

(22) Date de dépôt/Filing Date: 2014/01/13

(41) Mise à la disp. pub./Open to Public Insp.: 2014/09/15

(45) Date de délivrance/Issue Date: 2022/01/25

(30) Priorité/Priority: 2013/03/15 (US13/832,181)

(51) Cl.Int./Int.Cl. *C23F 15/00*(2006.01),
B32B 33/00(2006.01), *B32B 37/14*(2006.01),
B32B 7/04(2019.01), *C08J 5/12*(2006.01),
C09K 3/10(2006.01)

(72) Inventeur/Inventor:

ERICKSON, MARCUS ALEXANDER, US

(73) Propriétaire/Owner:

THE BOEING COMPANY, US

(74) Agent: SMART & BIGGAR LLP

(54) Titre : STRUCTURE HYBRIDE ET PROCEDES DE FORMATION DE CELLE-CI

(54) Title: HYBRID STRUCTURE AND METHODS FOR FORMING THE SAME

(57) Abrégé/Abstract:

A method for forming a hybrid structure is provided. The method includes applying a sealant to a first component fabricated from a first material, coupling an isolation sheet to the sealant, and coupling a second component to the isolation sheet. The isolation sheet and the second component are fabricated from a second material that is different than the first material to facilitate preventing formation of a galvanic cell within the hybrid structure.

ABSTRACT OF THE DISCLOSURE

A method for forming a hybrid structure is provided. The method includes applying a sealant to a first component fabricated from a first material, coupling an isolation sheet to the sealant, and coupling a second component to the isolation sheet. The isolation sheet and the 5 second component are fabricated from a second material that is different than the first material to facilitate preventing formation of a galvanic cell within the hybrid structure.

HYBRID STRUCTURE AND METHODS FOR FORMING THE SAME

BACKGROUND

The present disclosure relates generally to hybrid structures and, more specifically, to methods for use in reducing galvanic corrosion within hybrid structures.

Galvanic corrosion refers to an electrochemical process where electrons are transferred between materials in electrical contact that have different electrode potentials. A 5 galvanic cell generally includes an anode, a cathode, and an electrolyte that couples the anode and cathode together in electrical contact. During operation, electrons from the material with the more active electrode potential (i.e., the anode) are transferred to the material with the less active electrode potential (i.e., the cathode) via the electrolyte. As such, corrosion occurs when the anode material dissolves in the electrolyte and deposits on the cathode.

10 Recently, at least some known aircraft components have increasingly been fabricated from composite materials such as carbon-fiber-reinforced polymer (CFRP) in combination with metallic materials such as aluminum, titanium, and/or steel. As used herein, the term "metallic" may refer to a single metallic material or a metallic alloy material. The composite materials generally reduce the weight of the aircraft resulting in an increase in the 15 fuel efficiency of the aircraft. In such assemblies, certain metallic materials have a more active electrode potential than the conductive carbon fibers dispersed within the composite materials.

20 In at least some known aircraft assemblies, metallic components are coupled to CFRP components via a plurality of fasteners. In one known assembly, CFRP-metallic hybrid structures are formed in a process where the metallic components are aligned with the CFRP parts in a predetermined position, and hole locations are drilled based on the predetermined position. The metallic component is then coupled to the CFRP components with fasteners. In such structures, galvanic corrosion may occur if moisture is introduced between the metallic and CFRP components.

25 Preventing galvanic corrosion generally requires either eliminating and/or suppressing at least one of the elements of the galvanic cell. When the electrolyte is water, one

known method to prevent galvanic corrosion is to apply a water resistant sealant between the anode and cathode to substantially prevent the ingress of the electrolyte therebetween. When forming CFRP-metallic hybrid structures, the sealant is generally applied after the hole locations have been determined, which requires the metallic component to be removed in an intermediate step.

5 However, the process described above that includes alignment of the metallic components, fastener hole formation, removal of the metallic components, sealant application, and re-alignment of the metallic components is an inefficient and time-consuming task, and changes in the ambient conditions after the holes have been formed may cause the parts to distort making re-alignment of holes in the metallic parts with the drill holes difficult.

BRIEF DESCRIPTION

10 In accordance with one disclosed aspect there is provided a method of forming a hybrid structure. The method involves applying a sealant to cover an area between a surface of a first component and an isolation sheet, the first component fabricated from a first material and the isolation sheet fabricated from a second material that is different from the first material. The first material has an electrode potential that is different than an electrode potential of the second material, and the first material includes a carbon fiber material and the second material includes a metallic material. The method also involves applying pressure to the isolation sheet to remove excess sealant and substantially fill microvoids within surfaces of the isolation sheet and the first component to prevent ingress of moisture between the isolation sheet and the first component. The method further involves coupling a second component to the isolation sheet, the second component

15

20 is fabricated from the second material.

Applying the sealant between the surface of the first component and the isolation sheet may involve applying the sealant to the first component and applying the isolation sheet to the sealant.

Applying the sealant may involve applying a sealant that substantially prevents ingress of an electrolyte between the isolation sheet and the first component.

Coupling the second component to the isolation sheet may further involve aligning the second component with the isolation sheet in a predetermined orientation, determining at least

5 one bore hole location on the isolation sheet with at least one of a plurality of holes defined in the second component and a drill jig, forming at least one bore hole through the isolation sheet, the sealant, and the first component at the at least one hole location, and using at least one fastener to couple the second component to the isolation sheet.

The method may involve substantially maintaining alignment of the second
10 component relative to the isolation sheet while the at least one bore hole is formed.

Coupling the second component to the isolation sheet may involve aligning the second component with the isolation sheet such that the second component remains separated from the first component.

In accordance with another disclosed aspect there is provided a method of forming
15 an assembly. The method involves forming a sub-assembly that includes a first component fabricated from a first material, an isolation sheet fabricated from a second material that is different from the first material, and a sealant applied to cover an area between the isolation sheet and a surface of the first component. A pressure is applied to the isolation sheet to remove excess sealant and substantially fill microvoids within surfaces of the isolation sheet and the first component to
20 prevent ingress of moisture between the isolation sheet and the first component. The method also involves installing the sub-assembly in the assembly, and coupling a second component to the sub-assembly along the isolation sheet, the second component being fabricated from the second material. The first material has an electrode potential that is different than an electrode potential of the second material, and the first material includes a carbon fiber material and the second
25 material includes a metallic material.

Coupling the second component to the sub-assembly may involve aligning the second component with the isolation sheet in a predetermined orientation, and determining at least one bore hole location on the isolation sheet with at least one of a plurality of holes defined in the second component and a drill jig.

The method may involve forming at least one bore hole through the sub-assembly at the at least one hole location, and using at least one fastener to couple the second component to the sub-assembly.

Using the at least one fastener may involve applying a second sealant to at least one 5 of the at least one bore hole and the at least one fastener before using the at least one fastener.

In accordance with another disclosed aspect there is provided a hybrid structure. The structure includes a first component fabricated from a first material, the first material having an electrode potential that is different than an electrode potential of the second material, and the first material including a carbon fiber material and the second material including a metallic 10 material. The structure also includes an isolation sheet fabricated from a second material that is different from the first material, and a sealant covering an area between the isolation sheet and a surface of the first component, the sealant substantially filling microvoids within surfaces of the isolation sheet and the first component to prevent ingress of moisture between the isolation sheet and the first component. The structure also includes a second component coupled to the isolation 15 sheet, the second component being fabricated from the second material.

The sealant may include a polysulfide material.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a perspective view of an exemplary hybrid structure.

Figure 2 is illustrates a series of assembly steps for forming the hybrid structure shown in Figure 1.

Figure 3 is a flow diagram of an exemplary method for forming the hybrid structure shown in Figure 1.

Figure 4 is a flow diagram of an exemplary method that may be completed to form an assembly that may be used with the hybrid structure shown in Figure 1.

DETAILED DESCRIPTION

The present disclosure relates to hybrid structures fabricated from components of different materials, and methods for forming hybrid structures to facilitate preventing galvanic corrosion of the components therein. The hybrid structures described herein include a sub-assembly formed from a first component fabricated from a first material, a sealant applied to the first component, and an isolation sheet fabricated from a second material that is coupled to the sealant. A second component fabricated from the second material is coupled to the isolation sheet to form the hybrid structure. In the exemplary implementation, the first material and the second material have different electrode potentials such that galvanic corrosion may occur if the second component were directly coupled to the first component in the presence of an electrolyte. As such, in the exemplary implementation, the sealant and the isolation sheet facilitate separating the first component from the second component to substantially prevent the formation of a galvanic cell in the hybrid structure.

In some implementations, the sub-assembly described herein may be fabricated and installed in an assembly, and the second component may then be coupled to the sub-assembly. More specifically, in some implementations, the second component may be coupled to the sub-assembly by aligning the second component with the sub-assembly, determining drill hole locations in the sub-assembly based on holes defined in the second component and/or with a drill jig, and coupling the second component to the sub-assembly with fasteners. Because the sealant and isolation sheet are pre-installed in the sub-assembly, the second component does not

need to be removed from alignment after the drill hole locations are determined, and a sealant does not need to be applied to the first component after removal of the second component. As such, manufacturing times may be substantially reduced and difficulties resulting from temperature distortion in the drilled parts may be substantially eliminated as compared to other 5 known manufacturing processes.

Figure 1 is a perspective view of an exemplary hybrid structure 100. In the exemplary implementation, hybrid structure 100 includes a first component 102, an isolating layer 104, a sealant 106 applied to isolating 104, an isolation sheet 108 coupled to sealant 106, and a second component 110 coupled to isolation sheet 108. As such, second component 110 is 10 separated from first component 102 by isolation sheet 108, sealant 106, and in some implementations, isolating layer 104 such that galvanic corrosion is facilitated to be prevented.

First component 102, second component 110, and isolation sheet 108 may be fabricated from any suitable material that enables hybrid structure 100 to function as described herein. In some implementations, first component 102 is fabricated from a first material having 15 a first electrode potential, and second component 110 and isolation sheet 108 are fabricated from a second material having a second electrode potential that is different than the first electrode potential. For example, in the exemplary implementation, the difference between the first and second electrode potentials would enable galvanic corrosion to occur if first component 102 and second component 110 were coupled directly to each other in the presence 20 of an electrolyte (not shown). For example, in some implementations, the first material is a carbon fiber material and the second material is a metallic material. Exemplary first materials include, but are not limited to, carbon-fiber-reinforced polymer (CFRP) and a titanium material, and an exemplary second material includes, but is not limited to, an aluminum material. In the exemplary implementation, the first material is a carbon-fiber-reinforced polymer (CFRP) and 25 the second material is an aluminum alloy.

At least some known materials have different levels of electrode potentials that position each material in varying positions on the Anodic index. The Anodic index is used to determine the likelihood of a material to be anodic or cathodic based on the electrode potential of each material used in a galvanic cell. Generally, materials having a less active electrode 30 potential are more likely to be cathodic, and materials having a more active electrode potential

are more likely to be anodic. Further, the larger the difference in electrode potential between two materials, the more likely it is for galvanic corrosion to occur if the materials are used in the presence of an electrolyte. In alternative implementations, any first and second materials that have differing electrode potentials may be used to fabricate hybrid structure **100** as 5 described herein.

As described above, materials having different electrode potentials are used to fabricate hybrid structure **100**. As such, sealant **106** and isolating layer **104** are used to facilitate preventing galvanic corrosion from occurring within hybrid structure **100**. For example, in the exemplary implementation, sealant **106** and isolating layer **104** facilitate 10 preventing galvanic corrosion between isolation sheet **108** and first component **102** by substantially preventing the ingress of moisture therebetween. Further, galvanic corrosion is substantially prevented between isolation sheet **108** and second component **110** because they are fabricated from materials that have substantially similar electrode potentials. As such, in such an implementation, galvanic corrosion would not occur between isolation sheet **108** and 15 second component **110** even if an electrolyte were introduced therebetween.

In the exemplary implementation, sealant **106** may include any suitable material that enables hybrid structure **100** to function as described herein. For example, in the exemplary implementation, sealant **106** has moisture resistance properties that facilitate substantially preventing the ingress of moisture between first component **102** and isolation 20 sheet **108**. Further, curing sealant **106** facilitates coupling isolation sheet **108** to first component **102**. Exemplary sealant materials include, but are not limited to, a polysulfide material. In some implementations, sealant **106** is fabricated from commercially available aerospace integral fuel tank sealant. For example, the sealant material may have elastomeric properties that don't degrade when exposed to fuel and/or hydraulic fluids, may cure at ambient 25 conditions, may have a service temperature range of between about -65 °F (-54 °C) and 275 °F (135 °C), and may have biocidal properties.

In the exemplary implementation, isolating layer **104** is coupled to a surface **116** of first component **102**. In an alternative implementation, isolating layer **104** may be omitted from hybrid structure **100**, and sealant **106** may then be applied directly to first component **102**. 30 Isolating layer **104** may be fabricated from any suitable material that facilitates preventing

galvanic corrosion from occurring within hybrid structure **100**. An exemplary material that may be used to fabricate isolating layer **104** includes, but is not limited to, a fiberglass material. For example, in the exemplary implementation, isolating layer **104** is fabricated from a fiberglass material. In some implementations, the electrode potential of the material used to fabricate isolating layer **104** may not be relevant to facilitating preventing formation of a galvanic cell in hybrid structure **100**.

In the exemplary implementation, second component **110** has a smaller area than isolation sheet **108**, isolation sheet **108** has a smaller area than the applied sealant **106**, the applied sealant **106** has a smaller area than isolating layer **104**, and isolating layer **104** has a smaller area than first component **102**. Moreover, each component of hybrid structure **100** is substantially aligned to ensure second component **110** is physically and/or galvanically separated from first component **102**. As such, second component **110** is substantially prevented from being directly coupled to first component **102** and thus, formation of a galvanic cell within hybrid structure **100** is substantially prevented.

Figure 2 is illustrates a series of assembly steps for forming hybrid structure **100**. As illustrated, first component **102** is provided and isolating layer **104** is coupled to first component **102**. For example, in the exemplary implementation, first component **102** is fabricated from CFRP, and isolating layer **104** is positioned on surface **116** of first component **102**. Sealant **106** is then applied directly to isolating layer **104** and thus indirectly to first component **102**. In an alternative implementation, hybrid structure **100** does not include isolating layer **104**, and sealant **106** may be applied directly to surface **116** of first component **102**.

Isolation sheet **108** is then applied to sealant **106** and pressure is applied to isolation sheet **108** to remove excess sealant **106** from between isolation sheet **108** and first component **102**. Pressure may be applied to isolation sheet **108** by any suitable method such as, but not limited to, a mechanical clamping method, and a vacuum bagging method. Applying pressure to isolation sheet **108** also enables sealant **106** to fill microvoids (not shown) defined within surfaces of isolation sheet **108** and first component **102**, which substantially prevents the ingress of moisture between isolation sheet **108** and first component **102**. Pressure is applied to isolation sheet **108** while sealant **106** cures, which enables isolation sheet **108** to be coupled to

first component **102**. In some implementations, first component **102**, isolating layer **104**, sealant **106**, and isolation sheet **108** may form a sub-assembly **120**, which may be installed in any suitable assembly (not shown) before second component **110** is coupled to isolation sheet **108**. An exemplary assembly includes, but is not limited to, an aircraft assembly, where sub-assembly **120** may be installed as part of a carbon fiber fuselage and second component **110** may be a wing portion of the aircraft assembly.

After isolation sheet **108** has been coupled to first component **102** with sealant **106**, second component **110** may be aligned with isolation sheet **108** in a predetermined position. In the exemplary implementation, second component **110** includes a plurality of holes **112** defined therein. When second component **110** is aligned with isolation sheet **108** in the predetermined position, holes **112** may be used to determine bore hole locations (not shown) in isolation sheet **108** based on the position of holes **112** defined in second component **110**. In an alternative implementation, the bore hole locations may be determined using a drill jig. Bore holes may then be defined in sub-assembly **120** at the determined bore hole locations using any suitable method such as, but not limited to, drilling.

In some implementations, second component **110** is substantially maintained in the predetermined position while bore holes are drilled in sub-assembly **120**. Fasteners **114** may then be inserted through holes **112** and the bore holes defined in sub-assembly **120** to couple second component **110** to isolation sheet **108**. In some implementations, fasteners **114** are installed using a wet installation. As used herein, the term “wet installation” refers to a process of applying a sealant either to fasteners **114** during installation and/or to each bore hole before inserting a fastener **114** therethrough. Wet installation substantially prevents the ingress of moisture between fasteners **114** and the components of sub-assembly **120** to substantially prevent galvanic corrosion from occurring within hybrid structure **100**.

Figure 3 is a flow diagram of an exemplary method **200** for use in forming a hybrid structure, such as structure **100**. In the exemplary implementation, a sealant is applied **202** to a first component, such as component **102**, and an isolation sheet, such as isolation sheet **108**, is then coupled **204** to the sealant, such as sealant **106**. In some implementations, the sealant may be cured to facilitate bonding the isolation sheet to the first component. The second component, such as component **110**, is then coupled **206** to the isolation sheet. In the

exemplary implementation, the first component is fabricated from a first material and the isolation sheet and the second component are fabricated from a second material.

In some implementations, the second component is coupled **206** to the isolation sheet by aligning the second component in a predetermined orientation, and determining bore hole locations on the isolation sheet based on holes defined in the second component. Bore holes may then be formed through the isolation sheet, the sealant, and the first component at the desired hole locations, and at least one fastener may be used to couple **206** the second component to the isolation sheet. For example, the at least one fastener may be inserted through the holes defined in the second component and the formed bore holes to couple **206** the second component to the isolation sheet.

Figure 4 is a flow diagram of an exemplary method **300** that may be implemented to form an assembly, such as an aircraft assembly. In the exemplary implementation, a sub-assembly, such as sub-assembly **120**, is formed **302** and installed **304** in the assembly. After the sub-assembly is installed **304** in the assembly, the second component, such as component **110**, is then coupled **306** to the sub-assembly.

In some implementations, the sub-assembly is installed **304** as part of an aircraft assembly. In the exemplary implementation, the sub-assembly includes a first component, such as component **102**, that is fabricated from a carbon fiber material, and the second component coupled **306** to the sub-assembly is fabricated from a metallic material. Moreover, in some implementations, the second component is coupled **306** to the sub-assembly by aligning the second component in a predetermined orientation, and determining bore hole locations in the sub-assembly based on holes defined in the second component. Bore holes may then be formed through the sub-assembly at the desired hole locations, and at least one fastener may be used to couple **306** the second component to the sub-assembly. As described above, a sealant and an isolation sheet are pre-installed in the sub-assembly, and the second component does not need to be removed from alignment after the bore hole locations are determined. As such, coupling **306** the second component to the sub-assembly may be simplified, which may be useful in processes that include fabricating structures of increasing sizes.

The hybrid structures and associated methods of forming described herein substantially prevent galvanic corrosion from occurring within the hybrid structure. More

specifically, components of the hybrid structure are fabricated from materials having different electrode potentials. First and second components of the hybrid structure remain separated within the completed structure by the isolating layer, the sealant, and the isolation sheet. As such, even in the presence of an electrolyte such as moisture, the isolating layer, the sealant, and the isolation sheet substantially prevent a galvanic cell from being formed within the hybrid structure. Further, in some implementations, the first component, the isolating layer, the sealant, and the isolation sheet may be formed into a sub-assembly that is then installed in an assembly. The second component may then be coupled to the sub-assembly after installation of the sub-assembly. Post-installation coupling of the second component to the sub-assembly may facilitate reducing manufacturing times for assemblies that use the hybrid structure described herein. Moreover, difficulties associated with temperature distortion and fastener installation may be substantially prevented in applications that require installation of a large number of fasteners.

This written description uses examples to disclose various implementations, including the best mode, and also to enable any person skilled in the art to practice the various implementations, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the disclosure is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.

**THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY
OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:**

1. A method of forming a hybrid structure, the method comprising:

5

applying a sealant to cover an area between a surface of a first component and an isolation sheet, the first component fabricated from a first material and the isolation sheet fabricated from a second material that is different from the first material, wherein the first material has an electrode potential that is different than an electrode potential of the second material, and wherein the first material comprises a carbon fiber material and the second material comprises a metallic material;

10

applying pressure to the isolation sheet to remove excess sealant and substantially fill microvoids within surfaces of the isolation sheet and the first component to prevent ingress of moisture between the isolation sheet and the first component; and

15

coupling a second component to the isolation sheet, wherein the second component is fabricated from the second material.

20

2. The method in accordance with claim 1, wherein applying the sealant between the surface of the first component and the isolation sheet comprises applying the sealant to the first component and applying the isolation sheet to the sealant.

25

3. The method in accordance with claim 1, wherein applying the sealant comprises applying a sealant that substantially prevents ingress of an electrolyte between the isolation sheet and the first component.

4. The method in accordance with claim 1, wherein coupling the second component to the isolation sheet further comprises:

30

aligning the second component with the isolation sheet in a predetermined

orientation;

determining at least one bore hole location on the isolation sheet with at least one of a plurality of holes defined in the second component and a drill jig;

5

forming at least one bore hole through the isolation sheet, the sealant, and the first component at the at least one hole location; and

using at least one fastener to couple the second component to the isolation sheet.

10

5. The method in accordance with claim 4, further comprising substantially maintaining alignment of the second component relative to the isolation sheet while the at least one bore hole is formed.

15 6. The method in accordance with claim 1, wherein coupling the second component to the isolation sheet comprises aligning the second component with the isolation sheet such that the second component remains separated from the first component.

7. A method of forming an assembly, said method comprising:

20

forming a sub-assembly that includes a first component fabricated from a first material, an isolation sheet fabricated from a second material that is different from the first material, and a sealant applied to cover an area between the isolation sheet and a surface of said first component, wherein a pressure is applied to the isolation sheet to remove excess sealant and substantially fill microvoids within surfaces of the isolation sheet and the first component to prevent ingress of moisture between the isolation sheet and the first component;

25

installing the sub-assembly in the assembly; and

30

coupling a second component to the sub-assembly along the isolation sheet, wherein

the second component is fabricated from the second material, wherein the first material has an electrode potential that is different than an electrode potential of the second material, and wherein the first material comprises a carbon fiber material and the second material comprises a metallic material.

5

8. The method in accordance with claim 7, wherein coupling the second component to the sub-assembly comprises:

aligning the second component with the isolation sheet in a predetermined orientation; and

10

determining at least one bore hole location on the isolation sheet with at least one of a plurality of holes defined in the second component and a drill jig.

15 9. The method in accordance with claim 8, further comprising:

forming at least one bore hole through the sub-assembly at the at least one hole location; and

20

using at least one fastener to couple the second component to the sub-assembly.

10. The method in accordance with claim 9, wherein using the at least one fastener comprises applying a second sealant to at least one of the at least one bore hole and the at least one fastener before using the at least one fastener.

25

11. A hybrid structure comprising:

a first component fabricated from a first material;

30

an isolation sheet fabricated from a second material that is different from the first material, wherein the first material has an electrode potential that is different than an

electrode potential of the second material, and wherein the first material comprises a carbon fiber material and the second material comprises a metallic material,

5 a sealant covering an area between the isolation sheet and a surface of said first component, the sealant substantially filling microvoids within surfaces of the isolation sheet and the first component to prevent ingress of moisture between the isolation sheet and the first component; and

10 a second component coupled to said isolation sheet, wherein said second component is fabricated from the second material.

12. The structure in accordance with claim **11**, wherein said sealant comprises a polysulfide material.

1/3

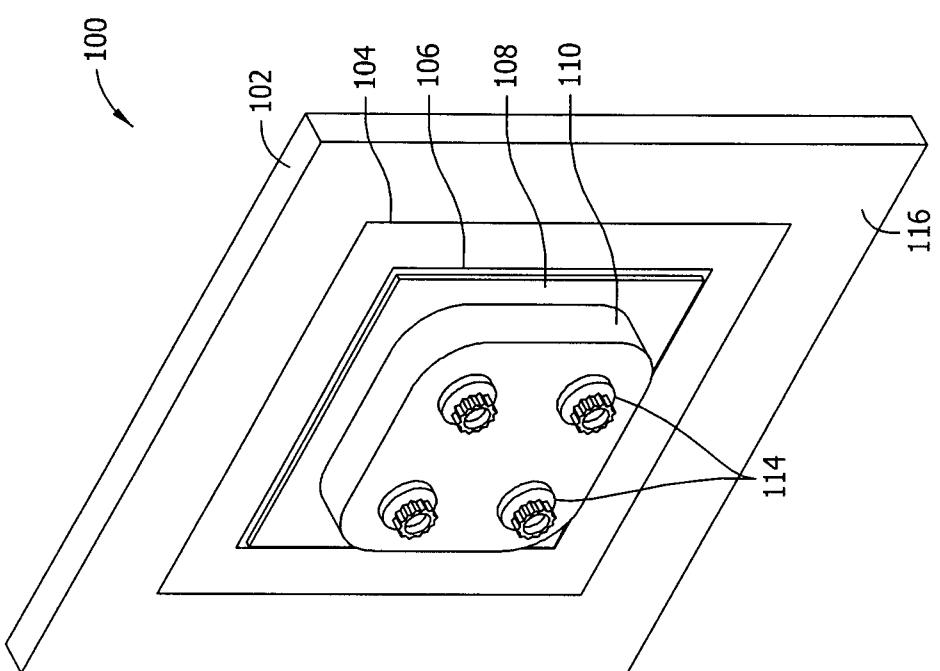
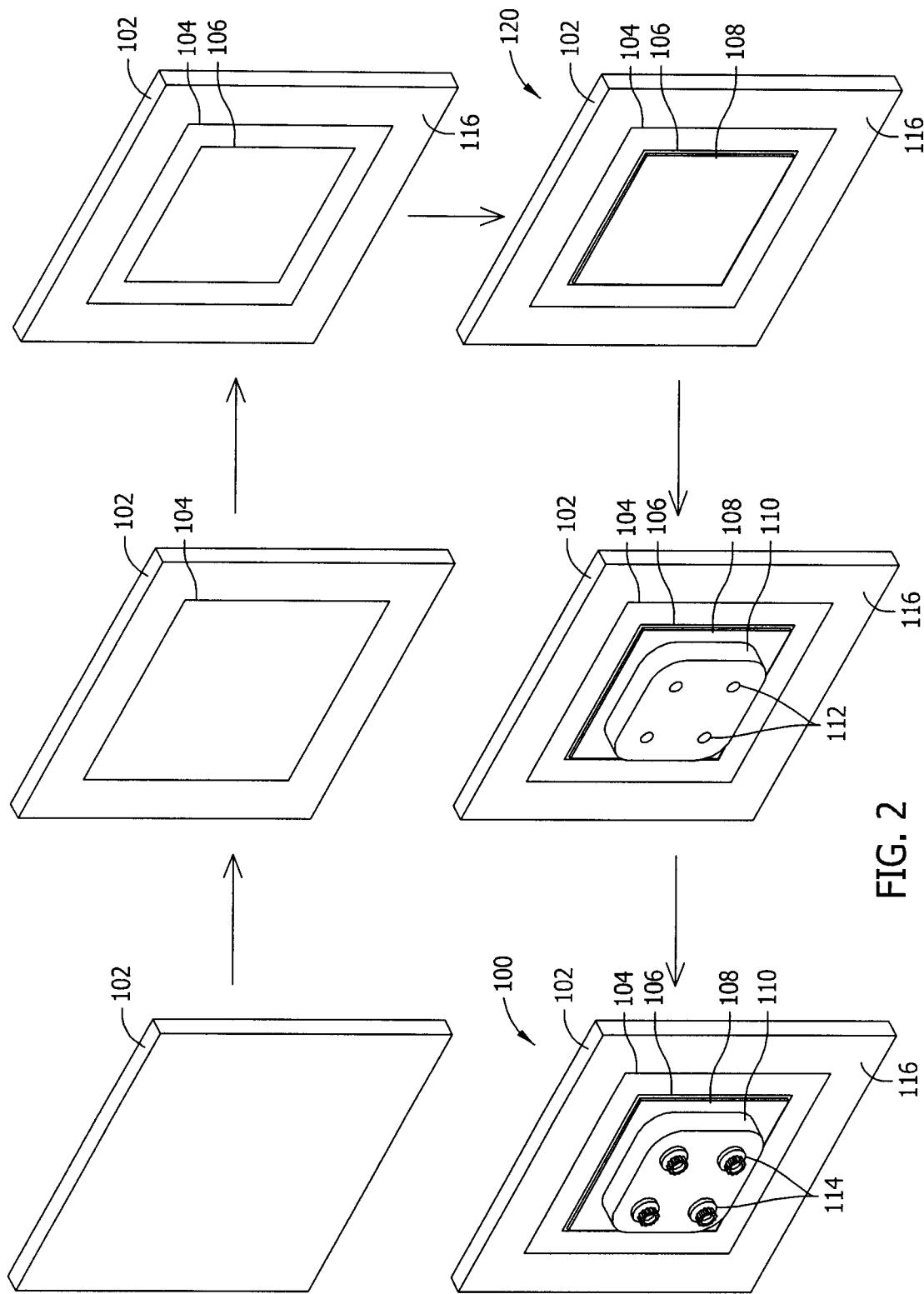



FIG. 1

2/3

3/3

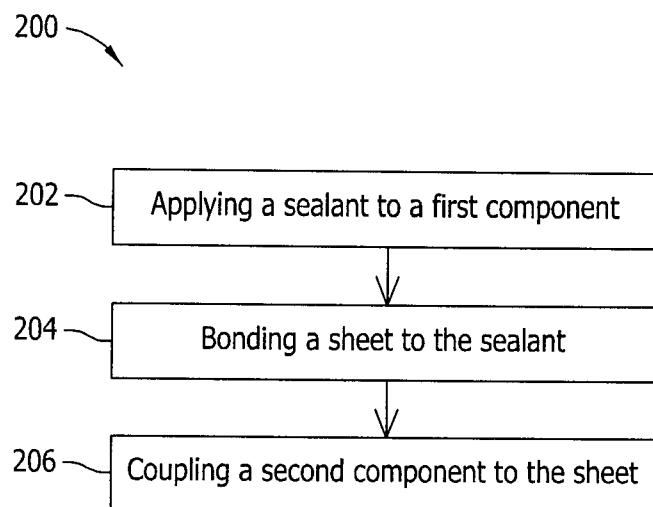


FIG. 3

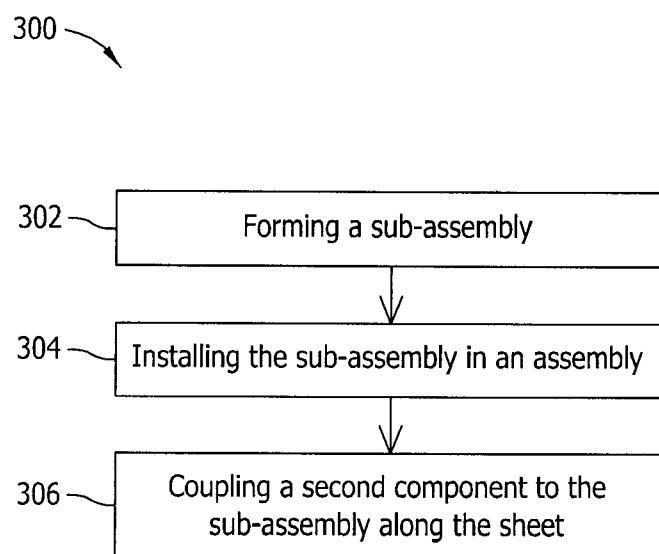


FIG. 4