Title: USE OF PROTEIN ELONGATION FACTOR-1-ALPHA-1 AS A MARKER FOR BREAST CANCER

Abstract: The present invention relates to the diagnosis of breast cancer. It discloses the use of protein EF1A1 (elongation factor 11) in the diagnosis of breast cancer. It relates to a method for diagnosis of breast cancer from a liquid sample, derived from an individual by measuring EF1A1 in said sample. Measurement of EF1A1 can, e.g., be used in the early detection or diagnosis of breast cancer.
USE OF PROTEIN ELONGATION FACTOR-1-ALPHA-1 AS A MARKER FOR BREAST CANCER

The present invention relates to the diagnosis of breast cancer. It discloses the use of EF11 (= elongation factor 11) in the diagnosis of breast cancer. Furthermore, it especially relates to a method for diagnosis of breast cancer from a liquid sample, derived from an individual by measuring EF11 in said sample. Measurement of EF11 can, e.g., be used in the early detection or diagnosis of breast cancer or in the surveillance of patients who undergo surgery.

Cancer remains a major public health challenge despite progress in detection and therapy. Amongst the various types of cancer, breast cancer (= BC) is one of the most frequent cancers among women in the Western world.

The staging of cancer is the classification of the disease in terms of extent, progression, and severity. It groups cancer patients so that generalizations can be made about prognosis and the choice of therapy.

Today, the TNM system is the most widely used classification of the anatomical extent of cancer. It represents an internationally accepted, uniform staging system. There are three basic variables: T (the extent of the primary tumor), N (the status of regional lymph nodes) and M (the presence or absence of distant metastases). The TNM criteria are published by the UICC (International Union Against Cancer) (Sobin, L.H., Wittekind, Ch. (eds): TNM Classification of Malignant Tumours, fifth edition, 1997). The staging system for breast cancer has recently been revised (Singletary, S.E., et al., J. Clin. Oncol. 20 (2002) 3628-3636).

What is especially important is that early diagnosis of BC translates to a much better prognosis. Therefore, best prognosis have those patients as early as in stage T1a, N0, M0 or T1-3; N0; M0, if treated properly have a more than 90% chance of survival 5 years after diagnosis as compared to a 5-years survival rate of only 18% for patients diagnosed when distant metastases are already present.

In the sense of the present invention early diagnosis of BC refers to a diagnosis at a pre-cancerous state, ductal carcinoma in situ (DCIS) or at a tumor stage where no
metastases at all (neither proximal nor distal), i.e., Tₜₛ, N0, M0 or T1-4; N0; M0 are present. Tₜₛ denotes carcinoma *in situ*.

In a preferred embodiment the detection of EF11 is used to diagnose BC in a non-metastatic stage, i.e., that diagnosis is made at stage Tₜₛ, N0, M0 or T1-3; N0; M0 (=Tₜₛ-3; N0; M0).

The earlier cancer can be detected/diagnosed, the better is the overall survival rate. This is especially true for BC. The prognosis in advanced stages of tumor is poor. More than one third of the patients will die from progressive disease within five years after diagnosis, corresponding to a survival rate of about 40% for five years. Current treatment is only curing a fraction of the patients and clearly has the best effect on those patients diagnosed in an early stage of disease.

With regard to BC as a public health problem, it is essential that more effective screening and preventative measures for breast cancer will be developed.

The earliest detection procedures available at present for breast cancer involve using clinical breast examination and mammography. However, significant tumor size must typically exist before a tumor is palpable or can be detected by a mammogram. The density of the breast tissue and the age are important predictors of the accuracy of screening by mammography. The sensitivity ranges from 63% in women with extremely dense breasts to 87% in women with almost entirely fatty breasts. The sensitivity increases with age from 69% in women of about 40 years of age to 83% in women 80 years and older (Carney, P.A., et al., Ann. Intern. Med. 138 (3) (2003) 168-175). Only 20–25% of mammographically detected abnormalities that are biopsied prove to be malignant. The visualization of precancerous and cancerous lesions represents the best approach to early detection, but mammography is an expensive test that requires great care and expertise both to perform and in the interpretation of results (WHO, Screening for Breast Cancer, May 10, 2002; Esserman, L., et al., J. Natl. Cancer Inst. 94 (2002) 369-375).

In the recent years a tremendous amount of so-called breast specific or even so-called breast cancer specific genes has been reported. The vast majority of the corresponding research papers or patent applications are based on data obtained by analysis of RNA expression patterns in breast (cancer) tissue versus a different
tissue or an adjacent normal tissue, respectively. Such approaches may be summarized as differential mRNA display techniques.

As an example for data available from mRNA-display techniques, WO 00/60076 shall be mentioned and discussed. This application describes and claims more than two hundred isolated polynucleotides and the corresponding polypeptides as such, as well as their use in the detection of BC. However, it is general knowledge that differences on the level of mRNA are not mirrored by the level of the corresponding proteins. A protein encoded by a rare mRNA may be found in very high amounts and a protein encoded by an abundant mRNA may nonetheless be hard to detect and find at all (Chen, G., et al., Mol. Cell. Proteomics 1 (2002) 304-313). This lack of correlation between mRNA-level and protein level is due to reasons like mRNA stability, efficiency of translation, stability of the protein, etc.

There also are recent approaches investigating the differences in protein patterns between different tissues or between healthy and diseased tissue in order to identify candidate marker molecules which might be used in the diagnosis of BC. Wulfkühle, J.D., et al., Cancer Res. 62 (2002) 6740-6749 have identified fifty-seven proteins which were differentially expressed between BC tissue and adjacent normal tissue. No data from liquid samples obtained from an individual are reported.

WO 02/23200 reports about twelve breast cancer-associated spots as found by surface-enhanced laser desorption and ionization (SELDI). These spots are seen more frequently in sera obtained from patients with BC as compared to sera obtained from healthy controls. However, the identity of the molecule(s) comprised in such spot, e.g. their sequence, is not known.

Nipple aspirate fluid (NAF) has been used for many years as a potential non-invasive method to identify breast cancer-specific markers. Kuerer et al. compared bilateral matched pair nipple aspirate fluids from women with unilateral invasive breast carcinoma by 2D gel electrophoresis (Kuerer, H.M., et al., Cancer 95 (2002) 2276-2282). 30 to 202 different protein spots were detected in the NAF of breasts suffering from breast carcinoma and not in the matched NAF of the healthy breasts. These spots were detected by a gel image analysis. But the identity of the protein spots is not known.
Despite the large and ever growing list of candidate protein markers in the field of BC, to date clinical/diagnostic utility of these molecules is not known. In order to be of clinical utility a new diagnostic marker as a single marker should be at least as good as the best single marker known in the art. Or, a new marker should lead to a progress in diagnostic sensitivity and/or specificity either if used alone or in combination with one or more other markers, respectively. The diagnostic sensitivity and/or specificity of a test is best assessed by its receiver-operating characteristics, which will be described in detail below.

At present, only diagnostic blood tests based on the detection of cancer antigen 15-3 (CA 15-3), a tumor-associated mucin, and carcinoembryonic antigen (CEA), a tumor associated glycoprotein, are available to assist diagnosis in the field of BC. CA 15-3 is usually increased in patients with advanced breast cancer. CA 15-3 levels are rarely elevated in women with early stage breast cancer (Duffy, M.J., Crit. Rev. Clin. Lab. Sci. 38 (2001) 225-262). Cancers of the ovary, lung and prostate may also raise CA 15-3 levels. Elevated levels of CA 15-3 may be associated with non-cancerous conditions, such as benign breast or ovary disease, endometriosis, pelvic inflammatory disease, and hepatitis. Pregnancy and lactation can also cause CA 15-3 levels to raise (National Cancer Institute, Cancer Facts, Fact Sheet 5.18 (1998) 1-5). The primary use of CEA is in monitoring colon cancer, especially when the disease has metastasized. However, a variety of cancers can produce elevated levels of CEA, including breast cancer.

Due to the lack of organ and tumor specificity, neither measurement of CA 15-3 nor measurement of CEA are recommended for screening of BC. These tumor markers are helpful diagnostic tools in follow-up care of BC patients (Untch, M., et al., J. Lab. Med. 25 (2001) 343-352).

Whole blood, serum, plasma, or nipple aspirate fluid are the most widely used sources of sample in clinical routine. The identification of an early BC tumor marker that would allow reliable cancer detection or provide early prognostic information could lead to a diagnostic assay that would greatly aid in the diagnosis and in the management of this disease. Therefore, an urgent clinical need exists to improve the in vitro assessment of BC. It is especially important to improve the early diagnosis of BC, since for patients diagnosed early on chances of survival are much higher as compared to those diagnosed at a progressed stage of disease.
It was the task of the present invention to investigate whether a new marker can be identified which may be used in assessing BC.

Surprisingly, it has been found that use of the marker EF11 can at least partially overcome the problems known from the state of the art.

The present invention therefore relates to a method for assessing breast cancer comprising the steps of a) providing a liquid sample obtained from an individual, b) contacting said sample with a specific binding agent for EF11 under conditions appropriate for formation of a complex between said binding agent and EF11, and c) correlating the amount of complex formed in (b) to the assessment of breast cancer.

Another preferred embodiment of the invention is a method for assessing breast cancer comprising the steps of a) contacting a liquid sample obtained from an individual with a specific binding agent for EF11 under conditions appropriate for formation of a complex between said binding agent and EF11, and b) correlating the amount of complex formed in (a) to the assessment of breast cancer.

Yet another preferred embodiment of the invention relates to a method for assessing breast cancer in vitro by biochemical markers, comprising measuring in a sample the concentration of EF11 and of one or more other marker of breast cancer and using the concentrations determined in the assessment of breast cancer.

The present invention also relates to the use of a marker panel comprising at least EF11 and CA 15-3 in the assessment of BC.

The present invention also relates to the use of a marker panel comprising at least EF11 and CEA in the assessment of BC.

The present invention also relates to the use of a marker panel comprising at least EF11 and CRABP-II in the assessment of BC.

The present invention also relates to the use of a marker panel comprising at least EF11 and ASC in the assessment of BC.
The present invention also provides a kit for performing the method according to the present invention comprising at least the reagents required to measure EF11 and CA 15-3, respectively, and optionally auxiliary reagents for performing the measurement.

The present invention also provides a kit for performing the method according to the present invention comprising at least the reagents required to measure EF11 and CEA, respectively, and optionally auxiliary reagents for performing the measurement.

In a further preferred embodiment the present invention relates to a method for assessing breast cancer in vitro comprising measuring in a sample the concentration of a) EF11, b) optionally one or more other marker of breast cancer, and c) using the concentrations determined in step (a) and optionally step (b) in the assessment of breast cancer.

As used herein, each of the following terms has the meaning associated with it in this section.

The articles "a" and "an" are used herein to refer to one or to more than one (i.e. to at least one) of the grammatical object of the article. By way of example, "a marker" means one marker or more than one marker.

The term "marker" or "biochemical marker" as used herein refers to a molecules to be used as a target for analyzing patient test samples. Examples of such molecular targets are proteins or polypeptides themselves as well as antibodies present in a sample. Proteins or polypeptides used as a marker in the present invention are contemplated to include any variants of said protein as well as fragments of said protein or said variant, in particular, immunologically detectable fragments. One of skill in the art would recognize that proteins which are released by cells or present in the extracellular matrix which become damaged, e.g., during inflammation could become degraded or cleaved into such fragments. Certain markers are synthesized in an inactive form, which may be subsequently activated by proteolysis. As the skilled artisan will appreciate, proteins or fragments thereof may also be present as part of a complex. Such complex also may be used as a marker in the sense of the present invention. Variants of a marker polypeptide are encoded by the same gene,
but differ in their PI or MW, or both (e.g., as a result of alternative mRNA or pre-mRNA processing, e.g. alternative splicing or limited proteolysis) and in addition, or in the alternative, may arise from differential post-translational modification (e.g., glycosylation, acylation, and/or phosphorylation).

The term "assessing breast cancer" is used to indicate that the method according to the present invention will (alone or together with other markers or variables, e.g., the criteria set forth by the UICC (UICC (International Union Against Cancer), Sobin, L.H., Wittekind, Ch. (eds), TNM Classification of Malignant Tumours, fifth edition, 1997)) e.g., aid the physician to establish or confirm the absence or presence of BC or aid the physician in the prognosis, the detection of recurrence (follow-up of patients after surgery) and/or the monitoring of treatment, especially of chemotherapy.

The term "sample" as used herein refers to a biological sample obtained for the purpose of evaluation in vitro. In the methods of the present invention, the sample or patient sample preferably may comprise any body fluid. Preferred test samples include blood, serum, plasma, nipple aspirate fluid, urine, saliva, and synovial fluid. Preferred samples are whole blood, serum, plasma or nipple aspirate fluid, with plasma or serum being most preferred. As the skilled artisan will appreciate, any such assessment is made in vitro. The patient sample is discarded afterwards. The patient sample is solely used for the in vitro method of the invention and the material of the patient sample is not transferred back into the patient’s body. Typically, the sample is a liquid sample, e.g., whole blood, serum, or plasma.

In a preferred embodiment the present invention relates to a method for assessing BC in vitro by biochemical markers, comprising measuring in a sample the concentration of EF11 and using the concentration determined in the assessment of BC.

The protein EF11 (also known as elongation factor 11; Swiss-PROT: P04720) is characterized by the sequence given SEQ ID No.1 or its isoforms. SEQ ID No:1 translates to a molecular weight of 50,141 Da.

EF11 is known to the art from the publication Ling, M., et al., Gene 197 (1997) 325-336. EF11 promotes the GTP-dependent binding of aminoacyl-tRNA to the A-site
of ribosomes during protein biosynthesis. The human mitochondrial elongation factor Tu (EF-Tu) is nuclear-encoded and functions in the translational apparatus of mitochondria.

As obvious to the skilled artisan, the present invention shall not be construed to be limited to the full-length protein EF11 of SEQ ID NO:1. Physiological or artificial fragments of EF11, secondary modifications of EF11, as well as allelic variants of EF11 are also encompassed by the present invention. In this regard an “allelic variant” is understood to represent the gene product of one of two or more different forms of a gene or DNA sequence that can exist at a genetic single locus. Artificial fragments preferably encompass a peptide produced synthetically or by recombinant techniques, which at least comprises one epitope of diagnostic interest consisting of at least 6 contiguous amino acids as derived from the sequence disclosed in SEQ ID NO:1. Such a fragment may advantageously be used for generation of antibodies or as a standard in an immunoassay. More preferred the artificial fragment comprises at least two epitopes of interest appropriate for setting up a sandwich immunoassay. Preferably, full-length EF11 or a physiological variant of this marker is detected in a method according to the present invention.

The assessment method according to the present invention is based on a liquid sample which is derived from an individual. Unlike to methods known from the art EF11 is measured from this liquid sample by use of a specific binding agent. A specific binding agent is, e.g., a receptor for EF11, a lectin binding to EF11 or an antibody to EF11. A specific binding agent has at least an affinity of 10^7 l/mol for its corresponding target molecule. The specific binding agent preferably has an affinity of 10^8 l/mol or even more preferred of 10^9 l/mol for its target molecule. As the skilled artisan will appreciate the term specific is used to indicate that other biomolecules present in the sample do not significantly bind to the binding agent specific for EF11. Preferably, the level of binding to a biomolecule other than the target molecule results in a binding affinity which is only 10%, more preferably only 5% of the affinity of the target molecule or less. A most preferred specific binding agent will fulfill both the above minimum criteria for affinity as well as for specificity.

A specific binding agent preferably is an antibody binding to EF11. The term antibody refers to a polyclonal antibody, a monoclonal antibody, fragments of such
antibodies, as well as to genetic constructs comprising the binding domain of an antibody.

Any antibody fragment retaining the above criteria of a specific binding agent can be used. Antibodies are generated by state of the art procedures, e.g., as described in Tijssen (Tijssen, P., Practice and theory of enzyme immunoassays 11 (1990) the whole book, especially pages 43-78; Elsevier, Amsterdam). In addition, the skilled artisan is well aware of methods based on immunosorbents that can be used for the specific isolation of antibodies. By these means the quality of polyclonal antibodies and hence their performance in immunoassays can be enhanced. (Tijssen, P., supra, pages 108-115).

For the achievements as disclosed in the present invention polyclonal antibodies raised in rabbits have been used. However, clearly also polyclonal antibodies from different species, e.g. rats or guinea pigs, as well as monoclonal antibodies can also be used. Since monoclonal antibodies can be produced in any amount required with constant properties, they represent ideal tools in development of an assay for clinical routine. The generation and use of monoclonal antibodies to EF11 in a method according to the present invention is yet another preferred embodiment.

The diagnostic method according to the present invention is based on a liquid sample which is derived from an individual. Unlike to methods known from the art EF11 is measured from this liquid sample by use of a specific binding agent.

As the skilled artisan will appreciate now, that EF11 has been identified as a marker which is useful in the assessment of BC, alternative ways may be used to reach a result comparable to the achievements of the present invention. For example, alternative strategies to generate antibodies may be used. Such strategies comprise amongst others the use of synthetic peptides, representing an epitope of EF11 for immunization. Preferably, a synthetic peptide comprises a subsequence of SEQ ID NO:1 which is specific for EF11, i.e., which has a comparatively low homology to other/related polypeptides. It is preferred that the synthetic peptide comprises a contiguous subsequence consisting of 5 to 25 amino acid residues of SEQ ID NO:1. More preferred, the peptide comprises a contiguous subsequence consisting of 10 to 15 amino acid residues of SEQ ID NO:1.
Alternatively, DNA immunization also known as DNA vaccination may be used.

For measurement the liquid sample obtained from an individual is incubated with the specific binding agent for EF11 under conditions appropriate for formation of a binding agent EF11-complex. Such conditions need not be specified, since the skilled artisan without any inventive effort can easily identify such appropriate incubation conditions.

As a final step according to the method disclosed in the present invention the amount of complex is measured and correlated to the diagnosis of BC. As the skilled artisan will appreciate there are numerous methods to measure the amount of the specific binding agent EF11-complex, all described in detail in relevant textbooks (cf., e.g., Tijssen P., *supra*, or Diamandis et al., eds. (1996) Immunoassay, Academic Press, Boston).

Preferably EF11 is detected in a sandwich type assay format. In such assay a first specific binding agent is used to capture EF11 on the one side and a second specific binding agent, which is labeled to be directly or indirectly detectable is used on the other side.

As mentioned above, it has surprisingly been found that EF11 can be measured from a liquid sample obtained from an individual sample. No tissue and no biopsy sample is required to apply the marker EF11 in the diagnosis of BC.

In a preferred embodiment the method according to the present invention is practiced with serum as liquid sample material. In a further preferred embodiment the method according to the present invention is practiced with plasma as liquid sample material. In a further preferred embodiment the method according to the present invention is practiced with whole blood as liquid sample material. In a further preferred embodiment the method according to the present invention is practiced with nipple aspirate fluid as liquid sample material.

The inventors of the present invention have surprisingly been able to detect protein EF11 in a bodily fluid sample. Even more surprising they have been able to demonstrate that the presence of EF11 in such liquid sample obtained from an individual can be correlated to the diagnosis of breast cancer. Preferably, an
antibody to EF11 is used in a qualitative (EF11 present or absent) or quantitative (EF11 amount is determined) immunoassay.

In the assessment of BC especially the following intended uses are considered important.

Screening:

BC is one of the most frequent cancers among women in developed countries. Because of its high prevalence, its long asymptomatic phase and the presence of premalignant lesions, BC meets many of the criteria for screening. Clearly, a serum tumor marker which has acceptable sensitivity and specificity would be more suitable for screening than established methods. In a preferred embodiment the diagnostic method according to the present invention is used for screening purposes. I.e., it is used to assess subjects without a prior diagnosis of BC by measuring the level of EF11 and correlating the level measured to the presence or absence of BC.

It is conceivable that EF11 alone will not suffice to allow for a general screening e.g. of the risk population for BC. Most likely no single biochemical marker in the circulation will ever meet the sensitivity and specificity criteria required for screening purposes. Rather it has to be expected that a marker panel will have to be used in BC screening. Thus, the marker EF11 will form an integral part of a marker panel appropriate for screening purposes. The present invention therefore relates to the use of EF11 as one marker of a BC marker panel for BC screening purposes.

Diagnostic aid

The inventors also contemplate EF11 to be used as a diagnostic aid, especially by establishing a baseline value to indicate tumor load before breast surgery. The present invention thus also relates to the use of EF11 for establishing a baseline value before surgery for BC. Antibodies to EF11 with great advantage can also be used in established procedures, e.g., to detect breast cancer cells in situ, in biopsies, or in immunohistological procedures.
Prognosis

As EF11 alone contributes to the differentiation of BC patients from healthy controls or from healthy controls plus non-malignant diseases, it has to be expected that it will aid in assessing the prognosis of patients suffering from BC. The level of preoperative EF11 will most likely be combined with one or more other marker for BC and/or the TNM staging system. In a preferred embodiment EF11 is used in the prognosis of patients with BC.

Monitoring of therapy

The inventors furthermore contemplate that EF11 will be a clinically useful marker for monitoring of chemotherapy, radiotherapy or immune therapy. Increased levels of EF11 are directly correlated to tumor burden. For example, after chemotherapy a short term (few hours to 14 days) increase in EF11 may serve as an indicator of tumor cell death. The present invention therefore also relates to the use of EF11 in the monitoring of BC patients under chemotherapy. In addition, the present invention therefore also relates to the use of EF11 in the monitoring of BC patients under radiotherapy. Furthermore, the present invention relates to the use of EF11 in the monitoring of BC patients under immune therapy.

Follow-up:

A number of patients who undergo surgical resection aimed at cure, later develop recurrent of metastatic disease. Since recurrent/metastatic disease is invariably fatal, considerable research has focused on its identification at an early and thus potentially treatable stage. Consequently, many of these patients undergo a postoperative surveillance program.

The follow-up of patients with BC after surgery is one of the most important fields of use for an appropriate biochemical marker. In the follow-up (from 3 months to 10 years) an increase of EF11 can be used as an indicator for tumor recurrence. Due to the high sensitivity of EF11 in the BC patients investigated it is expected that EF11 alone or in combination with one or more other marker will be of great help in the follow-up of BC patients, especially in BC patients after surgery. The use of a marker panel comprising EF11 and one or more other marker of BC in the follow-
up of BC patients represents a further preferred embodiment of the present invention.

Measuring the level of protein EF11 has proven very advantageous in the field of BC. Therefore, in a further preferred embodiment, the present invention relates to use of protein EF11 as a marker molecule in the diagnosis of breast cancer from a liquid sample obtained from an individual.

The ideal scenario for diagnosis would be a situation wherein a single event or process would cause the respective disease as, e.g., in infectious diseases. In all other cases correct diagnosis can be very difficult, especially when the etiology of the disease is not fully understood as is the case of BC. As the skilled artisan will appreciate, no biochemical marker, for example in the field of BC, is diagnostic with 100% specificity and at the same time 100% sensitivity for a given disease. Rather, biochemical markers are used to assess with a certain likelihood or predictive value the presence or absence of a disease. Therefore, in routine clinical diagnosis various clinical symptoms and biological markers are generally considered together in the diagnosis, treatment, and management of the underlying disease.

Biochemical markers can either be determined individually or, in a preferred embodiment of the invention, they can be measured simultaneously using a chip- or a bead-based array technology. The concentrations of the biomarkers are then interpreted independently using an individual cut-off for each marker or they are combined for interpretation.

The use of protein EF11 itself, represents a significant progress to the challenging field of BC diagnosis. Combining measurements of EF11 with other known markers, e.g. CA 15-3 and CEA, or with other markers of BC presently known or yet to be discovered, leads to further improvements.

Recently, novel markers with clinical utility to assess BC have been discovered. They include cellular retinoic acid-binding protein II (CRABP-II) and the apoptosis-associated speck-like protein containing a caspase-associated recruitment domain (ASC).
Cellular retinoic acid-binding protein II

The cellular retinoic acid-binding protein II (CRABP-II) (Swiss-PROT: P29373) is one of two isoforms presently known. The two isoforms (CRABP-I and -II) were first characterized by Siegenthaler et al. 1992. CRABP-II was shown to be the major isoform, highly expressed in human epidermis by fibroblasts and keratinocytes (Siegenthaler, G., Biochemical Journal 287 (1992) 383-389).

An increased concentration of CRABP-II was found in keratoacanthoma and squamous cell cancer but not in basal cell carcinoma of the skin by Vahlquist et al. (Vahlquist, A., J. Invest. Dermatol. 106 (1996) 1070-1074).

In the cytoplasm, CRABP-II regulates the intracellular retinoic acid (RA) concentration, transport, and metabolism. It has been demonstrated that RA induced CRABP-II mRNA levels 2 fold in squamous cell cancer by transcriptional upregulation (Vo, H.P., Crowe, D.L., Anticancer Res. 18 (1998) 217-224).

The presence of CRABP-II in human breast cancer cells was first described by Wang et al. 1998. They localized CRABP-II in human breast cancer cells by immunohistochemistry (Wang, Y., et al., Laboratory Investigation 78 (1998) 30 A).

In a first proteomics analysis of matched normal ductal/lobular units and ductal carcinoma in situ (DCIS) of the human breast Wulfkuhle et al. (Cancer Res. 62 (2002) 6740-6749) identified fifty-seven proteins that were differentially expressed in normal and precancerous cells. The level of CRABP-II was reported to be five times higher in DCIS than in normal cells. A comparable increase has been reported for as many as 23 proteins. But no further investigations were carried out, e.g. wether CRABP-II could be detected in liquid samples (Wulfkuhle, J.D., et al., supra).
The clinical utility of CRABP-II for assessing BC has recently been described in WO 2004/111650.

Apoptosis-associated speck-like protein containing a caspase-associated recruitment domain

The "apoptosis-associated speck-like protein containing a caspase-associated recruitment domain" (ASC) is also known as "target of methylation-induced silencing 1" (TMS1) (Swiss-PROT: Q9ULZ3).

Caspase-associated recruitment domains (CARDs) mediate the interaction between adaptor proteins such as APAF1 (apoptotic protease activating factor 1) and the pro-form of caspases (e.g., CASP 9) participating in apoptosis. ASC is a member of the CARD-containing adaptor protein family.

By immunoscreening a promyelocytic cell line, Masumoto et al. isolated a cDNA encoding ASC. The deduced 195-amino acid protein contains an N-terminal pyrin-like domain (PYD) and an 87-residue C-terminal CARD. Western blot analysis showed expression of a 22-kDa protein and indicated that ASC may have proapoptotic activity by increasing the susceptibility of leukemia cell lines to apoptotic stimuli by anticancer drugs (Masumoto, J., et al., J. Biol. Chem. 274 (1999) 33835-33838).

Methylation-sensitive restriction PCR and methylation-specific PCR (MSP) analyses by Conway et al. indicated that silencing of ASC correlates with hypermethylation of the CpG island surrounding exon1 and that overexpression of DNMT1 (DNA cytosine-5-methyltransferase-1) promotes hypermethylation and silencing of ASC. Breast cancer cell lines, but not normal breast tissue, exhibited complete methylation of ASC and expressed no ASC message. Expression of ASC in breast cancer cell lines inhibited growth and reduced the number of surviving colonies. Conway et al. concluded that ASC functions in the promotion of caspase-dependent apoptosis and that overexpression of ASC inhibits the growth of breast cancer cells (Conway, K.E., et al., Cancer Res. 60 (2000) 6236-6242).

McConnell and Vertino showed that inducible expression of ASC inhibits cellular proliferation and induces DNA fragmentation that can be blocked by caspase
inhibitor. Immunofluorescence microscopy demonstrated that induction of apoptosis causes a CARD-dependent shift from diffuse cytoplasmic expression to spherical perinuclear aggregates (McConnell, B.B., and Vertino, P.M., Cancer Res. 60 (2000) 6243-6247).

Moriani et al. observed methylation of ASC gene not only in breast cancer cells but also in gastric cancer. They suggested a direct role for aberrant methylation of the ASC gene in the progression of breast and gastric cancer involving down-regulation of the proapoptotic ASC gene (Moriani, R., et al., Anticancer Res. 22 (2002) 4163-4168).

Conway et al. examined primary breast tissues for TMS1 methylation and compared the results to methylation in healthy tissues (Conway, K.E., et al., Cancer Res. 60 (2000) 6236-6242). Levine et al. found that ASC silencing was not correlated with methylation of specific CpG sites, but rather was associated with dense methylation of ASC CpG island. Breast tumor cell lines containing exclusively methylated ASC copies do not express ASC, while in partially methylated cell lines the levels of ASC expression are directly related to the percentage of methylated ASC alleles present in the cell population (Levine, J.J., et al., Oncogene 22 (2003) 3475-3488).

Virmani et al. examined the methylation status of ASC in lung cancer and breast cancer tissue. They found that aberrant methylation of ASC was present in 46% of breast cancer cell lines and in 32% of breast tumor tissue. Methylation was rare in non-malignant breast tissue (7%) (Virmani, A., et al., Int. J. Cancer 106 (2003) 198-204). Shiohara et al. found out that up-regulation of ASC is closely associated with inflammation and apoptosis in human neutrophils (Shiohara, M., et al., Blood 98 (2001) 229a). Masumoto et al. observed high levels of ASC abundantly expressed in epithelial cells and leukocytes (Masumoto, J., et al., J. Histochem. Cytochem. 49 (2001) 1269-1275).

The clinical utility of ASC for assessing BC has recently been described in WO 2005/040806.

Therefore in a further preferred embodiment the present invention relates to the use of EF11 as a marker molecule for breast cancer in combination with one or
more marker molecules for breast cancer in the diagnosis of breast cancer from a liquid sample obtained from an individual. In this regard, the expression “one or more” denotes 1 to 10, preferably 1 to 5, more preferred 3 or 4. Preferred selected other BC markers with which the measurement of EF11 may be combined are CEA, CA 15-3, CRABP-II, and ASC. Most preferred, EF11 is used as part of a marker panel at least comprising EF11 and a marker selected from the group consisting of CEA, CA 15-3, CRABP-II, and ASC.

In a further preferred embodiment of the invention the assessment of breast cancer according to the present invention is performed in a method comprising measuring in a sample the concentration of a) EF11, b) optionally one or more other marker of breast cancer, and c) using the concentration determined in step (a) and optionally step (b) in the assessment of breast cancer.

The present invention is also directed to a method for assessing BC in vitro by biochemical markers, comprising measuring in a sample the concentration of EF11 and of one or more other marker of BC and using the concentrations determined in the assessment of BC.

Preferably the method for assessment of BC is performed by measuring the concentration of EF11 and of one or more other marker and by using the concentration of EF11 and of the one or more other marker in the assessment of BC.

Preferably, the method according to the present invention is used with samples of patients suspected to be suffering from breast cancer. An individual suspected of suffering from breast cancer is an individual for which other types of cancers have been excluded. Other cancers include but are not limited to cancers of the colon, lung, stomach, ovary, and prostate. A preferred embodiment of the invention is therefore a method for the diagnosis of breast cancer comprising the steps of a) providing a liquid sample obtained from an individual suspected of suffering from breast cancer, b) contacting said sample with a specific binding agent for EF11 under conditions appropriate for formation of a complex between said binding agent and EF11, and c) correlating the amount of complex formed in (b) to the diagnosis of breast cancer.
Diagnostic reagents in the field of specific binding assays, like immunoassays, usually are best provided in the form of a kit, which comprises the specific binding agent and the auxiliary reagents required to perform the assay. The present invention therefore also relates to an immunological kit comprising at least one specific binding agent for EF11 and auxiliary reagents for measurement of EF11.

Accuracy of a test is best described by its receiver-operating characteristics (ROC) (see especially Zweig, M. H., and Campbell, G., Clin. Chem. 39 (1993) 561-577). The ROC graph is a plot of all of the sensitivity/specificity pairs resulting from continuously varying the decision thresh-hold over the entire range of data observed.

The clinical performance of a laboratory test depends on its diagnostic accuracy, or the ability to correctly classify subjects into clinically relevant subgroups. Diagnostic accuracy measures the test's ability to correctly distinguish two different conditions of the subjects investigated. Such conditions are for example health and disease or benign versus malignant disease.

In each case, the ROC plot depicts the overlap between the two distributions by plotting the sensitivity versus 1 - specificity for the complete range of decision thresholds. On the y-axis is sensitivity, or the true-positive fraction [defined as (number of true-positive test results) / (number of true-positive + number of false-negative test results)]. This has also been referred to as positivity in the presence of a disease or condition. It is calculated solely from the affected subgroup. On the x-axis is the false-positive fraction, or 1 - specificity [defined as (number of false-positive results) / (number of true-negative + number of false-positive results)]. It is an index of specificity and is calculated entirely from the unaffected subgroup.

Because the true- and false-positive fractions are calculated entirely separately, by using the test results from two different subgroups, the ROC plot is independent of the prevalence of disease in the sample. Each point on the ROC plot represents a sensitivity/1-specificity pair corresponding to a particular decision threshold. A test with perfect discrimination (no overlap in the two distributions of results) has an ROC plot that passes through the upper left corner, where the true-positive fraction is 1.0, or 100% (perfect sensitivity), and the false-positive fraction is 0 (perfect specificity). The theoretical plot for a test with no discrimination (identical distributions of results for the two groups) is a 45° diagonal line from the lower left
corner to the upper right corner. Most plots fall in between these two extremes. (If the ROC plot falls completely below the 45° diagonal, this is easily remedied by reversing the criterion for "positivity" from "greater than" to "less than" or vice versa.) Qualitatively, the closer the plot is to the upper left corner, the higher the overall accuracy of the test.

One convenient goal to quantify the diagnostic accuracy of a laboratory test is to express its performance by a single number. The most common global measure is the area under the ROC plot. By convention, this area is always ≥ 0.5 (if it is not, one can reverse the decision rule to make it so). Values range between 1.0 (perfect separation of the test values of the two groups) and 0.5 (no apparent distributional difference between the two groups of test values). The area does not depend only on a particular portion of the plot such as the point closest to the diagonal or the sensitivity at 90% specificity, but on the entire plot. This is a quantitative, descriptive expression of how close the ROC plot is to the perfect one (area = 1.0).

Clinical utility of the novel marker EF11 is best assessed in comparison to and in combination with the established marker CA 15-3 using a receiver operator curve analysis (ROC; Zweig, M. H., and Campbell, G., Clin. Chem. 39 (1993) 561-577). This analysis is based on well-defined patient cohorts consisting of 50 samples each from patients with invasive ductal or lobular carcinoma in T1-3; N0; M0, more progressed tumor, i.e., T4 and/or various severity of metastasis (N+ and/or M+), medullary, papillary, mucinous and tubular carcinoma, ductal carcinoma in situ, and healthy controls, respectively.

Combining measurements of EF11 with other recently discovered markers or with known markers like CEA and CA 15-3, or with other markers of BC yet to be discovered, leads and will lead, respectively, to further improvements in assessment of BC.

The following examples, references, sequence listing and figure are provided to aid the understanding of the present invention, the true scope of which is set forth in the appended claims. It is understood that modifications can be made in the procedures set forth without departing from the spirit of the invention.
<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABTS</td>
<td>2,2'-Azino-di- [3-ethylbenzthiazoline sulfonate (6)] diammonium salt</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>CHAPS</td>
<td>(3-[(3-Cholamidopropyl)-dimethylammonio]- 1-propane-sulfonate)</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene diamine tetraacetic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>HRP</td>
<td>horseradish peroxidase</td>
</tr>
<tr>
<td>IAA</td>
<td>iodoacetamid</td>
</tr>
<tr>
<td>IgG</td>
<td>immunoglobulin G</td>
</tr>
<tr>
<td>IEF</td>
<td>isoelectric focussing</td>
</tr>
<tr>
<td>IPG</td>
<td>immobilized pH gradient</td>
</tr>
<tr>
<td>LDS</td>
<td>lithium dodecyl sulfate</td>
</tr>
<tr>
<td>MALDI-TOF</td>
<td>matrix-assisted laser desorption/ionisation-time of flight mass spectrometry</td>
</tr>
<tr>
<td>MES</td>
<td>mesityl, 2,4,6-trimethylphenyl</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PI</td>
<td>isoelectric point</td>
</tr>
<tr>
<td>RTS</td>
<td>rapid translation system</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate</td>
</tr>
<tr>
<td>UICC</td>
<td>International Union Against Cancer</td>
</tr>
</tbody>
</table>
Example 1
Identification of EF11 as a potential breast cancer marker

Sources of tissue

In order to identify tumor-specific proteins as potential diagnostic markers for breast cancer, analysis of two different kinds of tissue is performed using proteomics methods.

In total, tissue specimen from 14 patients suffering from breast cancer are analyzed. From each patient two different tissue types are collected from therapeutic resections: tumor tissue (>80% tumor) (T), and adjacent healthy tissue (N). The latter tissue type serves as matched healthy control sample. Tissues are immediately snap frozen after resection and stored at −80°C before processing. Tumors are diagnosed by histopathological criteria.

Tissue preparation

0.8-1.2 g of frozen tissue are put into a mortar and completely frozen by liquid nitrogen. The tissue is pulverized in the mortar, dissolved in the 10-fold volume (w/v) of lysis buffer (40 mM Na-citrate, 5 mM MgCl₂, 1% Genapol X-080, 0.02% Na-azide, Complete® EDTA-free [Roche Diagnostics GmbH, Mannheim, Germany, Cat. No. 1 873 580]) and subsequently homogenized in a Wheaton® glass homogenizer (20 x loose fitting, 20 x tight fitting). 3 ml of the homogenate are subjected to a sucrose-density centrifugation (10-60% sucrose) for 1 h at 4,500 x g. After this centrifugation step three fractions are obtained. The fraction on top of the gradient contains the soluble proteins and is used for further analysis.

Immobilization of monoclonal antibody anti-human albumin on CNBr-activated Sepharose 4B

Freeze-dried CNBr-activated Sepharose 4B (Amersham Biosciences, 17-0430-01) is reswollen and washed according to the instructions of the manufacturer. Monoclonal antibody directed against human albumin is dissolved in 0.1 M NaHCO₃, pH 8.3, 0.5 M NaCl, 10 mg/ml. 1 ml antibody solution is mixed with 1 ml reswollen CNBr-activated Sepharose 4B. The reaction time is 1 h. Blocking of the
remaining active groups and washing of the gel is carried out according to the instructions of the manufacturer.

Depletion of serum albumin

7 ml anti-albumin gel is equilibrated in lysis buffer without Genapol X-080. 7 ml of the upper fraction of the sucrose-density centrifugation (see above, tissue preparation) are applied onto the column and washed through with lysis buffer without Genapol X-080. The combined effluent is used for further analysis.

Sample preparation for LC-ESI-MSMS-analysis

The protein concentration of the soluble protein fraction is determined using Bio-Rad® protein assay (Cat.No. 500-0006; Bio-Rad Laboratories GmbH, München, Germany) following the instructions of the supplier's manual. To a volume corresponding to 200 µg of protein 4 ml reduction buffer (9 M urea, 2 mM DTT, 100 mM KH₂PO₄, pH 8.2 NaOH) is added and incubated for 1 h. The solution is concentrated to 250 µl in an Amicon® Ultra 10 kD device (Millipore GmbH, Schwabach, Germany). For alkylation the 250 µl are transferred into 1 ml alkylation buffer (9 M urea, 4 mM iodoacetamide, 100 mM KH₂PO₄, pH 8.2 NaOH), incubated for 6 h and subsequently concentrated in an Amicon® Ultra 10 kD device to 250 µl. For washing 1 ml 9 M urea is added and again concentrated in an Amicon® Ultra 10 kD device to 250 µl. Washing is repeated three-times.

For protease digestion the concentrated solution is diluted to 2.5 M urea and incubated with 4 µg trypsin (Proteomics grade, Roche Diagnostics GmbH, Mannheim, Germany) over night. The digestion is stopped by adding 1 ml 1% formic acid and analyzed.

LC-ESI-MSMS-analysis

The tryptic digest (500 µl) is separated on a two-dimensional Nano-HPLC-System (Ultimate, Famos, Switchos; LC Packings, Idstein, Germany) consisting of a SCX and a RP Pepmap C18 column (LC Packings, Idstein, Germany). The 11 SCX fractions (step elution with 0, 5, 10, 25, 50, 100, 200, 300, 400, 500, 1,500 mM NH₄Ac) are successively further separated on the RP column with a 90 min
gradient (5-95% acetonitrile) and analyzed online using data dependent scans with an ESI-MS ion trap (LCQ deca XP; Thermo Electron, Massachusetts, USA; see Table 2 for parameters). For each sample three runs are performed. The raw data are processed with Bioworks 3.1 software (Thermo Electron, Massachusetts, USA) using the parameters listed in Table 2. The resulting lists of identified peptides and proteins from replicate runs where combined.

The protein EF11 is identified with the sequences given in Table 1.

Detection of EF11 as a potential marker for breast cancer

For each patient the identified proteins and the number of corresponding peptides from the tumor sample are compared to the accordant results from adjacent normal tissue. By this means, protein EF11 is found specifically expressed or strongly overexpressed in tumor tissue. It therefore – amongst many other proteins – qualifies as a candidate marker for use in the diagnosis of breast cancer.

Table 1

Sequences of protein EF11 which were identified with Bioworks 3.1 from LCQ-MS2-data:

<table>
<thead>
<tr>
<th></th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>EHALLAYTLGVK</td>
</tr>
<tr>
<td>ii</td>
<td>THINIVVIGHVDSGK</td>
</tr>
<tr>
<td>iii</td>
<td>VETGVLPGMVVTAPVNTTEVK</td>
</tr>
<tr>
<td>iv</td>
<td>YYVTIIDAPGHR</td>
</tr>
</tbody>
</table>
Table 2: MSMS-data acquisition and Bioworks 3.1 search parameters

<table>
<thead>
<tr>
<th>MSMS-data acquisition</th>
<th>MS exclusion</th>
<th>350-2,000 Da for precursor ions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeat count</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Repeat duration</td>
<td>0.25 min</td>
<td></td>
</tr>
<tr>
<td>Exclusion list size</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Exclusion duration</td>
<td>5 min</td>
<td></td>
</tr>
<tr>
<td>Exclusion mass width</td>
<td>low 0.5 Da, high 1.5 Da</td>
<td></td>
</tr>
<tr>
<td>Bioworks</td>
<td>Number of ions</td>
<td>35</td>
</tr>
<tr>
<td>Minimal ion intensity</td>
<td>100,000 counts</td>
<td></td>
</tr>
<tr>
<td>Precursor mass tolerance</td>
<td>1.2 Da</td>
<td></td>
</tr>
<tr>
<td>Fragment mass tolerance</td>
<td>1.4 Da</td>
<td></td>
</tr>
<tr>
<td>Xcorr</td>
<td>> 2; 2.5; 3 (z = 1; 2; 3)</td>
<td></td>
</tr>
<tr>
<td>dCn</td>
<td>> 0.1</td>
<td></td>
</tr>
<tr>
<td>Sp</td>
<td>> 500</td>
<td></td>
</tr>
</tbody>
</table>

Databases
Swissprot;
Humangp (assembled by Roche Biinformatics)

Example 2

Generation of antibodies to the breast cancer marker protein EF11

Polyclonal antibody to the breast cancer marker protein EF11 is generated for further use of the antibody in the measurement of serum and plasma and blood levels of EF11 by immunodetection assays, e.g. Western Blotting and ELISA

Recombinant protein expression and purification

In order to generate antibodies to EF11, recombinant expression of the protein is performed for obtaining immunogens. The expression is done applying a combination of the RTS 100 expression system and E. coli. In a first step, the DNA sequence is analyzed and recommendations for high yield cDNA silent mutational variants and respective PCR-primer sequences are obtained using the “ProteoExpert RTS E.coli HY” system. This is a commercial web-based service (www.proteoexpert.com). Using the recommended primer pairs, the “RTS 100 E.
coli Linear Template Generation Set, His-tag” (Roche Diagnostics GmbH, Mannheim, Germany, Cat.No. 3186237) system to generate linear PCR templates from the cDNA for in-vitro transcription and expression of the nucleotide sequence coding for the EF11 protein is used. For Western-blot detection and later purification, the expressed protein contains a His-tag. The best expressing variant is identified. All steps from PCR to expression and detection are carried out according to the instructions of the manufacturer. The respective PCR product, containing all necessary T7 regulatory regions (promoter, ribosomal binding site and T7 terminator) is cloned into the pBAD TOPO® vector (Invitrogen, Karlsruhe, Germany, Cat. No. K 4300/01) following the manufacturer’s instructions. For expression using the T7 regulatory sequences, the construct is transformed into E. coli BL 21 (DE 3) (Studier, F.W., et al., Methods Enzymol. 185 (1990) 60-89) and the transformed bacteria are cultivated in a 1 l batch for protein expression.

Purification of His-EF11 fusion protein is done following standard procedures on a Ni-chelate column. Briefly, 1 l of bacteria culture containing the expression vector for the His-EF11 fusion protein is pelleted by centrifugation. The cell pellet is resuspended in lysis buffer, containing phosphate, pH 8.0, 7 M guanidium chloride, imidazole and thioglycerol, followed by homogenization using a Ultra-Turrax®. Insoluble material is pelleted by high speed centrifugation and the supernatant is applied to a Ni-chelate chromatographic column. The column is washed with several bed volumes of lysis buffer followed by washes with buffer, containing phosphate, pH 8.0 and urea. Finally, bound antigen is eluted using a phosphate buffer containing SDS under acid conditions.

Synthesis of hemocyanin-peptide-conjugates for the generation of antibodies

Synthesis is carried out using heterobifunctional chemistry (maleimide/SH-chemistry). Selected cysteine containing EF11-peptides are coupled to 3-maleimidohexanoyl-N-hydroxysuccinimidester (MHS) activated hemocyanin from Concholepas concholepas (Sigma, B-8556).

Hemocyanin is brought to 10 mg/ml in 100 mM NaH₂PO₄/NaOH, pH 7.2. Per ml hemocyanin 100 μl MHS (12.3 mg in DMSO) are added and incubated for 1 h. The sample is dialyzed over night against 100 mM NaH₂PO₄/NaOH, pH 6.5 and adjusted to 6 mg/ml with dialysis buffer. A selected cysteine containing EF11-
peptide is dissolved in DMSO (5 mg/ml for a peptide of 1500 Dalton). Per ml MHS-activated hemocyanin (6 mg/ml) 20 μl of 100 mM EDTA, pH 7.0 and 100 μl of the selected cysteine containing EF11-peptide are added. After 1 h the remaining maleimide groups are blocked by the addition of 10 μl 0.5 M cysteine/HCl per ml reaction mixture. This preparation is used for immunization without further purification.

Production of monoclonal antibodies against EF11

a) Immunization of mice

12 week old A/J mice are initially immunized intraperitoneally with 100 μg EF11 or hemocyanin-peptide-conjugate (see above). This is followed after 6 weeks by two further intraperitoneal immunizations at monthly intervals. In this process each mouse is administered 100 μg EF11 or hemocyanin-peptide-conjugate adsorbed to aluminium hydroxide and 10^9 germs of Bordetella pertussis. Subsequently the last two immunizations are carried out intravenously on the 3rd and 2nd day before fusion using 100 μg EF11 or hemocyanin-peptide-conjugate in PBS buffer for each.

b) Fusion and cloning

Spleen cells of the mice immunized according to a) are fused with myeloma cells according to Galfre, G., and Milstein, C., Methods in Enzymology 73 (1981) 3-46. In this process ca. 1x10^6 spleen cells of the immunized mouse are mixed with 2x10^7 myeloma cells (P3X63-Ag8-653, ATCC CRL1580) and centrifuged (10 min at 300 x g and 4°C.). The cells are then washed once with RPMI 1640 medium without fetal calf serum (FCS) and centrifuged again at 400 x g in a 50 ml conical tube. The supernatant is discarded, the cell sediment is gently loosened by tapping, 1 ml PEG (molecular weight 4,000, Merck, Darmstadt) is added and mixed by pipetting. After 1 min in a water-bath at 37°C., 5 ml RPMI 1640 without FCS is added drop-wise at room temperature within a period of 4-5 min. Afterwards 5 ml RPMI 1640 containing 10% FCS is added drop-wise within ca. 1 min, mixed thoroughly, filled to 50 ml with medium (RPMI 1640+10% FCS) and subsequently centrifuged for 10 min at 400 x g and 4°C. The sedimented cells are taken up in RPMI 1640 medium containing 10% FCS and sown in hypoxanthine-azaserine selection
medium (100 mmol/l hypoxanthine, 1 μg/ml azaserine in RPMI 1640+10% FCS). Interleukin 6 at 100 U/ml is added to the medium as a growth factor.

After ca. 10 days the primary cultures are tested for specific antibody. EF11-positive primary cultures are cloned in 96-well cell culture plates by means of a fluorescence activated cell sorter. In this process again interleukin 6 at 100 U/ml is added to the medium as a growth additive.

c) Immunoglobulin isolation from the cell culture supernatants

The hybridoma cells obtained are sown at a density of 1x10^5 cells per ml in RPMI 1640 medium containing 10% FCS and proliferated for 7 days in a fermenter (Thermodux Co., Wertheim/Main, Model MCS-104XL, Order No. 144-050). On average concentrations of 100 μg monoclonal antibody per ml are obtained in the culture supernatant. Purification of this antibody from the culture supernatant is carried out by conventional methods in protein chemistry (e.g. according to Bruck, C., et al., Methods Enzymol. 121 (1986) 587-695).

Generation of polyclonal antibodies

a) Immunization

For immunization, a fresh emulsion of the protein solution (100 μg/ml EF11 or hemocyanin-peptide-conjugate) and complete Freund’s adjuvant at the ratio of 1:1 is prepared. Each rabbit is immunized with 1 ml of the emulsion at days 1, 7, 14 and 30, 60 and 90. Blood is drawn and resulting anti-EF11 serum used for further experiments as described in Examples 3 and 4.

b) Purification of IgG (immunoglobulin G) from rabbit serum by sequential precipitation with caprylic acid and ammonium sulfate

One volume of rabbit serum is diluted with 4 volumes of acetate buffer (60 mM, pH 4.0). The pH is adjusted to 4.5 with 2 M Tris-base. Caprylic acid (25 μl/ml of diluted sample) is added drop-wise under vigorous stirring. After 30 min the sample is centrifuged (13,000 x g, 30 min, 4°C), the pellet discarded and the
supernatant collected. The pH of the supernatant is adjusted to 7.5 by the addition of 2 M Tris-base and filtered (0.2 μm).

The immunoglobulin in the supernatant is precipitated under vigorous stirring by the drop-wise addition of a 4 M ammonium sulfate solution to a final concentration of 2 M. The precipitated immunoglobulins are collected by centrifugation (8,000 x g, 15 min, 4°C).

The supernatant is discarded. The pellet is dissolved in 10 mM NaH₂PO₄/NaOH, pH 7.5, 30 mM NaCl and exhaustively dialyzed. The dialysate is centrifuged (13,000 x g, 15 min, 4°C) and filtered (0.2 μm).

Biotinylation of polyclonal rabbit IgG

Polyclonal rabbit IgG is brought to 10 mg/ml in 10 mM NaH₂PO₄/NaOH, pH 7.5, 30 mM NaCl. Per ml IgG solution 50 μl Biotin-N-hydroxysuccinimide (3.6 mg/ml in DMSO) are added. After 30 min at room temperature, the sample is chromatographed on Superdex 200 (10 mM NaH₂PO₄/NaOH, pH 7.5, 30 mM NaCl). The fraction containing biotinylated IgG are collected. Monoclonal antibodies are biotinylated according to the same procedure.

Digoxigenenylation of polyclonal rabbit IgG

Polyclonal rabbit IgG is brought to 10 mg/ml in 10 mM NaH₂PO₄/NaOH, 30 mM NaCl, pH 7.5. Per ml IgG solution 50 μl digoxigenin-3-O-methylcarbonyl-e-aminocaproic acid-N-hydroxysuccinimide ester (Roche Diagnostics, Mannheim, Germany, Cat. No. 1 333 054) (3.8 mg/ml in DMSO) are added. After 30 min at room temperature, the sample is chromatographed on Superdex® 200 (10 mM NaH₂PO₄/NaOH, pH 7.5, 30 mM NaCl). The fractions containing digoxigenylated IgG are collected. Monoclonal antibodies are labeled with digoxigenin according to the same procedure.
Example 3
Western blot for the detection of EF11 in human serum and plasma samples.

SDS-PAGE and Western Blotting are carried out using reagents and equipment of Invitrogen, Karlsruhe, Germany. Human plasma samples are diluted 1:20 in reducing NuPAGE® (Invitrogen) LDS sample buffer and heated for 5 min at 95°C. 10 μl aliquots are run on 4-12 % NuPAGE® gels (Bis-Tris) in the MES running buffer system. The gel-separated protein mixture is blotted onto nitrocellulose membranes using the Invitrogen XCell II™ Blot Module (Invitrogen) and the NuPAGE® transfer buffer system. The membranes are washed 3 times in PBS/0.05 % Tween-20 and blocked with SuperBlock Blocking Buffer (Pierce Biotechnology, Inc., Rockford, IL, USA). The biotinylated primary antibody is diluted in SuperBlock Blocking Buffer (0.01-0.2 μg/ml) and incubated with the membrane for 1 h. The membranes are washed 3 times in PBS/0.05 % Tween-20. The specifically bound biotinylated primary antibody is labeled with a streptavidin-HRP-conjugate (20 mU$_{ABTS}$/ml in SuperBlock Blocking Buffer). After incubation for 1 h, the membranes are washed 3 times in PBS/0.05 % Tween-20. The bound streptavidin-HRP-conjugate is detected using a chemiluminescent substrate (SuperSignal West Femto Substrate, Pierce Biotechnology, Inc., Rockford, IL, USA) and autoradiographic film. Exposure times varies from 10 min to over night.

Example 4
ELISA for the measurement of EF11 in human serum and plasma samples.

For detection of EF11 in human serum or plasma, a sandwich ELISA is developed. For capture and detection of the antigen, aliquots of the anti-EF11 polyclonal antibody (see Example 2) are conjugated with biotin and digoxigenin, respectively.

Streptavidin-coated 96-well microwell plates are incubated with 100 μl biotinylated anti-EF11 polyclonal antibody for 60 min at 10 μg/ml in 10 mM phosphate, pH 7.4, 1% BSA, 0.9% NaCl and 0.1% Tween-20. After incubation, plates are washed three times with 0.9% NaCl , 0.1% Tween-20. Wells are then incubated for 2 h with either a serial dilution of the recombinant protein (see Example 2) as standard antigen or with diluted plasma samples from patients. After binding of EF11, plates are washed three times with 0.9% NaCl , 0.1% Tween-20. For specific detection of bound EF11, wells are incubated with 100 μl of digoxigenylated anti-EF11
polyclonal antibody for 60 min at 10 µg/ml in 10 mM phosphate, pH 7.4, 1% BSA,
0.9% NaCl and 0.1% Tween-20. Thereafter, plates are washed three times to
remove unbound antibody. In a next step, wells are incubated with 20 mU/ml anti-
digoxigenin-POD conjugates (Roche Diagnostics GmbH, Mannheim, Germany,
Catalog No. 1633716) for 60 min in 10 mM phosphate, pH 7.4, 1% BSA, 0.9% NaCl
and 0.1% Tween-20. Plates are subsequently washed three times with the same
buffer. For detection of antigen-antibody complexes, wells are incubated with
100 µl ABTS solution (Roche Diagnostics GmbH, Mannheim, Germany, Catalog
No. 11685767) and OD is measured after 30-60 min at 405 nm with an ELISA
reader.

Example 5
ROC analysis to assess clinical utility in terms of diagnostic accuracy.

Accuracy is assessed by analyzing individual liquid samples obtained from well-
characterized patient cohorts, i.e., 50 patients having undergone mammography
and found to be free of BC, 50 patients each diagnosed and staged as invasive ductal
and invasive lobular T1-3, N0, M0 of BC, 50 patients diagnosed with progressed
BC, having at least tumor infiltration in at least one proximal lymph node or more
severe forms of metastasis, 50 patients each diagnosed with medullary, mucinous,
tubular, or papillary breast carcinoma, and 50 patients diagnosed with DCIS,
respectively. CA 15-3 as measured by a commercially available assay (Roche
Diagnostics, CA 15-3-assay (Cat. No. 0 304 5838 for Elecsys® Systems immunoassay
analyzer) and EF11 measured as described above have been quantified in a serum
obtained from each of these individuals. ROC-analysis is performed according to
Zweig, M. H., and Campbell, supra. Discriminatory power for differentiating
patients in the group T4-3, N0, M0 from healthy individuals for the combination of
EF11 with the established marker CA 15-3 is calculated by regularized discriminant
analysis (Friedman, J. H., Regularized Discriminant Analysis, Journal of the

Preliminary data indicate that EF11 may also be very helpful in the follow-up of
patients after surgery.
List of References

Conway, K.E., et al., Cancer Res. 60 (2000) 6236-6242
Kuerer, H.M., et al., Cancer 95 (2002) 2276-2282
McConnell, B.B., and Vertino, P.M., Cancer Res. 60 (2000) 6243-6247
National Cancer Institute, Cancer Facts, Fact Sheet 5.18 (1998) 1-5
Shiohara, M., et al., Blood 98 (2001) 229a
Tijssen, P., Practice and theory of enzyme immunoassays 11 (1990); Elsevier, Amsterdam
UICC (International Union Against Cancer), Sobin, L.H., Wittekind, Ch. (eds), TNM Classification of Malignant Tumours, fifth edition, 1997
Wang, Y., et al., Laboratory Investigation 78 (1998) 30 A
WHO, Screening for Breast Cancer, May 10, 2002
WO 00/60076
35 WO 02/101075
WO 02/23200
WO 02/59377
WO 02/77176
Patent Claims

1. A method for assessing breast cancer in vitro comprising measuring in a sample the concentration of
 a) EF11 (elongation factor 11),
 b) optionally one or more other marker of breast cancer, and
 c) using the concentration determined in step (a) and optionally step (b) in the assessment of breast cancer.

2. The method according to claim 1, further characterized in that said sample is serum.

3. The method according to claim 1, further characterized in that said sample is plasma.

4. The method according to claim 1, further characterized in that said sample is whole blood.

5. The method according to claim 1, further characterized in that said sample is nipple aspirate fluid.

6. The method according to claim 1, further characterized in that said one or more other marker is selected from the group consisting of CEA, CA 15-3, CRABP-II, and ASC.

7. The method according to claim 6, further characterized in that said one or more other marker is CEA.

8. The method according to claim 6, further characterized in that said one or more other marker is CA 15-3.

9. The method according to claim 6, further characterized in that said one or more other marker is CRABP-II.

10. The method according to claim 6, further characterized in that said one or more other marker is ASC.
11. Use of protein EF11 as a marker molecule in the assessment of breast cancer.

12. Use of a marker panel comprising EF11 and one or more other marker for breast cancer in the assessment of breast cancer.

13. Use of the marker panel according to claim 12, wherein the one or more other marker is selected from the group consisting of CEA, CA 15-3, CRABP-II, and ASC.

14. Use according to any of the claims 11-13, wherein the assessment is made with a sample derived from BC patients in stage T1-3; N0; M0.

15. A kit for performing the method according to claim 1 comprising the reagents required to measure EF11.

16. A kit for performing the method according to claim 6 comprising the reagents required to measure EF11 and one or more other marker of breast cancer.
SEQUENCE LISTING

Roche Diagnostics GmbH
P. Hoffmann-La Roche AG

Use of protein EF11 as a marker for breast cancer

case 22612

EP 04014316.6
2004-06-18

1

PatentIn version 3.2

1
462
PRT
Homo sapiens

MISC_FEATURE
elongation factor 11

1

Met Gly Lys Glu Lys Thr His Ile Asn Ile Val Val Ile Gly His Val
1 5 10 15

Asp Ser Gly Lys Ser Thr Thr Thr Gly His Leu Ile Tyr Lys Cys Gly
20 25 30

Gly Ile Asp Lys Arg Thr Ile Glu Lys Phe Glu Lys Glu Ala Ala Glu
35 40 45

Met Gly Lys Gly Ser Phe Lys Tyr Ala Trp Val Leu Asp Lys Leu Lys
50 55 60

Ala Glu Arg Glu Arg Gly Ile Thr Ile Asp Ile Ser Leu Trp Lys Phe
65 70 75 80

Glu Thr Ser Lys Tyr Tyr Val Thr Ile Ile Asp Ala Pro Gly His Arg
85 90 95

Asp Phe Ile Lys Asn Met Ile Thr Gly Thr Ser Gln Ala Asp Cys Ala
100 105 110
Val Leu Ile Val Ala Ala Gly Val Gly Glu Phe Glu Ala Gly Ile Ser
 115 120 125
Lys Asn Gly Gln Thr Arg Glu His Ala Leu Leu Ala Tyr Thr Leu Gly
 130 135 140
Val Lys Gln Leu Ile Val Gly Val Asn Lys Met Asp Ser Thr Glu Pro
 145 150 155 160
Pro Tyr Ser Gln Lys Arg Tyr Glu Glu Ile Val Lys Glu Val Ser Thr
 165 170 175
Tyr Ile Lys Lys Ile Gly Tyr Asn Pro Asp Thr Val Ala Phe Val Pro
 180 185 190
Ile Ser Gly Trp Asn Gly Asp Met Leu Glu Pro Ser Ala Asn Met
 195 200 205
Pro Trp Phe Lys Gly Trp Lys Val Thr Arg Lys Asp Gly Asn Ala Ser
 210 215 220
Gly Thr Thr Leu Leu Glu Ala Leu Asp Cys Ile Leu Pro Pro Thr Arg
 225 230 235 240
Pro Thr Asp Lys Pro Leu Arg Leu Pro Leu Gln Asp Val Tyr Lys Ile
 245 250 255
Gly Gly Ile Gly Thr Val Pro Val Gly Arg Val Gly Thr Gly Val Leu
 260 265 270
Lys Pro Gly Met Val Val Thr Phe Ala Pro Val Asn Val Thr Thr Glu
 275 280 285
Val Lys Ser Val Glu Met His His Glu Ala Leu Ser Glu Ala Leu Pro
 290 295 300
Gly Asp Asn Val Gly Phe Asn Val Lys Asn Val Ser Val Lys Asp Val
 305 310 315 320
Arg Arg Gly Asn Val Ala Gly Asp Ser Lys Asn Asp Pro Pro Met Glu
 325 330 335
Ala Ala Gly Phe Thr Ala Gln Val Ile Ile Leu Asn His Pro Gly Gln 340 345 350

Ile Ser Ala Gly Tyr Ala Pro Val Leu Asp Cys His Thr Ala His Ile 355 360 365

Ala Cys Lys Phe Ala Glu Leu Lys Glu Lys Ile Asp Arg Arg Ser Gly 370 375 380

Lys Lys Leu Glu Asp Gly Pro Lys Phe Leu Lys Ser Gly Asp Ala Ala 385 390 395 400

Ile Val Asp Met Val Pro Gly Lys Pro Met Cys Val Glu Ser Phe Ser 405 410 415

Asp Tyr Pro Pro Leu Gly Arg Phe Ala Val Arg Asp Met Arg Gln Thr 420 425 430

Val Ala Val Gly Val Ile Lys Ala Val Asp Lys Lys Ala Ala Gly Ala 435 440 445

Gly Lys Val Thr Lys Ser Ala Gln Lys Ala Gln Lys Ala Lys 450 455 460
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 G01N33/574

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, Sequence Search, WPI Data, PAJ, BIOSIS, EMBASE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 02/077176 A (THE GOVERNMENT OF THE UNITED STATES OF AMERICA AS REPRESENTED BY THE S) 3 October 2002 (2002-10-03) page 33, line 18 - page 34, line 8; compounds BCMP-1249 page 37, line 2 - line 7 page 42, line 11 - line 19 tables 8,9c claims 24,28</td>
<td>1-16</td>
</tr>
</tbody>
</table>

X [Further documents are listed in the continuation of box C.]

X [Patent family members are listed in annex.]

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier document but published on or after the International filing date
 L document which may throw doubts on priority claims or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document relating to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed

P [Later document published after the international filing date or priority data and not in conflict with the application but cited to understand the principle or theory underlying the invention]

X [Document of particular relevance; the claimed invention cannot be considered novel and/or cannot be considered to involve an inventive step when the document is taken alone or in combination with one or more other such documents, such combination being obvious to a person skilled in the art.

X [Document member of the same patent family]

Date of the actual completion of the International search: 16 September 2005

Date of mailing of the International search report: 12/10/2005

Name and mailing address of the ISA

European Patent Office, P.B. 51318 Patentloven 2 NL - 2280 HD Rijswijk

Tel. (+31-70) 940-2040, Tx. 31 651 epo nl, FAX (+31-70) 540-0016

Authorized officer: Weber, P

Form PCT/IB/5210 (second sheet) (January 2004)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2003/064419 A1 (CHANDRASIRI HERATH HERATH MUDIYANSELAGE ATHULA ET AL) 3 April 2003 (2003-04-03) page 4, right-hand column, line 52 - line 57 paragraph '0023!' page 41, left-hand column, lines 6-9, 32-35 example 1; tables 1, 6, 12, 20; compounds BF-276, BP-349 claims 1, 7, 12, 15-19</td>
<td>1-16</td>
</tr>
<tr>
<td>X</td>
<td>WO 03/087831 A (OXFORD GLYCOSCIENCES LTD; HUDSON, LYNDSEY, J; STAMPS, ALASDAIR, CRAIG) 23 October 2003 (2003-10-23) page 52, line 6 - page 54, last line page 60, paragraph 1249 claims 1, 7, 9</td>
<td>1-16</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 02077176 A</td>
<td>03-10-2002</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2003064419 A1</td>
<td>03-04-2003</td>
<td>AU 4090901 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1266225 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0171357 A2</td>
</tr>
</tbody>
</table>