

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2015-226781

(P2015-226781A)

(43) 公開日 平成27年12月17日(2015.12.17)

(51) Int.Cl.

A47J 27/10 (2006.01)
G05D 23/00 (2006.01)
A47J 27/00 (2006.01)

F 1

A 47 J 27/10
G 05 D 23/00
A 47 J 27/00
A 47 J 27/00

テーマコード(参考)

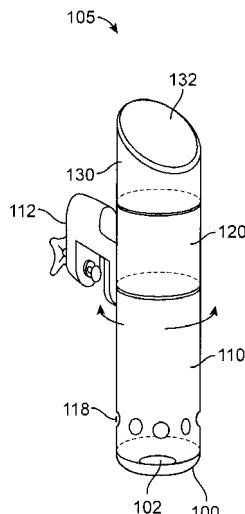
4 B 0 5 5
5 H 3 2 3

1 0 9 L
1 0 9 M

審査請求 未請求 請求項の数 20 O L 外国語出願 (全 49 頁)

(21) 出願番号 特願2015-111598 (P2015-111598)
(22) 出願日 平成27年6月1日 (2015.6.1)
(31) 優先権主張番号 62/005,875
(32) 優先日 平成26年5月30日 (2014.5.30)
(33) 優先権主張国 米国(US)
(31) 優先権主張番号 14/491,961
(32) 優先日 平成26年9月19日 (2014.9.19)
(33) 優先権主張国 米国(US)

(71) 出願人 514038292
ジェフ ウー
アメリカ合衆国, テキサス州 77477
, スタッフォード, グリーンブライヤー・
ストリート 4003D
(74) 代理人 110001933
特許業務法人 佐野特許事務所
(72) 発明者 ジェフ ウー
アメリカ合衆国, テキサス州 77477
, スタッフォード, グリーンブライヤー・
ストリート 4003D
F ターム(参考) 4B055 AA29 AA31 BA01 BA26 BA36
BA42 CA62 CA65 CC17 GA03
GB43 GC03 GC24 GC31 GC36
5H323 AA21 BB15 CA08 CB01 EE05


(54) 【発明の名称】 画像変換機能を備えた真空調理装置

(57) 【要約】 (修正有)

【課題】 適切に設定できる、水中で食品を調理するため
に精密な温度制御が可能に構成された装置を提供する。

【解決手段】 さまざまな調理加減その他の調理結果を得
るべく調理された食品の画像群から得られた調理時間と
温度から、ユーザーは食品の画像から所望の調理加減レ
ベルを選択でき、必要であればこれを肉の大きさ、重量
、形状、脂肪含量に基づいて、様々な修正属性に関連付
けられた画像群を参照して修正することができる。調理
対象の食品をユーザーが、例えば2つに分けるなどして
、改変していたり、食品が冷凍されていたりしても調理
時間や属性を補充して設定を調整できる。

【選択図】 図1

【特許請求の範囲】**【請求項 1】**

流体温度制御装置において、複数の予備調理済み食品タイプをそれぞれ表しかつそれが少なくとも 1 つの調理時間および少なくとも 1 つの調理温度と関連付けられた複数の画像のうちの少なくとも 1 つの画像に対応する予備調理済み食品タイプを受信するステップと、

前記流体温度制御装置において、前記複数の画像から選択された第 1 の画像ならびにそれと関連付けられた前記調理時間および前記温度を受信するステップと、

前記流体温度制御装置において、それが 1 以上の食品属性を表示しかつそれが少なくとも 1 つの補充調理時間および少なくとも 1 つの補充温度と関連付けられた複数の第 2 の画像から選択された第 2 の画像を受信するステップと、

前記流体温度制御装置において、前記選択された第 1 の画像に対応する前記調理時間および前記温度を、前記選択された第 2 の画像に対応する前記補充調理時間および前記補充温度に基づいて修正するステップ

を備える方法。

【請求項 2】

前記流体温度制御装置において、それが第 2 の補充調理時間および第 2 の補充温度と関連付けられた調理加減レベルの複数の画像から選択された調理加減レベル画像に対応する調理加減レベルを受信するステップと、

前記流体温度制御装置において、前記修正した調理時間および前記修正した温度を、前記第 2 の補充調理時間および前記第 2 の補充温度に基づいて修正するステップ

をさらに備える請求項 1 に記載の方法。

【請求項 3】

前記流体温度制御装置を前記再度修正した調理時間および前記再度修正した温度に応じて設定するステップ

をさらに備える請求項 2 に記載の方法。

【請求項 4】

前記再度修正した調理時間および前記再度修正した温度が安全範囲の閾値外であればそれらが危険な調理時間および温度である旨の通知を前記流体温度制御装置の表示装置に表示するステップ

をさらに備える請求項 3 に記載の方法。

【請求項 5】

前記流体温度制御装置を前記修正した調理時間および前記修正した温度に応じて設定するステップ

をさらに備える請求項 1 に記載の方法。

【請求項 6】

前記修正した調理時間および前記修正した温度が安全範囲の閾値外であればそれらが危険な調理時間および温度である旨の通知を前記流体温度制御装置の表示装置に表示するステップ

をさらに備える請求項 1 に記載の方法。

【請求項 7】

前記流体温度制御装置において、温度の手動入力を受信する
ステップ

をさらに備える請求項 1 に記載の方法。

【請求項 8】

プロセッサーと、表示装置と、加熱素子と、攪拌装置とを含む流体温度制御装置、および

前記プロセッサーに結合された、非過渡的でコンピューター可読なメモリ
を備え、

前記メモリには指令が格納され、該指令を実行することで前記プロセッサーは

10

20

30

40

50

選択可能な 1 以上の予備調理済み食品タイプを表示装置に表示し、
選択された前記予備調理済み食品タイプに応じて調理時間、温度および速度を決定し

、
選択可能な 1 以上の食品属性を表示装置に表示し、
選択された前記食品属性に応じて前記調理時間、前記温度および前記速度を更新する
システム。

【請求項 9】

前記メモリにはさらに指令が格納され、該指令を実行することで前記プロセッサーは
1 以上の調理加減レベルを表示装置に表示し、
選択された前記調理加減レベルに応じて前記更新した調理時間、前記温度および前記
速度を算出する 10

請求項 8 に記載のシステム。

【請求項 10】

前記メモリにはさらに指令が格納され、該指令を実行することで前記プロセッサーは
前記算出した調理時間を設定し、前記加熱素子を前記算出した温度で駆動し、前記攪
拌装置を前記算出した速度で駆動する

請求項 9 に記載のシステム。

【請求項 11】

前記メモリにはさらに指令が格納され、該指令を実行することで前記プロセッサーは
前記算出した調理時間および前記算出した温度が安全範囲の閾値外であればそれらが
危険な調理時間および温度である旨の通知を前記表示装置に表示する 20

請求項 10 に記載のシステム。

【請求項 12】

前記メモリにはさらに指令が格納され、該指令を実行することで前記プロセッサーは
前記更新した調理時間を設定し、前記加熱素子を前記更新した温度で駆動し、前記攪
拌装置を前記更新した速度で駆動する

請求項 8 に記載のシステム。

【請求項 13】

前記メモリにはさらに指令が格納され、該指令を実行することで前記プロセッサーは
前記更新した調理時間および前記更新した温度が安全範囲の閾値外であればそれらが
危険な調理時間および温度である旨の通知を前記表示装置に表示する 30

請求項 12 に記載のシステム。

【請求項 14】

前記メモリにはさらに指令が格納され、該指令を実行することで前記プロセッサーは
前記表示装置において温度の手動入力を受信する
請求項 8 に記載のシステム。

【請求項 15】

プロセッサーによって実行可能な指令が格納され、該指令によって前記プロセッサーに
選択可能な 1 以上の予備調理済み食品タイプを表示装置に表示するステップと、
選択された前記予備調理済み食品タイプに応じて調理時間、温度および速度を決定す
るステップと、 40

選択可能な 1 以上の食品属性を表示装置に表示するステップと、

選択された前記食品属性に応じて前記調理時間、前記温度および前記速度を更新する
ステップ

を実行させる

非過渡的でコンピューター可読な記憶媒体。

【請求項 16】

前記プロセッサーに

1 以上の調理加減レベルを前記表示装置に表示するステップと、

選択された前記調理加減レベルに応じて前記更新した調理時間、前記温度および前記 50

速度を算出するステップ

をさらに実行させる

請求項 1 5 に記載の非過渡的でコンピューター可読な記憶媒体。

【請求項 1 7】

前記プロセッサーに

前記算出した調理時間を設定するステップと、前記加熱素子を前記算出した温度で駆動し、前記搅拌装置を前記算出した速度で駆動するステップ

をさらに実行させる

請求項 1 6 に記載の非過渡的でコンピューター可読な記憶媒体。

【請求項 1 8】

前記プロセッサーに

前記算出した調理時間および前記算出した温度が安全範囲の閾値外であればそれらが危険な調理時間および温度である旨の通知を前記表示装置に表示するステップ

をさらに実行させる

請求項 1 5 に記載の非過渡的でコンピューター可読な記憶媒体。

【請求項 1 9】

前記プロセッサーに

前記更新した調理時間を設定し、前記加熱素子を前記更新した温度で駆動し、前記搅拌装置を前記更新した速度で駆動するステップ

をさらに実行させる

請求項 1 5 に記載の非過渡的でコンピューター可読な記憶媒体。

【請求項 2 0】

前記プロセッサーに

前記更新した調理時間および前記更新した温度が安全範囲の閾値外であればそれらが危険な調理時間および温度である旨の通知を前記表示装置に表示するステップ

をさらに実行させる

請求項 1 5 に記載の非過渡的でコンピューター可読な記憶媒体。

【発明の詳細な説明】

【関連出願の相互参照】

【0 0 0 1】

本特許出願は 2014 年 5 月 30 日に出願された米国特許仮出願第 62/005,875 号および 2014 年 9 月 19 日に出願された米国特許出願第 14/491,961 号に基づいて優先権を主張するものであり、その全内容を参照により包含する。

【技術分野】

【0 0 0 2】

本開示は概して食品調理装置に関し、特に水中で食品を調理するための、精密な温度制御が可能に構成された、水槽ヒーターおよび送水ポンプを備えた加熱サーモキューラー型調理装置に関する。

【背景技術】

【0 0 0 3】

真空調理法は、樹脂製の気密な袋に封入された食品を水槽中で通常の調理時間よりも長い時間をかけて調理する調理法である。温度が厳密に管理され、それは通常の調理温度よりはるかに低く、典型的には肉類であれば 55 °C ~ 60 °C (131 °F ~ 140 °F) 程度、野菜類であればより高めの温度である。現行の真空調理機器は熱サーモキューラーまたは温度制御水槽という形で真空調理専用に設計されており、従来の調理法には利用できない。

【0 0 0 4】

しかしながら、真空調理の結果は温度、時間、食品の脂肪 / タンパク質含量によって異なる。また、特定の料理の適正な調理温度をユーザーが知ることは非常に難しい。さらに、食料品店で購入する食品は品質や脂肪含量に大きなばらつきがあるのに加えて、検証さ

10

20

30

40

50

れていらない真空調理向け温度レシピが多数オンラインで出回っていて、不適切な調理時間や温度のせいで、最良の結果が得られないことがある。

【図面の簡単な説明】

【0005】

以下に本開示の技術的特徴の実現方法を、添付の図面に示された具体的な実施形態を参照して説明する。ただし、図示の実施形態は例示を目的としたものであって、開示範囲の何ら限定を意図するものではないと理解されたい。以下に説明する本開示の技術思想は、下に挙げる添付の各図面を参照することにより、より具体的、より詳細に理解されよう：

【0006】

【図1】一実施形態による流体温度制御装置を示す。

10

【0007】

【図2】一実施形態による流体温度制御装置を示す。

【0008】

【図3】一実施形態による流体温度制御装置を示す。

【0009】

【図4】一実施形態による流体温度制御装置の断面図である。

【0010】

【図5】一実施形態による流体温度制御装置におけるクランプ機構を示す。

【図6】一実施形態による流体温度制御装置におけるクランプ機構を示す。

20

【0011】

【図7】一実施形態による流体温度制御装置の断面図である。

【0012】

【図8】一実施形態における調理時間および温度の選択方法の一例を示すフローチャートである。

【0013】

【図9】一実施形態における調理時間および温度の選択方法の他の一例を示すフローチャートである。

【詳細な説明】

【0014】

本開示は概して家庭での真空調理用のサーチュレーター型真空調理装置。本開示の装置は一般家庭のキッチンにおける使用に特に適しているが、これに限らず、業務用として用いることができる。

30

【0015】

本開示の実施形態を以下に詳細に説明する。以下に説明する具体的な実現形態はいずれも単に例示を目的としたものである。当業者であれば開示の趣旨から外れることなく他の部品や構成を用いることができる理解できよう。本開示で用いるいくつかの用語をここで定義しておく。「サーチュレート」(循環させる)とは1種類以上の流体を攪拌、混和、または混合することである。したがって「サーチュレーター」(循環装置)とは流体を攪拌、混和、または混合する装置のことである。「流体」は液体を含むものとする。

「結合」は2部分間の直接の、または1以上の介在部分を介した間接の、接続を指し、この接続は必ずしも物理的なものに限られない。互いに接続された装置とは、信号による通信が相互に可能な状態にある装置のことである。「接続」は2部分間の直接の、または間接の、接続を指す。「密閉」とは気密／水密に封止すること、機械的に封止すること、または空気や流体に対して不透過とすることを表す。

40

【0016】

本開示を通して、用語「真空調理装置」「サーチュレーター型調理装置」「サーチュレーター型調理装置」「流体温度制御装置」「調理装置」は相互交換可能に用いられており、いずれも、温度が制御された水槽内で食品を調理するように構成された装置を意味する。

【0017】

50

一実施形態によれば、真空調理装置に1以上の回動可能または回転可能な情報表示器を設ける。表示器は調理装置の上部に設け、その内部に収容された電子部品が蒸気や水や熱に曝されないように、また複数の異なる角度から容易に視認できるように構成する。

【0018】

一実施形態によれば、真空調理装置に取り外し可能な裾部を設けて、裾部自体ならびにそれに覆われるヒーターおよび送水ポンプのクリーニングを可能とする。一実施形態によれば、取り外し可能な裾部は送水ポンプのインペラも露出させるようにして、食品や残り屑をユーザーが除去できるようにする。一実施形態によれば、裾部は工具を用いずに取り外し可能である。一実施形態によれば、裾部はステンレス鋼、アルミニウム、および／またはプラスチック製である。

10

【0019】

一実施形態によれば、真空調理装置に水密な水中ポンプを設ける。このポンプはモーターが水中、水面、または水上に配置可能で、流入経路と流出経路を有する。一実施形態によれば、水中ポンプはクリーニング時には工具を用いずに開けたり内部に触れたりできる。一実施形態によれば、調理装置はそれが備える1以上のモーターがクリーニング時または交換時に取り外し容易に構成する。

【0020】

他の一実施形態によれば、サーチュレーターのシステム全体を密閉して、意図的であれ不意であれ水浸させてもサーチュレーターの構成部品を損なうことがないようにする。

20

【0021】

一実施形態によれば、流体温度制御装置はハウジングを備え、これが装置の外形を決める。ハウジングはその内部に様々な電気部品（例えば、モーター、ファン、および／または電子部品）を包み込み、支持する。一実施形態によれば、ハウジングは円筒状である。他の一実施形態によれば、ハウジングは円筒状以外の、例えば直方体状、球状、立方体状、または橢円体状である。

30

【0022】

一実施形態によれば、真空調理用の流体温度制御装置に以下のものを設ける：コントローラーと、コントローラーに結合された表示装置および入力装置とを含む上部；上部に接続され、コントローラーに結合されたモーターが収容された中間部；および、中間部に接続され、モーターに結合された流体搅拌装置とコントローラーに結合された加熱素子とが収容され、流体中に少なくとも部分的に水浸可能な下部。

【0023】

一実施形態によれば、流体温度制御装置にクランプを設けて、操作者により流体温度制御装置を容器に固定可能とする。一実施形態によれば、クランプまたは他の固定装置は、水槽またはそれを含む領域（例えば調理鍋：cooking pot）に対する調理装置の高さを調節可能に構成する。一実施形態によれば、真空調理装置にはリングクランプを設けて、操作者によりシステム全体を回動させてポンプ出力の向きを設定したり、表示の良く見える角度を調節したりできるようにする。

30

【0024】

一実施形態によれば、流体温度制御装置の諸部品は外部装置からの制御が可能とする。外部装置として例えば、電話機、サーバー、タブレット、パーソナルコンピューター（PC）、そのほかの電子機器が挙げられる。外部装置は調理装置と無線通信可能に結合される。その手段として例えば、Wi fi、Blue tooth（登録商標）、近距離無線通信（NFC）、短距離無線、またはデータの送受信が可能な他の同様なシステムが挙げられる。一実施形態によれば、流体温度制御装置またはそれを制御する外部装置は調理操作に関する情報を無線で送信可能に構成する。情報として例えば、食品を調理中の領域に水を足す必要があるとの通知や、調理が完了したとの通報が含まれる。一実施形態によれば、流体温度制御装置は外部装置からレシピ情報を受信可能とする。情報に基づいて調理装置の調理時間、送水ポンプ速度、調理温度を設定することができる。

40

【0025】

50

一実施形態によれば、流体温度制御装置にメモリ／記憶装置を設ける。メモリ／記憶装置にはお気に入りのレシピや特定の食品に対する調理設定などの情報を記憶させておく。一実施形態によれば、流体温度制御装置はレシピ情報やユーザー作成データファイルを複数記憶する。装置のユーザーは内蔵のレシピ本からレシピ情報を呼び出せる。一実施形態によれば、真空調理用サーチュレーター型調理装置は記憶されているレシピ情報や作成されたデータファイルを分類して、検索可能とする。

【0026】

一実施形態によれば、流体温度制御装置を無線温度センサーと通信可能に構成して、その無線温度センサーを、調理装置によって調理中の食品が入った袋またはそのほか適切な容器の中の、食品の近くに配置する。温度センサーを食品の近くに配置することによって、調理中の食品の温度についての極めて正確な情報を調理装置は得ることができる。食品の温度の正確な情報を得ることによって、調理食品の品質を高めることができ、また確実に食品を適切かつ完全に調理する（それによって食品の安全性を確保する）ことができる。一実施形態によれば、無線温度センサーは電磁誘導によって充電される。

10

【0027】

一実施形態によれば、流体温度制御装置は、調理に伴う環境要因、例えば高温や水や水蒸気、から装置の電子部品を保護するような構造とする。一実施形態によれば、流体温度制御装置の動作状態に応じて装置の1以上の部分の色が動的に変化するようとする。一実施形態によれば、密閉されたハウジングの一部の色が変化することで、装置の動作状態についての情報を伝えるようにする。

20

【0028】

一実施形態によれば、流体温度制御装置の上部を、装置使用時に蒸気からコントローラー、表示装置、および入力装置を保護するように構成する。一実施形態によれば、攪拌装置はインペラーや回転羽根からなる。

【0029】

一実施形態によれば、流体温度制御装置またはそのハウジングの下部は少なくともステンレス鋼、アルミニウム、またはプラスチックからなり、工具を用いずに取り外し可能とする。一実施形態によれば、下部に下部の長さの少なくとも一部に亘るスリットまたは開孔を設ける。一実施形態によれば、下部は中間部から取り外し可能とし、中間部を取り外すと攪拌装置が露出するようとする。一実施形態によれば、流体温度制御装置の上部は中間部に対して回転可能とする。

30

【0030】

一実施形態によれば、加熱素子は攪拌装置の近傍に配置する。さらには、加熱素子を実質的に攪拌装置内に収容してもよい。一実施形態によれば、コントローラーは加熱素子の温度を制御可能に構成する。一実施形態によれば、コントローラーは入力装置を介して入力されるデータを受信可能に構成し、データは加熱素子の温度を制御するための制御指令からなるものとする。真空調理用の流体温度制御装置の一実施形態によれば、装置に以下のものを設ける：マイクロプロセッサーからなるコントローラーに結合された回動可能な表示器と入力装置とを含む上部；上部に接続され、マイクロプロセッサーに制御される温度制御部が収容される中間部；および中間部に接続された下部。下部にはインペラーやモーターとを含む水浸可能な攪拌装置および温度制御部に結合された加熱素子を収容し、下部を少なくとも部分的に流体に水浸可能に構成する。

40

【0031】

一実施形態によれば、上部および中間部は密閉構造とする。そうすれば水の浸入が防げ、流体温度制御装置内の電子回路や表示器その他の電子部品を保護することができる。一実施形態によれば、攪拌装置は全体的に、または部分的に、水浸可能とする。攪拌装置は、モーターとインペラーとを有するポンプシステムであってよい。攪拌装置を回転可能なインペラーや羽根としてもよい。

【0032】

一実施形態によれば、下部を中間部から取り外し可能に構成し、下部を取り外すと攪拌

50

装置とヒーターが露出するようにする。一実施形態によれば、中間部に、水位を検出するための2つの調節可能な電極を設ける。一実施形態によれば、電極の長さ（位置）の調節により、異なる水位を検出可能とする。一実施形態によれば、電極にアタッチメントを設け、これによって電極の長さ（位置）を調節可能に構成する。

【0033】

一実施形態によれば、コントローラーは入力装置を介して入力されるデータを受信可能に構成し、データは加熱素子の温度を制御するための制御指令からなるものとする。一実施形態によれば、温度制御部は加熱素子の温度を制御可能に構成する。一実施形態によれば、加熱素子は攪拌装置の近傍に配置する。

【0034】

流体温度制御装置の一実施形態によれば、装置に次のものを設ける：密閉されたハウジングに収容されたコントローラー；封入されたコントローラーに接続された水中ポンプ；水位を検出するための、調節可能な電極；および装置の回動を可能にするリングクランプ。

【0035】

一実施形態によれば、装置全体を水浸してもシステムの動作に悪影響が出ない。一実施形態によれば、水中ポンプは工具を用いずに中を開けてインペラーフローティング羽根を露出可能である。一実施形態によれば、水中ポンプはチューブ受けを有するポンプ出口部に脱落防止凸部を備える。

【0036】

本開示の一実施形態によれば、方法には、流体温度制御装置において、それぞれが調理時間および温度と関連付けられた食品タイプを表す複数の画像の中から調理済み食品タイプを受信するステップと、流体温度制御装置において、それぞれが補充調理時間および補充温度と関連付けられた食品属性を表示する複数の画像の中から1以上の食品属性を受信するステップと、流体温度制御装置において、選択された食品タイプの調理時間および温度を補充調理時間および補充温度に基づいて修正するステップが含まれる。

【0037】

一実施形態によれば、方法には、流体温度制御装置において、それぞれが第2補充調理時間および第2補充温度と関連付けられた調理加減レベルを表す複数の画像の中から調理加減レベルを受信するステップと、流体温度制御装置において、修正された調理時間および修正された温度を第2補充調理時間および第2補充温度に基づいて再度修正するステップがさらに含まれる。方法には、流体温度制御装置を再度修正した調理時間および再度修正した温度に応じて設定するステップがさらに含まれてもよい。請求項3に記載の方法には、再度修正した調理時間および再度修正した温度が安全範囲の閾値外であればそれらが危険な調理時間および温度である旨の通知を流体温度制御装置の表示装置に表示するがステップがさらに含まれてもよい。

【0038】

一実施形態によれば、方法には、流体温度制御装置を修正した調理時間および修正した温度に応じて設定するステップがさらに含まれる。方法には、修正した調理時間および修正した温度が安全範囲の閾値外であればそれらが危険な調理時間および温度である旨の通知を流体温度制御装置の表示装置に表示するステップがさらに含まれてもよい。方法には、流体温度制御装置において、温度の手動入力を受信するステップがさらに含まれてもよい。

【0039】

本開示の一実施形態によれば、システムは、プロセッサーと、非過渡的でコンピューター可読なメモリと、表示装置と、加熱素子と、攪拌装置とを含む流体温度制御装置をそなえる。メモリはプロセッサーと結合され、メモリからプロセッサーに指令を供給可能に構成される。該指令を実行することでプロセッサーは、選択可能な1以上の予備調理済み食品タイプを表示装置に表示し、選択された予備調理済み食品タイプに応じて調理時間、温度および速度を決定し、選択可能な1以上の食品属性を表示装置に表示し、選択された食

10

20

30

40

50

品属性に応じて調理時間、温度および速度を更新する。

【0040】

一実施形態によれば、システムにおいて、メモリにさらに指令が格納され、該指令を実行することでプロセッサーは、1以上の調理加減レベルを表示装置に表示し、選択された調理加減レベルに応じて、更新した調理時間、温度および速度を算出する。メモリにさらに指令が格納され、該指令を実行することでプロセッサーは、算出した調理時間を設定し、加熱素子を算出した温度で駆動し、攪拌装置を算出した速度で駆動してもよい。非過渡的でコンピューター可読なメモリにさらに指令が格納され、該指令を実行することでプロセッサーは、算出した調理時間および算出した温度が安全範囲の閾値外であればそれらが危険な調理時間および温度である旨の通知を表示装置に表示してもよい。

10

【0041】

一実施形態によれば、システムにおいて、メモリにさらに指令が格納され、該指令を実行することでプロセッサーは、更新した調理時間を設定し、加熱素子を更新した温度で駆動し、攪拌装置を更新した速度で駆動する。メモリにさらに指令が格納され、該指令を実行することでプロセッサーは、更新した調理時間および更新した温度が安全範囲の閾値外であればそれらが危険な調理時間および温度である旨の通知を表示装置に表示してもよい。メモリにさらに指令が格納され、該指令を実行することでプロセッサーは、表示装置において温度の手動入力を受信してもよい。

【0042】

本開示の一実施形態によれば、非過渡的でコンピューター可読な記憶媒体に指令が格納され、該指令によってプロセッサーに、選択可能な1以上の予備調理済み食品タイプを表示装置に表示するステップと、選択された予備調理済み食品タイプに応じて調理時間、温度および速度を決定するステップと、選択可能な1以上の食品属性を表示装置に表示するステップと、選択された食品属性に応じて調理時間、温度および速度を更新するステップを実行させる。

20

【0043】

一実施形態によれば、非過渡的でコンピューター可読な記憶媒体にさらに指令が格納され、該指令によってプロセッサーに、1以上の調理加減レベルを表示装置に表示するステップと、選択された調理加減レベルに応じて、更新した調理時間、温度および速度を算出するステップをさらに実行させる。一実施形態によれば、非過渡的でコンピューター可読な記憶媒体にさらに指令が格納され、該指令によってプロセッサーに、算出した調理時間を設定するステップと、加熱素子を算出した温度で駆動するステップと、攪拌装置を算出した速度で駆動するステップをさらに実行させる。

30

【0044】

一実施形態によれば、非過渡的でコンピューター可読な記憶媒体にさらに指令が格納され、該指令によってプロセッサーに、算出した調理時間および算出した温度が安全範囲の閾値外であればそれらが危険な調理時間および温度である旨の通知を表示装置に表示するステップをさらに実行させる。一実施形態によれば、非過渡的でコンピューター可読な記憶媒体にさらに指令が格納され、該指令によってプロセッサーに、更新した調理時間を設定するステップと、加熱素子を更新した温度で駆動するステップと、攪拌装置を更新した速度で駆動するステップをさらに実行させる。一実施形態によれば、非過渡的でコンピューター可読な記憶媒体にさらに指令が格納され、該指令によってプロセッサーに、更新した調理時間および更新した温度が安全範囲の閾値外であればそれらが危険な調理時間および温度である旨の通知を表示装置に表示するステップをさらに実行させる。

40

【0045】

図1および図2に一実施形態による流体温度制御装置105を示す。流体温度制御装置105は上部130、中間部120、および下部110からなる。一実施形態によれば、流体温度制御装置は上部および下部の2つの部分からなる。一実施形態によれば、流体温度制御装置は1つの部分からなる。一実施形態によれば、流体温度制御装置は1以上の部分からなる。上部130は表示装置132を備える。表示装置132には例えば次のよう

50

な情報が表示される：下部 110 の少なくとも一部が浸される流体の温度；導入口および排出口における通過総量；下部に収容されているインペラの回転速度。上部 130 にはさらに入力装置（図示せず）を設けてもよい。入力装置は例えば 1 以上のボタンその他の操作部材からなり、ユーザーはこれを利用して下部の少なくとも一部が浸される水の温度を選択することができる。一実施形態によれば、入力装置は物理的なボタンおよび／または表示装置 132 に表示されるバーチャルなボタンを含む。ボタンその他の入力操作部材は容量センサーパッドを含んでいてもよい。中間部 120 はリングクランプ 112 を備える。リングクランプ 112 を介して、制御装置 105 を容器などに取り付けることができる。中間部 120 はまたハウシング 124 を備え、ここにモーターおよびヒーター基部（図示せず）が収容される。下部 110 は、1 以上の開口 102 を有するキャップ 100 を備える。下部 110 には、1 以上の液体導入口 107 と 1 以上の液体排出口 108 とを有する水中ポンプ 109 が包み込まれている。排出口 108 は流体排出口であってよく、導入口 107 は流体導入口であってよい。下部 110 には液体導入（流入）開口 118 が形成されている。下部 110 内に収容された水中ポンプ 109、インペラ、その他の攪拌装置によって、熱せられた水が液体導入開口 118 から下部 110 内に導入され、液体排出（流出）開口 102 から下部 110 外へ排出される。開口 118 を液体排出（流出）開口とし、開口 102 を液体導入（流入）開口としてもよい。下部 110 に、それが浸される流体の温度を計測するための温度センサーを設けてもよい。他の一実施形態によれば、温度センサーを装置 105 とは別体として、装置 105 と無線通信を行わせる。

10

20

30

40

50

【0046】

図 3 に一実施形態による流体温度制御装置 105 の構成部品を示す。装置は下部 110 を備える。下部 110 は工具を必要としない掠じ込み式または嵌め込み式の取り外し可能なハウジングで、その中にサーチュレーターポンプその他の攪拌装置が収容される。下部 110 にはヒーター 125、駆動軸 101、およびインペラ 104 を設ける。下部 110 はステンレス鋼または他の適切な素材からなる。一実施形態によれば、下部 110 は取り外し可能な嵌め込み式裾部である。下部 110 には 1 以上の液体導入（流入）開口 118 が形成される。開口 118 は液体排出（流出）開口であってよい。装置 105 はまた液体排出（流出）キャップ 100 を備え、キャップ 100 の側部または底部には液体が通過可能な（液体の導入（流入）または排出（流出）が可能な）1 以上の開口 102 が形成される。中間部 120 にはモーターとヒーター基部 123 とが包み込まれており、後者は電気ヒーター 125 に接続される。中間部 120 には、蒸気の発生時にこれを排出するためのファンをさらに設けてもよい。中間部 120 は襟部 124 を含み、ここに 1 以上の孔を形成することでモーターおよびヒーター基部 123 に対する通気を確保している。装置 105 は上部 130 を備える。上部 130 にはタッチ操作が可能な液晶表示器 132 を設ける。装置 105 は水密／気密に密閉され、装置によって熱せられる流体の入った調理容器内に長時間に亘って全体を浸しても問題ない。

【0047】

図 4 は一実施形態による、クランプ 112 を備えた流体温度制御装置 105 の断面図である。クランプ 112 は流体温度制御装置 105 を鍋など、流体を入れた容器に取り外し可能に固定できるように構成される。クランプ 112 はその最上部に襟部 117 と取り付け部 111 とを備える。襟部 117 は取り付け部 111 によって装置 105 に、これの全周に亘って当接させられる。取り付け部 111 を、バネの働きによってクランプ 112 を流体温度制御装置 105 に取り付ける構成とすることができます。クランプ 112 はさらに固定当接部 113 を備え、これが鍋の内面と当接する。クランプ 112 はさらに可動当接部 116 を備え、これが鍋の外側と当接することにより流体温度制御装置 105 が鍋に固定される。襟部 117 は流体温度制御装置 105 沿いの任意の位置へ移動させることができ、これによって容器 114 内の流体に浸す下部 110 の長さを調節することができる。

【0048】

図 5 および図 6 はそれぞれクランプ 112 の一例の分解図および組立図である。クランプ 112 は襟部 117 を有し、これが温度制御装置（図示せず）に当接する。襟部 117

の当接は取り付け部 111 の操作により得られる。取り付け部 111 はバネによって付勢されている。取り付け部 111 が操作されると襟部 117 が温度制御装置と当接して動かなくなる。クランプ 112 は固定当接部 113 を有する。固定当接部 113 は容器の内壁と当接する。クランプ 112 はさらに可動当接部 116 を有する。可動当接部 116 は容器の外壁と当接する。可動当接部 116 はネジ機構によって操作可能である。他の一実施形態によれば、可動当接部 116 はバネによって付勢されている。

【0049】

図 7 に、無線温度センサーと通信する流体温度制御装置の例を示す。装置 105 は、流体 150 (例えは水) を入れた容器 114 に調節可能に取り付けられる。先述のように、流体 150 の温度は装置 105 によって制御可能である。無線温度センサー 156 は密閉容器 152 (例えは樹脂製の袋そのほか樹脂製の包装材) 内に収めた食品 154 に接近して (またはその中に) 設置することができる。他の一実施形態によれば、温度センサーは有線接続されて流体温度制御装置 105 自体に設けられる。

10

【0050】

図 8 は調理設定の選択方法の一例を示すフロー チャートである。本方法 800 は一例に過ぎず、所期の目的は様々な方法で実現可能である。以下に説明する方法 800 は例えは少なくとも図 1 および図 7 に示す構成を用いて実行でき、方法 800 の説明にあたってはそれらの図に示された各要素を参照する。図 8 に示す方法は一例に過ぎず、所期の目的は様々な方法で実現可能である。また、本例の方法 800 の図示において各ステップは特定の順序に並べられているが、当業者には理解されるように、図 8 に示す各ステップは本開示の効果が得られる限りにおいていかなる順序で実行されてもよく、一部のステップを省いたり更なるステップを加えてよい。

20

【0051】

図 8 に示す各ブロックそれぞれが、本例の方法 800 で実行されるプロセス、方法、またはサブルーチンの 1 以上に相当する。図 8 に示す各ステップは少なくとも図 1 および図 7 に示す装置 105 に実装することができる。また、図 8 に示す各ステップに、少なくとも装置 105 と通信可能に結合された非過渡的でコンピューター可読な記憶媒体に格納されたプロセスの指令が含まれ得ることは、当業者には自明であろう。以下では図 8 を装置 105 の観点から説明する。

30

【0052】

方法 800 はブロック 802 から始まる。ブロック 802 において、流体温度制御装置である例えはポータブル真空調理装置は予備調理済み食品タイプを受信する。一実施形態によれば、予備調理済み食品タイプの受信は装置 105 の表示装置上で選択することで行われる。一実施形態によれば、選択は外部装置から受け付けられる。外部装置とは、例えは携帯電話、パーソナルコンピューター、タブレット、そのほか装置 105 と無線で接続可能に構成された装置である。予備調理済み食品タイプは対応する調理時間および温度を有している。流体温度制御装置 105 は予備調理済みの肉を表す複数の画像を、それに対応する調理時間および温度とともに記憶することができる。対応する調理時間および温度とは、画像が示す食品の種類についてのものである。一実施形態によれば、選択は外部装置から行われる。外部装置とは、例えは携帯電話、パーソナルコンピューター、タブレット、そのほか装置 105 と無線で接続可能に構成された装置である。例えは、食品が鶏肉であれば、対応する調理時間は 3 時間、対応する温度は 150 °F となる。また例えは食品の種類がリブ・アイ (牛ロース芯) であれば、対応する調理時間は 1 時間、対応する温度は 130 °F となる。さらにまた例えは食品の種類が野菜類であれば、対応する調理時間は 30 分、対応する温度は 180 °F となる。ブロック 802 で、受信したい予備調理済み食品タイプが選択されると、フローはブロック 804 に進む。

40

【0053】

ブロック 804 において、流体温度制御装置は 1 以上の食品属性を受信する。一実施形態によれば、食品属性の受信は装置 105 の表示装置で選択することで行われる。一実施形態によれば、選択は外部装置から行われる。外部装置とは、例えは携帯電話、パーソナ

50

ルコンピューター、タブレット、そのほか装置 105 と無線で接続可能に構成された装置である。食品属性には例えば補充調理時間や温度が含まれる。食品属性は例えば食品の厚さ、脂肪含量、サイズ、重量、形状などである。流体温度制御装置 105 は食品属性を表す複数の画像を、それぞれに対応する補充調理時間および補充温度とともに記憶することができる。一実施形態によれば、1 以上の食品属性の選択が可能である。一実施形態によれば、食品属性を一切選択しなくてよい。選択された食品属性に対応する補充調理時間および補充温度は、ブロック 802 で選択された予備調理済み食品タイプと組み合わされて、総合的な調理時間および調理温度が決定される。例えば、予備調理済み食品タイプがリブ・アイで、食品属性が「厚さ 2 インチ、重量 2 ポンド」、それに対応する補充温度および調理時間がそれぞれ 0 ° および 2 時間であれば、総合的な温度および調理時間はそれぞれ 130 ° F および 3 時間となる。ブロック 804 で食品属性が受信されると、フローはブロック 806 に進む。

【0054】

ブロック 806 において、流体温度制御装置は調理加減レベルを受信する。調理加減レベルには例えば補充調理時間および温度が含まれる。一実施形態によれば、調理加減レベルの受信は装置 105 の表示装置で選択することで行われる。一実施形態によれば、選択は外部装置から行われる。外部装置とは、例えば携帯電話、パーソナルコンピューター、タブレット、そのほか装置 105 と無線で接続可能に構成された装置である。調理加減レベルは例えば、ウェルダン、ミディアムウェル、ミディアム、ミディアムレア、レア、ブルー、アルデンテ、テンダー（柔らか）、ソフト（柔らかめ）、またはファーム（硬め）である。流体温度制御装置 105 は調理加減レベルを表す複数の画像を、それぞれに対応する補充調理時間および補充温度とともに記憶することができる。選択された調理加減レベルに対応する補充調理時間および補充温度は、ブロック 802 で選択された予備調理済み食品タイプおよび / またはブロック 804 で選択された食品属性と組み合わされて、総合的な調理時間および調理温度が決定される。例えば、予備調理済み食品タイプがリブ・アイで、食品属性が「厚さ 2 インチ、重量 2 ポンド」、調理加減レベルが「ミディアム」で補充温度および補充調理時間がそれぞれ 0 ° および -1 時間であれば、総合的な温度および調理時間はそれぞれ 130 ° F および 2 時間となる。また例えば、調理加減レベルが「ウェルダン」で補充温度および補充調理時間がそれぞれ 50 ° および 0 時間であれば、総合的な温度および調理時間はそれぞれ 180 ° F および 3 時間となる。ブロック 806 で調理加減レベルが受信されると、フローはブロック 808 に進む。

【0055】

ブロック 808 において、流体温度制御装置に温度および調理時間がセットされる。一実施形態によれば、流体温度制御装置 105 は加熱素子を起動して特定の華氏温度（または摂氏温度）に昇温させ、また調理時間を時間・分・秒の単位で設定する。一実施形態によれば、装置 105 の攪拌装置を特定の速度にセットして流体を循環させつつ特定の温度に昇温する。一実施形態によれば、攪拌装置の速度の決定は、予備調理済み食品タイプ、食品属性、および調理加減レベルのうちの少なくともいずれかを選択することで行われる。例えば、予備調理済み食品タイプがリブ・アイで、食品属性が「厚さ 2 インチ、重量 2 ポンド」で、調理加減レベルが「ミディアム」ならば、加熱素子は 130 ° F に昇温され、調理時間は 2 時間に設定される。ブロック 808 で流体温度制御装置が設定されると、本方法 800 は終了する。

【0056】

一実施形態によれば、複数の画像と他の複数の画像とを表示装置に個別に、または関連する説明テキストと共に、表示してもよい。

【0057】

一実施形態によれば、装置 105 は、調理時間および温度が推奨安全範囲の閾値外であればそれらが危険な調理時間および温度である旨の通知を装置の表示装置に表示する。

【0058】

一実施形態によれば、真空調理装置においては調理対象品目の温度をユーザーが入力し

てさらに調節することができる。

【0059】

図9は方法900の他の一例を示す。本方法900はステップ902から始まり、ステップ904に進む。ステップ904において、調理装置と関連付けられたプロセッサーが実行するプログラムによって、調理方法に対応した複数の調理済み食品の画像が表示装置に並んで表示される。並んだ画像はそれぞれ異なる調理時間および温度で調理された食品の異なるバリエーションを示す。例えば「ステーキ」について、異なる調理結果を得ための調理温度のステップを4°Fとすることで、ユーザーに多数の選択肢を提供することができる。調理属性が受信されたら、フローはステップ906に進む。ステップ906において、ユーザーは所望の調理結果（たとえば、「ミディアム」、「ウェルダン」）を表している画像を選択し、対応する方法で調理をスタートさせるか、または追加の食品属性を入力して調理方法を修正する。ユーザーが後者を選ぶと、フローはステップ908に進む。ユーザーが調理をスタートさせる選択をすると、フローは後述するステップ914に進む。ステップ908において、ユーザーは追加の食品属性を入力する。主要な追加属性の一つとして、食品の重量が挙げられる。ユーザーが追加の食品属性の入力を選択すると、追加属性が受け付けられて調理属性が変更される。追加属性が入力されると、フローはステップ910に進む。ステップ910において、追加の食品属性が受け付けられる。追加属性に基づいて調理方法がさらに修正される。本方法はこのようにして食品に関する補充情報を考慮することができる。補充情報は例えば、以下に限定しないが、大きさや状態（凍っている、冷たい、温かい）を含み、さらには食品以外に関する、調理方法に影響するサーチュレーター出力および環境条件などの非食品情報を含んでいてよい。ステップ910を終えるとフローはステップ912に進み、ここでユーザーは自身の好み、例えば好みの風味、に合わせて更なる調整を手動で行うことができる。例えば、140°Fで1時間調理したステーキはミディアムでありながら生肉の風味を残すが、140°Fで6時間調理したステーキはミディアムでかつ煮込みの風味を持つ。ステップ912（またはステップ906）を終えると、フローはステップ914に進む。ステップ914において、安全性がチェックされ、調理属性に基づいて（例えば時間、温度、そのほかの設定が）修正された調理方法が実行される。このようにして適切な調理方法が調理装置によって判断され、実行される。その後フローはステップ914に進んで終了する。

【0060】

本開示の範囲内で様々な実施形態が、多様な動作環境において実施可能である。1台以上のユーザーコンピューター、演算装置、処理装置を用いて任意の数のアプリケーションを実行することができる。ユーザー／クライアント側装置には任意の数の汎用パーソナルコンピューターが含まれていてよく、これには例えば一般的なオペレーティングシステムが稼働するデスクトップまたはラップトップコンピューターや、モバイルソフトウェアが稼働し複数のネットワーキングおよびメッセージングプロトコルをサポートする携帯電話装置、無線装置、ハンドヘルド装置が含まれる。システムには複数のワークステーションが含まれていてよく、これらにおいては市販の様々なオペレーティングシステムのいずれかに加えて、例えば開発およびデータベース管理のための公知のアプリケーションが稼働する。諸装置の中には以上のほかの電子機器が含まれていてよく、例としてダミー端末、小型軽量クライアント（thin-client）、ゲーム装置、そのほかネットワーク経由の通信が可能な装置が挙げられる。

【0061】

様々な実施形態は少なくとも1つのサービスまたはWebサービスの一部として実施可能であり、例えばサービス指向型アーキテクチャーの一部として実施できる。Webサービスなどのサービスにおいては、適切な種類のメッセージングによって通信が可能であり、例えば拡張マークアップ言語（XML）で記述されたメッセージをSOAP（Simple Object Access Protocol）などの適切なプロトコルを用いて交換することができる。このようなサービスにおいて提供あるいは実行されるプロセスの記述には、WSDL（Web Services Description Language）など任意のプログラム言語を用いてよい。WSDLなど

10

20

30

40

50

の言語を用いることにより、様々なS O A P フレームワークの中でクライアント側コードを自動発生する機能が実現できる。

【0062】

様々な実施形態において、T C P / I P 、 O S I 、 F T P 、 U P n P 、 N F S 、 C I F S 、 A p p l e T a l k (商標)などの市販の各種プロトコルのうちの任意のものを用いた通信を支援するために、当業者に知られたネットワークのうちの少なくとも1つが利用されている。ネットワークとしては、例えばローカルエリアネットワーク(L A N)、ワイドエリアネットワーク(W A N)、仮想プライベートネットワーク(V P N)、インターネット、イントラネット、エクストラネット、公衆交換電話網(P S T N)、赤外線ネットワーク、無線ネットワーク、およびこれらの適切な任意の組み合わせが考えられる。

10

【0063】

W e b サーバーを利用する実施形態においては、W e b サーバー上で様々なサーバーアプリケーションまたは中間層アプリケーションのうちの任意のものが稼働する。例として、H T T P サーバー、F T P サーバー、C G I サーバー、データサーバー、J a v a サーバー、ビジネスアプリケーションサーバーが挙げられる。サーバーはまたユーザー装置からの要求に応えてプログラムまたはスクリプトを実行できるものであってもよい。その場合J a v a (登録商標)、C 、C # 、C + + などの任意のプログラム言語、またはP e r l 、P y t h o n 、T C L などの任意のスクリプト言語、さらにはそれらの組み合わせで記述された1以上のスクリプトまたはプログラムとして実装可能な1以上のW e b アプリケーションが実行可能である。サーバーはまたデータベースサーバーを含んでいてもよく、例として、これらに限定しないが、O r a c l e (登録商標)、M i c r o s o f t (登録商標)、S y b a s e (登録商標)、I B M (登録商標)から市販されているものが挙げられる。

20

【0064】

運用環境には、上に述べた様々なデータ格納装置、メモリ、記憶媒体などが含まれる。これらの配置場所は様々であって、1以上のコンピューターに対して局所に(および/または内蔵して)設けた、またはいずれかあるいは全てのコンピューターから遠隔にネットワークを介して設けた記憶媒体上であってよい。実施形態によっては情報を、当業者に知られたストレージエリアネットワーク(S A N)に置いてもよい。同様に、コンピューター、サーバー、そのほかのネットワーク装置に帰属する機能を実行するのに必要なファイルは、必要に応じて局所に格納しても、遠隔に格納してもよい。システムにコンピューター化された装置が含まれる場合、そのような装置それぞれに、バスを介して電気的に接続が可能なハードウェア要素が含まれていてよい。そのようなハードウェア要素とは例えば、少なくとも1つの中央演算処理装置(C P U)、少なくとも1つの入力装置(例えばマウス、キーボード、コントローラー、タッチパネル、キーパッド)、および少なくとも1つの出力装置(例えば、表示装置、プリンター、スピーカ)である。そのようなシステムにはさらに1以上の記憶装置が含まれていてもよく、例としてディスクドライブ、光学記憶装置、ランダムアクセスメモリ(R A M)やリードオンリーメモリ(R O M)などの固体記憶装置、さらには取り外し可能な媒体装置、メモリカード、フラッシュカードなどが挙げられる。

30

【0065】

そのような装置としてさらにコンピューター可読な記憶媒体の読み取り装置、通信装置(例えばモデム、ネットワークカード(無線または有線)、赤外線通信装置など)、および上述のような作業メモリが含まれていてもよい。コンピューター可読な記憶媒体の読み取り装置はコンピューター可読な記憶媒体と接続されるか、またはそれを装着可能に構成される。そのような記憶媒体には遠隔の、局所の、固定の、および/または取り外し可能な記憶装置、さらにはコンピューター可読な情報の一時的および/または恒久的な保持、格納、送信、取り出しのための記憶媒体が含まれる。システムおよび諸装置は通常複数のソフトウェアアプリケーション、モジュール、サービス、その他の要素を含んでいて、これらが少なくとも1つの作業メモリ装置に、オペレーティングシステムおよびクライアントアプリ

40

50

ケーションやWebブラウザなどのアプリケーションプログラムと共に収められている。上に述べた実施形態は様々な変形が可能であると理解されたい。例えば、専用ハードウェアを用いてもよいし、および／または特定の要素をハードウェア、ソフトウェア（アプリケーションなどの高移植性ソフトウェアを含む）、またはその両方で実現してもよい。さらにネットワーク入出力装置など、他の情報処理装置との接続があつてもよい。

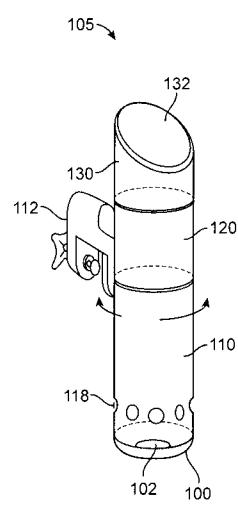
【0066】

コード、またはその一部、を保持するための記憶媒体やコンピューター可読な媒体は当該技術分野で知られ、用いられる適切な任意の媒体、例えば記憶媒体や通信媒体、を含む。これには例えば、以下に限定しないが、コンピューター可読な指令、データ構造、プログラムモジュール、その他のデータなどの情報の記憶および／または送信のための任意の方法または技術を利用した媒体であつて、揮発性および不揮発性のもの、取り外し可能および取り外し不可能なものが含まれる。例としてRAM、ROM、EEPROM、フラッシュメモリ、その他のメモリ類；CD-ROM、DVD、その他の光学記憶装置；磁気力セット、磁気テープ、磁気ディスク装置、またはその他の磁気記憶装置；そのほか、所望の情報が格納でき、システムの装置によってアクセス可能な他の任意の媒体を挙げができる。

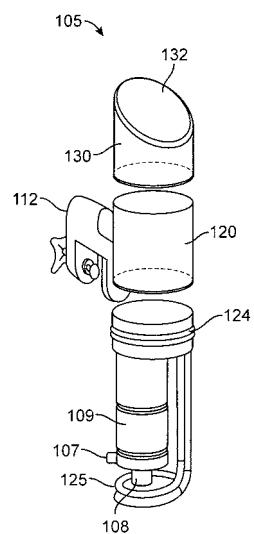
10

【0067】

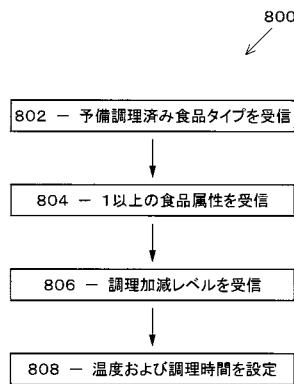
本開示の実施形態は、本開示に記載の工程または方法をコンピューター（または他の電子機器）に実行させるためのプログラムとなる一連の指令（圧縮された、または非圧縮の）が格納された、非過渡的で機械可読な記憶媒体を含んだコンピュータープログラム製品として提供することができる。機械可読な記憶媒体とは例えば、以下に限定しないが、ハードディスクドライブ、フロッピー（登録商標）ディスク、光学ディスク、CD-ROM、DVD、リードオンリーメモリ（ROM）、ランダムアクセスメモリ（RAM）、EPROM、EEPROM、フラッシュメモリ、磁気あるいは光学カード、固体メモリ装置、その他、電子的な指令の格納に適した機械可読な任意の記憶媒体である。本開示の実施形態はまた、過渡的で機械可読な信号（圧縮された、または非圧縮の）を含んだコンピュータープログラム製品として提供することもできる。機械可読な信号とは、搬送波を用いて変調されているか否かを問わず、例えば、以下に限定しないが、コンピュータープログラムをホストしているまたはそれが稼働しているコンピューターシステムまたは装置によってアクセス可能な信号を含み、インターネットや他のネットワークを介してダウンロードされる信号を含む。たとえば、ソフトウェアの領布はインターネットを介したダウンロードにより可能である。

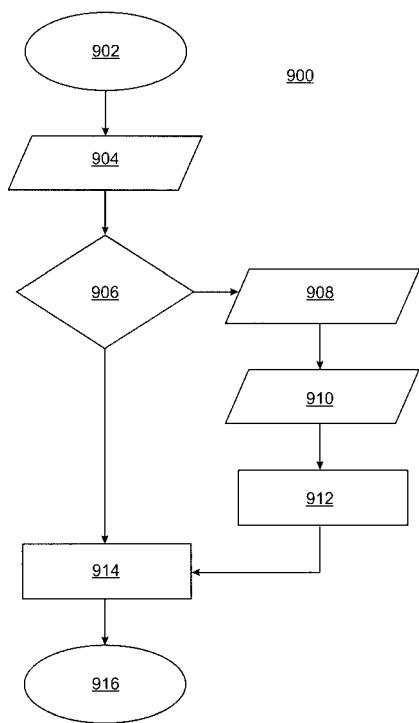

20

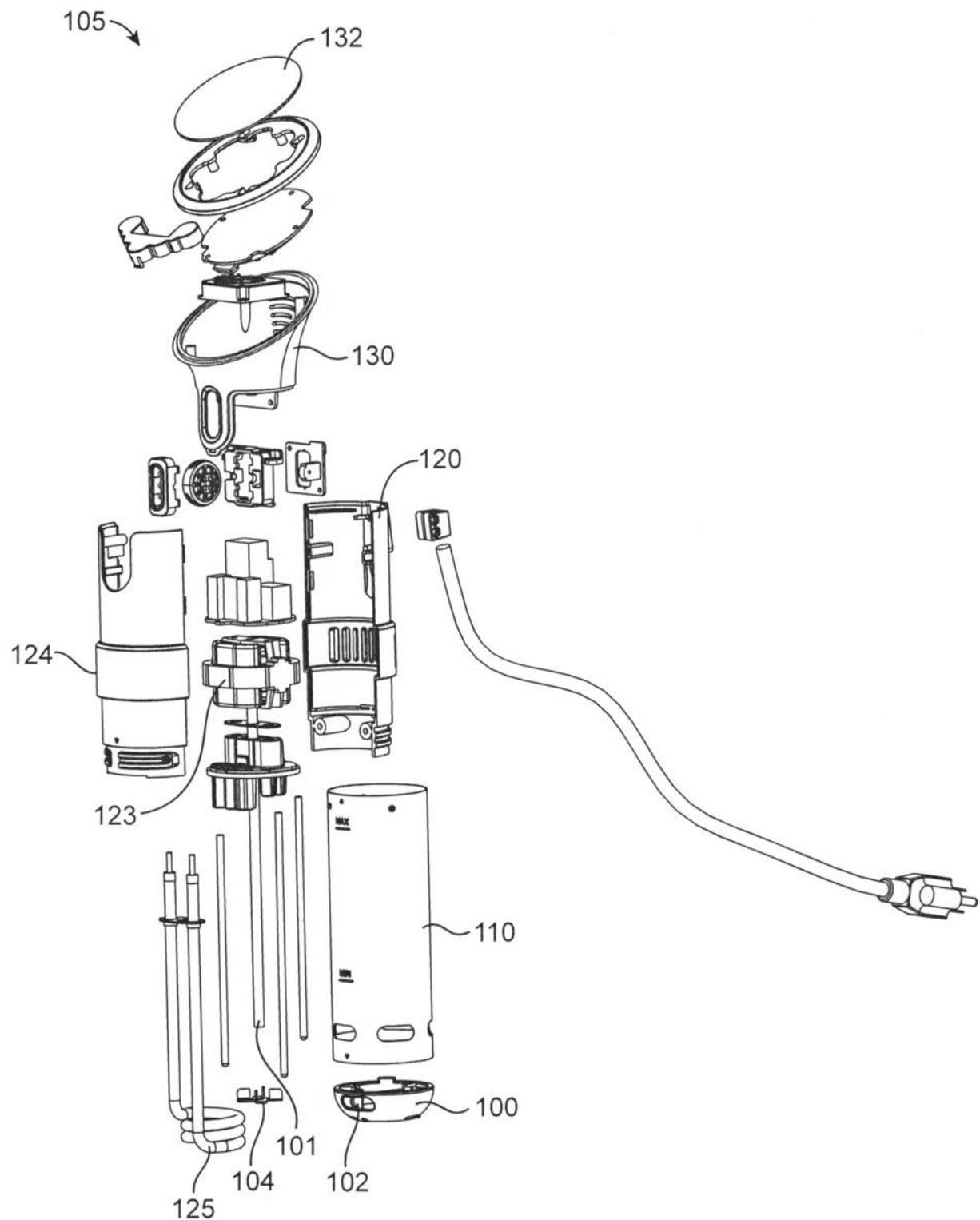
【0068】

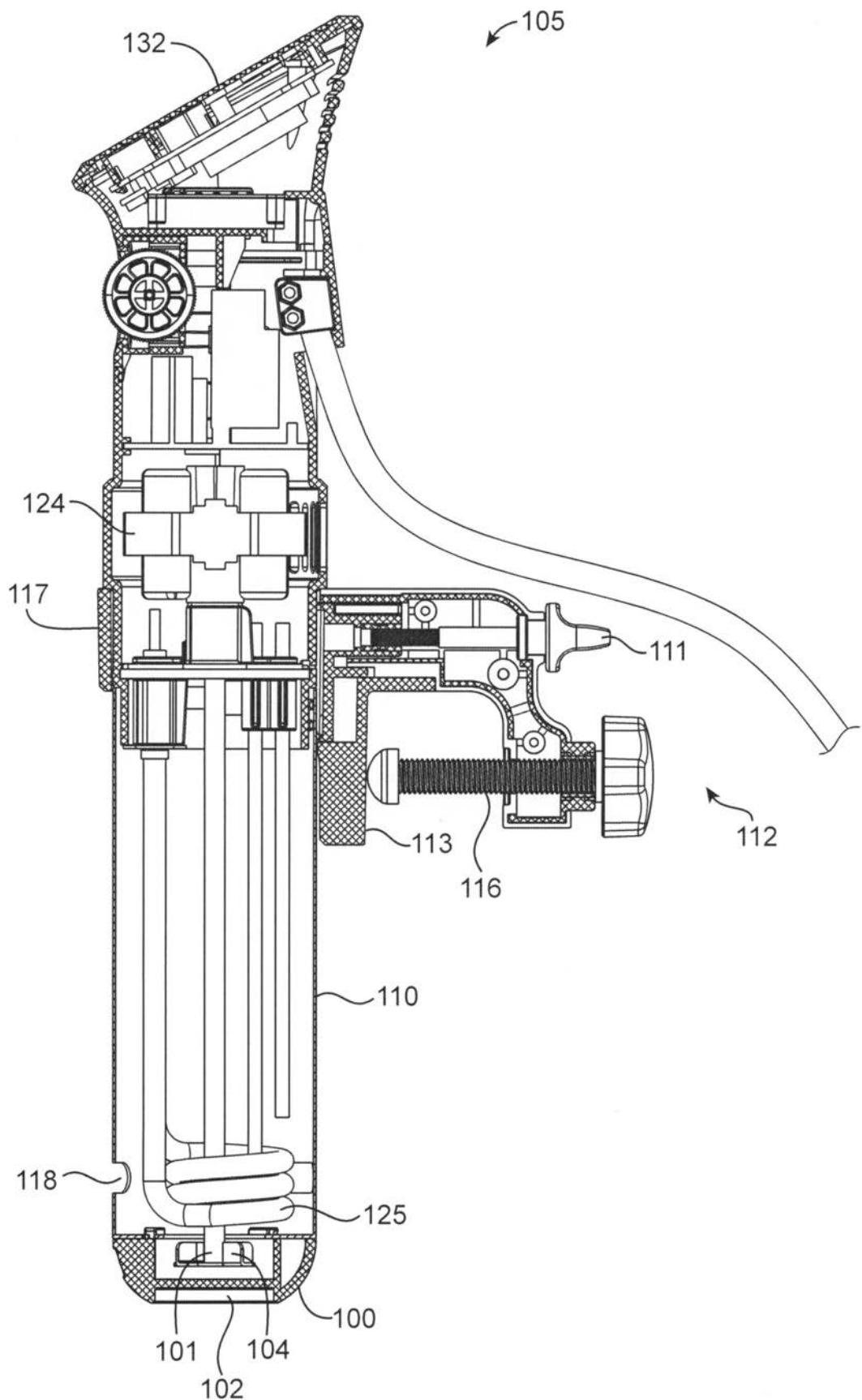

本開示の内容に基づけば、上述の様々な実施形態を上述とは異なる手段および方法で実現することが可能であることが理解されよう。明細書及び図面は例示的なものに過ぎず、添付の請求項に記載の請求範囲を何ら限定するものではないと理解されるべきである。

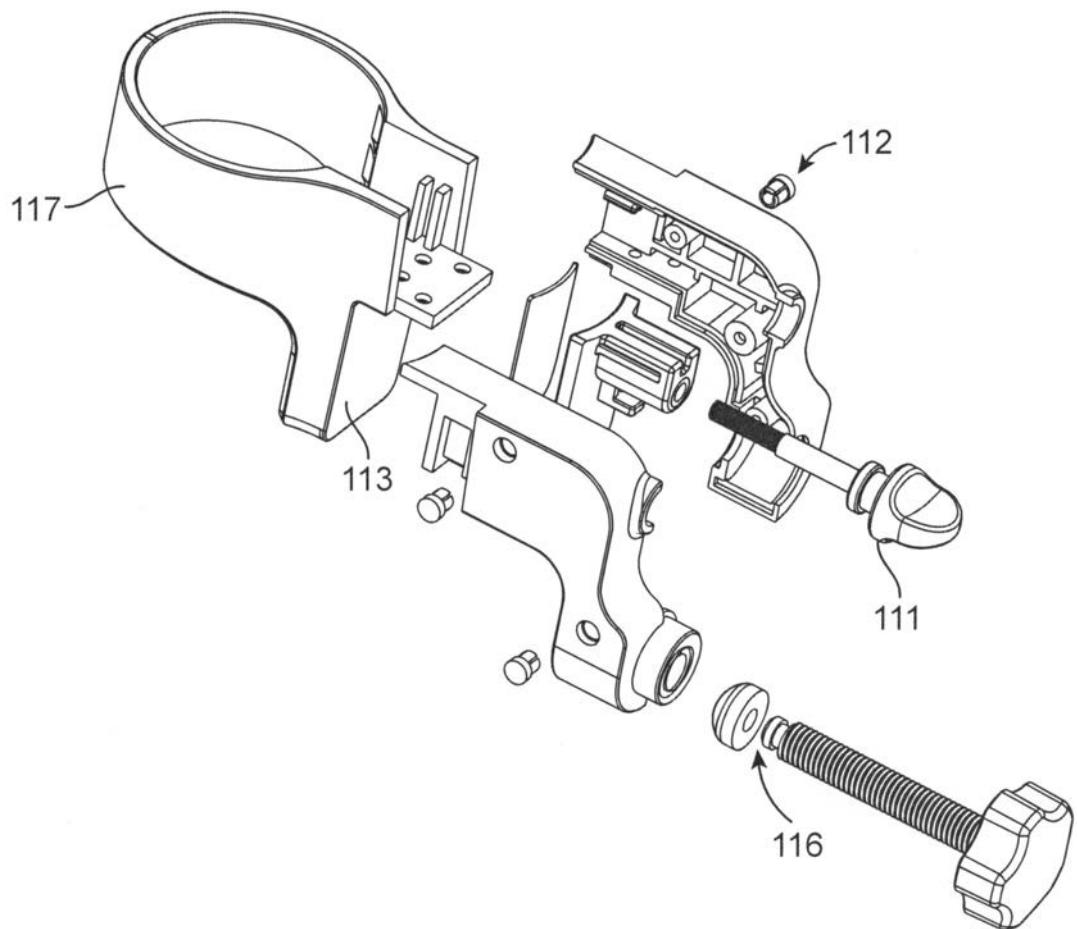
30

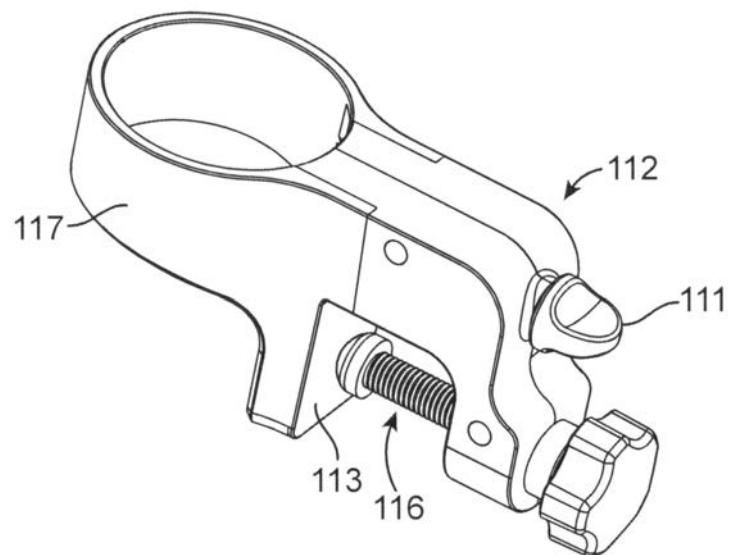

【図 1】

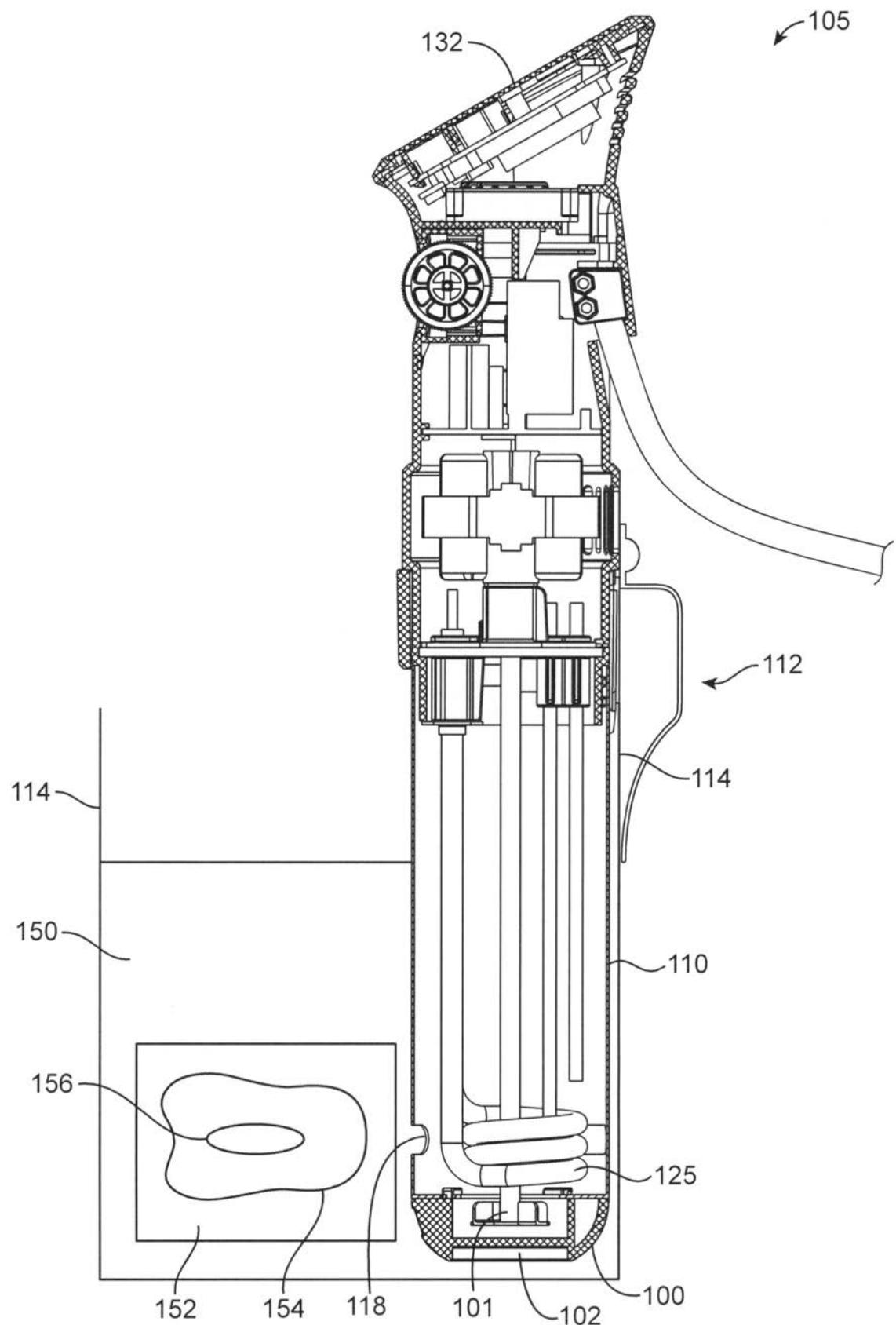

【図 2】


【図 8】


【図 9】


【図3】


【図4】


【図5】

【図6】

【図7】

【外国語明細書】

SOUS-VIDE COOKER WITH IMAGE TRANSLATION FUNCTIONALITY

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. provisional application No. 62/005,875, filed on May 30, 2014, and to U.S. application No. 14/491,961, filed on September 19, 2014, the contents of which applications are entirely incorporated by reference herein.

FIELD OF TECHNOLOGY

[0002] The present disclosure relates generally to food cooking devices, and more specifically, to precision temperature control water bath heaters and water pumping heating circulator appliance for cooking food in water.

BACKGROUND

[0003] Sous-vide is a method of cooking food sealed in airtight plastic bags in a water bath for longer than normal cooking times at an accurately regulated temperature much lower than normally used for cooking, typically around 55 °C (131 °F) to 60 °C (140 °F) for meats and higher for vegetables. Current sous-vide equipment are built with singular sous vide functionality such as a thermal circulator or a temperature controlled water bath and cannot be used for conventional cooking.

[0004] However sous vide cooking results vary by the temperature, time and fat/protein contents of foods. It is highly difficult for user to know what the proper temperature to cook dishes. Additionally foods purchased from the grocery store have a wide variety of quality and fat content on top of the fact that there are a numerous temperature recipes for sous vide that are unverified online leading incorrect cook times and temperatures resulting in less than optimal results.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] In order to describe a manner in which features of the disclosure can be obtained, reference is made to specific embodiments that are illustrated in the appended drawings. Based on an understanding that these drawings depict only example embodiments of the disclosure and

are not intended to be limiting of scope, the principles herein are described and explained with additional specificity and detail through the use of the accompanying drawings in which:

[0006] FIG. 1 illustrates a fluidic temperature control device in accordance with an example embodiment;

[0007] FIG. 2 illustrates a fluidic temperature control device in accordance with an example embodiment;

[0008] FIG. 3 illustrates a fluidic temperature control device in accordance with an example embodiment;

[0009] FIG. 4 is a cross-sectional view of a fluidic temperature control device in accordance with an example embodiment;

[0010] FIGS. 5-6 illustrates a clamping mechanism for a fluidic temperature control device in accordance with an example embodiment;

[0011] FIG. 7 is a cross-sectional view of a fluidic temperature control device in accordance with an example embodiment;

[0012] FIG. 8 is a flowchart of an example method for selecting a cook time and temperature, in accordance with an example embodiment; and

[0013] FIG. 9 is a flowchart of another example method for selecting a cook time and temperature, in accordance with an example embodiment

DETAILED DESCRIPTION

[0014] Broadly speaking, this disclosure relates to sous-vide circulator cookers for home sous-vide cooking. The disclosed devices are particularly suited for use in home kitchens, however, the devices are not limited to home kitchens and can be used in commercial environments.

[0015] Various embodiments of the disclosure are discussed in detail below. While specific implementations are discussed, it should be understood that this is done for illustration purposes only. A person skilled in the relevant art will recognize that other components and configurations may be used without departing from the scope of the disclosure. Several definitions that apply

throughout this document will now be presented. “Circulating” means agitating, blending or mixing of one or more fluids. Hence a “circulator” is a device which can be configured to agitate, blend or mix a fluid. Fluids will be understood to comprise liquids. “Coupled” is defined as connected, whether directly or indirectly through intervening components and is not necessarily limited to physical connections. Coupled devices are devices which are in signal communication with one another. “Connected” means directly connected or indirectly connected. “Sealed” can mean hermetically sealed, mechanically sealed or to make imperious to air and fluid.

[0016] The terms sous-vide, circulator cooker, circulator cooker, fluidic temperature control device, and cooker are used interchangeably throughout this specification and each refers to a device configured to cook food in temperature controlled water bath.

[0017] In at least one embodiment, a sous-vide circulator cooker can have one or more turn-able or rotatable information displays. The display can be located on the top the cooker and can be configured to keep electronics housed therein away from steam, water and heat and to enable easy viewing from a plurality of different angles.

[0018] In at least one embodiment, a sous-vide circulator cooker can include a detachable skirt which enables cleaning of the skirt and cleaning of a heater and water pump covered by the skirt. In at least one embodiment, the removable skirt can also expose the water pump impellers enabling a user to clean out food and debris. In at least one embodiment the skirt can be removed without tools. In at least one embodiment the skirt can be stainless steel, aluminum and/or plastic.

[0019] In at least one embodiment a sous-vide circulator cooker can have a water proof submersible pump in which the motor can be located under water, at the water line, or above water, with inflow and outflow lines. In at least one embodiment, the submersible pump can also be opened and/or accessed without tools for cleaning. In at least one embodiment, the cooker can be configured such that one or more motors of the cooker can be easily removed for cleaning or replacement.

[0020] In another embodiment, the entire circulator system can be sealed and can be submersed into water whether purposely or by accident, without damaging any components of the circulator

system.

[0021] In at least one embodiment, a fluidic temperature control device can include a housing that defines the shape or form of the device. The housing can internally enclose and support various electrical components (for example, motors, fans, and/or electronics). In at least one embodiment, the housing can be cylindrical. In another embodiment, the housing can be a shape other than cylindrical, for example, rectangular, circular, square, oval.

[0022] In at least one embodiment, a fluidic temperature control device for sous-vide cooking can include an upper portion including a controller, a display device and an input device coupled to the controller; a middle portion connected to the upper portion, the middle portion housing a motor coupled to the controller; a lower portion connected to the middle portion, the lower portion housing a fluid agitation device coupled to the motor, a heating element coupled to the controller, and the lower portion configured for at least partial immersion in a fluid.

[0023] In at least one embodiment, a fluidic temperature control device can include a clamp that enables an operator to secure the fluidic temperature control device to a container. In at least one embodiment, the clamp or other securement device can be configured to enable the height of the cooker to be adjusted with respect to the water bath or the chamber containing the bath, (for example, a cooking pot). In at least one embodiment, the sous-vide cooker can have a ring clamp that enables an operator to turn the entire system to vector the pump output or to turn the system for better display viewing angle.

[0024] In at least one embodiment, components of a fluidic temperature control device can be controlled by a remote device, for example, a phone, a server, a tablet, a Personal Computer (PC) or other electronic device. The remote device can be wirelessly and communicatively coupled to the cooker, for example, by Wi-fi, Bluetooth, Near Field Communication (NFC), short-range wireless or other similar system capable of sending and receiving data. In at least one embodiment, the fluidic temperature control device or the remote device controlling the fluidic temperature control device can be configured to wirelessly transmit information about cooking operations, such as a warning that additional water is required in the chamber cooking the food, or an alert indicating that cooking has been completed. In at least one embodiment, a fluidic temperature control device can receive recipe specifications from the remote device. The

specifications can then direct the cook time, water pump speed, and cook temperature of the device.

[0025] In at least one embodiment, the fluidic temperature control device can include a memory storage unit. The memory storage unit can be used to store information such as favorite recipes and cooking parameters for certain foods. In at least one embodiment, a fluidic temperature control device can store a plurality of recipe specifications and user generated data files. Users of the device can recall recipe specifications from an internal recipe book. In at least one embodiment, the sous-vide circulator cooker can categorize stored recipe specifications and generated data files which can be searchable.

[0026] In at least one embodiment, a fluidic temperature control device can be configured to communicate with a wireless thermometer which can be placed in a bag or other suitable container containing food being cooked by the cooker, proximate the food. A thermometer located proximate the food can enable the cooker to have extremely accurate information about the temperature of the food being cooked. Accurate information regarding food temperature can enhance the quality of the cooked food and can aid in ensuring the food is properly and thoroughly cooked (thereby ensuring food safety). In at least one embodiment, the wireless thermometer can be inductively rechargeable.

[0027] In at least one embodiment, fluidic temperature control device can be constructed to protect electronic components of the device from environmental factors associated with cooking, for example, high temperatures, water, and steam. In at least one embodiment, one or more portions of the fluidic temperature control device can dynamically change color depending on operational state of the device. In at least one embodiment, the portions of the sealed housing are configured to change color and to provide information regarding an operational state of the device.

[0028] In at least one embodiment, the upper portion of the fluidic temperature control device can be configured to protect the controller, display device and input device from steam during use. In at least one embodiment, the agitation device can be an impeller or a rotatable blade.

[0029] In at least one embodiment, the lower portion of the fluidic temperature control device or housing can be composed of at least stainless steel, aluminum or plastic, and is removable

without tools. In at least one embodiment, the lower portion can contain slits or openings running along at least a portion of a length of the lower portion. In at least one embodiment, the lower portion can be removable from the middle portion and removal of the middle portion exposes the agitation device. In at least one embodiment, the upper portion of the fluidic temperature control device can be rotatable with respect to the middle portion.

[0030] In at least one embodiment, the heating element can be proximate the agitation device. Additionally, the heating element can be housed substantially within the agitation device. In at least one embodiment, the controller can be configurable to control the temperature of the heating element. In at least one embodiment, the controller can be configurable to receive data inputted via the input device, the data comprising control commands to control the temperature of the heating element. At least one embodiment of a fluidic temperature control device for sous-vide cooking can include an upper portion including a turn-able display and an input device coupled to the microprocessor controller; a middle portion connected to the upper portion, the middle portion housing a temperature controller controlled by the microprocessor; and a lower portion connected to the middle portion. The lower portion can house or encase a submersible fluid agitation device including impellers and motor, and a heating element coupled to the temperature controller, the lower portion configured for at least partial immersion in a fluid.

[0031] In at least one embodiment, the upper portion and middle portion can be sealed, thereby preventing water entry, thereby protecting electronics, the display and other electrical devices within the fluidic temperature control device. In at least one embodiment, the agitation device can be wholly or partially submersible. The agitation device can include a pump system having a motor and an impeller. The agitation device can also comprise a rotatable impeller blade.

[0032] In at least one embodiment, the lower portion can be configured to be removable from the middle portion such that removal of the lower portion exposes the agitation device and heaters. In at least one embodiment, the middle portion can have two adjustable electrodes that can sense the water level. In at least one embodiment, the lengths of the electrodes can be adjustable to enable detection of different water levels. In at least one embodiment, the electrodes can be configurable with attachments that enable adjustment of a length of the electrodes.

[0033] In at least one embodiment, the controller can be configurable to receive data inputted via

the input device, the data comprising control commands to control the temperature of the heating element. In at least one embodiment, the temperature controller is configurable to control the temperature of the heating element. In at least one embodiment, the heating element is located proximate the agitation device.

[0034] At least one embodiment of a fluidic temperature control device can comprise a controller located in a sealed housing; a submersible pump connected to the sealed controller; adjustable electrodes to detect water level; and a ring clamp enabling the device to be turned.

[0035] In at least one embodiment, the entire device can be submersed in water without negatively impacting the operation of the system. In at least one embodiment, the submersible pump can be opened without tools to expose the impeller blades. In at least one embodiment, the submersible pump can include a barb located on the pump outlet containing a tube receiver.

[0036] At least one embodiment within this disclosure is a method which includes receiving, at a fluidic temperature control device, a pre-cooked food, wherein the pre-cooked food is from a plurality of pictures of pre-cooked foods with corresponding cook times and temperatures; receiving, at the fluidic temperature control device, one or more food attributes, wherein the one or more food attributes is from a plurality of pictures of food attributes with corresponding supplemental cook times and supplemental temperatures; and modifying, at the fluidic temperature control device, the selected pre-cooked food cook time and temperature with the supplemental cook time and supplemental temperature.

[0037] In at least one embodiment, a method can also include receiving, at the fluidic temperature control device, a doneness level, wherein the doneness level is from a plurality of pictures of doneness levels with a corresponding second supplemental cook time and a second supplemental temperature; modifying, at the fluidic temperature control device, the modified cook time and modified temperatures with the second supplemental cook time and the second supplemental temperature. The method further comprising configuring the fluidic temperature control device to the second modified cook time and the second modified temperature. The method of claim 3, further comprising rendering, at a display of the fluidic temperature control, a notification of an unsafe time and temperature when the second modified cook time and the second modified temperatures are outside a threshold safety value.

[0038] In at least one embodiment, a method can also include configuring the fluidic temperature control device to the modified cook time and modified temperature. The method further comprising rendering, at a display of the fluidic temperature control device, a notification of an unsafe time and temperature when the modified cook time and the modified temperatures are outside a threshold safety value. The method further comprising receiving, at the fluidic temperature control device, a manual input of a temperature.

[0039] At least one embodiment within this disclosure is a system comprising a fluidic temperature control device including a processor, a non-transitory computer readable memory, a display, a heating element, and an agitator; the memory coupled with the processor, wherein the memory is configured to provide the processor with instructions which when executed cause the processor to render on the display one or more selectable pre-cooked food items; determine a cook time, a temperature, and a speed in response to a selection of the pre-cooked food item; render on the display one or more selectable food attributes; update the cook time, the temperature, and the speed in response to a selection of the food attribute.

[0040] In at least one embodiment of a system, the memory can store instructions to cause the processor to render on the display one or more doneness levels; calculate the updated cook time, the temperature, and the speed in response to a selection of the doneness level. The memory can also include instructions to set the calculated cook time, actuate the heating element to the calculated temperature, and actuate the agitator to the calculated speed. The non-transitory computer readable memory can also include instructions to render on the display a notification of an unsafe cook time and temperature when the calculated cook time and the calculated temperatures are outside a threshold safety value.

[0041] In at least one embodiment of a system, a memory can store instructions to set the updated cook time, actuate the heating element to the updated temperature, and actuate the agitator to the updated speed. A memory can also include instructions to render at the display, a notification of an unsafe time and temperature, when the updated cook time and the updated temperatures are outside a threshold safety value. The memory can also include instructions to control the display to receive a manual input of a temperature.

[0042] At least one embodiment within this disclosure is a non-transitory computer readable

medium storing instructions to cause a processor to render on a display one or more selectable pre-cooked food items; cause a processor to determine a cook time, a temperature, and a speed in response to a selection of the pre-cooked food item; cause a processor to render on the display one or more selectable food attributes; cause a processor to update the cook time, the temperature, and the speed in response to a selection of the food attribute.

[0043] In at least one embodiment, a non-transitory computer readable medium can also include instructions to cause a processor to render on the display one or more doneness levels; cause a processor to calculate the updated cook time, the temperature, and the speed in response to a selection of the doneness level. A non-transitory computer readable medium can also include instructions to cause a processor to set the calculated cook time, actuate the heating element to the calculated temperature, and actuate the agitator to the calculated speed.

[0044] In at least one embodiment, a non-transitory computer readable medium can store instructions to cause a processor to render on the display a notification of an unsafe cook time and temperature when the calculated cook time and the calculated temperatures are outside a threshold safety value. A non-transitory computer readable medium can also store instructions to cause a processor to set the updated cook time, actuate the heating element to the updated temperature, and actuate the agitator to the updated speed. A non-transitory computer readable medium can also store instructions to cause a processor to render at the display a notification of an unsafe time and temperature when the updated cook time and the updated temperatures are outside a threshold safety value.

[0045] FIGS. 1 and 2 illustrate an example embodiment of a fluidic temperature control device 105. The temperature control device 105 comprises an upper portion 130, a middle portion 120 and a lower portion 110. In at least one embodiment, a fluidic temperature control device can include two portions: an upper and a lower. In at least one embodiment, a fluidic temperature control device can include one portion. In at least one embodiment, a fluidic temperature control device can include one or more portions. The upper portion 130 can include a display device 132 which can display information, for example, the temperature of the fluid in which the lower portion 110 is at least partially immersed, the throughput at which intake and ejection ports are operating, or the speed at which an impeller housed within the lower portion is spinning. The upper portion 130 can also include an input device (not shown), for example, one or more buttons or controls

which can enable a user to select a temperature for the water in which the lower portion is at least partially immersed. In at least one embodiment, the input device can include physical buttons and/or virtual buttons rendered on display device 132. The buttons or input controls can include capacitive sensor pads. The middle portion 120 can comprise a ring clamp 112 enabling attachment of control device 105 to a container, or the like. Middle portion 120 can include housing 124 for motor and heater base (not shown). Lower portion 110 can be configured with a cap 100 configured with one or more openings 102. Lower portion 110 can enclose submersible pump 109 with one or more liquid intake ports 107 and ejection ports 108. Alternatively, ports 108 can be fluid ejection ports and ports 107 can be fluid intake ports. The lower portion 110 can be configured with liquid intake (flow-in) openings 118 through which the heated water can be drawn by submersible pump 109, an impeller or other agitation device located within the lower portion 110 and ejected out of lower portion 110 through liquid ejection (flow-out) openings 102. Alternatively, openings 118 can be liquid output (flow-out) openings and openings 102 can be liquid intake (flow-in) openings. The lower portion 110 can include a thermometer device for taking the temperature of the fluid in which it is immersed. In another embodiment the thermometer can be separate device 105 and in wireless communication with device 105.

[0046] FIG. 3 illustrates components of at least one embodiment of a fluidic temperature control device 105. The device can include a lower portion 110. The lower portion 110 can be a removable, tool-less screw or clamp-on circulator pump other agitation device housing. Lower portion 110 can include heaters 125, drive shaft 101 and impeller 104. The lower portion 110 can be composed of stainless steel or other suitable materials. In one embodiment, the lower portion 110 can be a removable clamp-on on skirt. The lower portion 110 can be configured with one or more liquid intake (flow-in) openings 118. Alternatively, openings 118 can be liquid output (flow-out) openings. The device 105 can also include a liquid ejection (flow-out) cap 100 with one or more openings 102 on the side or bottom at the through which fluid can pass (as liquid intake (flow-in) or liquid output (flow-out)). Middle portion 120 can enclose motor and heater base 123 connected to electric heaters 125. Middle portion 120 can also comprise a fan (not shown) to blow out any steam that may be present. Middle portion 120 can include collar 124 including one or more openings to provide ventilation to motor and heater base 123. Device 105 can include an upper portion 130. The upper portion 130 can include a LCD display 132 with

touch controls. Device 105 can be sealed against water/air and can be fully submersed for periods of time in the cooking vessel containing the fluid being heated by the device.

[0047] FIG. 4 is a cross-sectional view illustrating an example embodiment of fluidic temperature control device 105 having a clamp 112. The clamp 112 can be configured to releasably secure the fluidic temperature control device 105 to a pot, or any container holding a fluid. The clamp 112 can have a collar 117 and an attachment portion 111 at the uppermost portion of the clamp. The collar 117 can circumferentially engage with device 105 by attachment portion 111. The attachment portion 111 can be spring operated and configured to enable the clamp 112 to attach to the fluidic temperature control device 105. The clamp 112 can further have a stationary engagement portion 113 configured to engage an inner portion of a pot. The clamp 112 can further have a moveable engagement portion 116 configured to engage an outer portion of the pot thereby securing the fluidic temperature control device 105 to the pot. The collar 117 can be positioned at any point along the fluidic temperature control device 105 to enable adjustment in the length of the lower portion 110 that is immersed in fluid of container 114.

[0048] FIG. 5 and FIG. 6 illustrate an exploded view and assembled view of an example clamp 112 respectively. Clamp 112 can include a collar 117 to engage with a temperature control device (not shown). Collar 117 can be engaged by actuating attachment portion 111. Attachment portion 111 can be spring-loaded. When attachment portion 111 is actuated, collar 117 can be engaged with the temperature control device preventing movement of collar 117. Clamp 112 can also include a stationary engagement portion 113. Stationary engagement portion 113 can be configured to engage the inside wall of a container. Clamp 112 can also include a moveable engagement portion 116. Moveable engagement portion 116 can be configured to engage the outside wall of a container. Moveable engagement portion 116 can be actuated by a screw mechanism. In another embodiment, moveable engagement portion 116 can be spring-loaded.

[0049] FIG. 7 illustrates an example fluidic temperature control device in communication with a wireless temperature sensor. Device 105 is adjustably attached to container 114 containing fluid 150 (for example water). The temperature of fluid 150 can be regulated by device 105, as previously described. The wireless temperature sensor 156 can be placed proximate (or within) the food 154 within a sealed container 152 (for example, a plastic bag or plastic envelope)

located in fluid 150. In another embodiment, the temperature sensor can be wired to and located at fluidic temperature control device 105.

[0050] FIG. 8 is a flowchart of an example method for selecting cooking settings. A method 800 is provided by way of example, as there are a variety of ways to carry out the method. The method 800 described below can be carried out using the configurations illustrated in at least FIG. 1 and 7, for example, and various elements of these figures are referenced in explaining example method 800. The method of FIG. 8 is provided by way of example, as there are a variety of ways to carry out the method. Additionally, while the example method 800 is illustrated with a particular order of steps, those of ordinary skill in the art will appreciate that FIG. 8 and the steps illustrated therein can be executed in any order that accomplishes the technical advantages of the present disclosure and can include fewer or more steps than illustrated.

[0051] Each block shown in FIG. 8 can represent one or more processes, methods or subroutines, carried out in example method 800. The steps illustrated in FIG. 8 can be implemented in the device 105 illustrated in at least FIG. 1 and 7. Additionally, those of ordinary skill in the art will appreciate that the steps illustrated in FIG. 8 can include instructions of processes stored in a non-transitory computer readable medium communicatively coupled to at least device 105. For purposes of illustration, FIG. 8 will be described from the perspective of the device 105.

[0052] Method 800 can begin at block 802. At block 802, a fluidic temperature control device, for example, a portable sous-vide cooker, can receive a pre-cooked food. In at least one embodiment, a selection of pre-cooked food is received by a selection on a display of the device 105. In at least one embodiment, the selection can be made from a remote device, for example, a mobile phone, personal computer, tablet, or other device configured to connect wirelessly with device 105. The pre-cooked food can have corresponding cook times and temperatures. The fluidic temperature control device 105 can store a plurality of pictures of pre-cooked meats with corresponding cook times and temperatures. The corresponding cook times and temperatures can be based on the type of food in the picture. In at least one embodiment, the selection can be made from a remote device, for example, a mobile phone, personal computer, tablet, or other device configured to connect wirelessly with device 105. For example, the food can be chicken, and the corresponding cook time can be 3 hours and the corresponding temperature can be 150F. In another example, the food type can also be ribeye and the corresponding cook time can be 1 hour

and the corresponding temperature can be 130F. In another example, the food type can also be vegetables and the corresponding cook time can be 30 minutes and the corresponding temperature can be 180F. When a selection of a pre-cooked food is received at block 802, the method can proceed to block 804.

[0053] At block 804, the fluidic temperature control device can receive one or more food attributes. In at least one embodiment, the food attributes are received by a selection on a display of the device 105. In at least one embodiment, the selection can be made from a remote device, for example, a mobile phone, personal computer, tablet, or other device configured to connect wirelessly with device 105. The food attributes can have supplemental cook times and temperatures. The food attributes can be a thickness, a fat content, a size, a weight, or a shape of food. The fluidic temperature control device 105 can store a plurality of pictures of the food attributes and corresponding supplemental cook time and temperatures. In at least one embodiment one or more food attributes can be selected. In at least one embodiment no food attribute is selected. The corresponding supplement cook times and temperatures for the selected food attributes can be combined with the selection of the pre-cooked food in block 802 to determine the total cook time and total temperature for cooking. For example, with a pre-cooked food of ribeye, the food attributes can be a thickness of 2 inches and a weight of 2 lbs., and the corresponding supplemental temperature and cook time can be 0 degrees and 2 hours, respectively. The total temperature and cook time can be 130F and 3 hours, respectively. When a food attribute is received at block 804, the method can move to block 806.

[0054] At block 806, the fluidic temperature control device can receive a doneness level. The doneness level can have supplemental cook times and temperatures. In at least one embodiment, the doneness level is received by a selection on a display of the device 105. In at least one embodiment, the selection can be made from a remote device, for example, a mobile phone, personal computer, tablet, or other device configured to connect wirelessly with device 105. The doneness levels can be well done, medium well, medium, medium rare, rare, blue, al dente, tender, soft, or firm. The fluidic temperature control device 105 can store a plurality of pictures of the doneness levels and corresponding supplemental cook time and temperatures. The corresponding supplement cook times and temperatures for the selected doneness level can be combined with the selection of the pre-cooked food in block 802 and/or the selection of the food

attribute in block 804 to determine the total cook time and total temperature for cooking. For example, with a pre-cooked food of ribeye, and a food attributes of thickness of 2 inches and a weight of 2 lbs., and a doneness level of medium the supplemental temperature and cook times can be 0 degrees and -1 hour, respectively. The total temperature and cook time would be 130F and 2 hours, respectively. In another example, if the doneness level is well done the supplemental temperature and cook times can be 50 degrees and 0 hours, respectively. The total temperature and cook time can be 180F and 3 hours, respectively. When a doneness level is received at block 806, the method can move to block 808.

[0055] At block 808, the fluidic temperature control device can be configured to a temperature and cook time. In at least one embodiment, fluidic temperature control device 105 can actuate the heating element to a specific degree Fahrenheit (or Celsius) and set a cook time in hours, minutes, and seconds. In at least one embodiment and agitator of device 105 can be configured to a corresponding speed to circulate the fluid to the specific temperature. In at least one embodiment the speed of the agitator is determined by the selections of at least one of a pre-cooked food, food attributes, or doneness level. For example, with a pre-cooked food of ribeye, and a food attributes of thickness of 2 inches and a weight of 2 lbs, and a doneness level of medium the heating element can be actuated to 130F and the cook time can be set to 2 hours. When the fluidic temperature control device has been configured at block 808, the method 800 can end.

[0056] In at least one embodiment, the plurality of pictures and another plurality of pictures can be displayed individually, or in relation to text descriptions.

[0057] In at least one embodiment, device 105 can display a notification on a display of the device of an unsafe time and temperature if cook time and temperatures are outside of a threshold of recommended safety zones.

[0058] In at least one embodiment, the sous-vide cooker can allow a user to input a temperature of an item to be cooked to allow further adjustment.

[0059] FIG. 9 illustrates another example method 900. The method 900 begins at step 902. The method proceeds to step 904. At step 904, a program executed by a processor associated with a cooker causes a display to display an array of cooked food images that correspond to cook

specifications. Images arrays correspond to different variations of food cooked with different times and temperatures. For example, “steak” can have different results, such as cooking temperatures differing by four degrees Fahrenheit, which can require a large array of options for the user to choose from. Once the cooking attributes are received, the method can proceed to step 906. At step 906, a user can select an image depicting a desired cook result (for example, “medium”/ “well done) to start a cook specification or add in additional food attributes to further modify cook specifications. If the user does so, the method proceeds to step 908. If the user instead simply elects to begin cooking, the method proceeds to step 914, which is discussed below. At step 908, additional food attributes are input. One of the primary additional modifiers is weight of the food. If a user elects to add additional food attributes the method can accommodate additional modifiers to change cook attributes. Once additional attributes are input, the method proceeds to step 910. At step 910 additional food attributes/modifiers are received. Additional modifiers can further tune the cook specifications. The method can thus take into account supplemental information regarding the food, including, but not limited to, size, and state (frozen, cold, warm) and can also include non-food information like circulator power, and environment stability that all impact cook specifications. Once step 910 is complete, the method proceeds to step 912, wherein a user can make further manual adjustments according to the user’s individual preferences, such as the user’s flavor preferences. For instance cooking at 140 degrees Fahrenheit for one hour can result in a medium steak with a raw meat taste profile but cooking at 140 Fahrenheit for six hours can result in a medium steak with a stewed taste profile. Once step 912 (or step 906) is complete, the method proceeds to step 914. At step 914, safety checks are performed, run specifications modified (such as time, temperature and other such parameters) based on cook attributes. Appropriate cook specifications are thus calculated and executed by a cooker. The method then proceeds to step 914 where it ends.

[0060] Various embodiments within this disclosure can be implemented in a wide variety of operating environments, which in some cases can include one or more user computers, computing devices, or processing devices which can be used to operate any of a number of applications. User or client devices can include any of a number of general purpose personal computers, such as desktop or laptop computers running a standard operating system, as well as cellular, wireless, and handheld devices running mobile software and capable of supporting a

number of networking and messaging protocols. Such a system also can include a number of workstations running any of a variety of commercially-available operating systems and other known applications for purposes such as development and database management. These devices also can include other electronic devices, such as dummy terminals, thin-clients, gaming systems, and other devices capable of communicating via a network.

[0061] Various embodiments also can be implemented as part of at least one service or Web service, such as can be part of a service-oriented architecture. Services such as Web services can communicate using any appropriate type of messaging, such as by using messages in extensible markup language (XML) format and exchanged using an appropriate protocol such as SOAP (derived from the "Simple Object Access Protocol"). Processes provided or executed by such services can be written in any appropriate language, such as the Web Services Description Language (WSDL). Using a language such as WSDL allows for functionality such as the automated generation of client-side code in various SOAP frameworks.

[0062] Various embodiments can utilize at least one network that would be familiar to those skilled in the art for supporting communications using any of a variety of commercially-available protocols, such as TCP/IP, OSI, FTP, UPnP, NFS, CIFS, and AppleTalkTM. The network can be, for example, a local area network, a wide-area network, a virtual private network, the Internet, an intranet, an extranet, a public switched telephone network, an infrared network, a wireless network, and any suitable combination thereof.

[0063] In embodiments utilizing a Web server, the Web server can run any of a variety of server or mid-tier applications, including HTTP servers, FTP servers, CGI servers, data servers, Java servers, and business application servers. The server(s) also can be capable of executing programs or scripts in response requests from user devices, such as by executing one or more Web applications that can be implemented as one or more scripts or programs written in any programming language, such as Java®, C, C# or C++, or any scripting language, such as Perl, Python, or TCL, as well as combinations thereof. The server(s) can also include database servers, including without limitation those commercially available from Oracle®, Microsoft®, Sybase®, and IBM®.

[0064] The environment can include a variety of data stores and other memory and storage

media as discussed above. These can reside in a variety of locations, such as on a storage medium local to (and/or resident in) one or more of the computers or remote from any or all of the computers across the network. In a particular set of embodiments, the information can reside in a storage-area network (“SAN”) familiar to those skilled in the art. Similarly, any necessary files for performing the functions attributed to the computers, servers, or other network devices can be stored locally and/or remotely, as appropriate. Where a system includes computerized devices, each such device can include hardware elements that can be electrically coupled via a bus, the elements including, for example, at least one central processing unit (CPU), at least one input device (e.g., a mouse, keyboard, controller, touch screen, or keypad), and at least one output device (e.g., a display device, printer, or speaker). Such a system can also include one or more storage devices, such as disk drives, optical storage devices, and solid-state storage devices such as random access memory (“RAM”) or read-only memory (“ROM”), as well as removable media devices, memory cards, flash cards, et

[0065] Such devices also can include a computer-readable storage media reader, a communications device (e.g., a modem, a network card (wireless or wired), an infrared communication device, etc.), and working memory as described above. The computer-readable storage media reader can be connected with, or configured to receive, a computer-readable storage medium, representing remote, local, fixed, and/or removable storage devices as well as storage media for temporarily and/or more permanently containing, storing, transmitting, and retrieving computer-readable information. The system and various devices also typically will include a number of software applications, modules, services, or other elements located within at least one working memory device, including an operating system and application programs, such as a client application or Web browser. It should be appreciated that alternate embodiments can have numerous variations from that described above. For example, customized hardware might also be used and/or particular elements might be implemented in hardware, software (including portable software, such as applets), or both. Further, connection to other computing devices such as network input/output devices can be employed.

[0066] Storage media and computer readable media for containing code, or portions of code, can include any appropriate media known or used in the art, including storage media and communication media, such as but not limited to volatile and non-volatile, removable and non-

removable media implemented in any method or technology for storage and/or transmission of information such as computer readable instructions, data structures, program modules, or other data, including RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by a system device.

[0067] Embodiments of the present disclosure can be provided as a computer program product including a nontransitory machine-readable storage medium having stored thereon instructions (in compressed or uncompressed form) that can be used to program a computer (or other electronic device) to perform processes or methods described herein. The machine-readable storage medium can include, but is not limited to, hard drives, floppy diskettes, optical disks, CD-ROMs, DVDs, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, flash memory, magnetic or optical cards, solid-state memory devices, or other types of media/machine-readable medium suitable for storing electronic instructions. Further, embodiments can also be provided as a computer program product including a transitory machine-readable signal (in compressed or uncompressed form). Examples of machine-readable signals, whether modulated using a carrier or not, include, but are not limited to, signals that a computer system or machine hosting or running a computer program can be configured to access, including signals downloaded through the Internet or other networks. For example, distribution of software can be via Internet download.

[0068] Based on the disclosure and teachings provided herein, it will be understood that other ways and methods of implementing the various embodiments described above are possible. The specification and drawings are illustrative and are not to be construed as limiting the scope of the following claims.

CLAIMS

1. A method comprising:

receiving, at a fluidic temperature control device, a pre-cooked food, wherein the pre-cooked food corresponds to at least one picture from amongst a plurality of pictures of pre-cooked foods, each of which has at least one cook time and at least one cook temperature associated therewith;

receiving, at the fluidic temperature control device, a selection of a first picture from amongst the plurality of pictures, and the cook time and temperature associated therewith;

receiving, at the fluidic temperature control device, a selection of a second picture from amongst a second plurality of pictures, each of which displays one or more food attributes and has at one supplemental cook time and at least one supplemental temperature associated therewith; and

modifying, at the fluidic temperature control device, the cook time and temperature corresponding to the selected first picture, with the supplemental cook time and supplemental temperature corresponding to the selected second picture.

2. The method of claim 1, further comprising:

receiving, at the fluidic temperature control device, a doneness level, wherein the doneness level is from a plurality of pictures of doneness levels with a corresponding second supplemental cook time and a second supplemental temperature;

modifying, at the fluidic temperature control device, the modified cook time and modified temperatures with the second supplemental cook time and the second supplemental temperature.

3. The method of claim 2, further comprising:

configuring the fluidic temperature control device to the second modified cook time and the second modified temperature.

4. The method of claim 3, further comprising:

rendering, at a display of the fluidic temperature control, a notification of an unsafe time and temperature when the second modified cook time and the second modified temperatures are outside a threshold safety value.

5. The method of claim 1, further comprising:

configuring the fluidic temperature control device to the modified cook time and modified temperature.

6. The method of claim 1, further comprising:

rendering, at a display of the fluidic temperature control device, a notification of an unsafe time and temperature when the modified cook time and the modified temperatures are outside a threshold safety value.

7. The method of claim 1 further comprising:

receiving, at the fluidic temperature control device, a manual input of a temperature.

8. A system comprising:

a fluidic temperature control device including a processor, a display, a heating element, and an agitator; and

a non-transitory computer readable memory coupled to the processor, the memory storing instructions which when executed by the processor, cause the processor to:

render on the display one or more selectable pre-cooked food items;

determine a cook time, a temperature, and a speed in response to a selection of the pre-cooked food item;

render on the display one or more selectable food attributes;

update the cook time, the temperature, and the speed in response to a selection of the food attribute.

9. The system of claim 8, wherein the memory further stores instructions to cause the processor to:
 - render on the display one or more doneness levels;
 - calculate the updated cook time, the temperature, and the speed in response to a selection of the doneness level.
10. The system of claim 9, wherein the memory further stores instructions to cause the processor to:
 - set the calculated cook time, actuate the heating element to the calculated temperature, and actuate the agitator to the calculated speed.
11. The system of claim 10, wherein the memory further stores instructions to cause the processor to:
 - render on the display a notification of an unsafe cook time and temperature when the calculated cook time and the calculated temperatures are outside a threshold safety value.
12. The system of claim 8, wherein the memory further stores instructions to cause the processor to:
 - set the updated cook time, actuate the heating element to the updated temperature, and actuate the agitator to the updated speed.
13. The system of claim 12, wherein the memory further stores instructions to cause the processor to:
 - render at the display a notification of an unsafe time and temperature when the updated cook time and the updated temperatures are outside a threshold safety value.

14. The system of claim 8, wherein the memory further stores instructions to cause the processor to:
 - receive at the display, a manual input of a temperature.
15. A non-transitory computer readable medium storing instructions executable by the processor to cause the processor to:
 - render on a display one or more selectable pre-cooked food items;
 - determine a cook time, a temperature, and a speed in response to a selection of the pre-cooked food item;
 - render on the display one or more selectable food attributes; and
 - update the cook time, the temperature, and the speed in response to a selection of the food attribute.
16. The non-transitory computer readable medium of claim 15, further comprising:
 - cause a processor to render on the display one or more doneness levels;
 - cause a processor to calculate the updated cook time, the temperature, and the speed in response to a selection of the doneness level.
17. The non-transitory computer readable medium of claim 16, further comprising:
 - cause a processor to set the calculated cook time, actuate the heating element to the calculated temperature, and actuate the agitator to the calculated speed.
18. The non-transitory computer readable medium of claim 15, further comprising:
 - cause a processor to render on the display a notification of an unsafe cook time and temperature when the calculated cook time and the calculated temperatures are outside a threshold safety value.
19. The non-transitory computer readable medium of claim 15, further comprising:
 - cause a processor to set the updated cook time, actuate the heating element to the updated temperature, and actuate the agitator to the updated speed.

20. The non-transitory computer readable medium of claim 15, further comprising:

cause a processor to render at the display a notification of an unsafe time and temperature when the updated cook time and the updated temperatures are outside a threshold safety value.

ABSTRACT

A system and apparatus for translating cooking time and temperatures from arrays of pictures of foods cooked to different degrees of doneness or other type of result. The system enables users to select a desired doneness from pictures of food and optionally add additional modifiers it based on the size, weight, shape, and fat content of the meat with additional pictures indexed to different modification parameters. The system enables users to adjust a setting if the user has modified the food he or she intends to cook, such as by cutting in half, or if the food was frozen, allowing additional cook time and parameter modifications. A program of instructions pertaining to the system can be located on a sous vide cooking device or on a device external to the a sous vide device, such as on a personal computing device.

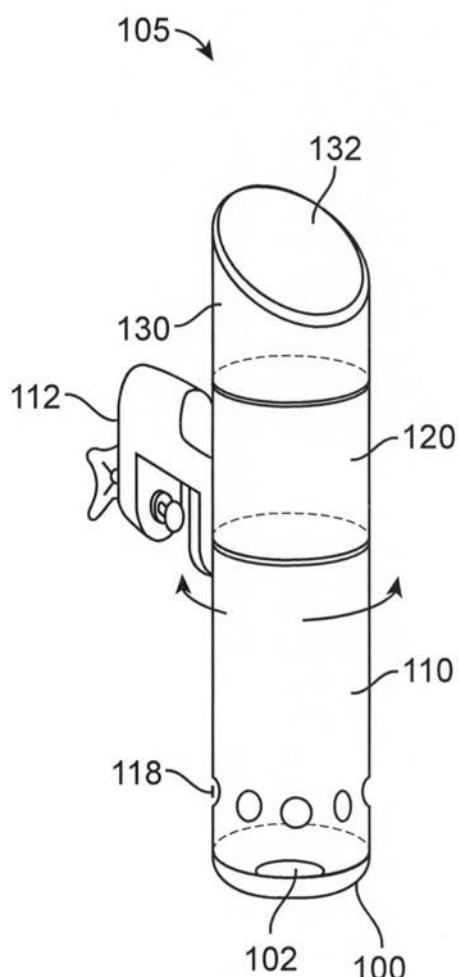


FIG. 1

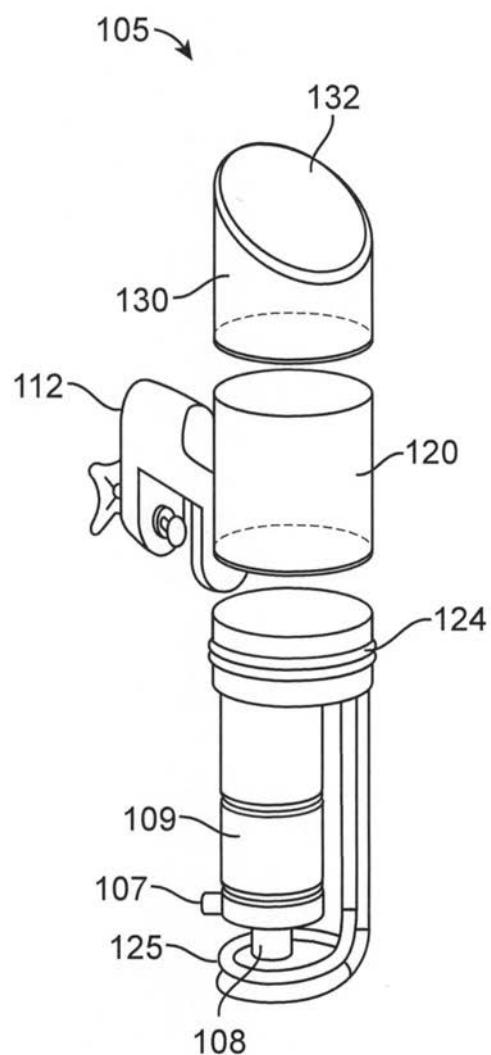


FIG. 2

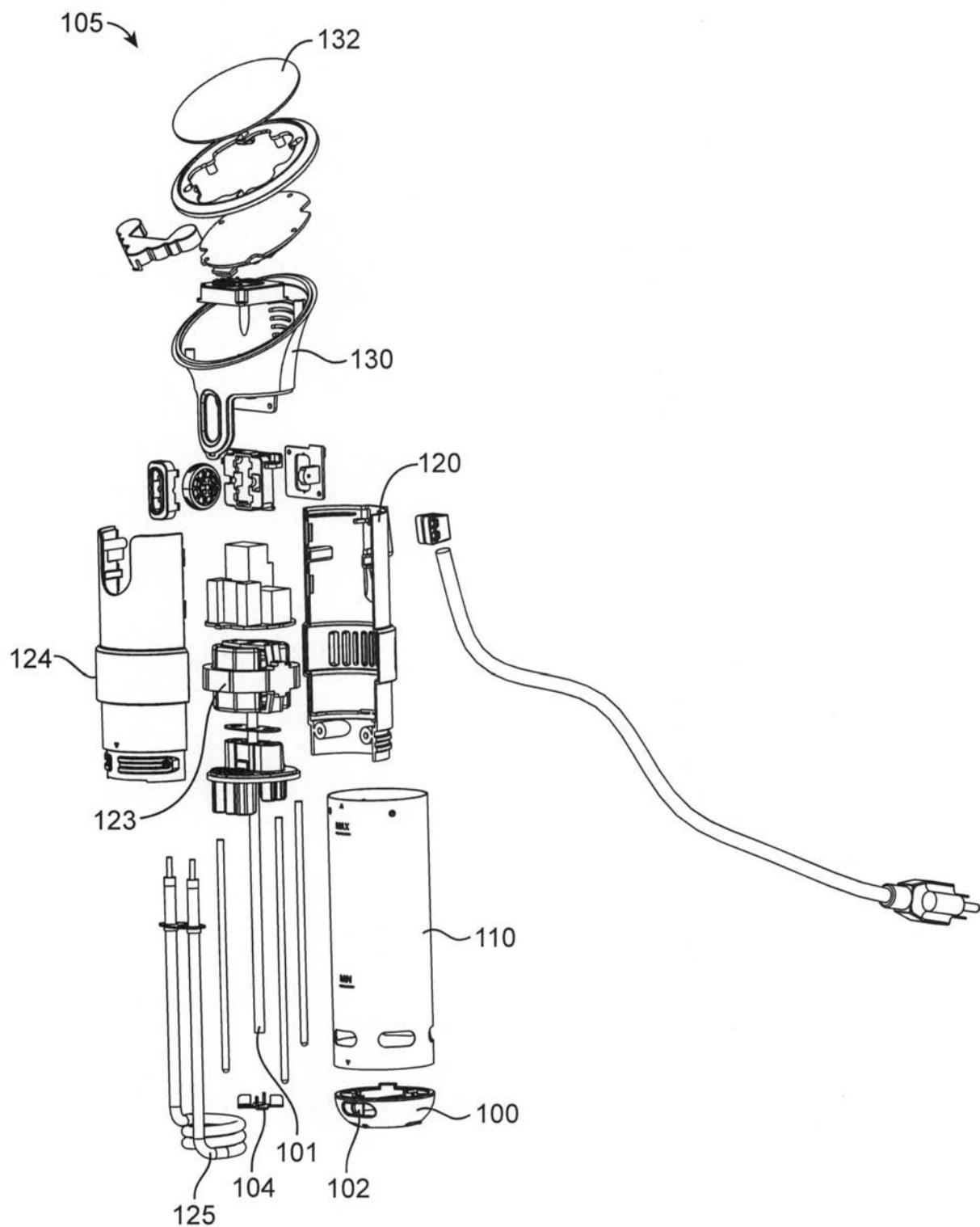


FIG. 3

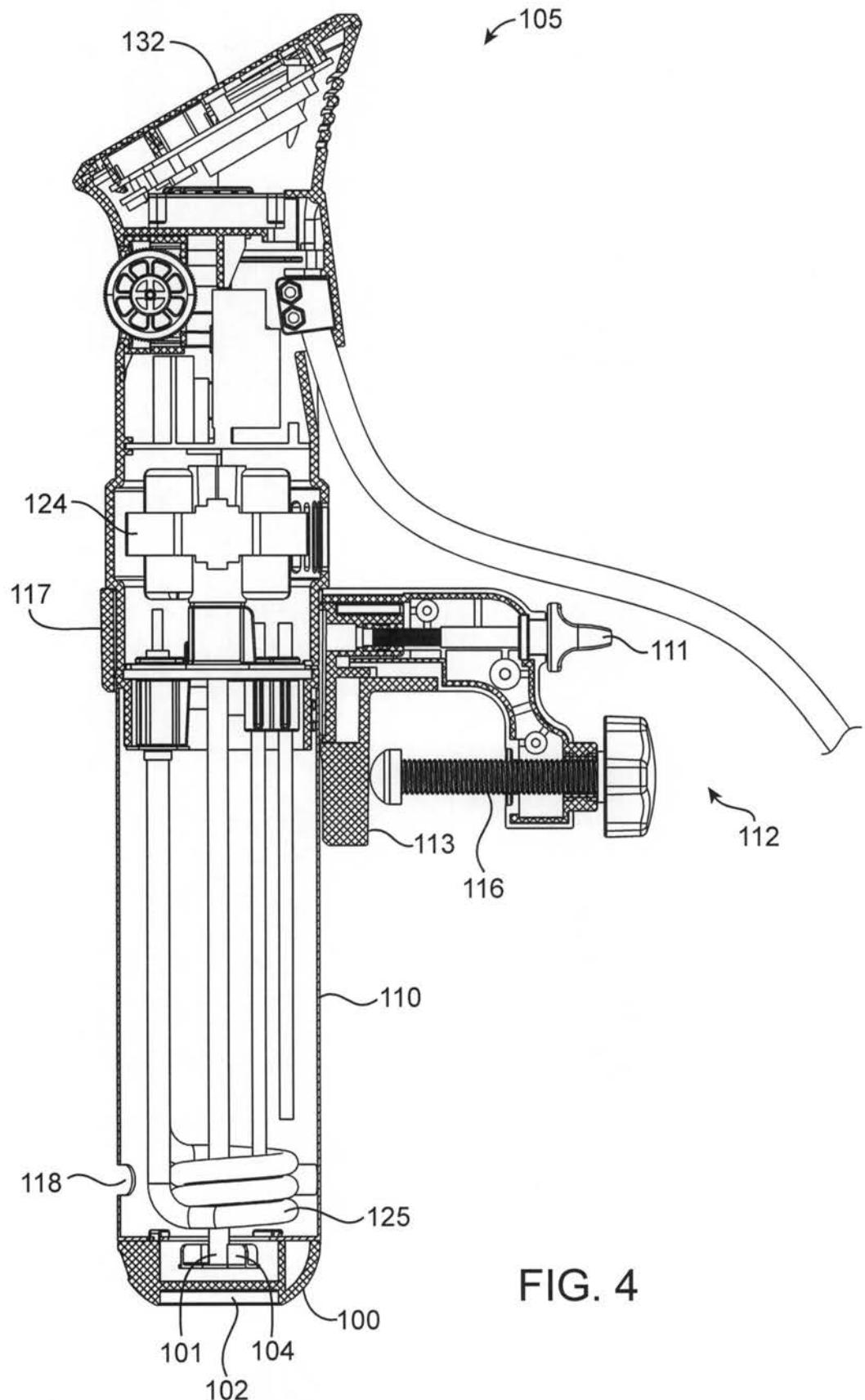
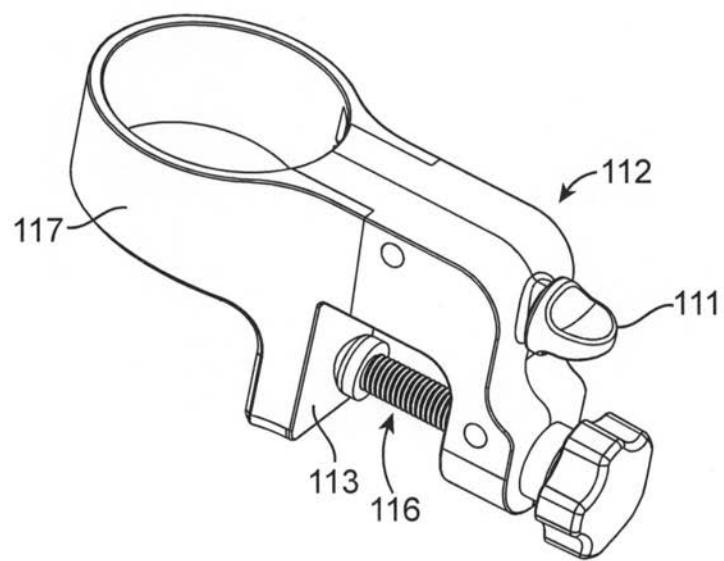
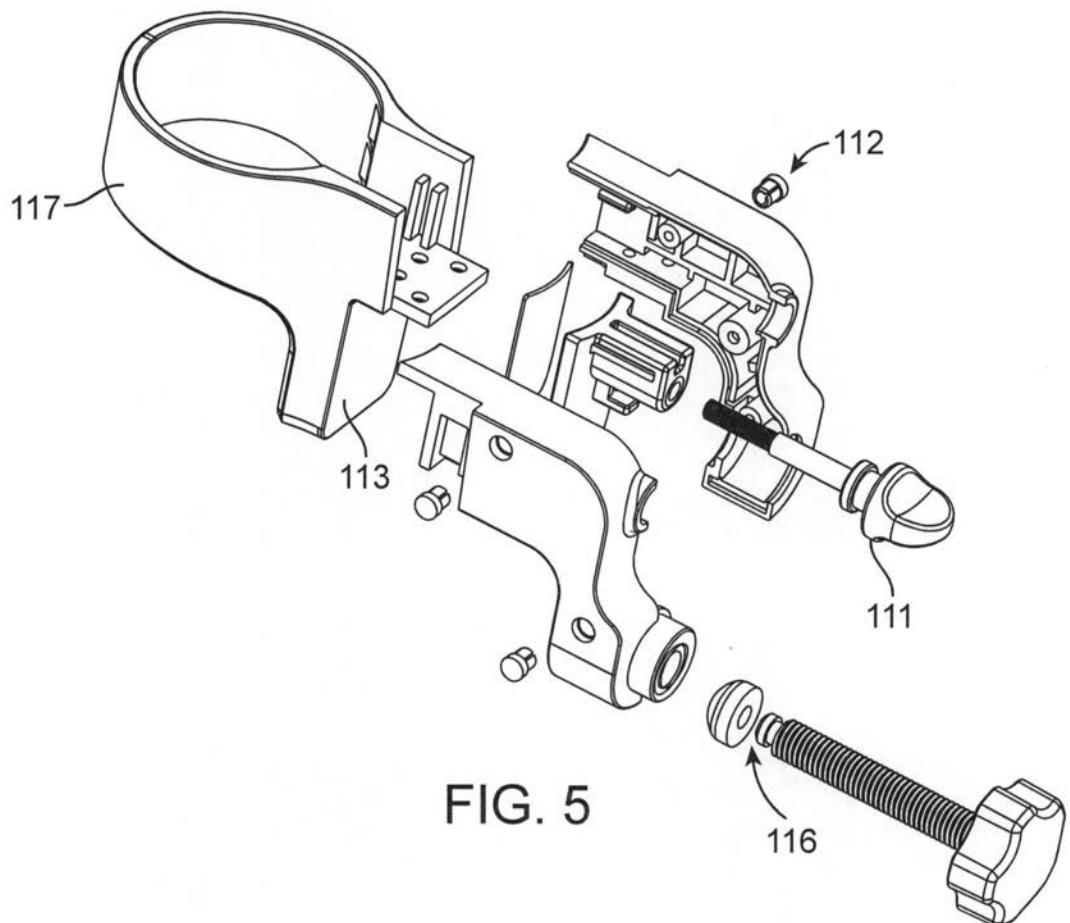




FIG. 4

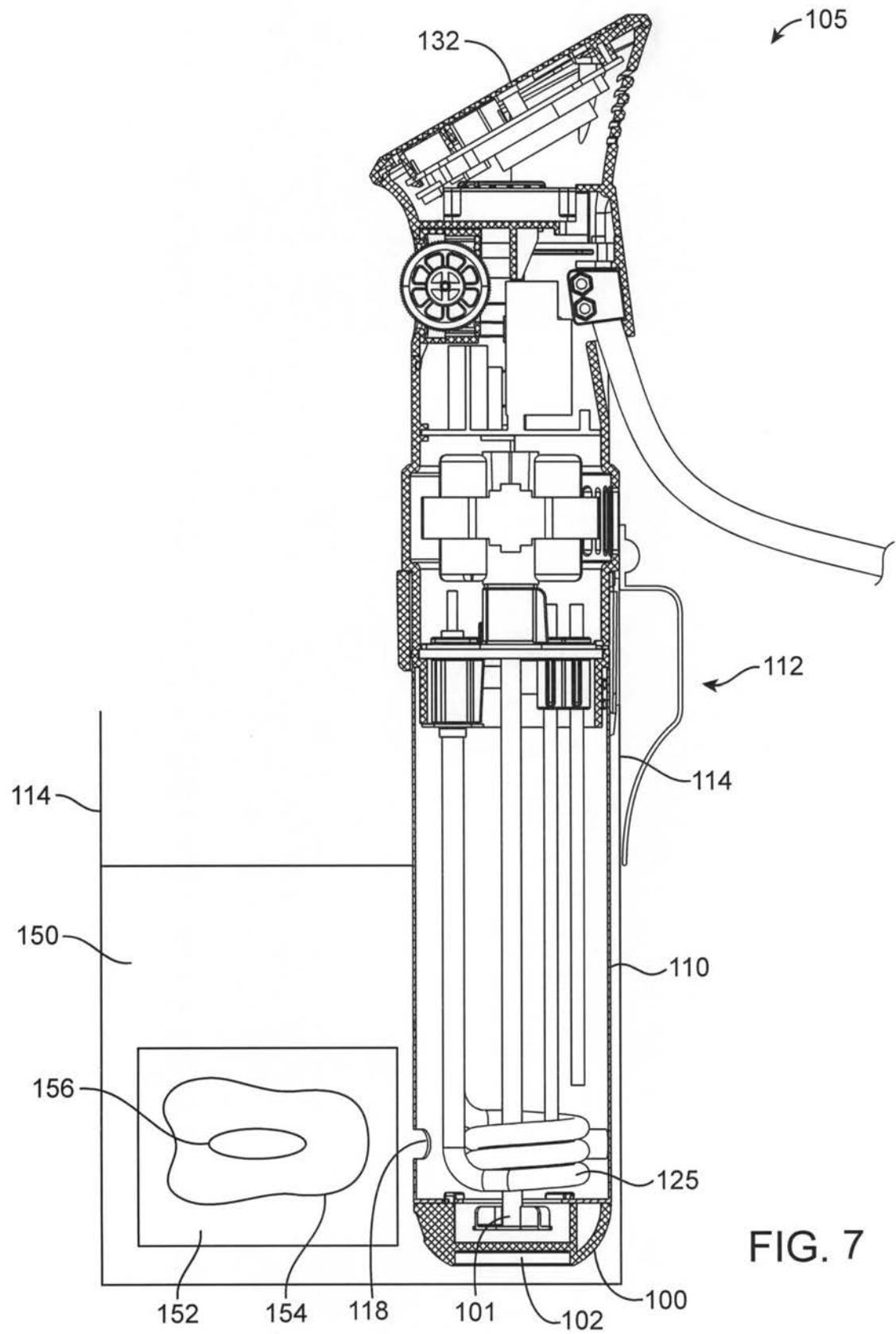


FIG. 8

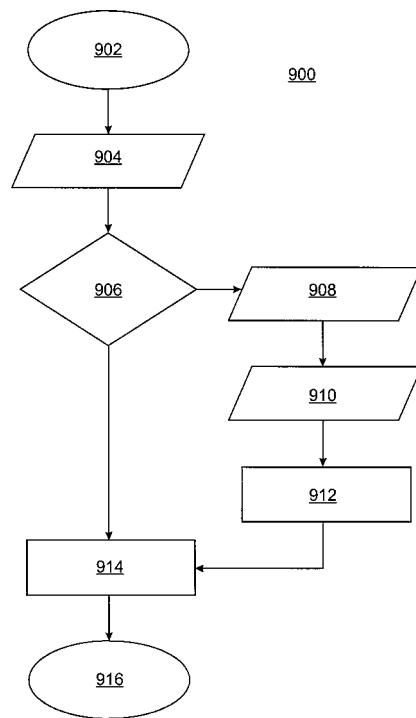
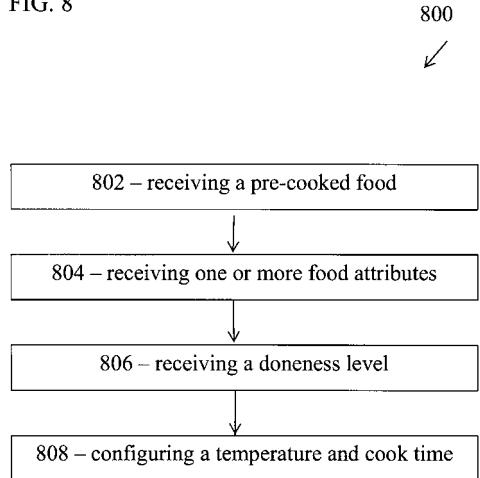



FIG. 9