE PERSISTABLE(PClass) 
PClass Implementation File 

#include <PClass.His 
PClass::PClass () 
{ 

IntAttribute = 0; 
Float Attribute = 0; 
PtrToAttribute = 0; 

PClass::PClass(const RWCString& string attribute, 
int int attribute, 
float float attribute, 
PClass* ptr to attribute) 

{ 
String Attribute = string attribute; 
IntAttribute = int attribute: 
Float Attribute = float attribute: 
PtrToAttribute = ptr to attribute; 

PClass:-PClassO 

RWDEFINE PERSISTABLE(PClass) 
void rwRestoreGuts(RWvistream& is, PClass& obj) 

is >> obj. String Attribute; // Restore String. 
is >> obj.IntAttribute; If Restore Int. 
is >> objFloatAttribute; If Restore Float. 
RWBoolean ptr; 

if (ptr) 

void rwRestoreGuts(RwFile& file, PClass& obj) 

is >> obj.PtrToAttribute; 

file >> objString Attribute; // Restore String. 
file >> obj.IntAttribute; If Restore Int. 
file >> objFloatAttribute; // Restore Float. 
RWBoolean ptr; 
file >> ptr; 
if (ptr) 

file >> obj.PtrToAttribute; 
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-continued 

void rwSaveCuts(RWvostream& Os, const PClass& ob) 
{ 

OS << objStringAttribute; if Save String. 
os >> obj.IntAttribute; If Save Int. 
os >> objFloatAttribute; If Save Float. 
if (obj.PtrToAttribute == rwinil) 

os << FALSE: // No pointer. 

else 

os << TRUE: If Save Pointer 
os << *(obj.PtrToAttribute); 

void rwSaveCuts(RWFile& file, const PClass& ob) 
{ 

file << objString Attribute; // Save String. 
file << obj.IntAttribute; If Save Int. 
file << objFloatAttribute; // Save Float. 
if (obj.PtrToAttribute == rwinil) 

file << FALSE: // No pointer. 

else 

file <<TRUE; If Save Pointer 
file << *(obj.PtrToAttribute); 

ostream& operator-(ostream& Os, const PClass& ob) 

os << “\nStringAttribute: 
<<objStringAttribute <<“\n'; 

os << “IntAttribute: 
<< obi. IntAttribute <<“\n'; 

os << "FloatAttribute: 
<<objFloatAttribute <<\n'; 

OS << “PtrToAttribute: 
<< (void*)obj.PtrTo Attribute <<"\n"; 

if (obj. PtrTo Attribute) 

os << “Value at Pointer: 
<<*(objPtrToAttribute) <<"\n"; 

return OS; 

Use of PClass 
#include <iostream.h> 
#include <PClass.His 
void main() 
{ 

// Create object that will be pointed to by 
If persistent object. 
RWCString s1(“persist pointer object); 
PClass persist pointer object(s1, 1, 1.0, 0); 
RWCString s2(“persist class 1); 
PClass persist class 1(s2, 2, 2.0, &persist pointer object); 
cout <<"persist class1 (before save):” <<endl 

<<persist class1 <<end1 <<endl; 
// Save object in file “test.dat. 
RWFile file(“test.dat); 
file <<persist class1; 
PClass persist class2; 
// Restore object from file “test.dat. 
{ 
RWFile file(“test.dat); 
file >> persist class2; 

cout <<"persist class2 (after restore):” <<endl 
<<persist class2 <<end1 <<endl; 
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0886) Special Care with Persistence 
0887. The persistence mechanism is a useful quality, but 
requires care in Some areas. Here are a few things to look out 
for when using persist classes. 
0888 1. Always Save an Object by Value Before Saving 
the Identical Object by Pointer. 
0889. In the case of both isomorphic and polymorphic 
persistence of objects, never Stream out an object by pointer 
before streaming out the identical object by value. Whenever 
designing a class that contains a value and a pointer to that 
value, the SaveCuts and restoreGuts member functions for 
that class should always Save or restore the value then the 
pointer. 

0890) 2. Don't Save Distinct Objects with the Same 
Address. 

0891) Be careful not to isomorphically save distinct 
objects that may have the same address. The internal tables 
that are used in isomorphic and polymorphic persistence use 
the address of an object to determine whether or not an 
object has already been Saved. 
0892) 3. Don't Use Sorted RWCollections to Store Het 
erogeneous RWCollectables. 
0893 When you have more than one different type of 
RWCollectable stored in an RWCollection, you can’t use a 
sorted RWCollection. For example, this means that if you 
plan to store RWCollectableStrings and RWCollectable 
Dates in the same RWCollection, you can't store them in a 
Sorted RWCollection Such as RWBtree. The Sorted RWC 
ollections are RWBinaryTree, RWBtree, RWBTreeDic 
tionary, and RWSorted Vector. The reason for this restriction 
is that the comparison functions for sorted RWCollections 
expect that the objects to be compared will have the same 
type. 

0894 4. Define All RWCollectables That Will be 
Restored. 

0895. These declarations are of particular concern when 
you save an RWCollectable in a collection, then attempt to 
take advantage of polymorphic persistence by restoring the 
collection in a different program, without using the RWC 
ollectable that you Saved. If you don’t declare the appropri 
ate variables, during the restore attempt the RWFactory will 
throw an RW NOCREATE exception for some RWCollect 
able class ID that you know exists. The RWFactory won’t 
throw an RW NOCREATE exception when you declare 
variables of all the RWCollectables that could be polymor 
phically restored. 
0896. The problem occurs because the compiler's linker 
only links the code that RWFactory needs to create the 
missing RWCollectable when that RWCollectable is spe 
cifically mentioned in your code. Declaring the missing 
RWCollectables gives the linker the information it needs to 
link the appropriate code needed by RWFactory. 

1. A method of forming a classifier, the method compris 
ing: 

providing a first time period, 

providing a distinct Second time period wherein the 
distinct Second time period is consecutive to the first 
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time period, shorter than the first time period, and more 
recent than the first time period, 

forming a first Signature from data collected during a 
period based on the first time period, 

forming a distinct Second Signature from data collected 
during a period based on the distinct Second time 
period, 

training a first neural network based on the first Signature 
and the distinct Second signature. 

2. A method according to claim 1, further comprising 
providing an architecture for the first neural network. 

3. (Once Amended) A method according to claim 1, 
further comprising evaluating the performance of the first 
neural network. 

4. A method according to claim 1, further comprising 
retraining the first neural network. 

5. A method according to claim 1, further comprising: 
providing a performance threshold, and, 
retraining the first neural network based on a comparison 

of the performance threshold and a performance evalu 
ation of the neural network. 

6. (Once Amended) A method according to claim 1, 
further comprising updating the first signature based on a 
weighted average of the first Signature and the distinct 
Second signature. 

7. A method according to claim 1, further comprising, 
training a distinct Second neural network based on an 

updated version of the first Signature. 
8. (Once Amended) A method according to claim 7, 

further comprising 

evaluating the distinct Second neural network, and 
based on the evaluation, utilizing the distinct Second 

neural network as a replacement for the first neural 
network. 

9. A method according to claim 1, wherein at least one of 
forming a first signature and forming a distinct Second 
Signature include collecting call detail records (CDRS). 

10. A method according to claim 1, wherein at least one 
of forming a first signature and forming a distinct Second 
Signature include Specifying parameters upon which at least 
one of the first signature and the distinct Second Signature are 
to be formed. 

11. (Once Amended) A method according to claim 1, 
wherein at least one of the first Signature and the distinct 
Second Signature is based on at least one of a percentage of 
calls made and a position of a portion in the corresponding 
time period during which the corresponding data is received. 

12. (Once Amended) A method of classifying data, the 
method comprising: 

training a first neural network based on a first Signature 
and a distinct Second Signature, the first signature based 
on data from a first time period, the distinct Second 
Signature based on data from a distinct Second time 
period that is consecutive to the first time period, 
shorter than the first time period, and more recent than 
the first time period, 

forming a recent Signature based on data collected during 
a recent time period of the same duration as the distinct 
Second time period, and, 
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presenting the recent Signature to the first neural network. 
13. A method according to claim 12, further comprising 

retraining the first neural network. 
14. A method according to claim 12, further comprising: 
providing a performance threshold, and, 
retraining the first neural network based on a comparison 

of the performance threshold and a performance evalu 
ation of the neural network. 

15. (Once Amended) A method according to claim 12, 
further comprising updating the first Signature based on at 
least one of a weighted average of the first Signature and the 
distinct Second Signature and a weighted average of the first 
Signature and the recent signature. 

16. A method according to claim 12, further comprising, 
training a distinct Second neural network based on an 

updated version of the first Signature. 
17. A method according to claim 16, further comprising 
evaluating the distinct Second neural network, and 
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based on the evaluation, utilizing the distinct Second 
neural network as a replacement for the first neural 
network. 

18. (Once Amended) A method according to claim 12, 
wherein at least one of the first Signature and the distinct 
Second Signature are formed based on call detail records 
(CDRs). 

19. A method according to claim 12, further including 
Specifying parameters upon which at least one of the first 
Signature and the distinct Second Signature are to be formed. 

20. (Once Amended) A method according to claim 12, 
wherein at least one of the first Signature and the distinct 
Second signature are formed based on at least one of a 
percentage of calls made and a position of a portion in the 
corresponding time period during which the corresponding 
data is received. 


