

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
17 July 2008 (17.07.2008)

PCT

(10) International Publication Number
WO 2008/085724 A1

(51) International Patent Classification:

H04N 13/00 (2006.01) **H04N 7/173** (2006.01)
H04N 13/04 (2006.01)

(21) International Application Number:

PCT/US2007/088769

(22) International Filing Date:

23 December 2007 (23.12.2007)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

11/620,591 5 January 2007 (05.01.2007) US

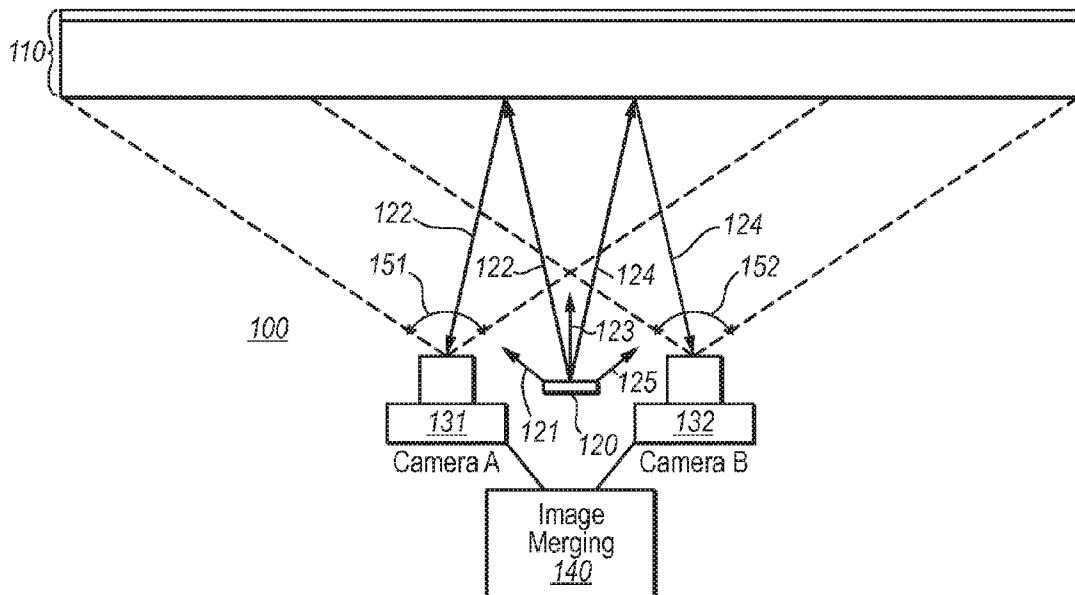
(71) Applicant (for all designated States except US): **MICROSOFT CORPORATION** [US/US]; One Microsoft Way, Redmond, Washington 98052-6399 (US).

(72) Inventor: **JENKINS, David R.**; c/o Microsoft Corporation International Patents, One Microsoft Way, Redmond, Washington 98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,

CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).


Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

(54) Title: SPECULAR REFLECTION REDUCTION USING MULTIPLE CAMERAS

(57) Abstract: An interactive display system that includes an interactive display screen. An illuminator is positioned to illuminate one of the inner or outer surfaces of the display screen. At least two cameras are placed so as to view the illuminated surface of the display screen. Each of at least one of the cameras are positioned such that specular reflections from the illuminator are received by the camera. The images from the different cameras are merged to form a merged image in which specular reflections are reduced or even cancelled.

WO 2008/085724 A1

SPECULAR REFLECTION REDUCTION USING MULTIPLE CAMERAS

BACKGROUND

[001] The functionality of many computing systems and other devices relies on effective display of information using a display. More recently, the display has also been used in an interactive manner as a direct user input device. For instance, a display might be equipped with touch sensitive resistive and/or capacitive arrays to detect a portion of the display screen being physically contacted.

[002] Some conventional interactive displays use “vision capture” technology in which a camera is positioned behind the display screen, the display screen composed of one or more layers of transparent or semitransparent material. An infrared illuminator is also positioned behind the display screen to illuminate an object in front of or in contact with the display. Illumination light (i.e., light originating from the illuminator) reflected from the object is received by the camera, which takes a picture of the reflected light. The picture is used as an electronic input to the system. Since the placement, size, and brightness of the object in front of the display influences its image taken by the camera, the object may be used to input information into the system.

[003] Some of the illumination light is reflected not off the object, but off of the relatively flat surfaces of the transparent or semi-transparent layer(s) forming the display screen. The result is that the camera will see a specular reflection of relatively strong brightness at a specific area of the display screen. The specular reflection may be so strong that it would be difficult to distinguish any image actually reflected from an input object within the area of the specular reflection. The specular reflection may even saturate the camera in that specific area. The effect is somewhat analogous to the situation in which a person looks downward at a shallow pond on a sunny day. The person might be able to

view the bottom of the pond except for the area that is at or close to the sun's blinding reflection.

[004] Accordingly, specular reflections can adversely impact the ability to use an interactive display as input, especially if the input object is positioned at an area of the display screen in which the camera is experiencing a specular reflection.

BRIEF SUMMARY

[005] Although not required, embodiments of the present invention relate to an interactive display system that includes an interactive display screen. An illuminator is positioned to illuminate one of the inner or outer surfaces of the display screen. At least two cameras are placed so as to view the illuminated surface of the display screen. Each of at least one of the cameras are positioned such that specular reflections from the illuminator are received by the camera. The images from the different cameras are merged to form a merged image in which specular reflections are reduced or even cancelled.

[006] This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[007] The appended drawings are used in order to more particularly describe embodiments of the present invention. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:

[008] Figure 1 illustrates an interactive display that shows two cameras and a single illuminator, in which the specular reflection for each of the cameras occurs at a different part of the captured image;

[009] Figure 2A shows a representation of an image as it might be captured by the first camera of Figure 1;

[010] Figure 2B shows a representation of an image as it might be captured by the second camera of Figure 1;

[011] Figure 3 illustrates a flowchart of a method for the image merging operation to combine images from the two cameras;

[012] Figure 4 illustrates a top view of a specific five camera embodiment of the interactive display of Figure 1;

[013] Figure 5 illustrates an illumination module that may be used for the illuminator of Figure 4; and

[014] Figure 6 illustrates a light source that may be used for the light source in the illuminator of Figure 5.

DETAILED DESCRIPTION

[015] Embodiments of the present invention extend to an interactive display that includes multiple cameras placed so as to have a view of the inside or outside surfaces of the display screen. An illuminator is also placed to illuminate the viewed display screen surface so that reflected images of objects in front of or in contact with the display screen can be received by the cameras. The areas of specular reflection are different for at least two of the cameras, such that images from one of the cameras can be used to reduce or cancel specular reflection from the other camera.

[016] Figure 1 illustrates a side-view of an interactive display 100 in accordance with one embodiment of the present invention. The interactive display 100 is configured to display images from the outer surface (the top surface as illustrated in Figure 1) of one or

more transparent or semi-transparent layers comprising the display screen 110. However, separate and apart from the display mechanism, which is largely not shown in Figure 1, the interactive display 100 includes an imaging mechanism. Throughout the description of Figure 1, the embodiment will be described in which the displayed image would be viewed from the top surface of the display screen 110 as illustrated in Figure 1. In that case, the top surface of the display screen 110 would be the outer surface of the display screen, whereas the bottom surface of the display screen 110 would be the inner surface of the display screen. However, in other embodiments, the displayed image may be viewed from the bottom surface of the display screen 110. In that case, the bottom surface of the display screen would be the outer surface of the display screen 110, and the top surface of the display screen would be the inner surface of the display screen.

[017] Specifically, in one embodiment, the illuminator 120 is positioned to emit light (hereinafter also referred to as “illumination light”) onto the inner surface of the display screen 110. In this description and in the claims, “light” is defined broadly as including any radiated electromagnetic radiation of any frequency, whether visible or otherwise. The illumination light is typically not of the same spectrum as the light being displayed (hereinafter also referred to as “displayed light”) so as not to interfere with the display operation. For instance, if the displayed light is in the visible spectrum, the illuminator 120 might emit illumination light primarily in the infrared range or spectrum, or perhaps in the ultraviolet range or spectrum, or in any other non-visible spectrum. In the case of infrared illumination light, the cameras could be limited in spectral range such that they would only see the infrared range of the radiation spectrum. The principles of the present invention are not limited to a display that always operates in an interactive mode of operation. However, while operating in an interactive mode, the illuminator 120 will emit light when imaging objects in front of the display screen.

[018] The illuminator 120 emits illumination light in many directions. Some of the illumination light passes through the display screen 110, but does not interfere with the display operation since it is of a different frequency spectrum than the displayed light. Other illumination light reflects from objects placed on the outer surface (i.e., on or over the top surface in Figure 1) of the display screen 110, and thus the reflected light represents information about objects in front of the display screen. Yet other illumination light reflects from the flat surfaces of the display screen 110, and thus does not represent information about objects in front of the display screen, but is simply spectral reflection.

[019] For example, to illustrate the interference of spectral reflection with data acquisition, five rays of illumination light 121, 122, 123, 124 and 125 are illustrated as being emitted from the illuminator 120. The camera 131 receives light within range 151 including ray 122. While much of the light received by camera 131 may represent valid information about objects placed on or in front of the outer surface the display screen 110, the ray 122 represents only specular reflection. Such specular reflection may reduce the ability to perceive objects in front of the display screen in the area of the specular reflection. In some cases, the specular reflection may even saturate the camera in that area of the display screen. Accordingly, it would be difficult for camera 131 to image objects placed on or in front of the display screen 110 if at or near the area of specular reflection.

[020] The camera 132 receives light within range 152. Once again, while much of the light received by camera 132 may represent valid information about objects placed on or in front of the display screen 110, the ray 124 represents only specular reflection. Accordingly, the camera 132 also has an area of specular reflection at or near which it may be difficult to image objects in front of the display screen. However, the area of specular reflection for camera 131 is different than the area of specular reflection for camera 132. That is to say, objects that are more difficult to image by camera 131 due to specular reflection, may be more easily imaged by camera 132. In addition, objects that are more

difficult to image by camera 132 due to specular reflection, may be more easily imaged by camera 131. The image merging operation 140 shown in Figure 1 will be described in further detail below.

[021] First, however, Figure 2A shows a representation of a first image 200A as it might be captured by the camera 131. Region 1 shows an area of specular reflection in the image 200A received by camera 131. Figure 2B shows a representation of an image 200B as it might be captured by the camera 132. Region 4 in Figure 2B shows an area of specular reflection in the image 200B received by camera 132. The regions of specular reflection are, however, different for the two cameras. For instance, region 2 of image 200A in Figure 2A does not contain any specular reflection, but images the same area of the display screen as region 4 of image 200B in Figure 2B, which does contain a specular reflection. Meanwhile, region 3 of image 200B in Figure 2B does not contain any specular reflection, but images the same area of the display screen as region 1 of image 200A in Figure 2A, which does contain a specular reflection.

[022] Referring back to Figure 1, the interactive display 100 shows an image merging operation 140 coupled to the two cameras 131 and 132. The image merging operation 140 may be any mechanism or algorithm that combines the images from the two cameras. An example of such a method 300A is illustrated in Figure 3. The image merging operation accesses a portion of the first image taken by the first camera (act 310), where this first portion lacks specular reflection even though other portions of the image may have specular reflection. The image merging operation also accesses a second portion of the second image taken by the second camera (act 320), where this second portion also lacks specular reflection even though other portions of the second image may have specular reflection. The image merging operation may then merge the two portions (act 330). This method has been discussed very broadly since the principles of the present invention are not limited to a particular type of merging operation. However, for clarification, various

examples of image merging will now be described, even though there is no limit to the number of different image merging operations that may be used with the principles of the present invention.

[023] In a first example, perhaps the entire first image 200A is taken except for region 1 containing the specular reflection. As for image 200B, only region 3 is taken. Region 1 of image 200A may then be replaced by region 3 of image 200B to generate a merged image having no specular reflections. Since the range 151 of camera 131 does not cover the full area of the display, perhaps a portion of the right side of image 200B may be appended to image 200A as well.

[024] In a second example, perhaps the entire second image 200B is taken except for region 4 containing the specular reflection. As for image 200A, only region 2 is taken. Region 4 of image 200B may then be replaced by region 2 of image 200A to generate a merged image having no specular reflections. Since the range 152 of camera 132 does not cover the full area of the display, perhaps a portion of the left side of image 200A may be appended to image 200B as well. However, as previously mentioned, image “merging” may involve any process in which data from multiple images are used to formulate a single image.

[025] In these examples, specular reflection is eliminated. However, there may be embodiments in which both cameras have overlapping areas of specular reflection. For instance, an object placed in front of the display may not be imaged at all if it resides in an area of specular reflection for both cameras. While this is certainly not ideal, the principles of the present invention may be applied in that circumstance as well to reduce specular reflection. For instance, a portion of an image for the second camera may be used to cancel only a part of the specular reflection received by the first camera.

[026] Figures 1 and 2 show a simple embodiment in which two cameras are used with one illuminator. However, the principles of the present invention are not limited to such an

embodiment. Figure 4, for example, shows a top view of a five camera system 400 operating with a single illuminator. Each of the cameras 431 through 435 and the illuminator 420 are positioned behind the display screen 410 constituting the display surface. Each camera 431 through 434 is positioned to capture images reflected from the illuminator 420 for a particular quartile of the imaging area. For example, camera 431 captures images for the lower left quartile, camera 432 for the lower right quartile, camera 433 for the upper left quartile, and camera 434 for the upper right quartile. Cameras 431 and 432 are positioned such that they each capture specular reflection caused by illuminator 420. Since illuminator 420 is positioned well off-center from the horizontal mid-point of the display screen, cameras 433 and 434 are positioned so as to avoid specular reflection from the illuminator 420. Camera 435 (also called herein an “overlapping camera”) is positioned to capture without specular reflection the areas of cameras 431 and 432 that have specular reflection. Accordingly, the final image may be free of specular reflection by merging all four images from cameras 431 through 434, and by replacing the specular reflection areas with image portions captured by camera 435.

[027] In the example of Figure 4, the illuminator 420 is placed off-center. Figure 5 illustrates an illumination module 500 that may be used for the illuminator 420 of Figure 4. The LED array module 504 serves as the light source. In order to properly redirect the light such that an approximately uniform irradiance distribution is received at the display screen, a reflector 502 and a partially reflective coating 503 are used. The partially reflective coating 503 is positioned on a cover glass 501 for structural support. Some of the light emitted from the LED array module 504 is reflected by the reflector 502 with some light being attenuated by the partially reflective coating 503. The shape of the reflector 502 may be obtained empirically and/or through computer simulation and may differ depending on the irradiance distribution of the LED array module 504 as well as the positioning of the

illumination module behind the display screen. The use of shaped reflectors to redirect light is well known in the art.

[028] Figure 6 illustrates an example structure 600 of the LED array module 504 of Figure 5. An array of Light Emitting Diode chips 601 are encapsulated in a layer of silicone 602. In addition, a dome lens 603 (also formed of silicone or perhaps epoxy, glass, or plastic) is positioned on top of the silicone layer 602. The silicone layer 602 and the dome lens 603 have an index of refraction of approximately 1.5, whereas the surrounding material (e.g., air) has an index of refraction of approximately 1.0. Without the dome lens 603, a lot of the light emitted by the LED diode array 601 would be reflected back into the silicone layer 602 through internal reflection. With the presence of the dome lens 603, the illumination light is permitted to more efficiently pass into the surrounding air, by decreasing the amount of light which experiences total internal reflection, and thus to be emitted by the illumination module to irradiate light onto the display screen.

[029] Accordingly, embodiments of a multi-camera interactive display have been described in which multiple cameras are used to reduce or cancel specular reflections. The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

CLAIMS

What is claimed is:

1. An interactive display system (100) comprising:
 - a display screen (110) comprising one or more display layers;
 - an illuminator (120) positioned so as to illuminate one of the inner surface or outer surface of the display screen(110);
 - a first camera (131) positioned so as to view the illuminated surface of the display screen (110) at a position such that when the illuminator (120) is illuminated, a specular reflection occurs at an area of an image (200A) as captured by the first camera (131);
 - a second camera (132) positioned so as to view the illuminated surface of the display screen (110) at a position such that when the illuminator (120) is illuminated, the second camera (132) is able to view at least a portion of the specular reflection area of the first camera (131); and
 - an image merging mechanism (140) configured to combine images from the first camera (131) and from the second camera (132) such that specular reflections are at least reduced in a merged image in comparison with the image captured by the first camera.
2. The interactive display system in accordance with Claim 1, further comprising:
 - a third camera positioned so as to view the illuminated surface of the display screen.
3. The interactive display system in accordance with Claim 1, wherein the illuminator is positioned such that the second camera does not experience specular reflection when the illuminator is illuminating.

4. The interactive display system in accordance with Claim 3, wherein the illuminator is positioned off-center with respect to the one or more display layers.

5. The interactive display system in accordance with Claim 2, wherein the third camera is positioned such that when the illuminator is illuminated, a specular reflection occurs at a third portion of images captured by the third camera, the third position being different than the first and second positions.

6. The interactive display system in accordance with Claim 5, further comprising:

a fourth and fifth camera positioned so as to view the illuminated surface of the display screen.

7. The interactive display system in accordance with Claim 1, wherein the illuminator emits light primarily in the infrared range.

8. The interactive display system in accordance with Claim 1, wherein the image merging mechanism is configured to combine images from the first and second cameras by:

accessing a first portion of a first image taken by the first camera, the first portion of the first image lacking a specular reflection even though the first camera receives a specular reflection;

accessing a second portion of a second image taken by the second camera, the second portion of the second image lacking a specular reflection; and

merging the first portion of the first image and the second portion of the second image.

9. The interactive display system in accordance with Claim 8, wherein the first portion of the first image and the second portion of the second image, when combined, represent substantially all of the displayable area of the display screen.

10. The interactive display system in accordance with Claim 8, wherein a majority of the first portion of the first image corresponds to an area in the second image in which there is a specular reflection.

11. The interactive display system in accordance with Claim 10, wherein the first portion of the first image is rectangular.

12. The interactive display system in accordance with Claim 1, wherein the illuminator emits light primarily in the ultraviolet spectrum.

13. The interactive display system in accordance with Claim 1, wherein the illuminator is configured to illuminate during substantially all of the time that the interactive display is in an interactive mode of operation.

14. An image merging mechanism (140) for use with an interactive display system (100) that includes one or more display layers (110), a first camera (131) positioned so as to view an illuminated surface of the one or more display layers at a position such that when the illuminator (120) is illuminated a specular reflection occurs at an area of an image (200A) as captured by the first camera (131), a second camera (132) positioned so as to view an illuminated surface of the one or more display layers (110) at a position such that when the illuminator (120) is illuminated the second camera (132) is able to view at least a

portion of the specular reflection area of the first camera (131), the image merging mechanism (140) configured to perform the following act:

an act of combining (300) images (200A, 200B) from the first and second camera (131, 132) such that specular reflections are at least reduced as compared to the specular reflection levels present in the first camera.

15. The image merging mechanism in accordance with Claim 14, wherein the act of combining images comprises:

accessing a first portion of a first image taken by the first camera, the first portion of the first image lacking a specular reflection even though the first camera receives a specular reflection;

accessing a second portion of a second image taken by the second camera, the second portion of the second image lacking a specular reflection; and

merging the first portion of the first image and the second portion of the second image.

16. The image merging mechanism in accordance with Claim 15, wherein the first portion of the first image and the second portion of the second image, when combined, represent substantially all of the displayable area of the one or more display layers.

17. The image merging mechanism in accordance with Claim 15, wherein a majority of the first portion of the first image corresponds to an area in the second image in which there is a specular reflection.

18. An interactive display system (100) comprising:

a display screen (110, 410) comprising one or more display layers;

an illuminator (120, 420) positioned to illuminate one of the inner or outer surfaces of the display screen layers (110, 410);

a first camera (131, 431) positioned so as to view the illuminated surface of the one or more display screen layers (110, 410) at a position such that when the illuminator (120, 420) is illuminated, a specular reflection occurs at an area of an image (200A) as captured by the first camera (131, 431);

a second camera (132, 432) positioned so as to view the illuminated surface of the one or more display screen layers (110, 410) at a position such that when the illuminator (120, 420) is illuminated, a specular reflection occurs at a second portion of images captured by the second camera (132, 432), the second camera (132, 432) capturing images reflected from the illuminator (120, 420) at a second region of the one or more display screen layers (110, 410);

a third camera (433) positioned so as to view the illuminated surface of the one or more display screen layers (410) at a position such that the third camera (433) captures images reflected from the illuminator (420) at a third region of the one or more display screen layers (410);

a fourth camera (434) positioned so as to view the illuminated surface of the one or more display screen layers (410) at a position such that the fourth camera (434) captures images reflected from the illuminator (420) at a fourth region of the one or more display screen layers (410); and

an overlapping camera (435) positioned so as to view the illuminated surface of the one or more display screen layers (410) at a position such that the overlapping camera (435) captures images from areas of specular reflection for the first and second cameras (431, 432), without itself capturing specular reflections for those corresponding areas.

19. The interactive display in accordance with Claim 18, wherein the illuminator emits light primarily in the ultraviolet spectrum.

20. The interactive display in accordance with Claim 18, wherein the illuminator emits light primarily in the infrared spectrum.

1/3

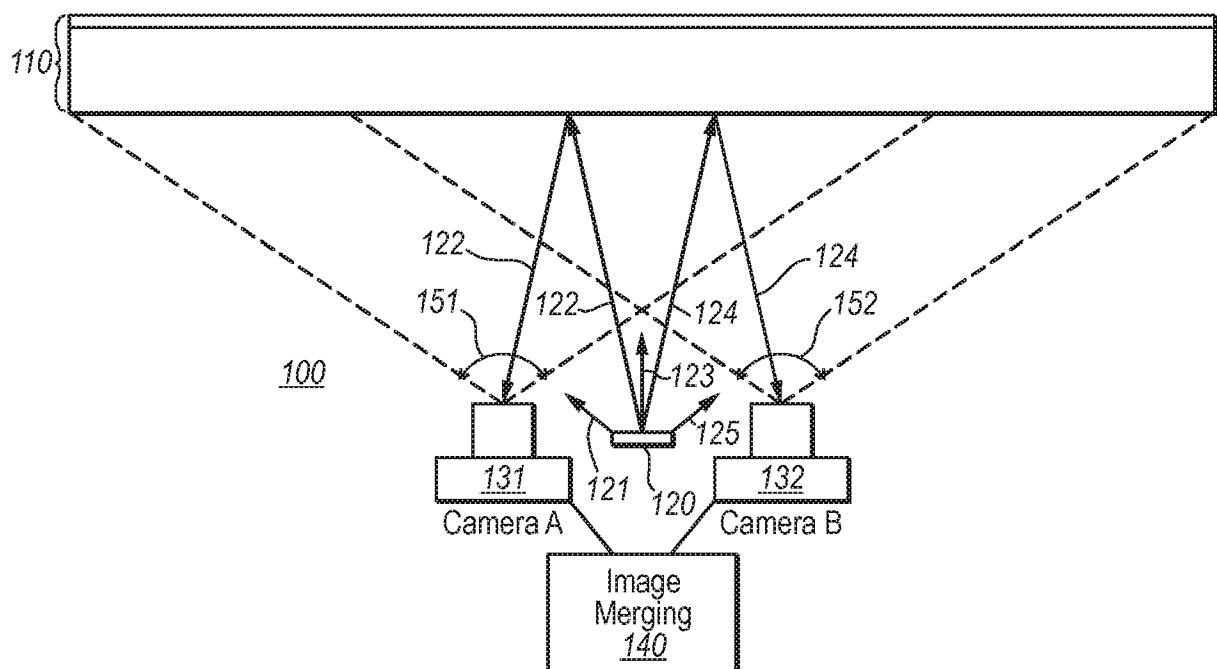
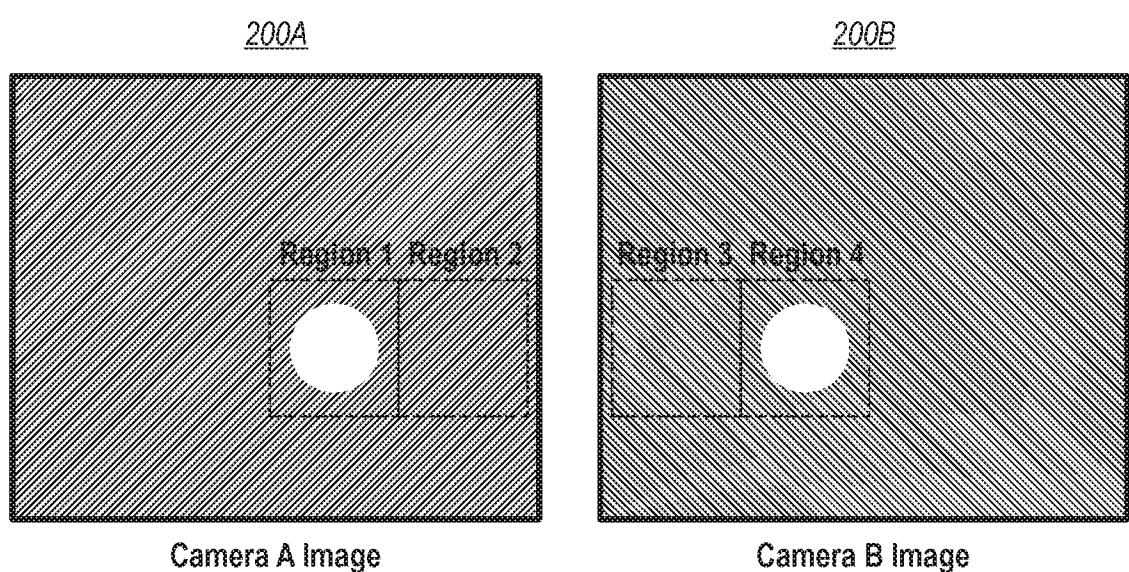
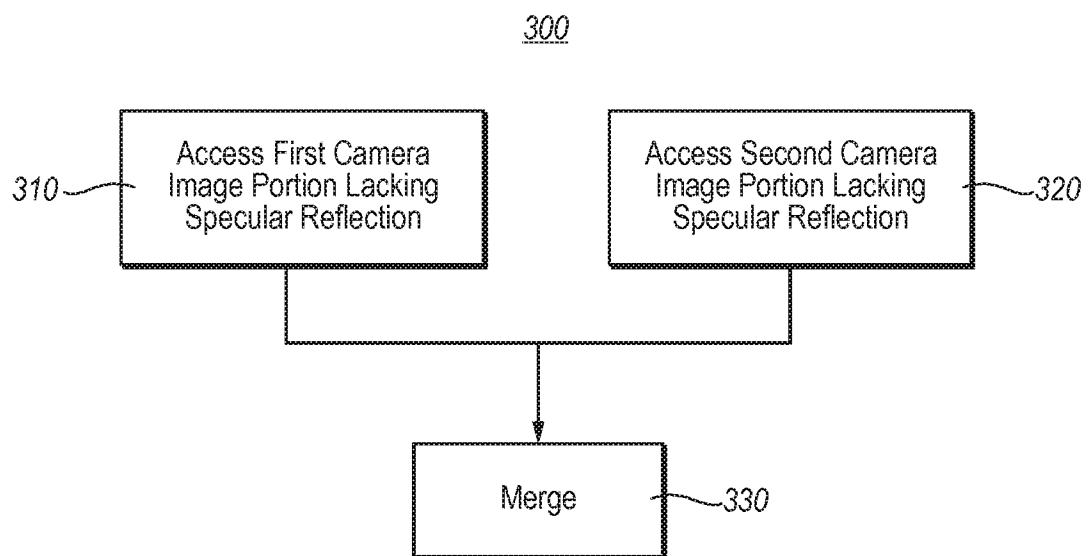


FIG. 1

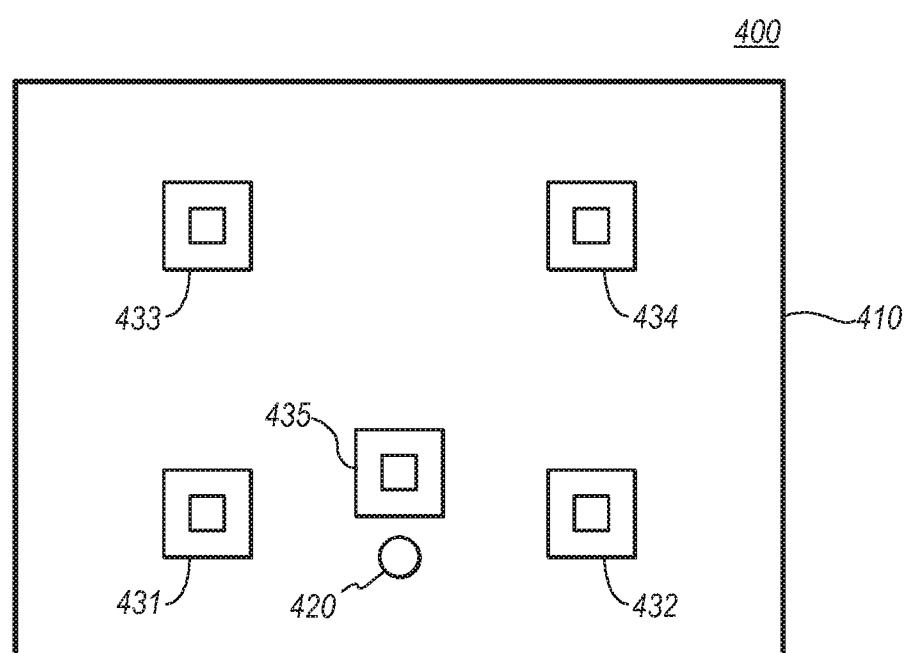

FIG. 2A

FIG. 2B

2/3

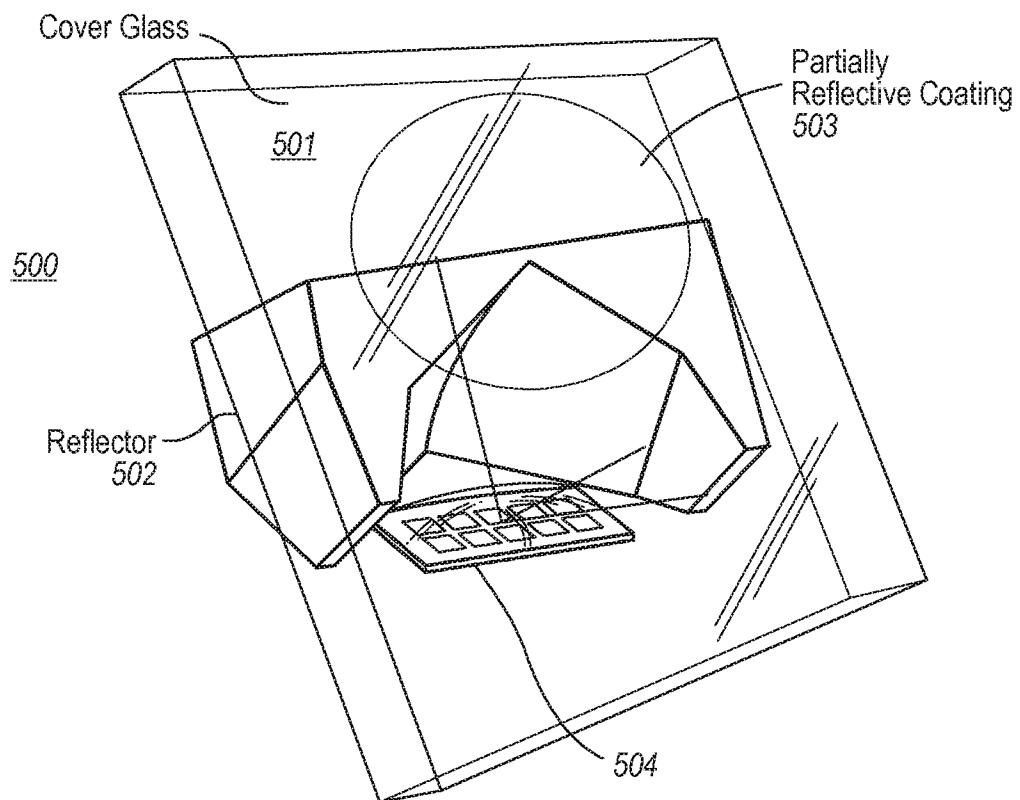
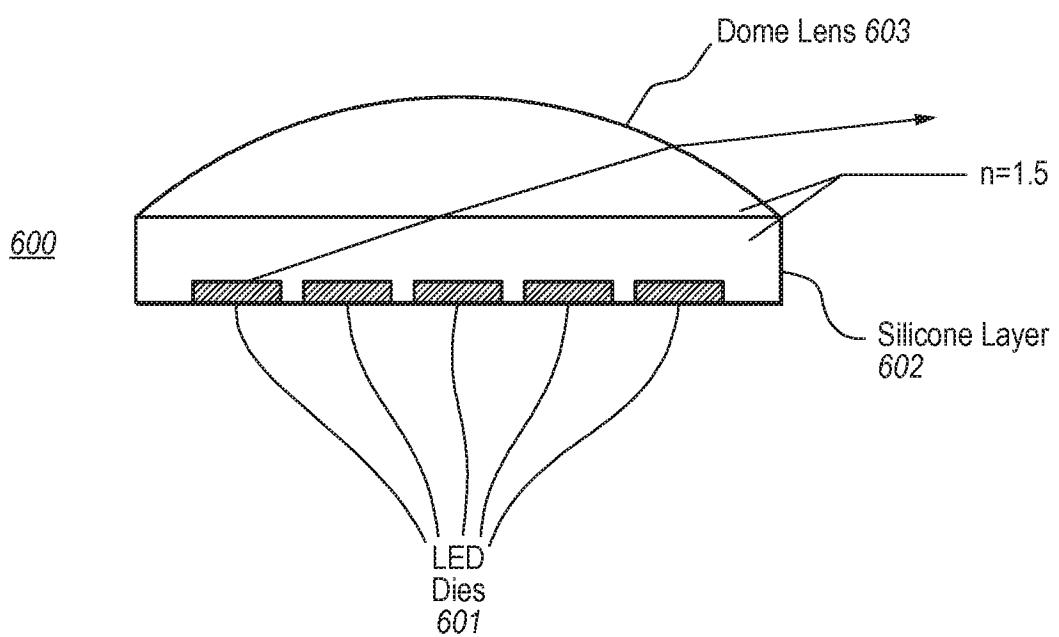



FIG. 3

FIG. 4

3/3

FIG. 5**FIG. 6**

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2007/088769**A. CLASSIFICATION OF SUBJECT MATTER****H04N 13/00(2006.01)i, H04N 13/04(2006.01)i, H04N 7/173(2006.01)i**

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 8 : G06T 15/70, H04B 1/38, H04N 5/33, H04N 5/74, H04N 7/15

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility Models since 1975
Japanese Utility Models and application for Utility Models since 1975Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKIPASS (KIPO internal) "interactive", "display"**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 2002/0186221 A1 (REACTRIX SYSTEMS INC.) 12 December 2002 See abstract; claim 1; fig.1	1-20
A	KR 1020050051554 A (SONY CORP.) 01 June 2005 See abstract; claims 1 and 2; fig.5	1-20
A	KR 1020040072652 A (UNIVERSAL DISPLAY CORPORATION) 18 August 2004 See abstract; claim 1	1-20
A	KR 102001005203 A (SAMSUNG ELECTRONICS CO., LTD.) 15 January 2001 See abstract; claim 1; fig. 2	1-20

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search

10 JUNE 2008 (10.06.2008)

Date of mailing of the international search report

10 JUNE 2008 (10.06.2008)

Name and mailing address of the ISA/KR

 Korean Intellectual Property Office
 Government Complex-Daejeon, 139 Seonsa-ro, Seo-gu, Daejeon 302-701, Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer

NAM, Ock Woo

Telephone No. 82-42-481-5713

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2007/088769

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 2002-0186221 A1	12.12.2002	AT 336860 E BR 200210162 A CA 2449300 AA CA 2449300 A1 CN 1582567 A DE 60213975 C0 DE 60213975 T2 EP 1393549 A2 EP 1393549 B1 EP 1689172 A1 EP 1393549 A2 EP 1393549 B1 EP 1393549 A2 EP 1689172 A1 ES 2271272 T3 IL 159207 A0 JP 2005-500719 JP 2005-500719 T2 JP 2005-500719 KR 10-2004-0029998 PA 03011203 A RU 2003137846 A RU 2298294 C2 US 7259747 US 2002-186221A 1 US 2002-186221A A US 2005-110964A 1 US 2005-110964A A US 2005-122308A 1 US 2005-122308A A US 2005-162381A 1 US 2005-162381A A US 2006-132432A 1 US 2006-132432A A US 2006-139314A A US 76788S1 US 7170492 BB US 7259747 BB DO 476788 WO 0210-0094A2 WO 2002-100094 A2 WO 2002-100094 A3	15.09.2006 27.04.2004 12.12.2002 12.12.2002 16.02.2005 28.09.2006 15.02.2007 03.03.2004 16.08.2006 03.03.2004 16.08.2006 03.03.2004 09.08.2006 16.04.2007 01.06.2004 06.01.2005 06.01.2005 06.01.2005 08.04.2004 28.10.2004 27.05.2005 27.04.2007 21.08.2007 12.12.2002 12.12.2002 26.05.2005 26.05.2005 09.06.2005 09.06.2005 28.07.2005 28.07.2005 22.06.2006 22.06.2006 29.06.2006 01.07.2003 30.01.2007 21.08.2007 01.07.2003 12.12.2002 12.12.2002 22.05.2003
KR 10-2005-0051554	01.06.2005	CN 1678084 A JP 2005-157921 JP 2005-157921 A2 KR 2005051554 A US 2005-129325A 1 US 2005-129325A A	05.10.2005 16.06.2005 16.06.2005 01.06.2005 16.06.2005 16.06.2005

-/-

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2007/088769

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
KR 10-2004-0072652	18.08.2004	AU 2002-360518 A1 AU 2002-360518 AA CN 1639991 A EP 1454417 A1 EP 1454417 A4 JP 2005-536906 JP 2005-536906 T2 TW 274501 B TW 274501 A US 7050835 US 2003-0109286 A1 US 2003-0144034 A1 US 2003-109286A 1 US 2003-109286A A US 2003-144034A 1 US 2003-144034A A US 7050835 BB WO 0305-0963A1 WO 2003-050963 A1	23.06.2003 23.06.2003 13.07.2005 08.09.2004 15.12.2004 02.12.2005 02.12.2005 21.02.2007 21.02.2007 23.05.2006 12.06.2003 31.07.2003 12.06.2003 12.06.2003 31.07.2003 31.07.2003 23.05.2006 19.06.2003 19.06.2003
KR 10-2001-0005203	15.01.2001	KR 2001005203 A	. . A