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(57) ABSTRACT 

The disclosed implementations describe techniques and 
workflows for a computer graphics (CG) animation system. 
In some implementations, systems and methods are dis 
closed for representing scene composition and performing 
underlying computations within a unified generalized 
expression graph with cycles. Disclosed are natural mecha 
nisms for level-of-detail control, adaptive caching, minimal 
re-compute, lazy evaluation, predictive computation and 
progressive refinement. The disclosed implementations pro 
vide real-time guarantees for minimum graphics frame rates 
and Support automatic tradeoffs between rendering quality, 
accuracy and speed. The disclosed implementations also 

Provisional application No. 60/672,459, filed on Apr. Support new workflow paradigms, including layered anima 
19, 2005. tion and motion-path manipulation of articulated bodies. 
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TECHNIQUES AND WORKFLOWS FOR 
COMPUTER GRAPHICS ANIMATION SYSTEM 

RELATED APPLICATION 

0001. This application claims the benefit of priority from 
U.S. Provisional Patent Application No. 60/672,459, entitled 
“Generalized Expression Graphs. With Temporal Caching 
For Use In An Animation System, And Related Methods.” 
filed Apr. 19, 2005, which provisional patent application is 
incorporated by reference herein in its entirety. 

TECHNICAL FIELD 

0002 The disclosed implementations are generally 
related to computer graphics. 

BACKGROUND 

0003. Three-dimensional (3D) Computer Graphics (CG) 
animation systems are used by a variety of industries (e.g., 
entertainment, advertising, etc.) to generate animated con 
tent for movies, video games, commercials and the like. 
Unfortunately, it can take a long time to produce animated 
content due to deficiencies associated with conventional 3D 
CG animation systems. For example, it can take as long as 
four years to produce a two-hour animated movie. 
0004 Traditional animators hold paper in hand while 
flipping between poses to get a sense of the motion before 
recording a pencil test. This gives the animator an intuitive 
“feel for the animation they are creating. CG animators 
would like to flip back and forth between poses in the same 
way, but the time it takes conventional 3D CG animation 
systems to update a new frame does not allow for instant 
visual feedback. Instant visual feedback can speed-up the 
animation workflow, resulting in less time to generate the 
final product. 

0005 The tools of a traditional animator are simple: a 
pencil and eraser. These tools are easily mastered so that the 
tools become an extension of the mind of the artist. Con 
ventional 3D CG animation systems are more complex to 
master. Ideas can take a winding path from the mind of the 
artist, through the mouse or stylus, then through the software 
user interface, and finally to the character rig itself. Con 
ventional 3D CG animation systems often provide user 
interfaces that are too complex or that are not intuitive, 
resulting in the animator spending more time learning the 
animation system than on animating. 
0006 Animation is an experimental process. Even vet 
erans of the art form like to try something new without 
worrying that it will destroy the work they have already 
completed. In traditional animation, drawings are easily 
erased and drawn over. Conventional CG animation systems 
often do not allow non-destructive experimentation, forcing 
the animator to make compromises on creativity to meet 
deadlines. 

0007 Traditionally, animation is a team effort. Commu 
nication and artwork flow back and forth between depart 
ments, animators, assistants, Supervisors, directors, manag 
ers, and even Studios collaborating at great distances. 
Conventional CG animation systems often fail to provide 
features that facilitate collaboration among team members, 
resulting in unnecessary delays in the animation process. 
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SUMMARY 

0008. The disclosed implementations describe tech 
niques and workflows for a CG animation system. In some 
implementations, systems and methods are disclosed for 
representing scene composition and performing underlying 
computations within a unified generalized expression graph 
with cycles. Disclosed are natural mechanisms for level-of 
detail control, adaptive caching, minimal re-compute, lazy 
evaluation, predictive computation and progressive refine 
ment. The disclosed implementations provide real-time 
guarantees for minimum graphics frame rates and Support 
automatic tradeoffs between rendering quality, accuracy and 
speed. The disclosed implementations also support new 
workflow paradigms, including layered animation and 
motion-path manipulation of articulated bodies. 
0009. In some implementations, an animation method 
includes: providing a display environment for presentation 
on a display device; providing a body for display in the 
display environment; and determining a motion path for a 
first portion of the body relative to a second portion of the 
body. 

0010. In some implementations, an animation includes: 
providing a display environment for presentation on a dis 
play device; providing a body for display in the display 
environment; providing a first motion path for a first portion 
of the body relative to a second portion of the body; 
providing a second motion path for the first portion of the 
body relative to a second portion of the body; and providing 
a mechanism for animating the first portion of the body to 
follow either the first or second motion path. 
0011. In some implementations, a method of creating 
expression graphs for an animation system includes: pro 
viding a graphical user interface; receiving a first node 
selection from a plurality of node types; receiving a second 
node selection from the plurality of node types; displaying 
graphical representations of the selected nodes in the graphi 
cal user interface; and providing a connection mechanism 
for enabling a user to connect at least one output of the first 
node with at least one input of the second node to form a 
graphical structure that represents an expression. 
0012. In some implementations, a method of creating an 
expression graph for an animation system includes: provid 
ing a text-based programming language for specifying 
expression graphs for an animation system; executing a 
program developed with the programming language to gen 
erate an expression graph; and animating a body in a display 
environment using the expression graph. 
0013 In some implementations, an animation method 
includes: providing a display environment for presentation 
on a display device; providing a first body for display in the 
display environment; providing a second body for display in 
the display environment; and determining a motion path for 
a portion of the first body relative to the second body. 
0014. In some implementations, an animation method 
includes: providing a display environment for presentation 
on a display device; providing a body for display in the 
display environment; and determining a motion path for a 
portion of the body relative to a coordinate system associ 
ated with the display environment. 
0015. In some implementations, an animation method 
includes: providing a display environment for presentation 
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on a display device; providing a body for display in the 
display environment; evaluating an expression graph asso 
ciated with the body at a first rate; processing body geometry 
at a second rate; and rendering the body in the display 
environment at a third rate, where the first and second rates 
are decoupled from the third rate. 
0016 Other implementations are disclosed that are 
directed to systems, methods, apparatuses and computer 
readable mediums. 

DESCRIPTION OF DRAWINGS 

0017 FIG. 1 illustrates an exemplary data flow network. 
0018 FIG. 2 illustrates an exemplary inverse-kinematics 
solver node. 

0019 FIGS. 3a and 3b are examples of hierarchy inver 
sion via Subtree re-rooting. 
0020 FIG. 4 is a screenshot of exemplary graphical user 
interface for creating, viewing and editing graph structure. 
0021 FIG. 5 illustrates the interconnection of nodes 
using the graphical user interface shown in FIG. 4. 
0022 FIG. 6 illustrates a pull-out drawer for changing 
internal node settings. 
0023 FIGS. 7a-7c are screenshots of exemplary manipu 
lators for controlling dilation and tickertape. 
0024 FIGS. 8a–8c are screenshots illustrating a bend 
able-bottle model. 

0.025 FIGS. 9a-9C are screenshots illustrating a character 
walking in place. 

0026 FIG. 10a is a screenshot illustrating the user selec 
tion of a root joint of the character in FIGS. 9a-9c with 
tickertaping enabled. 
0027 FIG. 10b is a screenshot illustrating a lateral shift 
of the motion path shown in FIG. 10a, so that frame 9 on the 
path lies at the root joint. 
0028 FIG. 11 is a flow diagram of an exemplary motion 
path manipulation process. 
0029 FIG. 12 is a block diagram of exemplary user 
system architecture. 

DETAILED DESCRIPTION 

1.0 Generalized Expression Graphs. With Temporal Caching 
0030. It is common practice in computer graphics to 
represent the geometry in a scene with directed acyclic 
graphs (DAG's) while possibly maintaining a separate 
expression graph for update of the scene geometry. We 
describe a method of representing scene composition and 
underlying computations within a unified generalized 
expression graph with cycles. Our System provides natural 
mechanisms for level-of-detail control, adaptive caching, 
minimal recompute, lazy evaluation, predictive computation 
and progressive refinement. It provides real-time guarantees 
for minimum graphics frame rates and Supports automatic 
tradeoffs between rendering quality, accuracy and speed. It 
Supports new work paradigms described herein, including 
layered animation and motion-path manipulation of articu 
lated bodies. 
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1.1 Terminology 
0031. At the core of our system lies an expression graph 
that generalizes the scene tree data structure traditional to 
computer graphics. The terms “graph” and “tree' here come 
from the mathematical field of graph theory. A graph is a set 
of nodes and a set of edges, or lines, that interconnect the 
nodes. The edges connecting to a given node are incident to 
that node. If, starting from one node A, you can follow a 
series of incident edges and get to a second node B, then 
there is a path between A and B; the number of edges you 
traversed in getting from A to B is the path length. If there 
is a path from each node in a graph to every other node, then 
the graph is connected. If there is a non-empty (length>0) 
path from Some node Aback to A, then this loop is called a 
cycle and the graph is cyclic. A graph with no cycles is 
acyclic. 

0032 Throughout the discussion that follows, when 
referring to graphs we will mean directed graphs or 
digraphs, that is, graphs in which the edges have direction. 
Typically when drawing a digraph we show the nodes as 
circles or rectangles, and the edges as arrows between nodes. 
If an incident directed edge points to node A, it is an 
incoming edge of A. If it points away from A, it is an 
outgoing edge. If an edge e is from A to B, we say A is the 
origin of e, and B is the destination of e. 
0033 Digraphs may be used to denote mathematical 
expressions. For example, the expression “(3+4)*6” may be 
represented as a digraph in which "3,"+”, “4”, “*”, “6”, are 
denoted by nodes, and the steps of combining these elements 
are edges between the nodes. Thus there are edges from “3” 
to “+' and from “4” to “+”; and from “+', to “*” and from 
“6” to “*”. Such an expression graph provides a compact 
representation allowing evaluation of the mathematical 
expression. Moreover, the graph illustrates dependencies in 
the expression; for example, in the expression above, that 
the addition occurs before the multiplication, i.e., that the 
result of the multiplication depends on the addition, but not 
Vice versa. 

0034. A tree is an acyclic, connected graph. We can 
designate a unique node of a tree to be the root; then the tree 
is a rooted tree, and there is an implicit direction given to all 
edges in the tree pointing away from the root. All nodes in 
a rooted tree have Zero or one incoming edges and Zero or 
more outgoing edges. Only the root node has Zero incoming 
edges. Nodes with Zero outgoing edges are leaves. 
0035 Trees are traditionally used in computer graphics to 
represent the contents of a 3-dimensional (3-D) scene. 
Individual nodes in the tree may denote objects that are 
rendered to the screen, for example, geometry (e.g., a group 
of polygons describing the Surface of an object), or geomet 
ric transformations (e.g., a rotation), lights providing virtual 
illumination of the scene, virtual cameras, etc. Such a 
structure is referred to as a scene tree. 

1.2 Generalized Scene Graph 
0036 AS is common in graphics systems, we use a graph 
for representing dependencies in a 3-D scene. We describe 
a construction on graphs used for representing our 3-D scene 
data and the computational dependencies that underlie that 
data. In contrast with traditional scene trees, our graph is a 
generalized directed graph that may contain cycles. This 
graph represents not only our scene geometry in the way a 
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scene tree does, but further represents the hierarchy of 
computations that govern the motion and interrelationships 
between scene elements. Our expression graph is Sufficiently 
general to describe any computational process that could be 
described in a general-purpose programming language; spe 
cifically it is Turing complete. Indeed, we describe a text 
based computer language in Section 2 for use in specifying 
these graphs that is capable of expressing any algorithm or 
process that could be described in a programming language 
Such as C. 

0037 Within this expression graph, we retain the notion 
of embedded subgraphs that correspond to traditional acy 
clic, rooted Scene trees. However, there is not a single Such 
grouping that constitutes a unique scene tree in our graph. 
Rather, the same graph may have many overlapping group 
ings that each constitutes a scene tree, and these groupings 
may change over time. We may dynamically enable and 
disable edges, change edge arrow directions, and partition 
the graph into Subgraphs each with its own scene tree. 
Though it is often convenient to designate a root node, this 
is not necessary, and in fact at times we may designate a 
different node of a particular subgraph to be the root of that 
Subgraph. Embedded scene trees and the dynamic nature of 
graph topology are described in detail in Sections 1.9 and 
1.17. 

1.3 Data Flow Network 

0038 FIG. 1 illustrates an exemplary data flow network 
100. Such a network represents a computation by encoding 
data 102 (e.g., a number) or operations 104 (e.g., addition) 
within nodes, while edges 106 denote the dependencies 
between nodes. We think of data as flowing along the edges 
in a graph in the direction the edge arrows point. As is 
common in Such networks, nodes may internally maintain a 
cache of the value they represent within the total expression. 
We maintain in each node a state flag, or dirty flag, that 
indicates whether the data cached at that node is currently 
valid. We refer to data cached in a dirty node as stale data. 
0.039 The graph implements a push-pull network, which 
models the State dependencies of computational objects 
underlying a character or a scene. Nodes “pull against the 
direction of the edge arrows to get needed data from other 
nodes higher 'up' in the graph, and when data changes 
nodes push an indication of the change (though not neces 
sarily the data itself) "down, in the arrow direction, to 
nodes that are dependent on that data. This way, if a node A 
has pulled data from another node B. A knows it does not 
need to pull the data again until it receives a push from B. 
0040. Because our graphs may be cyclic, the terms “up' 
and “down are used loosely. In fact, a node may be “down” 
(or “up') from itself, in the event it is part of a directed cycle, 
that is, if while following from the node a series of edges in 
(or against) the direction of the edge arrows one will 
encounter that node again. For convenience, we will mean 
the directions “down” and “up' to refer to traversing edges 
in the direction of and against the direction of edge arrows, 
respectively. 

0041. Initially all nodes in the graph are dirty (i.e., their 
dirty flag is set). When an output value at a particular node 
is needed, we pull on the node. If the node is clean (i.e., the 
dirty flag is cleared), the value stored at that node is returned. 
If the node is dirty, the node pulls on its incoming edges (its 
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inputs). Pulling on an edge fetches the value of the origin 
node of the edge by pulling on that node. Such a pull may 
recursively propagate upwards through the graph. In this 
way, the Subgraph upstream of a node is pulled clean. Now 
the node re-evaluates itself. Stores a new value in its cache, 
marks itself as clean, and returns the value to the node that 
initiated the pull. 
0042 Conversely, an external process may cause the 
value at a node to change. Now the values stored at nodes 
downstream are marked dirty. The node pushes its output 
edges, which in turn push their destination nodes, which in 
turn push their outputs, and so forth. In this way, the 
Subgraph downstream of a node is pushed dirty. 
0043. This push-dirty, pull-clean mechanism allows us to 
evaluate Sub-pieces of the expression graph while doing a 
minimal recompute. That is, we preferably do not recompute 
more than is necessary based on what data we have already 
computed and cached within the graph and what has 
changed to invalidate our prior computations. Significant in 
this scheme is that when something changes, we don't 
immediately recompute anything, we simply note the scope 
of the effect (by pushing dirty through the affected sub 
graph). We will later pull-clean Subgraphs only as needed. 
This in effect provides lazy evaluation of the graph. 
1.4 Cyclic, Multi-Cached Graph Evaluation 

0044) Our graphs differ from traditional data flow net 
works in many respects. Our graphs may be cyclic, that is, 
they may contain loops. Normally data flow networks are 
acyclic, because cycles in Such a network could lead to an 
infinite cycle of pushes or pulls and thus a computer crash. 
We employ a marker mechanism, described below, to pro 
vide controlled looping or recursion through Such cyclic 
Structures. 

0045. The data flowing along edges in our system con 
ceptually are (parameter value) pairs, where often (but not 
always) the parameter refers to time, and the value desig 
nates the State of a node output at that time. Thus, pulls 
upwards in the system are for data at a particular parameter 
value, while pushes downward signaling state invalidity will 
indicate the parameter intervals that the state change affects. 
That is, Pull(t) yields a pair (t,v), and invalidation messages 
take the form Push(T), where T=(O.O.O. . . . ) gives the 
closed intervals O. =tt={ut,<=u<=t over which invali 
dation is to occur. A pulled node itself performs a Pull(t) on 
its inputs if necessary (and so on, recursively upwards 
through the graph). A node may use this t internally in the 
calculation it performs on its inputs in producing its output 
values, or it may simply pass it upwards via the pull. A node 
may even perform a pull at a different t than it itself was 
pulled at, or it may perform multiple pulls at different ts. 

0046. It is up to each individual node whether or not to 
retain internally the data only for the most recently requested 
parameter value, or to cache data across many parameter 
values. We refer to the latter as “temporal caching, since 
usually it is used to cache data over a range of times. The 
decision whether or not to employ temporal caching within 
a particular node may be made automatically, as described 
below, or it may be set by a human operator. 
0047. When a node pulls for data, it may either designate 
an explicit parameter value for which it wants the data, or 
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alternatively it may ask for data at an unspecified “input' 
parameter value (designated herein as kInputParam). This 
second case is only allowed when the source of the data 
depends on a parameter input from a “parameter driver 
node, typically a clock, somewhere up the graph. Pulling on 
a parameter driver yields the “current value for that param 
eter. In this second case then, the pull at kInputParam is 
implicitly a request for the data as it would be at the 
“current parameter values for all drivers upwards in the pull 
chain. In the simple case of a single parameter driver that is 
the animation clock, pulling at kInputParam yields the value 
of a node output for the current animation time. Pulling at 
another parameter value t yields the node output data for 
time t. The kInputParam token is discussed further in 
Section 1.18.1. 

0.048 Because the graph may contain cycles, we take care 
not to pull endlessly along a series of edges that lie in a 
cycle. Unchecked, such a cyclic pull would lead to an 
“infinite loop' or “infinite recursion' and a program crash. 
We guard against this by raising a marker flag in each node 
as it begins its pull, and lower the flag once it has received 
its data. If a node receives a pull while its marker flag is 
raised, it knows the pull is recursive. It then has a choice to 
either signal an error, to return an estimated, default, or stale 
value; or to allow some finite number of recursions to occur 
by keeping count of how many pulls it receives while its flag 
is raised. The human operator who assembles the graph 
makes the choice among these options. We use the last 
option, of allowing some finite level of recursion to occur, 
to build Subgraphs that are capable of recursive computa 
tions, such as iterative error-minimization algorithms for 
Solving inverse kinematics and dynamics problems. We use 
a similar technique to provide progressive refinement of 
expensive algorithms as described in a later section. 

0049. When a node pushes a state invalidation messager, 
this message specifies the (closed, possibly disjoint) interval 
of parameter values over which the invalidation has 
occurred. Again considering the usual case where the param 
eter refers to animation time, the push designates that the 
output of the node is invalid over some set of animation 
frames. The nodes that receive this push (that is, the nodes 
to which edges point from the node that initiated the push), 
can themselves push along their output edges, and this 
continues recursively. In this way, the graph downward from 
the initiating node is flooded with state-invalidation mes 
sages. Because the graph may contain cycles, we take care 
not to continue this recursion through a cycle, as this would 
lead to an “infinite loop' or “infinite recursion' and a 
program crash. We guard against this simply by not pushing 
dirty intervals past nodes that are already dirty over at least 
the interval being pushed. By induction, we know that the 
entire Subgraph below Such a node is already also dirty over 
at least that interval, so there is no point in continuing the 
push. 

1.5 Adaptive Caching 

0050. An individual node may contain no cache of its 
current value, may contain a single-line cache of the value 
for the most recently pulled parameter t, or may contain a 
multi-line cache of values for various ts. In the case where 
t denotes time, we refer to multi-line caching as temporal 
caching. If a node contains no cache, then effectively it is 
dirty: any pull on it will result in it pulling upstream. If a 
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node caches a single value, computed for Some parameter t, 
then it is clean at t but dirty at all uz t. If a node caches a 
set of values, then it has a set of dirty bits, one per cache line, 
and it will be clean over some (possibly empty) set of 
disjoint intervals. As detailed below, these cache lines are 
not infinitely sharp, that is, a parameter interval around t will 
be mapped to t's cache line. We say such cache lines have 
a non-Zero cache line width. 

0051 Nodes may have more than one output, and each 
output will have a separate cache. Outputs of the same node 
that use the same caching scheme will share a common set 
of dirty flags. In some cases, a node may have an output, but 
no outgoing edge is connected to that output. In this case, it 
is as if the node did not have the output, and no value is 
computed for or cached in that output. 
0052 Node outputs themselves decide which caching 
scheme (none, single, or multi-line) they will use, or the user 
may explicitly designate which scheme a particular output 
shall use. The scheme used at a particular output may change 
dynamically during program execution, either automatically 
or because the user changes it. 
0053 Automatic selection of a caching scheme involves 
a cost-benefit calculation. Cost of a caching scheme is the 
cost of the data copy during cache write plus the memory 
storage cost. Using no caching has no cost; single-line 
caching costs a copy on cache-write for each cache miss plus 
memory needed for storing one cache slot; multi-line cach 
ing costs a copy on cache-write for each cache miss plus 
memory for storing in cache slots. Thus, we calculate a 
unitless, abstract cost of caching an output as: 

k: cache slot size: (1 + n) when cached 
cache cost = 

O when uncached 

where cache slot size is the size of the value type for the 
output, and the “1+” reflects the cost of the cache write for 
cached outputs. 
0054 The benefit of a cache scheme depends on how 
often the node is pulled, how effective is its cache, how 
expensive are cache misses, and how important is the node. 
The pull rate on a node output V is the number of times V 
is pulled per unit time. The cache hit ratio of V is the number 
of cache hits for V divided by the total number of pulls on 
V (windowed over a unit time interval); for uncached 
outputs, the cache hit ratio will be zero. The cost of a cache 
miss is the time spent on average in re-evaluating the node 
following a miss; when a node or node output has high 
evaluation cost, we say that node or output is expensive. The 
importance of a node is given by that node's priority, as 
described in following sections. (As detailed elsewhere, the 
priority reflects salience due to projected Screen area and 
user focus.) Expensive outputs of high-priority nodes with a 
high pull rate but a low cache-hit ratio are good candidates 
for a more aggressive caching scheme. Finally, we define the 
periodic evaluation cost of a node as the aggregate time 
spent re-evaluating that node over Some sliding-interval 
window. Thus, 

cache benefit= 
evaluation cost'priority pull rate*cache hit ratio 
cache inadequacy= 
evaluation cost'priority pull rate*(1-cache hit ra 
tio), 
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and we track these values (as sliding-window averages) for 
every output whose cache-selection method is “automatic' 
and that belongs to a node whose periodic evaluation cost 
exceeds some fixed threshold. Periodically (following fre 
quent cache misses or occasionally during idle time) we 
reconsider the caching scheme used at Such an output. We 
evaluate: 

cache worth=cache benefiti (1+cache cost) 

using the cache cost of the current caching scheme, and 
cache need=cache inadequacy (1+cache cost), 

using the cache cost of the next most aggressive caching 
scheme. 

0.055 Outputs with the highest cache need are switched 
to a more aggressive caching scheme. Outputs with the 
lowest cache worth and lacking a high cache need (or that 
are already using multi-line caching) are Switched to a less 
aggressive caching scheme. Also, outputs which are regu 
larly differentiated or integrated (Section 1.14), or that drive 
a motion path (Section 4.1) automatically use multi-line 
caches when feasible. 

0056. For nodes employing multi-line caches, the map 
ping from parameter t to a line in the cache is determined by 
a cache-mapping function M. This function depends on the 
total parameter range tin, ta) that is cached, as well as 
the number of cache lines, and the width of those lines. We 
use the cache mapping function: 

0057) 
f 

and say t maps to cache line S under M if and only 

(Oss<N) (abs(c.t-round(c,t)) sco) 
0.058 where: 

0059) 
0060) 
0061 N=the number of lines in the cache (cache lines 
are numbered from 0 to N-1), 

t=the parameter value at which lookup occurs, 
S=the cache line to which t maps, 

0062 co-the cache line corresponding to t=0, 
0063 c=the number of cache lines per unit change in 
parameter t, 

0064 c=the cache tolerance, equals /3 the cache line 
width, 

0065 round(x)=x rounded to the nearest integer, 
0066 abs(x)=the absolute value of X, that is, 
0067 abs(x)=x for X20, otherwise abs(x)=-X, and 

=logical AND, that is, 
0068) ab is true if and only if both a is true and b is 
true. 

t in tint maps to SOme Cache 1ne S and S 0069. If t in tit, p he li d 
is marked clean, we say a cache hit occurred, otherwise we 
say there was a cache miss. We define the cache inclusion 
ratio as: 

Cinclusion-2Ctoler 

0070 If c=1, all parameter values t within ti 
tyield valid cache mappings; the cache slots are maxi 
mally wide (they abut one another). This provides us with 
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potentially inaccurate but very fast graph evaluation, since 
all t in this range will map onto the cache. By allowing 
cis-1, we increase the accuracy of graph evaluation at 
the expense of evaluation speed, since as c, decreases, 
fewer queries will result in cache mappings, but the t that do 
map onto the cache will be better centered within the cache 
lines. At censin–0, only exact cache mappings are allowed; 
the cache slots are infinitely thin. Varying cist in the 
range 0,1 provides us with a continuous Level of Detail 
(LOD) control on graph evaluation, enabling us to vary the 
trade off between speed and accuracy. We can control this 
tradeoff per-node by allowing each node to specify its own 
c. This is just one of several LOD mechanisms 
available, as described next. 
1.6 Approximate and Partial Evaluation 
0071. When a cache hit occurs in response to a query 
Pull(t), the node retrieves the value V stored in cache lines, 
and returns the tuple (t,v). If a cache miss occurs, the node 
may do any one of 

0072) 1. return the value V, which is the value 
stored at the nearest cache line to S, even if that cache 
line is marked dirty; 

0073). 2. return the value Vine, interpolated 
between the nearest neighboring cache liness and st 
that are non-dirty, where S-S and s>s; 

0074 3. Pull(u) on each of its incoming edges, where 
normally u=t, then recompute its output values V, for 
each output i. 

0075 4. Pull(u) on each incoming edge, but only 
partially recompute its output values. 

0076. When (3) occurs, we say the node re-evaluates. If 
t maps to some cache line S, then the node will place each 
V, in that cache line for output i and mark the cache flag for 
line S as clean. 

0077. When (4) occurs, we say the node does a partial 
re-evaluation. The node will not store any value in the output 
caches and will not change the state of any cache flag. It will 
store enough information to enable later continuing evalu 
ation where it left off. In returning (t,v) to the node that 
initiated the Pull(t), it will include a special token that says 
this is a partial or intermediate result and needs further 
Subsequent refinement. This provides a mechanism for pro 
gressive refinement of complex computations within the 
graph. Further, it provides the ability to create graph struc 
tures Supporting looping and recursion. 
0078 Nodes automatically choose between mechanisms 
(1)–(4) above based on the urgency and level of detail of the 
pull. The urgency is a global value, computed by the 
application, that reflects how much time is left before the 
total graph evaluation is complete so that the updated 3-D 
scene may be drawn on the screen. (Urgency and level-of 
detail are described in Section 1.7.) Ideally, all cache misses 
result in (3) occurring, that is, dirty nodes are fully re 
evaluated and dirty Subgraphs are pulled clean. In some 
circumstances, we may begin running out of time while 
doing this graph re-evaluation; the application will raise the 
urgency of the evaluation as the deadline for drawing the 
next frame approaches. This will result in dirty nodes 
employing strategies (1), (2), or (4), as detailed in Sections 
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1.7 and 1.8 below. Preference between strategies (1) and (2) 
for a given node is hard-coded into each node type and may 
be overridden by the user or model builder per-node. Gen 
erally strategy (1) is preferred over strategy (2) because it 
involves no extra computation and usually it provides the 
least-Surprising behavior. Strategy (1) tends to create a delay 
or "lag during direct manipulation when very expensive (or 
very low-priority, e.g., due to Small screen size) sections of 
the 3-D scene don’t update at the full frame rate. 
0079. This flexibility in providing stale, approximate, or 
partial results provides us with real-time guarantees on the 
execution speed of the graph evaluation, and ensures we can 
maintain a target frame rate in redrawing the scene. This 
provides still another LOD-mechanism, trading off accuracy 
and/or node recompute rate in order to maintain frame rate. 
More generally, it decouples the frame rendering rate from 
node evaluation rates, and even the evaluation rates of 
different nodes within the same graph. We further generalize 
this level-of-detail control within the Pull() mechanism, as 
described below under Level-of-Detail (Section 1.7). The 
usage of this LOD control to achieve constant frame-rate is 
described below under Real-Time Guarantees (Section 1.8). 
17 Pull Level-of-Detail 

0080 We now extend the Pull(t) semantics to include a 
specification of the level of detail (LOD) for which the value 
is requested. We say Pull(t.lod) yields (t,v). (The lod is 
actually a vector quantity, but we discuss it first as a scalar 
quantity for simplicity.) This level-of-detail control can 
provide a switch between multiple alternative representa 
tions, for example, geometry may be multiply represented 
within the graph with the lod-mechanism used to automati 
cally select the best representation. The level-of-detail can 
also be used internally within nodes to select alternative 
algorithms or to set the desired accuracy of an algorithm, for 
example, by controlling the refinement level of a subdivision 
Surface. 

0081. The initial lod value originates at the application 
level and is passed through a sequence of Pulls or Renders. 
(Render calls are described in Section 1.9 below.) Nodes 
may modify lod as they pass it along for their own internal 
reasons. For example, a node may want to evaluate an input 
Subgraph very roughly as one step of its own internal 
evaluation, so it may initiate the Pull on that input at a low 
lod. The user may explicitly raise or lower the relative lod 
of particular nodes through a dialog in the user interface or 
programmatically during model construction. As described 
in the next section, the application can automatically lower 
lod globally as needed between or even during render passes 
to attempt to provide lighter-weight, and therefore faster, 
graph traversal. This allows the application to trade-off 
rendering detail and accuracy with speed to maximize 
quality while meeting frame-rate goals. 

0082 Interpretation of specific numerical values of lod is 
left to the nodes themselves; at the graph level, lod is 
regarded as an abstract, unitless value that is normally 
greater than or equal to Zero. Zero lod specifies that the 
simplest/fastest possible representation or algorithm should 
be used. Lod greater than Zero specifies that a more-accurate 
representation should be used. A negative lod specifies that 
no evaluation or rendering should be performed at all; what 
happens instead differs between Pulls and Renders. A Pull 

Dec. 7, 2006 

at negative lod will result in cached, stale, or incomplete 
values being returned, as described in Section 1.6. The 
connection between negative lod and increasing urgency is 
detailed below in Section 1.8.1. 

0083. For a Render with negative lod, neither that node 
nor its children will be rendered at all. For Renders at Zero 
lod, if an imposter (a polygon texture-mapped with an image 
of an object saved from a previous render) is available, the 
imposter will be drawn in place of the object itself other 
wise some extremely lightweight rendering (such as a 
bounding box) is used. 
0084. While we have discussed lod as if it were a single 
Scalar (real) value, in fact we maintain distinct levels-of 
detail for geometry, articulation, deformation, shading and 
lighting. That is, rather than maintaining and passing a scalar 
lod, we rely on a vector-valued lod=(lodes, lode, lod 
dern lodhade, lodi). Particular types of nodes generally 
will depend only on a single one of these components. The 
lod component(s) to which a given node type responds are 
referred to as that node type’s LOD control channel(s). For 
example, mesh deformer nodes generally respond just to 
lod, while nodes representing light-emitting Surfaces 
may respond to both lodes and lodge. Again, it is left to 
each node to decide how to interpret the values within lod, 
except that all node types return from Pull and Render calls 
immediately when any one of their control channels fall 
negative. 
1.8 Real-Time Guarantees 

0085 We desire to provide soft-real-time guarantees on 
the maximum time taken to traverse the graph for a given 
operation (typically renders). We achieve this through vari 
ous mechanisms: 

008.6 dynamically adapt LOD 
0087 
0088) 
0089) 
0090) 
0091) 

partial evaluation 
progressive refinement 
adaptive caching 
parallel evaluation 
predictive precomputation 

1.8.1 Dynamic Level-of-Detail 
0092. As mentioned in the previous section, the system 
can dynamically adapt level-of-detail at the application level 
between and during render traversals. After each render 
traversal, the application notes how much time was taken 
relative to the target traversal rate. If the traversal was 
considerably faster than necessary, the application increases 
the top-level lod. The next render pass will be initiated with 
this higher lod. Conversely, if the traversal took longer than 
desired, the application will reduce the top-level lod. 
0093. The application can adapt lod globally during the 
course of recursive Pull's or Render's by adjusting a global 
urgency value. Urgency is initially 0.0 when the application 
itself initiates a Pull or Render. As time passes, a watchdog 
thread will increase urgency towards 1.0 as the time 
approaches the traversal time deadline. In the event the 
deadline is exceeded, urgency rises above 1.0. Each call to 
Pull and Render multiplies its lod parameters by 1.0— 
urgency and uses the results as its effective lods. Thus, 
effective lod's will fall as the deadline approaches, encour 
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aging the use of simpler and faster representations. If the 
deadline is exceeded, effective lod's will become negative, 
preventing any further evaluation or rendering and ensuring 
a near-immediate return from traversal recursion. 

0094. In this way, based on how well a given render pass 
has met its real-time deadlines, the application will adjust its 
own top-level lod, attempting to maximize quality and 
accuracy of the rendering without exceeding deadlines. 
When the application is too ambitious, using an excessively 
high lod, it will raise urgency to ensure nonetheless that 
traversal terminates in soft real-time. 

1.8.2 Partial Evaluation 

0.095 As described in Case 4 of Section 1.6, there are 
circumstances in which a node may return a pulled output 
value before it has completed re-evaluation. This happens 
when a node begins re-evaluation (i.e., a pull occurs) with 
urgency <1.0, but urgency rises above 1.0 (i.e., effective lod 
becomes negative) during evaluation. It may also happen 
because the time spent in a single invocation of the node 
evaluation function exceeds an application-specified time 
limit. Nodes may also electively prematurely terminate a 
particular evaluation, for example, because a particular 
algorithmic condition occurs within the evaluation function 
(such as exceeding some set number of iterations within a 
loop). In all cases, graph traversal proceeds normally fol 
lowing the return from the partially evaluated output, except 
that the output subgraph of that output continues to be 
marked dirty. Subsequent Pulls on that subgraph will in turn 
pull on the partially re-evaluated node, eventually causing it 
to fully re-evaluate, at which point the output subgraph will 
be marked clean, as described previously. 

0096. Similarly, as identified in Cases 1 and 2 of Section 
1.6, a pulled node will return stale or approximate results 
when the effective lod of the Pull is negative (i.e., when 
urgency >1.0). Again, the Subgraph below the node will 
remain dirty, and subsequent Pulls on the subgraph will 
continue to pull on that node. Due to other sections of the 
graph becoming clean and/or cached, these Subsequent pulls 
should occur with greater time available, so that effective lod 
is eventually non-negative (i.e., urgency <=1.0) upon reach 
ing this node. Recall that, following Section 1.5, caching 
strategies within the graph will be automatically adjusted 
during these repeated pulls, shifting resources as necessary 
to allow us to Pull with non-negative lod. One circumstance 
in which we may not be able to achieve a non-negative-lod 
Pull at a given node is if the mere process of traversing edges 
upwards in the graph to reach that node exceeded the 
available time bounds for graph traversal. Because edge 
traversal itself is an extremely lightweight (fast) operation, 
only an enormously large graph would exhibit this problem. 
Clearly such a large graph would be beyond our ability to 
recompute effectively, and we doubt such graphs will be 
encountered in practical situations. However, this does high 
light that the maximum path length in a given graph gives 
important information about how costly evaluation of that 
graph may be. 

0097. The native ability of the graph to partially or 
approximately recompute provides a mechanism for achiev 
ing rough results when real-time demands do not allow for 
a full recompute. 
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1.8.3 Progressive Refinement 
0098. If we perform partial evaluation over multiple 
Successive traversals, we will progressively refine pass accu 
racy. In the case of elective partial evaluation, we can 
compute an error metric and bound, returning clean when we 
have achieved the error threshold. Similar to what occurs 
with strategy (1) in Section 1.6, this tends to create a delay 
or "lag during direct manipulation when very expensive (or 
very low-priority, e.g., due to Small screen size) sections of 
the 3-D scene don’t update at the full frame rate. In the case 
of progressive refinement, this gives the effect of computa 
tionally heavyweight scene components gradually updating 
in response to rapid user direct-manipulations. For example, 
a complex deforming Surface may change shape gradually 
over several frames despite the fact that the underlying 
skeleton is redrawn at an interactive frame rate. 

1.8.4 Adaptive Caching 

0099. As mentioned above and in Section 1.5, the cach 
ing strategy within a given node may change over time in 
response to observed efficacy of any existing cache and cost 
and frequency of node re-evaluation. This process is integral 
to our ability to sensibly manage resources to enable high 
priority (e.g., large screen area or user-focused) subgraphs to 
re-evaluate rapidly. Thus, adaptive caching is an important 
enabler of the real-time evaluation methods described in this 
section. 

1.8.5 Parallel Evaluation 

0.100 Given that we can traverse a graph node-by-node, 
pulling input subgraphs clean or rendering output subgraphs, 
we may wish to break up traversals of Subgraphs into 
separate threads. This enables symmetric multiprocessing on 
shared-memory architectures. Every recursive pull or render 
presents the opportunity to spawn a new thread. We track 
pull/render cost (as described for evaluation cost in Section 
1.5 and elsewhere) and use that as a guide of when to spawn 
a new thread. The ideal situation is a node in which two 
expensive Pull's or Renders are performed on large disjoint 
Subgraphs. In this case, ideally we traverse both subgraphs 
simultaneously. In fact, this occurs quite commonly in the 
form of Render's at the scene graph root: different large 
top-level models ideally will be evaluated on different 
processors. Potentially this provides an order-n speedup 
when running on a machine with n symmetric processors. 
1.8.6 Predictive Precomputation 

0101. It is common wisdom that the vast majority of 
processor time in the typical computer is spent idle waiting 
for user actions. We can take advantage of idle time to 
re-evaluate dirty nodes. This is particularly valuable in 
conjunction with temporal caching: we re-evaluate nodes at 
times corresponding to dirty cache slots, thereby filling 
those cache slots with clean values. We refer to this as 
predictive evaluation, because we are anticipating that the 
outputs of these nodes will be pulled at parameter values 
other than the current value, although no Such pull has yet 
occurred. 

0102) We prioritize nodes for predictive re-evaluation 
based on the product of priority and cost, with those mea 
sures computed as described in Section 1.5. The greater is 
the product, the higher is the priority for predictive re 
evaluation. If we have an estimate of the error in a given 
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cache slot (this may be easily computed for certain node 
types, such as those performing Subdivision or similar 
refinement algorithms), we may use that error estimate to 
scale the re-evaluation priority. Similarly we may track how 
much time has passed since a cache-slot was last re-evalu 
ated, and scale priority by cache-slot age. Scaling priority by 
error is useful for nodes that employ Case 2 of Section 1.6 
(return approximate value). Scaling priority by age is useful 
for nodes that employ Case 1 of Section 1.6 (return stale 
value). 
0103 At the application level we maintain a priority 
queue that ranks nodes according to: 

priority * cost * age for nodes that have previously returned v 
priority * cost * error for nodes that have previously returned v 

and possessing an easily observable error 
metric, or 
for nodes that are not Pull-ed with negative 
effective lod (or that lack any simple error 
metric). 

stale: 

approximate 

priority * cost 

0104 For efficiency, we only bother to include in the 
priority queue those nodes that have both a high priority and 
a historically high actual cost. Other nodes we expect to be 
poor candidates for predictive re-evaluation. In practice, this 
means we include in the priority queue those nodes for 
which temporal caching is enabled on one or more outputs. 

0105. At program startup, we create one (or n, on n-pro 
cessor systems) low-priority idle thread(s). When the system 
is busy, the idle threads will sleep, yielding CPU time to 
more-urgent work. When idle time becomes available, an 
idle thread will run, pulling a node for re-evaluation from the 
top of the priority queue. We evaluate the node at those times 
at which its cache slots are dirty. This evaluation may result 
in Pulls on other nodes; if these nodes have temporally 
cached outputs and no other thread is re-evaluating them yet, 
this idle thread will also pull these ancestor nodes from the 
priority queue. 

0106. In this way we wander the graph filling caches 
during idle time, helping to ensure that we will be able to 
respond rapidly to further user actions, especially frame 
changes, which tend to be the most-challenging action to 
consistently perform in real time. We refer to this process as 
pre-caching, since we are filling caches in advance of when 
the cached data is needed. This mechanism is especially 
effective in conjunction with symmetric multiprocessing, 
allowing us simultaneously to handle user interaction and to 
prepare for anticipated future demands on graph evaluation. 
1.9 Render 

0107 The ultimate goal of graph traversal generally is to 
draw something on Screen. As with prior systems, we 
accomplish this via a top-down render traversal, distinct 
from the bottom-up evaluation traversal initiated by a Pull. 
The render traversal occurs over a connected Subgraph of 
special expression nodes called scene graph nodes (or sim 
ply scene nodes); we refer to this subgraph as the scene 
graph. All scene nodes possess actm in input and actm out 
output (and possibly additional node-specific inputs and 
outputs). The parent of a scene node A is the scene node 
above A's ctim in input, if any such node exists; otherwise 
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A is an orphan. The children of a scene node A are the scene 
nodes below A's ctim out output, if any such nodes exist; 
otherwise A is a leaf. The ancestors of a scene node A are 
those scene nodes in the scene graph above A. The descen 
dents of A are the scene nodes in the output scene graph of 
A. Scene graph nodes are described more fully in Section 
118.3. 

0.108 Render traversal initiates via a Render message to 
a scene node and propagates depth-first to all enabled nodes 
in the output scene graph (with certain exceptions described 
here and in Section 1.17). To render the full 3D scene, the 
application calls Render on a designated orphan root node. 
Nodes may be disabled (explicitly, by the user), which 
prevents these nodes and their children from being traversed 
during rendering. 

0.109 Parameters to the Render call specify: (1) a graph 
ics output context, or graphics port, to which drawing should 
occur, (2) the pull parameter at which to evaluate the 
expression graph, (3) the desired level-of-detail of the ren 
der, and (4) the render mode settings to be used. That is, a 
render call is a message: 

Render(gp, param, lod, CD): 

0110 where: 
gp=the output graphics port, 

param=the graph parameter at which to perform the render 
(usually the value of the global animation clock, i.e., time), 
lod=(lodges. lodarties loddeform: lodshade lodlight)=the 
desired levels of detail, and 

d=a vector of render mode settings (described below). 

0.111 When node A receives a Render, it possibly modi 
fies the State of the designated graphics port in some 
node-specific way, issues any node-specific geometry to that 
port, and then recurses over its children by calling Render on 
each enabled child. After all children have returned from 
render traversal, node A reverts the graphics port to its state 
prior to A's modifications, if any, and returns to whomever 
initiated the render call on A. 

0112 The graphics port render parameter gp designates 
the graphics target to which output should be directed. For 
interactive rendering, this could be an OpenGL context, for 
example. For rendering to an external target, Such as a 
high-quality off-line renderer, this might refer to the invo 
cation context of a rendering-export plugin. “Graphics 
ports' are simply a wrapper for naming Such heterogenous 
output targets. It falls to the output target referenced by gp 
to decide how to act upon the state changes, geometry issues, 
etc., generated during render traversal. The gp parameter is 
passed unmodified through the recursive render calls to the 
child nodes. 

0113. The param render parameter designates the anima 
tion “time' at which the state of the scene should be 
rendered. In most cases, this param will be used as the 
parameter for resultant Pulls and for recursive Renders of 
child nodes. Certain nodes perform input pulls or child 
renders at different parameter values. For example, the 
MotionPath node (Section 4) evaluates its ctim in input 
across a range of parameter values. In fact, MotionPath 
nodes entirely ignore the param render parameter except 
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when special path rendering options, such as tickertaping 
and path dilation, are enabled (Section 4.1.2). 
0114. The lod render parameter designates the levels-of 
detail at which the scene should be rendered. In most cases, 
this lod will be used unmodified as the lod for resultant pulls 
and for recursive renders of child nodes. A node whose 
bounding box projects to a small screen area may scale lod 
by a value less than unity before recursing over children, 
providing fast, less-detailed rendering of objects that are not 
visually important in the rendered image. The lod may be 
scaled by a value greater than unity for the active model, that 
is, the model containing the currently or most recently 
selected node. Automatic scaling of the lod parameter up or 
down is generally performed in Model nodes (Section 
1.18.3). In addition to automatic scaling due to visual 
importance or user focus, the user may explicitly override 
any of the lod values at any node via an application dialog: 
the overridden value is used for input pulls or childrenders 
from that node. 

0115 The did render parameter designates a number of 
render mode settings. These settings control various aspects 
of interactive rendering, including: geometry style (e.g., 
Surfaces, skeletons, bounding boxes), render style (e.g., 
wireframe, hidden line, flat shaded, smooth shaded), 
optional aids to visualizing geometry (e.g., local coordinate 
frames, normals, Surface-curvature, texture coordinates, 
node names, bones), and so forth. The user may explicitly 
override any of the do settings at a node via an application 
dialog: the overridden d is used for rendering that node and 
for child render calls from that node. The did parameter has 
no affect on exports to external offline renderers. 
0116. Because the graph may contain cycles, we take care 
not to render endlessly along a series of edges that lie in a 
cycle. Unchecked, such a cyclic traversal would lead to an 
“infinite loop' or “infinite recursion' and a program crash. 
We guard against this by raising an in Render marker flag in 
each node as it begins its render, and lower the flag once it 
has completed its render. If a node receives a render message 
while its in Render flag is raised, it knows the render 
occurred recursively via a cycle, and it will return immedi 
ately from the recursive render without traversing to its 
children. This is analogous to the mechanism described in 
Section 1.4 for ensuring cycle-safety of graph pulls. 

0117 The value provided at the ctim in input of a scene 
node is the Concatenated Transformation Matrix (CTM) 
defining the coordinate space in which that node should be 
rendered. This is also known as the pre-ctim of the node, 
since it defines the coordinate space existing before the node 
makes any of its own graphics-state changes. The ctim out 
output specifies the coordinate space in which children of a 
node exist, i.e., the post-ctim of the node. That is, the 
post-ctim of a given node is the pre-ctim of its children. Most 
nodes do not modify the coordinate system, thus the value 
at the ctim in of these nodes is passed through unmodified to 
ctim out, so children of Such nodes live in the same coor 
dinate space as their parent. Transform nodes do modify the 
coordinate system, in Some way transforming the matrix 
between ctim in and ctim out. The general Transform node 
accomplishes this transformation by multiplying the ctim in 
matrix input by a Xform matrix input, and providing that 
product at the ctim out. Subclasses of Transform provide 
higher-level transform controls. For example, Rotate nodes 
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rotate the ctim as specified by their Euler-angle or quaternion 
rotation input. Two special Subclasses of Transform, Bones 
and Joints, are used to assemble articulated hierarchies. 
Transforms and their Subclasses, including Bones and Joints, 
are described in more detail in Section 1.18.3. 

0118 Several types of nodes exist to issue geometry to 
the graphics port. For example, Surface nodes are used to 
draw Subdivision Surfaces. Other geometry nodes produce 
primitives such as points, lines, ellipses, quadrics and text. 
In addition to ctim in and various node-specific inputs, most 
geometry nodes also possess a material input. This accepts 
values of type material, which are generated by various 
kinds of Material nodes. Basic Material nodes can be used 
to specify rendering state data Such as ambient, diffuse, 
specular and emissive colors and Surface roughness. Mate 
rial node subclasses include Texture nodes for binding a 
texture image map, EnvironmentMap nodes for binding a 
reflection map, FragmentProgram and VertexProgram nodes 
for binding OpenGL fragment and vertex programs, and 
Shader nodes for binding procedural shaders for external 
offline renderers. Material nodes are described in greater 
detail in Section 1.18.4. 

0119) Other scene node types exist to specify the camera 
projection for rendering (Camera nodes) and to define scene 
lighting (Light nodes). Several node types exist to define 
named scopes over their descendent Subgraphs (Models and 
Parts). 
0.120. There are several special kinds of scene graph 
nodes, and one special situation, that modify the above view 
of render traversal. Switch nodes are used to select among 
multiple alternate Sub-Scenes, each beneath a distinct ctm 
output. Attach nodes allow a node to exist within a coordi 
nate space different from that of the parents ctim out. 
Inverse Kinematics IK solver nodes provide an alternative 
joint-transform evaluation mechanism in which the trans 
form used at a joint is derived from the desired position of 
the end-effector of the joint/bone chain, rather than the usual 
case of end-effector position being determined forward 
kinematically from the joint angles. Subgraph inversion is 
an alternative mode that inverts the usual flow of ctim data 
from parent to child within a local subgraph. These special 
cases are discussed in Section 1.17—Dynamic Topology 
Changes. 
1.10 Data Types 
0121 The value produced at a particular node output will 
be one of a number of data types. Supported types include 
int, Scalar (floating point, aka real), point, vector, covector 
(aka normal), matrix, quaternion, curve, mesh, field, defor 
mation (Section 1.18.2), material (Section 1.18.4), image, 
char and string. Single- and multi-dimensional fixed-bound 
arrays of these types may be used as well. Anticipating the 
modeling language defined in Section 2, these may be 
instantiated as C-style arrays of fixed bound, for example, 
“int32, “scalar56. A field is a parameterized type 
defined over a mesh; for example, “field.<normaldm' is a 
Surface-normal field over mesh m. 

1.11 Polymorphism 
0122) While a particular node output produces data of the 
same type, a given node input may accept multiple types. An 
output may be connected to an input only if the type of the 
output matches one of the types accepted by the input. This 
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style of polymorphism corresponds to that of the C++ 
programming language, in which functions may be over 
loaded to accept multiple parameter input types, but function 
overloading by return (output) type is not permitted. 

1.12 Inputs and Outputs 

0123. Every node type defines certain input and output 
tabs, to which incoming and outgoing edges, respectively 
may be connected. An input tab can function in one of three 
modes. 

0.124 1. If there is an edge incident to the input, we say 
the input is connected and pulls at the input result in 
pulls to the upstream node. 

0.125 2. Alternatively, the user may specify an internal 
expression for an input tab: pulls at that input result in 
evaluation of the expression. The expression language 
is described in Section 2.2. 

0.126 3. If an input is not connected and has no internal 
expression, we say the node is defaulted, and pulls of 
the input yield a default value. Nodes provide standard 
default values for all their inputs, and users can specify 
alternative defaults. 

0127. Both input and output tabs possess a name that is 
unique among the inputs and outputs of that node. Input tabs 
specify a list of one or more data types that may be provided 
to that tab (by incoming edges, expressions, or custom 
defaults). Output tabs specify the unique data type output at 
that tab. 

1.13 Gain and Bias 

0128. The user may specify a bias and/or gain for any 
input or output. The value at that input or output will be 
gain original value--bias. By default, gain=1.0 and bias=0.0 
for scalar inputs and outputs. Other data types use appro 
priate values for gain and bias. For types for which the 
concepts of gain and/or bias are not applicable, those adjust 
ments are ignored. Specifying gain or bias at an input scales 
or biases a single graph edge. By specifying gain or bias at 
an output, the user can scale or bias all edges leaving that 
output. Gain and bias may be set by the user within the 
application via a "node inspector dialog box, or the model 
definition code itself may specify gain and bias as described 
in Section 2.1.2 below. 

1.14 Integrals and Derivatives 

0129 Node outputs can be integrated and differentiated 
with respect to parameter t. For nodes with multi-line 
caches, integration over tat, amounts to Summing the 
(clean) cache lines between M(t) and M(t), scaled by 
stepsize h=1/cr. That is: 

findis f(t)+ f(t, + 1) + f(t, + 2 + r + ft.) 
M(t) 1 

= X. thi, 
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where f(t) is the output value at parameter t, , is the value 
stored on cache line i, M(t) is the cache mapping function 
discussed previously and c, is the number of cache lines per 
unit change in t. 

0.130) Differentiating at t involves taking the finite dif 
ference at M(t). Higher-order derivatives may be computed 
by comparing the derivatives at Successive cache slots. 
Thus: 

d 1 

f(t) is Vu () = civil Min = c(u,v)-buto-1), 
and 

k 

f k ik k k (k 
f(t) s Vict) = c V* if M = c. (-1) i th. M(t)-i, 

i=0 

where V is the finite backward difference operator, and () 
is a binomial coefficient. 

0131) If some of the referenced cache lines are not 
already clean, one or more Pull(t)'s may be implicitly 
necessary. In some cases it may be convenient to maintain 
a multi-line cache of the derivatives themselves to facilitate 
fast evaluation of higher-order derivatives. 

0.132 Expressions written in our expression language 
may reference the integral or derivative of any node output 
as described in Section 2.2. 

1.15 Signal Busses 

0.133 Often many edges will follow a similar routing 
between two nodes or groups of nodes. Merging these edges 
into a bus, drawn as a single thick edge, simplifies display 
of the graph. Creating a bus has no effect on the functionality 
of the graph: the bussed edges continue to function autono 
mously. 

1.16 Transmitters and Receivers 

0.134. Another common contributor to clutter in the dis 
played graph is the output that is connected to a large 
number of inputs. For example, the global animation clock 
will usually have an outgoing edge to the parameter input of 
every avar (see Sections 1.18.1 and 2.3). Transmitter nodes 
“broadcast their input value on a named channel. Any 
number of receiver nodes may “tune' to that channel by 
name, after which they will produce the transmitted value at 
their output. Functionally this is equivalent to an edge that 
connects transmitter to receiver. Expressions may reference 
a broadcast by name (see Section 2.2). 
1.17 Dynamic Topology Changes 

0135) Sections 1.3 and 1.9 described the usual way 
information and render traversal are propagated through our 
expression graph. As mentioned previously, several situa 
tions modify the usual chain of dependence and traversal. 
Three such situations result from special nodes that enable 
dynamic local changes to the effective graph topology. A 
fourth situation arises when a model dynamically changes its 
own root to be at a different node. We discuss each of these 
four situations below. 
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1.17.1 Switches 

0136 Switch nodes are used to select among multiple 
alternate sub-scenes, each beneath a distinct CTM output. 
These nodes may have any number of CTM outs, and a 
scene node connected to any of these outputs is considered 
a “child, but render traversal will only proceed to one such 
output. The index of the active output is specified by a value 
input. The state of the switch only affects render traversal, 
not graph evaluation. That is, a push-dirty will push through 
to all connected outputs, and a pull from any output pulls on 
the inputs. The value input accepts both integer (or Scalar) 
values and one-dimensional arrays of integers (or Scalars). 
(Scalars will be rounded to the nearest integer.) When a 
single value is provided, only one output can be active at a 
time. Providing an array of values activates the multiple 
corresponding outputs. The number of output tabs a Switch 
node will provide is specified by the user at model-construc 
tion time and may be anywhere from one to an implemen 
tation-dependent fixed upper limit. A selector value that does 
not correspond to the index of any connected output effec 
tively disables all outputs. 
0137 Switches may be used to select between alternative 
representations or to dynamically enable (i.e., show) and 
disable (hide) a subgraph. An example of the use of Switch 
nodes to model if-then-else and multi-way “switch <selec 
tor> <cases>' constructs is given in Section 2.1.9 Condi 
tional Execution. 

1.17.2 Attaches 

0138 Attach nodes allow a node to exist within a coor 
dinate space different from that of the parents ctim out. This 
is useful for a model whose frame-of-reference changes 
mid-shot. For example, a model of a cup sitting on a table 
might logically be represented within the coordinate space 
of the table; however, if a character picks up the cup, we 
would now like to represent the cup within the coordinate 
space of the characters hand, so that the cup will follow 
movement of the hand. 

0139 Attach nodes accomplish this by taking multiple 
alternate CTM inputs and a pair of selector inputs, and 
providing a single ctim out. One selector input, sell trans, 
specifies which CTM input will be used for translation; the 
other selector input, sell rot, specifies which CTM input will 
be used for rotation. Translation and rotation of the input 
CTMs are separated through an orthonormalization step, 
then the selected translation and rotation are combined by 
matrix multiplication and provided at the ctim out output. 
Scale, shear and perspective components of the input CTM's 
are discarded. 

0140 Specifically, an attach node accepts a variable 
number of inputs: 
ctim in, Sel trans, Sel rot, target, target 2. . . . , target in 
and provides a single ctim out. 
0141 While the attach changes the coordinate space in 
which its children exist, attaches do not modify the scene 
graph structure itself: the parent of the attach is the node 
above the one unique ctim in input, regardless of the setting 
of the selector knobs. Sel trans and Sel rot accept an integer 
or scalar input value, rounding scalars to the nearest integer. 
A value in 1 . . . n selects the corresponding target; values 
outside 1 . . . n select the ctim in matrix. The user may set 
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in at model-construction time to any number between Zero 
and an implementation-dependent fixed upper limit. 
1.17.3 IK Solvers 

0.142 Forward Kinematics (FK) describes the normal 
chain of dependence within an articulated structure in which 
coordinate-space transformations are specified at a series of 
joints and/or bones and the position of the end of the chain 
(the end effector) is determined by concatenating these 
transformations. Inverse Kinematics (IK) reverses this pro 
cess, allowing the user to specify a goal position from which 
are computed joint/bone transforms to position the end 
effector at (or as close as possible to) the goal. This com 
putation may be over- or under constrained, and many 
alternative methods exist to solve the IK problem. 
0.143 We provide a general class of IK solver nodes that 
solve inverse kinematic problems. Different IK solvers 
implement different solutions, but all have in common a 
series of transform inputs and corresponding outputs, an 
enable input that enables selection between FK and IK 
operation mode, and inputs for the CTM's of the goal and 
the effector. Specific solvers may take other inputs as well. 
When the integer (or Scalar, rounded to nearest integer) 
enable input is zero or negative, the IK solver is disabled, 
and the transform nodes it drives behave forward-kinemati 
cally. When the enable input is greater than Zero (or 0.5, for 
Scalar inputs), these transform nodes become inverse-kine 
matic. 

0144. Different IK solvers are capable of handling trans 
form chains of different lengths. An example IK solver is 
shown in FIG. 2. This node can be set up to control a 
three-joint chain. The transform inputs in 1, in 2, in 3 are 
driven by the forward-kinematic control graphs for these 
three joints. The corresponding outputs out 1, out 2, out 3 
are connected to the xform inputs of the three joints. The 
enable input is connected to an FK/IK switching avar. The 
goal input is connected to the ctim out of the target node. 
The effector input is connected to the ctim out of the chain 
end-effector node. The Swing input is connected to an avar 
for Swinging the chain through alternative IK Solutions in 
the underconstrained solution space. When enable is set to 
Zero (or less-than 0.5 for a scalar input), in 1, in 2. and in 3 
are passed through unmodified to out 1, out 2, and out 3. 
respectively. When enable is set greater than 0.5, internally 
computed transforms are provided at the out 1, out 2, and 
out 3 outputs. Depending on the algorithm used in this 
Solver, the IK Solution may completely ignore the transform 
inputs, or it may use the transform inputs as Soft constraints 
and attempt to minimize error between the inputs and 
computed outputs. The solver algorithms we employ are 
standard, widely known methods. 
0145 Note that, unlike switches and attaches, both of 
which are scene graph nodes, IK solvers do not take a CTM 
input and do not provide a CTM output and thus are not 
scene graph nodes but rather are part of the non-scene 
expression graph. 

0146 The IK solvers we provide use one of several 
techniques. Cyclic coordinate descent (CCD) takes advan 
tage of our ability to quickly re-evaluate a small number of 
outputs following a localized invalidation (push dirty) in the 
upstream graph. We visit each degree-of-freedom (i.e., avar) 
in the chain one at a time, making an adjustment to that avar 
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to bring the end effector towards the goal; which way to 
adjust each avar may be found experimentally by making 
tentative changes to the avar and Pull-ing on the end effector. 
Iterating on this process brings the effector to the goal if it 
is reachable, and stretches the effector out towards the goal 
if it is not reachable. 

0147 Jacobian inversion solvers compute the Jacobian 
matrix for the linkage at the current position. The Jacobian 
is the multidimensional extension to the differentiation of a 
single variable. It gives the partial derivatives indicating 
how the end effector will respond to small changes in the 
control avars. Inverting the Jacobian tells us how we should 
change avars to move the end effector closer to the goal. 
Because the Jacobian only is valid locally, we make only 
Small changes, then recompute the Jacobian in the new 
configuration and iterate. The Jacobian for a given node may 
be found by differentiating node outputs as described in 
Section 1.14. However, a more convenient way to find the 
composite Jacobian across the entire linkage is to make 
Small adjustments to each avar degree-of-freedom and 
observe the resulting changes (deltas) in the end effector. 
These deltas, suitably scaled, provide the content of the 
Jacobian matrix for the current linkage configuration. In 
general, we will not be able to invert the Jacobian, so we use 
a pseudo-inverse. The Jacobian transpose method avoids the 
(pseudo-) inversion step by using a simple matrix transpose. 
0148 Users are free to implement their own IK solvers 
using the External node plug-in interface described in Sec 
tion 1.18.6. 

1.17.4 Hierarchy Inversions 
0149 Hierarchy inversion is an alternative mode that 
inverts the usual flow of CTM data from parent to child 
within a local Subgraph. This occurs when the user specifies 
that a different node within a given subgraph should be used 
as the root of that subgraph. This has the effect of flipping 
edges along the path from old root to new root. 
0150 FIGS. 3a and 3b are examples of hierarchy inver 
sion via Subtree re-rooting. For clarity, only ctim in and 
ctim out connections are shown. In FIG. 3a, the original 
subtree is rooted at A. In FIG. 3b, the subtree below A is 
re-rooted at J. and the edges along path A-C-F-J have been 
flipped and the incoming edge incident to A has been routed 
to J. The graph above A is unaffected. 
0151. We introduce a new message, InvertHierarchy, that 
nodes may pass and receive. The application program main 
tains a serial number uniquely identifying each distinct 
render traversal. Before each time the application initiates a 
render, it increments the value of this serial number. When 
a node that is not inverted receives the InvertHierarchy 
message, it makes an internal notation that it is part of an 
inverted chain during the current render pass by raising an 
inverted flag and recording the serial number of the pass, and 
it then passes InvertHierarchy to its parent. A node that is 
inverted in the current pass (i.e., has inverted raised) will 
ignore any InvertHierarchy messages. Once a node has been 
inverted. Subsequent Renders within the same pass are 
treated as inverted renders. When an inverted node X is 
rendered, it propagates the render not only to all its children 
but also to its parent. The anti-cycling in Render mechanism 
described in Section 1.9 prevents the Render from recur 
sively being sent back to X from its children. When a Render 
is received for a different pass, the node lowers its inverted 
flag and renders normally. 

Dec. 7, 2006 

0152 To invert a local hierarchy, the user specifies the 
node at the top of that hierarchy (node A in FIGS. 3a and 
3b), the node to become the new acting root (J in the Figs.), 
and the animation time range over which the hierarchy 
should remain inverted. Each node maintains a list of 
inversions that initiate at that node. In FIGS. 3a and 3b, 
node A will record internally that within the intervalt vert 

tests the subtree (properly, Subgraph, since it may contain 
cycles) below it is re-rooted at node J. When A receives a 
Render at a parameter value in this interval, it will first raise 
its in Render flag (Section 1.9) and then will send InvertHi 
erarchy to J and by induction to F and C. A will then pass 
the Render to J, which will recursively render F and C (and 
K. E. H. and I). A will receive a Render from C but will 
ignore it because A's in Render is raised; however, A will 
note that it received the Render from C. When J returns from 
rendering. A will proceed with rendering itself and then will 
recurse over all its children except C, that is, over B and D. 
0153. When rendering at a node on the inverted path from 
J to A, the behavior of the ctim in and ctim out inputs and 
outputs are Switched; that is, it is as though ctim in had 
become ctim out, and Vice versa. Rendering of geometry 
will still take place in the pre-ctim of the node; however in 
this case the pre-ctim first needs to be computed from the 
post-ctm. For inverted non-Transform nodes, this involves 
just copying the ctim out to the ctim in. For inverted Trans 
form nodes, the post-ctim from the ctim out “input' is 
multiplied by the matrix inverse of the xform input and the 
resulting pre-ctim is provided at the ctim in "output. This 
reverses the usual (non-inverted) behavior of Transform 
nodes, which multiply ctim in by Xform, yielding ctim-out. 
The behavior of nodes not on the inverted path is unchanged. 
0154 Hierarchy inversion may be used when an anima 
tion task calls for an inverted view of a model hierarchy. For 
example, a character hanging by the arm from a tree limb 
may be animated relative to a model root in her hand rather 
than the usual model root at her pelvis. Bending the elbow 
joint of that character will then cause her entire body to 
swing relative to her stationary forearm, rather than the other 
way around. 
1.18 Expression Nodes 
0.155 Data in the graph originates from several types of 
nodes, including parameter drivers, constants, file readers 
and avars. Many other node types exist that process this data, 
performing calculations, generating other data, and produc 
ing the geometry, lighting and shading that ultimately is 
rendered in the 3-D view window. Here we describe each 
major category of node and give examples of each. 
1.18.1 Data Sources 

0156 Parameter drivers, such as clocks, have already 
been mentioned. Such nodes have no inputs (or optionally 
min/max range inputs) and only a single output. They may 
be configured internally to vary their output over some value 
range. For clocks, the rate at which they vary is often tied 
internally to the application's notion of “wall-clock' time. 
However clocks may be paused, run backwards, run at 
slower- or faster-than-real-time speeds, or single-stepped 
(that is, incremented by some fixed stepsize) forwards or 
backwards. Non-clock parameter drivers also vary over 
Some parameter range, but conceptually they take on all 
values in that range simultaneously. In practice, they return 



US 2006/0274070 A1 

Zero in response to a pull for kInputParam, and otherwise 
take on whatever specific value was pulled, clamped within 
their allowed range, if any. 
0157 Constants are another node type. As their name 
implies, constants have an unchanging value, no matter at 
what parameter value they are pulled. The value is set 
internally to the node at model-construction time. They have 
a single value output, and no inputs. There is no conceptual 
difference between providing a constant-valued input 
expression or connecting an input to a constant node. In 
different situations, one or the other method may be more 
convenient. 

0158 File readers are similar to constants, except that 
rather than their value being set internally, it is read from a 
disk file. File readers take a file input String designating the 
file path and provide a value output. Various file readers are 
available for reading different types of files, and some may 
have additional inputs for configuring import options or 
additional outputs providing extra information about the 
data read. For example, MeshReader nodes read meshes 
saved in Wavefront OBJ and several other formats. This 
reader has an objects input accepting a string giving names 
of objects to be read in that file; if no value (or a NULL 
value) is provided, all objects in the file will be imported. 
Other inputs control the assembly of meshes from the OBJ 
data, for example, by specifying a threshold dihedral angle 
at which a hard edge (two distinct face normals) should be 
introduced in the mesh normals. The Mesh Reader provides 
a mesh or array of meshes at its value output, plus an 
objects read output giving the names of the meshes read. 
Other file readers exist for loading numerical arrays, images, 
QuickTime movies, audio, motion-capture data, and so 
forth. 

0159. Avars are nodes that correspond to articulated 
variables as defined in W. T. Reeves, E. F. Ostby, and S. J. 
Leffler, The menV modeling and animation environment, 
Journal of Visualization and Computer Animation, 1(1):33 
40, August 1990. Examples of articulated variables are 
quantities that a human operator might want to vary over 
time (or other parameter value for a non-clock parameter 
driver). They have a parameter value input, which usually 
comes directly from the global animation clock node; an 
“override' input to allow overriding the data set in the avar; 
and “value' and “solo outputs. The value output gives the 
value the avar takes on at the input parameter (when the pull 
is at kInputParam) or at the parameter requested by a pull. 
The solo output is discussed in Section 5. 
0160. As described in Section 2.1.3, avars are a templated 
node type and can be instantiated for any value type for 
which certain basic mathematical operations are defined. We 
have found scalar- and quaternion-typed avars to be of 
particular value, but other types are possible as well. 
0161 The value output of an avar is a function of the 
param input. The function definition is complex and is 
described in detail in Section 5. The function definition may 
include kinematic, dynamic, procedural, sampled and sto 
chastic components. The kinematic components of an avar, 
if any, are defined by parameterized one-dimensional piec 
wise-polynomial curves, or splines, with knots specifying 
the value at particular parameters along the spline. The form 
and specification of these splines are described in Section 
23. 
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0162 The application keeps track of a user-specified 
current manipulation mode. Manipulation modes corre 
spond to common modalities of manipulation; for example, 
translation, rotation, scale, bend, squash/stretch, mesh defor 
mation, global deformation, etc. The active avars at any 
given moment are those avars designated (by the user at 
model-construction time) as relevant to the current manipu 
lation mode, and that are within a subgraph driving any input 
(other than ctm) to the currently selected scene graph node 
or nodes. Active knots are knots in the active layer (see 
Section 5) of the active avars that are unlocked and free to 
be manipulated (Section 5.3). 
0.163 We provide an in-camera indication of the names 
of the currently active node and the active avars. We also 
indicate in-camera which active avars have active knots at 
the selected motion-path knots (see Section 4.1.3) or current 
frame if no path knots are selected. 
0164. In the top-left of FIG. 10a, text annotations indi 
cate that the active avar is the “rot avar of the “root joint' 
node of the “Rod' model. The yellow box around the word 
“rot' indicates that this avar has a knot at the current frame 
(frame Zero). The yellow diamond on the motion path at 
frame Zero confirms the existence of a knot there (Section 
4.1.3), as does the yellow solid-line box around the large 
frame number “O'” in the lower right corner of the view. If 
there were additional avars active, they would be listed to 
the right of the word “rot', and each would have a yellow 
box around it if and only if that avar had a knot at frame Zero. 
The box around the large frame number at the bottom right 
would be drawn with a solid line if all active avars had knots 
at frame Zero; if only some active avars had knots at frame 
Zero it would be drawn with a dashed line. 

0.165. In FIG. 10b, we see that the “rot” avar is still 
active, but that it does not have a knot at the current frame 
(frame nine) because the word “rot' is not boxed in yellow. 
Similarly, we note there is no yellow diamond on the motion 
path at frame nine, and the large frame number '9' at the 
bottom-right of the view has no box around it. 
0166 Each avar is internally configured at model-con 
struction time to have some default value, which is the value 
that avar takes on when it has no animation (i.e., no motion 
channels) in any enabled layer (see Section 5). Several 
settings concerning the preferred display format for avar 
data may be specified. Such as the unit of measurement (e.g., 
meters, kilograms, seconds, radians, degrees), linearity (lin 
ear vs. logarithmic), and Scale. An avar may also be con 
figured to have an allowed output value range (i.e., hard 
limits) and a preferred range (soft limits). These ranges do 
not affect the evaluation of the avar itself, but they can be 
queried, for example, to guide a constrained optimization 
Solver running in a dependent node or an external compu 
tation. The user can optionally set direct manipulation 
controls (see Manipulators below) to respect these value 
limits. For scalaravars, soft- and hard-limits are specified as 
minimum and maximum values. For quaternion avars, soft 
and hard-limits are each specified as an array of unit 
quaternions demarcating a convex 'spherical polygon' 
within which the avar may move. 
0.167 The user can enable a Hold Poses mode in which 
all time-varying avars are evaluated as though they con 
tained in every layer only stepped knots at those times at 
which the active avars have knots in the active layer. This 
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has the effect of arresting movement between active knots. 
When playing the animation in this mode, at each active 
knot the scene elements jump discontinuously to the posi 
tions and State they normally take at that time, and otherwise 
do not move. We accomplish this by substituting for the 
output value of the global animation clock the knot time t 
of the last active knot prior to or at the true animation time. 
Since time-varying avars use this output value as their param 
input, in response to pulls at kInputParam during rendering, 
they will hold their own value outputs constant except when 
the animation time t, passes the next active knot time 
tnext hold: then theid will update to the hold, and all the avars 
will jump to the output state at the new ta. 
1.18.2 Operators 
0168 Operators produce an output that is functionally 
dependent on some number of inputs. For example, basic 
operators include the polymorphically typed nodes Multiply 
and Add. These are actually convenience wrappers around a 
general Compute node that takes an arbitrary number of 
inputs and a user-provided String that expresses some func 
tion. We evaluate the function on the input tabs and provide 
the result at the output tab. The expression language is 
described in Section 2.1.5. Other convenience wrappers 
include Translation, Rotation and Scaling, which take scalar 
inputs for tX/ty/tz, rX/ry/rz and SX/sy/SZ, respectively, and 
produce a transformation matrix output. 
0169 IK Solvers are expression nodes for introducing 
dynamic changes in graph topology in Support of inverse 
kinematics. They are described in detail in Section 1.17.3. 
0170 Deformers are nodes that compute some point 
valued function of points. That is, a deformer expresses the 
function p'=f(p). Mesh deformers apply this function across 
the vertices of a mesh, usually in Some local coordinate 
frame, for example, a body coordinate frame, or in a 
surface-relative fashion. Spatial deformers, or global 
deformers, apply their function at arbitrary positions in 
global or local space. Both types of deformers accept a 
mesh in input mesh or point array. The only real difference 
between mesh and spatial deformers is that, while each 
accept additional parameters controlling the deformation 
function, the input parameters of mesh deformers are point 
wise fields that conform to the input mesh, while spatial 
deformers and their inputs have no knowledge of and need 
not conform to, the point-data topology or layout. (The one 
exception to this is that spatial deformers, like mesh deform 
ers, can Subdivide mesh inputs before acting on them, as 
described below.) 
0171 All deformers provide two outputs: mesh out and 
deformation. Deformers may be used in either of two ways. 
They may be used to actually deform their input mesh or 
point array in a vertex-wise or point-wise fashion, with this 
deformed mesh or point array available at mesh out. Alter 
natively, they may be used to compute a vector field of the 
(global, local, or Surface-relative, depending on the type and 
configuration of the deformer) vertex- or point-wise dis 
placements as computed by the deformation function; this 
vector field is available at the deformation output. 
0172 In our implementation, all meshes are represented 
and rendered as subdivision surfaces. When a mesh is 
provided to the mesh in input on a deformer node, the 
refinement level at which the deformer is acting may be 
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specified at the deformer's sclevel input. The surface will be 
deformed by moving the refined vertices at the specified 
level rather than moving vertices at the base (unsubdivided) 
level Zero. When specifying sdlevel >0 for a mesh deformer, 
point-wise parameter fields conform to the subdivided mesh. 
Sdlevel is ignored when deforming simple point arrays 
lacking connectivity information. 

0173 Many deformer subclasses exist, such as RotateDe 
former, BendDeformer, CylindricalDeformer, SphericalDe 
former, ConicalDeformer, MuscleDeformer, JointDeformer, 
Bonel Deformer and numerous others. Each performs a par 
ticular type of mesh deformation. These deformers may be 
chained sequentially, passing the mesh out of one deformer 
to the mesh in of the next; or their deformation vector-field 
outputs may be combined (Summed) in parallel and later 
applied to a mesh via point-vector addition. It is common for 
complex deformation networks to include a mix of parallel 
and sequential deformations. 

0.174 The SkeletalDeformer mesh deformer takes as 
inputs any number (up to Some implementation-dependent 
limit) of bone ctim outs, plus four pairs of bone id, bone 
weight point-wise Scalar-field inputs and a body space 
CTM input. The bone ID's index (counting from one) into 
the bone inputs, associating up to four bones with each point 
in the input mesh (or point array). The body-space CTM 
(pre- or post-, as described below) of each bone is noted with 
the skeleton in its home (default) pose, then the transform 
that carries each bone from home pose to the current pose is 
scaled by the corresponding bone weight and used to trans 
form each mesh point. For each point, up to four Such 
weighted-bone transforms are applied sequentially. A posi 
tive bone ID selects the post-ctim of the indexed bone, while 
a negative ID selects the pre-ctim of the bone indexed by the 
absolute value of the ID. Specifying a bone ID of Zero is 
equivalent to specifying a Zero weight. This deformer thus 
performs four-way weighted-bone deformation of the input 
mesh as is popular in many consumer-level and real-time 
graphics applications. On hardware that Supports the 
OpenGL capabilities GL ARB vertex blend or GL vertex 
program, we are able to perform the skeletal deformation 

on the graphics card, provided (a) that the number of bones 
falls within hardware limits and (b) that the deformed mesh 
is not needed for any Subsequent computations (other than 
rendering). For convenience, when connecting a Skeletal 
Deformer, one need only specify the root node of the 
skeleton hierarchy and the application will take care of 
connecting the body space input and the many bones in the 
skeleton (and will mark those bone input tabs hidden so that 
they and their incident edges are not drawn in the graph 
editor view, thereby reducing clutter). 

1.18.3 Scene Graph Nodes 

0.175 Scene graph nodes were described in general in 
Section 1.9. These nodes constitute the scene graph embed 
ded within the larger expression graph. While there are many 
varieties of scene graph node in our system, all respond to 
a Render message, and all take a Concatenated Transform 
Matrix (CTM) ctim in input and provide actm out output. 
The Render message and the roles of ctim in and ctim out in 
render traversal are described in detail in Section 1.9. There 
are numerous subclasses of the basic SceneGraphNode 
class, the most important of which are described below. 
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0176 Group nodes are the most basic type of scene graph 
node. A group node itself serves only as a collective parent 
for the children beneath it. 

0177 Part nodes introduce a named scope over their 
scoped subgraph. We define the scoped scene nodes of a part 
node Pas those scene-node descendents of Preachable by a 
path, Such path having length greater than Zero and contain 
ing no parts except one or two at the endpoints of the path. 
We say the scoped scene nodes of P are "scoped to P'. The 
non-scene Supergraph of a scene node R we define here as 
the union of non-scene subgraphs above (i.e., ancestral to) 
R’s inputs (other than ctim in). The potential scoped sub 
graph of part P we define as the union of the scene nodes 
Scoped to P plus the nodes in the non-scene supergraph of 
any scene node R scoped to P that are reachable from R via 
a path containing no scene nodes except R. Then we define 
the scoped subgraph of part Pas the union of (a) those nodes 
in P's potential scoped subgraph that do not belong to any 
other part's potential scoped subgraph plus (b) those nodes 
below P. or in the non-scene supergraphs above P's descen 
dents, that are not in the scoped subgraph of any descendent 
of P (other than P itself) and that are not in the potential 
scoped subgraph of any node not descendent to P. 
0178) The names of part nodes in the scene-graph path 
from the root to a given node A contribute the path com 
ponents to A's full path-name. For example, a node 
“Thumb' whose full path is “/Fred/RArm/Hand/Thumb” 
exists in the scoped subgraph of a part node "Hand', and 
“Hand” is in the scoped subgraph of part “RArm', which in 
turn is in the scoped subgraph of part “Fred', which itself is 
in global scope. 
0179 A model is a type of part node that designates the 
top scope of an independently loadable scene subgraph. In 
the above example, part “Fred” would be best represented as 
a Model node. 

0180 Most scene graph nodes pass their pre-ctim (from 
ct min) through to their post-ctim (at ctim out) unmodified. 
Transforms are scene graph nodes that transform their 
pre-ctim to produce their post-ctm (Section 1.9). Basic 
Transforms multiply their ctim in input by the transform 
matrix at their Xform input and assign the result to ctim out. 
Convenience subclasses of transform, such as Translate. 
Rotate and Scale, simplify building common expressions, 
here effectively combining a Translation, Rotation or Scal 
ing node, respectively, with a Transform node. The Rotate 
node is polymorphic, accepting any one of rx.ry.rz Euler 
angles, an orthonormal matrix, or a quaternion. Two Trans 
form subclasses, Bones and Joints, provide higher-level 
control over the matrix transform and enable direct manipu 
lation via Manipulator nodes (discussed below). 
0181 Bones are transform nodes that represent a nomi 
nally rigid linear element within an articulated skeleton. 
Inputs allow for animation of prismatic (lengthwise) trans 
lation, revolute axial twist, and two orthogonal axes of bend. 
There are independent min u and max U inputs for con 
trolling the section of bone over which bend and twist occur. 
It may be convenient to normalize the length and other 
animation parameters of bones so that, for example, setting 
all length avars to 1.0 will produce bones of length appro 
priate for the default pose of a character. This may be 
accomplished by adjusting the bias (and possibly gain) of 
either the bone inputs or the avar outputs; generally it is best 
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to set the bias and/or gain at the avar output so as not to 
interfere with other processes (e.g., IK solvers) that may try 
to adjust the bone inputs directly (see Section 1.17.3). 
Similarly, manipulation limits may be set by specifying 
value limits on the avars. 

0182 Joints are transforms that represent revolute or 
spherical joints within an articulated skeleton. Joints accept 
as their Xform input either an orthonormal matrix (e.g., from 
an Euler-angle rotation) or a quaternion (e.g., from a quater 
nion-valued avar). It is often desirable to assemble the model 
so that all joints will be centered (i.e., Euler-rotation avars 
Zeroed, quaternion avars set to quaternion identity) when the 
skeleton is in the default pose. As with bone parameters, this 
can be done by setting a "pre-orientation via bias and/or 
gain at the avar outputs (or, less ideally, at the joint rotation 
input). Joint limits are set via limits on the (scalar or 
quaternion) avar(s) driving the joint. The application pro 
Vides a simple "by-demonstration'joint-limit configuration 
mode in which the user moves the joint through its allowed 
range of motion and the application sets corresponding avar 
limits. For scalar avars, this is straightforward; for quater 
nion avars, we fit a convex 'spherical polygon' around the 
observed motion range. The user may subsequently edit 
these joint limits "in-camera by interactively manipulating 
the unit-quaternion vertices of this spherical polygon drawn 
on a 3-D virtual sphere centered on the joint, or the user may 
specify new limits by demonstrating a new range of motion. 
0183) To facilitate user understanding of the bones and 
joints comprising a skeleton, we provide an application 
option to draw a translucent skeleton overlay over geometry 
(FIGS. 10a and 10b). This is implemented by rendering a 
ghost (Section 3) in skeleton mode at the current animation 
clock time. Bones and joints normally are excluded from 
final (off-line) rendering. 
0184 Surfaces provide a mechanism for rendering 
meshes as Catmull-Clark subdivision surfaces. A surface 
node accepts a mesh input and a material input (described 
below). The mesh undergoes n Catmull-Clark refinement 
steps, where n equals the numerical floor of the effective lod 
(Section 1.7) of the render. Commonly, a mesh will originate 
at a MeshReader node, be passed through a deformer 
network, and ultimately be fed to a surface node for ren 
dering. 

0185 Switches and Attaches are scene graph nodes for 
introducing dynamic changes in scene topology. They are 
described in detail in Section 1.17. 

0186 Glyphs are scene graph nodes providing notational 
graphics that may be displayed, and possibly manipulated, in 
interactive views but that are not really part of the CG scene 
and are excluded from final (off-line) rendering. Examples 
include MotionPath (motion-path curves), Control Hull 
(meshed-surface control hulls), EditFoint (control points on 
motion paths and control hulls), Annotation (text labels and 
2-D graphical markup), Jack (a 3- or 6-d of point for use as 
an IK goal, attach target, or anywhere elsea virtual reference 
point is desired), and Manipulator (discussed below). During 
a normal rendering pass, glyphs are rendered in the same 
manner as other scene graph nodes, but glyphs generally are 
excluded from ghost and shadow rendering passes (Section 
3). 
0187 Manipulators are glyphs that provide in-camera 
direct-manipulation control over animatable elements of the 
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3-D scene. Example manipulators include an archall rotation 
controller, X/y/Z translation handles, X/y/Z scale handles, and 
a bend manipulator handle for controlling bend deformers. 
The application is responsible for creating and deleting 
manipulators appropriate to the Surface, bone, joint, or other 
object currently selected and the current user-specified 
“manipulation mode' (defined above). For example, if the 
user selects a joint and then chooses "rotation mode, an 
archall controller will be created by the application and 
connected as a child of the joint node. When the user later 
deselects the joint or changes to a different manipulation 
mode, the application will delete the archall controller. 
0188 Light scene graph nodes define theatrical lighting 
in the 3-D scene. They take inputs corresponding to the 
particular light type. For example, Pointlight has inputs for 
diffuse and specular color, falloff rate, and linearity, while 
Spotlight also has inputs for cone angle, shape and penum 
bra. Like Surfaces, lights take an optional material input for 
creating advanced effects Such as gobos (projected textures) 
and custom beam distributions or for associating arbitrary 
shaders with a light (Section 1.18.4). An nxm lighting matrix 
defines the weight with which each of the n lights in a 3-D 
scene illuminate each of the m Surfaces in the scene. This 
matrix defaults to 1.0 everywhere and is editable by the user 
in an application dialog. Each lights intensity is scaled by 
the corresponding matrix entry before final rendering (and 
optionally before interactive rendering) of each Surface. 
0189 Camera scene graph nodes define the virtual cin 
ematic cameras used for viewing a scene. A camera defines 
the viewer's eye-point. The basic camera class takes trans 
form-matrix inputs projection and view and sets the render 
ing projection and view matrices accordingly. Subclasses of 
the basic camera exist for providing higher-level control 
over camera mount movements (e.g., dolly, truck, crane, 
pan, tilt, and roll), view-camera movements (rise (and fall), 
shift, Swing and tilt), lens settings (focal length, aperture, 
distortion), shutter (shutter angle) and film transport (fps). A 
filter input accepts a material value (see below) for creating 
advanced effects such as lens filters, vignetting, chromatic 
aberration, internal reflections (flare) and subsurface scat 
tering (bloom), as well as binding arbitrary shaders to the 
camera. Cameras provide an image plane output optionally 
used in conjunction with Film Backs and Imagers (Section 
1.18.5) to further define or utilize the rendered image 
produced. 
1.18.4 Material Nodes 

0190. Material nodes define optical and material proper 
ties such as ambient, diffuse, specular and emissive color; 
Surface roughness ('shinyness”); texture, glow, reflection, 
irradiance, bump and displacement maps; atmospheric 
effects (“participating media”), and so forth. The simple 
Color material Subclass provides a convenient way of setting 
just diffuse color. Texture material nodes bind a 1-D, 2-D, or 
3-D texture map to a (OpenGL or offline renderer) texturing 
operation or the map input of another material node. Envi 
ronmentMap nodes bind a spherical or cube reflection map. 
The texture image data itself comes from an image input, 
which may originate at a FileReader (Section 1.18.1) or at an 
Imager (Section 1.18.5). 
0191 Programmable materials include the FragmentPro 
gram and VertexProgram nodes, which bind OpenGL frag 
ment and vertex programs. Shader nodes allow a named 
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external “shader to be bound for use during final (off-line) 
rendering by a batch rendering program such as Pixar's 
RenderMan. 

0.192 All materials take a material in input and provide 
a material out output. Connecting multiple materials in 
series allows the assembly of complex combined effects. For 
example, several texture nodes might be connected, with one 
specifying a diffuse map, another modulating that diffuse 
map with another map, a third specifying a glow map, and 
a forth specifying a bump map. These texture nodes could be 
connected to a shader for controlling the off-line rendering 
process and a basic material for specifying underlying 
material properties such as diffuse and specular color. The 
effects of these nodes will be combined as each is chained 
together. 
0193 An Atmosphere node is provided as a proxy for 
accepting a material input to affect the scene atmosphere, 
providing participating media effects such as haze, fog, 
Rayleigh Scattering (visual perspective) and diffraction 
effects (e.g., halos and coronas). A given scene may have at 
most one atmosphere node that has global effect over the 
scene. Atmosphere material is primarily of importance for 
off-line rendering; with the exception of fog (which is 
Supported in hardware by current graphics cards), most 
atmosphere materials are ignored during interactive render 
ing. Atmosphere nodes are unusual in that they have no 
outputs. 

1.18.5 Imaging Nodes: "Camera Backs' 
0194 Film backs may be used in conjunction with cam 
eras to provide further control over the final-image genera 
tion process. Film backs accept an image lane input from a 
camera and a material input that can be used to simulate 
properties of film stock Such as speed, transfer function, 
grain and reciprocity failure. Film backs also accept inputs 
for configuring the film format (aspect ratio and anisotropy). 
Film backs are the only node type other than atmosphere 
nodes that produce no output value. With the exception of 
the aspect-ratio setting, which the user may apply in con 
straining camera-window resizing during the interactive 
session, film backs are used only for controlling external 
off-line renderers and have no effect on interactive render 
1ng. 

0.195 Imagers accept an image lane input from a camera 
and produce an image output. Imager nodes are analogous to 
the digital-imaging backs available for traditional (physical, 
film) cinematic cameras. They are typically used in con 
junction with texture nodes (Section 1.18.4) to produce a 
reflection map or otherwise capture a rendered image of the 
scene for use within that scene. The image output may also 
be directed to an export node (implemented as an External, 
see Section 1.18.6) for integration into editing, compositing 
or color-correction software. 

1.18.6 Miscellaneous 

0196. Transmitters and receivers together provide graph 
wide broadcasts as described in Section 1.16. 

0197) Macros are encapsulated graphs in which particular 
outputs and unconnected inputs of the graph have been 
designated “public'. All other outputs and inputs are private. 
The user may instantiate the macro in another graph, where 
it will appear as node providing these public inputs and 
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outputs. Macros do not alter evaluation of the total graph at 
all; they only provide the user convenience of an encapsu 
lated view of graph structure. 
0198 Externals are nodes whose definition has been 
loaded through an external plug-in interface. They are coded 
in C++ by using a provided API, then are loaded at runtime 
and are available for use along with macros and built-in 
nodes. 

1.19 Graph Editing 

0199 FIG. 4 is a screen shot of an exemplary control 
graph 402 for the bottle model shown in FIGS. 8a–8c. The 
graph editor 400 can be used for creating, viewing and 
editing the control graph 402. Example nodes 404 are shown 
in FIGS. 2, 4 and 6. Edges 406 are displayed as polylines 
joining node output tabs 408 and input tabs 410. Nodes 404 
may be instantiated by selecting from a list of known node 
types. User-created nodes (Macros and Externals) also 
appear in this list. After creating a node 404, the user may 
click-and-drag on the node 404 to reposition it within the 
control graph 402. The user may connect node outputs to 
node inputs by dragging a rubber-band line from an output 
tab 408 to a type-compatible input tab 410, or vice versa. In 
Some implementations, selecting one or more nodes 404 or 
edges 406 and pressing the Delete key will delete the 
selected graph elements. Selected nodes 404 may also be 
copied and pasted to create new nodes 404 of the same type 
with the same internal settings. Internal node settings (e.g., 
input expressions, gain and bias, user comments, output 
caching strategies, etc.) may be viewed and edited either in 
pull-out drawers 600, as shown in FIG. 6, and/or a node 
inspector application dialog. In some implementations, 
selecting a node 404 in the control graph 402 selects that 
node 404 elsewhere throughout the application user inter 
face, and vice versa. 

0200 Nodes 404, input and output tabs 410, 408, and 
edges 406 may be hidden, which has no effect on their 
behavior but prevents them from being drawn in the graph 
editor. Hiding an input tab 410 or an output tab 408 
effectively also hides edges 406 incident to that tab. Hiding 
a node 404 hides its connection tabs and incident edges as 
well. Certain connection tabs are hidden by default. For 
example, Cameras, Lights, and basic Material nodes accept 
many inputs, but commonly only a few are used, so by 
default the more obscure inputs are hidden. Similarly, Skel 
etalDeformer nodes accept a great number of inputs, one 
from each bone within a skeletal hierarchy, but these bone 
inputs are all hidden by default. This provides a less 
cluttered view of the graph. The user may show or hide any 
node, tab or edge at runtime or model-construction time. The 
user may also elect to have hidden elements shown within 
the graph editor 400, for example, to allow selecting a 
hidden element. Hiding a node in the graph editor 400 hides 
that node in 3-D scene views, and vice versa. Control graphs 
402 may also be understood and edited with an external text 
editor using the text-based programming languages 
described next. FIG. 5 shows nodes 500a, 500b and 500c, 
connected with polylines 502a and 502b. 
2. Programming Languages 

0201 Expression graph structures may be built interac 
tively via a visual graph editor user interface. Frequently it 
is more convenient to specify the graph via a text-based 
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programming language. We describe the core of our model 
definition language (Section 2.1). Two Subsets of the mod 
eling language are commonly used outside the model 
definition setting: these are the syntaxes for expressions, 
described in Section 2.2, and animation, described in Sec 
tion 2.3. While we describe these in three distinct sections, 
they all are properly part of the same language and all can 
be used to define a model or collection of models. The 
resulting language is Turing complete, allowing specifica 
tion of any computation or algorithm that could be expressed 
in a general purpose programming language Such as C. 

2.1 Modeling Language 

0202 The modeling language in our system is an objec 
t oriented C/C++-like language. It has POEM (Parse Once, 
Execute Many) execution semantics, with models being 
unrolled and the corresponding graph instantiated once at 
parse time, after which the same graph is evaluated as often 
as necessary. The system provides garbage collection: there 
are no “new” or “delete' operators. Named symbols in the 
language correspond to nodes, node inputs, and node out 
puts. Common preprocessor directives Such as Hinclude, 
#ifdef fielif, ielse and Hendifare available. We also provide 
a Hincludeonce convenience directive for including a par 
ticular header only once within a given translation unit. 
2.1.1 Declarations 

0203 A node is created in the language simply by declar 
ing it. For example, the model code: 

Model Joe: 
Model Sue: 

0204 creates two nodes of type Model named “Joe” and 
“Sue'. Node inputs may be specified within parentheses on 
the declaration line as positional parameters or as 

name=value pairs: 
Translate sideways(5,0,0); 
Translate upwards(ty=2); f* tX and tz inputs default to 0.0 */ 

0205 The first line above creates a Translate node “side 
ways' with its input tabs tX, ty and tz, set to constant values 
5, 0 and 0. The second line creates a node with only one 
input set to a non-default value. Anonymous nodes may be 
created as well, for example, “Translate(1.2.3). Here the 
system will generate a symbol name to be used for the node, 
however that symbol name will not be available to the 
program So there is no way to refer to that node Subse 
quently. 

2.1.2 Inputs and Outputs 

0206 Node inputs and outputs may be referenced via the 
selection operator (“.. period), either by name as node 
name.tab name or by index as node name.ini (for inputs) 

or node name.outi (for outputs). The first output of a node 
may be referenced with just the node name alone: thus, 
“myNode' is equivalent to “myNode.out 0.” Inputs are 
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lvalues and outputs are rvalues. Assigning an output to an 
input establishes an edge. An edge is also created when an 
output is passed as an input parameter to a declaration: 

Avar up, right; 
Translate trans (ty=up); 
trans.tx = right; 

f* connect up.value -> trans.ty */ 
f* connect right value -> trans.tx */ 

0207 Nodes and inputs/outputs inhabit distinct 
namespaces, so we could have written the above as: 

Avar tX, ty; 
Translate trans (tx=tX, ty=ty, tZ=nil); 

0208. The predefined symbol "nil" (or equivalently 
“NULL) indicates we wish to leave input tz disconnected. 
This is commonly used with positional parameters, for 
example, “Translate (tx.mil.tz)'. 
0209 When referencing an output (as a parameter or as 
the rvalue in an assignment), by default that output will be 
Pull-ed at the param and lod at which the causational pull 
occurred. (The causational pull is the pull that caused the 
node on the left of the assignment operator to re-evaluate 
and thus request the given output rvalue). We can pull at a 
specific param and/or lod via the function-call-like format 
output (param, lod). Given an avar ty, “ty(2.5) (or 
“ty.value(2.5), “ty.out O(2.5), “ty (param=2.5), etc.) ref 
erences the value ofty at param=2.5. "Surface coarse (mesh 
(lod=0.5)):” creates a Surface node “coarse' from the output 
of node "mesh' at level-of-detail 0.5. 

0210. In addition to its input tabs, every node has an 
implicit parameter named “comment” that can be used to 
provide text for the node comment. Avar nodes may have 
default values (the value the node takes when no animation 
channels are present) specified via assignment. 

Avar rx(policy='+', /* additive policy: see Section 5 of text */ 
units='degrees', f* Only affects display format in GUI */ 
comment="rotation about x axis) f* visible in GUI help */ 
= 30.0; /* defaults to 30 degrees */ 

2.1.3 Avars and Parameterized Types 
0211 Several node types are in fact templates, and the 
template type parameter may be defaulted. For example, 
Avars are a template with default type “scalar'. (The type 
“real' is a synonym for “scalar'.) To instantiate an avar with 
a different type, a C++-like syntax is used: 

f* scalar awars */ 
f* more scalar awars * 
f* quaternion avar */ 

Avar tX, ty, tZ; 
Avar-Scalars SX, Sy, Sz; 

Avarzquaternion> rot; 

0212. By default, scalar avars default to 0.0 and use an 
additive layering policy. (Layering policies are described in 
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Section 5). Quaternion avars default to quaternion identity 
(x,y,z,w=0,0,0,1) and use a multiplicative layering policy. 
The 0.0 default and additive layering probably are not what 
we want for Scaling avars (e.g., SX. Sy, SZ above). We can 
specify a different policy and/or default. The default is 
inferred from the policy if not specified: additive avars 
default to a type-appropriate Zero and multiplicative avars 
default to identity. 

Avar tX; f* will default to 0.0, additive policy */ 
Avar length=1: f* will default to 1.0, additive policy */ 
Avar SX(policy=''); f* will default to 1.0, multiplicative policy */ 
Avarzquaternion> rot; f* will default to identity, multiplicative policy */ 

0213 Implicit in the declaration of an avar is assignment 
of the global animation clock output to the avar param input. 
The connection is made via broadcast (i.e., through a trans 
mitter/receiver pair) to reduce clutter in the graph editor. If 
we do not want the avar to be time-driven, we need to 
explicitly specify that the param input is nil or is connected 
to Some other output, as shown in Listing 3 below. 
0214) We may specify animation for the avar within a 
scope block (“... O”) following the avar declaration using 
the format described in Section 2.3. Normally animation for 
time-variant avars would not be specified within the model 
itself; however, there are situations in which it is convenient 
to include “animation” within the model. For example, an 
avar driven by the u-parameter of a 3D curve might be used 
to define the profile of an extrusion of that curve. Similarly, 
an avar could specify one coordinate of the profile curve for 
a surface-of-revolution. In such cases, we may well wish to 
include the avar data within our model code. An example 
showing the use of embedded avar data is given in Listing 
3 below. 

0215. Other templated node classes include Constant, 
Compute, Transmitter and Receiver. When the type can be 
inferred from usage we need not specify it explicitly: 

Constant name='Fred'; f* <string> is inferred */ 
Transmitter foo (name); /* <string> is inferred */ 
Transmitter<string> bar; * cant infer type so it is specified */ 
bar.input = name: 
Receiver recw (bar); f* <string> is inferred */ 

2.1.4 Assembling Scene Hierarchies 
0216 Scene node hierarchies may be built up by enclos 
ing children within a scope block. Transform nodes implic 
itly scope the nodes beneath them up to the point where the 
transform itselfgoes out of Scope. Material nodes implicitly 
chain into an input subgraph above the “material input tab 
of Subsequent geometry until that material node goes out of 
Scope. Thus: 

Translate (1,0,0) { 
Cube (1,1,1); 

Sphere (1): 
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-continued 

and 

Translate (1,0,0); 
Cube (1,1,1); 

Sphere (1): 

0217 both translate the cube, but not the sphere, to the 
right. Similarly, we can define a simple Box model with 
animation controls as: 

Model Box { 
Avar tx=0, ty=0, tz=0; 
Avar sx(policy='*)=1, sy(policy='*)=1, Sz(policy='*)=1: 
Awar-quaternions rot; 
Translate(tX,ty,tz); 
Rotate(rot); 
Scale(SX.sy,SZ); 
Avar r=1, g=1, b=1, a=1: 
Texture(mytex.tiff); 
Color(r.g.,b); 
Cube(1,1,1); 

0218. The cube primitive will be transformed, textured 
and colored by the statements that precede it. The close of 
Scope at the end of the model ensures that changes to the 
transformation stack and material chains within model Box 
will not affect geometry outside of this model. 
2.1.5 Expressions and Optimization 

0219 Compute nodes may be created explicitly like other 
nodes or implicitly via an expression. The model program 
may contain arbitrary expressions as defined in Section 2.2 
below, with the one modification that certain “predefined 
locals are accessed as parameter-less functions (e.g., "lod( 
) and “ctm()). Standalone expressions assigned to basic 
types (int, real, string, etc.) implicitly create a Compute node 
(except where optimized away, as described below). Assign 
ment of expressions to node inputs may be made with the 
assignment operator ('='). For example: 

real a = 3 + 4* time: 
Scales (a+1, sin(2*a), 1); 

f* create a Compute node named 'a' */ 
f* create a Scale node 's' with input 
expressions */ 

Avar up down; 
Translate trans; 
trans.ty = 2 * up down; f* connect edge and set input 

expression */ 

0220. These expressions and the implied graph structure 
may be optimized automatically. For example, multiple 
confluent expressions may be combined into a single Com 
pute node (corresponding to the traditional compiler opti 
mizations of “procedure integration' and "copy propaga 
tion'). When possible a standalone expression whose result 
is used only once will be encoded into the destination node 
input rather than instantiated as a separate Compute node 
("inlining’). Common Subexpressions may be merged into a 
single Compute node or input expression ("common Subex 
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pression elimination'). Expressions whose results are not 
needed are dead-stripped (“dead code elimination') unless 
their declaration is qualified by the volatile keyword: 

volatile char c = a +1:/* c is unused but will not be stripped */ 

0221) The function within an explicitly declared Com 
pute node is specified following an assignment operator 
'='), using the expression language described in Section 
2.2. Compute input names are scoped within the function 
definition. For example, we may (re-)define the linear inter 
polation function for meshes as: 
Compute myMeshLerp(real x=blend, Mesh a=M0, Mesh 
b=M1)=(1-x)*a+x*b: 
0222. As x goes from 0 to 1, myMeshLerp...out will 
linearly blend from MO to M1. (We define mesh-scalar 
multiplication as a scaling of the vector distance of mesh 
vertices from the local origin.) Specifying type names here 
is optional. We can define a more general lerp (behaving 
identically to the built-in lerp function) as: 

0223) We specify “x=" (shorthand for “x=nil') to indicate 
that “x” is the first input to myLerp, rather than the name of 
a referenced output of some other node. The above statement 
will create a Compute node with three disconnected inputs 
named “X”, “a” and “b'. Input and output edge connections 
to this node are legal to the extent that the data types along 
those edges yield a legal expression. For example, passing 
(Scalar, Scalar, Scalar) and (Scalarmesh, mesh) are both valid 
because the resulting expressions are valid. However, pass 
ing (mesh, Scalar, Scalar) will produce an error because mesh 
scalar subtraction (the “1-x' above) is undefined. 
2.1.6 Macros 

0224. We may define a macro by providing the macro 
body following the macro declaration: 

Ms DoSomething(real p, matrixquaternion q, r =) { 

0225. Here parameters q and rare declared as polymor 
phic: q may be connected to matrix- or quaternion-valued 
outputs, while r may be connected to an output of any type, 
provided that type is compatible with the usage of r within 
the macro body. A macro may not be used in code before it 
is defined. Forward declarations of macros are not allowed. 

0226. In the graph editor, macros appear as encapsulated 
nodes. The outputs and inputs of a macro node correspond 
to specific outputs and unconnected inputs of nodes within 
the macro, so-called public outputs and inputs. These public 
tabs are declared by identifying particular inputs and outputs 
as “public' within a node declaration or by issuing export 
statements. Exported tabs can be renamed via the “export 
as construct. For example: 

Macro ColoredCube.AndSphere { 
Color (public r=, public g=, public b=); 
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-continued 

Group g { 
Cube (1,1,1); 
Spheres: 

export S.radius as sphereRadius; 
export g.ctim in, g.ctim out; 

creates a macro with r, g, b, sphereRadius and ctim in inputs 
and a ctim out output. 
0227. The first output of a node may exported by declar 
ing the node itself as public. In the above example, we could 
have declared group gas public Group g . . . rather than 
explicitly exporting g.ctm out. 

2.1.7 Naming Conventions 
0228 We may refer to node and node-component names 
by absolute or relative path. Relative path names begin with 
“.” or “... to distinguish them from expressions involving 
division. 

Model A { 
real x = 4; 
Part B { 
real x = 3; 
real y = ...fx; f* refers to Aix *. 
real Z = x: f* refers to AFB,x*. 

Scale(x,1,1); 
Translate(./B/X,0,0); 

Model C { 
Translate(A/B/y,0,0);f* inter-model reference, error if A is 
not loaded *. 

f* refers to Aix *. 
f* refers to AFB,x*. 

2.1.8 Conditional and Iterative Unrolling 
0229 Conditional unrolling of model code may be speci 
fied via the preprocessor directives #if, Helif, ielse and 
Hendif. These conditions will be evaluated, and selected 
branches followed, exactly once, at unroll time (i.e., during 
initial parsing). 
0230 Iterative for and while loops are unrolled at graph 
construction time, thus these routines do not themselves give 
rise to iterative or recursive graph structures. For example: 

for (i = 1; i <= 5; i++) 
Avar make symbol ('v' + itoa.(i)); 

creates five Avar nodes named “v1”, “v2”, “v3”, “v4 and 
“v5”. Note the use of the Lisp-like make symbol to generate 
symbol names procedurally. These generated symbols may 
be used like any other name, for example, we could now 
write “Scale s(v1,V2,v3):”. 
2.1.9 Conditional Execution 

0231 Conditional graph evaluation may be introduced 
through conditional expressions (i.e., those containing “cond 
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'? ab') or by instantiating graph structures involving con 
ditional flow (i.e., Switches, attaches and IK Solvers, as 
described in Section 1.17). Switches may implicitly be 
created through the if-then-else language construct, for 
example: 

if (drawSphere == 1) 
Sphere (5): 
else 
Cube (3,3,3); 

0232 which is equivalent to: 

Switch if) (nil, drawSphere == 1); 
Cube ( if).out 0,3,3,3); 
Sphere ( if).out 1.5); 

where the name ifO is generated automatically. The 
conditional “drawSphere ==1 evaluates to one when true 
and Zero when false. The corresponding expression graph is: 
0233. The underlined “value’ input tab indicates it has an 
input expression (“drawSphere==1). A multi-way switch is 
built by adding additional outputs to the Switch node and 
providing a multi-valued input expression (possibly via a 
separate Compute node). 
2.1.10 Iteration and Recursion 

0234) Iterative and recursive graph structures may be 
created by connecting node outputs to inputs in order to form 
a cyclic Subgraph. For example: 

f* create Compute node with one input x', expressing the function 
out = x . 
Compute Fibonacci (real X) = x: 
f* connect Fibonacci output to its own 'x' 
input expression */ 
Fibonacci.x = t==0 ? 0: t==1 21 
: Fibonacci (t-2) + Fibonacci (t–1). 

input using the given 

0235 Thus “Fibonacci (3) yields the value 2, 
“Fibonacci (4) yields 3, and so forth. Referring simply to 
“Fibonacci” with no explicit parameter yields the Fibonacci 
number for the implicitly pulled parameter, which only has 
meaning in the context of the Surrounding graph. The 
scoping rules of the language are such that a node is declared 
as soon as its name has been provided, even though the 
declaration statement has not yet been closed by a trailing 
semicolon. Thus, we could express Fibonacci simply as: 

real Fibonacci = t==0 ? 0: t==1 21 
:Fibonacci (t-2) + Fibonacci (t–1). 

0236. Here we provide the function as the body of the 
Compute rather than as an input expression. Note that 
although Fibonacci is declared as a real, it can be called as 
a function of (param, lod) and in fact it will return different 
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values for different parameters because its expression 
depends on the Pull parameter t. As mentioned above, all 
outputs may be used as functions, but they will only return 
a value that varies with the function parameter if the variable 
definition references t, either directly, or indirectly through 
a time- (or more generally, parameter-) varying input. The 
graph generated by the above statement is shown in FIG. 6. 
0237 As mentioned previously, in part due to its ability 
to represent graph structures involving iteration and recur 
Sion, the modeling language, and the graph evaluation 
system itself, is Turing-complete, allowing specification of 
any computation or algorithm that could be expressed in a 
general purpose programming language such as C. 

0238 Listing 1 below gives a more complex example of 
modeling language usage. Listing 1 describes building a 
desk lamp. 

Listing 1 

#includeonce global/lighting.m. 
Macro StandardModelTransforms 
{ 
Avar tx=0, ty=0, tz=0; 
Avar Sx (policy=“*”)=1, Sy (policy=“*”)=1, sz (policy=*)=1: 
Awar-quaternions rot; 
Translation trans (tX,ty,tz); 
Scaling scale (SX.sy,SZ); 
public matrix Xf out = trans * rot * scale: 

Model Lamp ( ) 
{ 

StandardModelTransforms xf: 
Joint root.Joint (xf); 
Avar r=1, g=0, b=0; 
Material metal (diffuse = (r.g.,b), specular = (r.g.,b), Shine = 50); 
Part Base { 
Mesh mesh (“Base.obj'); 
Surf baseSurface (mesh, metal): 

Part Arm { 
Joint jQ { 
Bone b0 { 

Joint 1 { 
Bone b1 { 

Part Head 

Avar kind (comment="O = pointlight, 1 = 

Globals 

Predefined 
Locals 
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-continued 

Listing 1 

spotlight) = 1; 
Avar radius=0.25: 
Avar r=1, g=1, b=1, intensity=30; 
real c3 = (intensity * r, intensity * g. 

intensity * b); 
if (kind == 1) { 
Avar coneAngle (units="degrees') = 30; 
Cone (radius'2, radius' 1.5); /* draw 

housing */ 
Spotlight (radius, coneAngle, color=c); 
else 
Pointlight (color=c); 

Color (r.g.,b); 
Sphere (radius); f* draw 

bulb if 

Mesh mesh (“Lamp.obj'); 
SkeletalDeformer deform (mesh, 0): 
Surface armSurface (deform, metal); 

2.2 Expression Language 

0239). The language we provide for entering mathemati 
cal expressions into node inputs uses standard infix math 
ematical notation. The input will take on the value of the 
expression after Suitable variable Substitutions. No assign 
ment operator (“='') is necessary (or allowed) within the 
expression. Local-node inputs and global broadcasts (Sec 
tion 1.16) may be referenced by name, and there are a 
number of pre-defined global and local variables, constants 
and a rich set of functions, most of which are listed in Table 
1 below. Expressions are parsed and evaluated by an public 
off-the-shelf POEM (Parse Once, Evaluate Many) parser 
engine that applies aggressive optimization to the parsed 
expressions, providing fast evaluation speed approaching 
that of compiled code. 

TABLE 1. 

Example Predefined Globals, Locals. Constants and Functions. 

Name Value 

Time global animation clock 
starttime shot start time 
endtime shot end time 
fps shot frames per second 
system.date, systemtime 
<bcast name> or bcast<name> 
SSHOT, SSEG, SPROJ, SUSER, SDEPT, 

wall-clock date and time 
named broadcast 
program system environment 

SHOST W8S 
l8le local node name 

path absolute path to local node 
<input name> or in<name> 
ini 

numInputs 
param ort 

named input to local node 
i-th input to local node (Zero 
based) 
number of input tabs 
pulled parameter value 
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TABLE 1-continued 

Example Predefined Globals, Locals, Constants and Functions. 

Name Value 

lodgeom, lod.artic, lod.light, . . . effective levels-of-detail 
priority, cost local performance params (see 

text) 
ctin concatenated transformation 

matrix 
(only defined for scene graph 
nodes) 

Constants pi J = 3.14159 . . . 
e e = 2.71828 . . . 
<types::Zero type-specific Zero value 
<types::identity type-specific identity value 

Operators +, -, *, f, %, . ~, , &, , <, <=, >, >=, ==, standard infix operators 
= 

&&., | <<, >> 
Functions exp, log, log10, log(b.x) exponentials and logarithms 

sin, cos, tan, Sec, csc, cot, asin, acos, atan, trigonometric and hyberbolic 
atan2, transcendental functions 
asec, acsc, acot, Sinh, cosh, tanh, Sech, 
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cSch, 
coth, asinh, acosh, atanh, asech, acSch, 
acoth 
Sqrt, pow(x,y) Square root and power 
min, max, floor, ceil, round, abs, sign, numerical functions 
fimod 
Srand, rand pseudorandom numbers 
noise 1D, noise2D, noise3D Perlin noise 
binomial (nm) binomial coefficient 
lerp, bilerp, slerp, Smoothstep interpolation 
cond 2 a:b binary conditional 
<exprs. Derivative(n) n-th time-derivative of given 

input 
<exprs. PartialDerivative(n,v) n-th derivative with respect to v 
<expre.Integral (a,b) definite integral over interval 

a,b 

0240. In addition to what is shown in the table, we 
provide functions for basic character and string manipula 
tions; operators for array, mesh and matrix indexing; basic 
matrix and quaternion functions and operators, and so forth. 

2.3 Animation Language 

0241. In Section 1.18.1, we described our use of avars, or 
articulated variables, to provide time- (or more generally, 
parameter-) varying values within our expression graph. In 
Section 5, we describe the layered representation of avar 
data and detail the process by which layers are combined to 
produce an articulated output value. We also describe, in 
Section 5.2, the taxonomy of avar motion channels, identi 
fying kinematic channels as those involving the splined 
animation typically created by a human animator. Because 
of its Suitability to interactive specification and modification, 
kinematic animation is in many ways the most important 
layer class within our system. Here we describe the text 
based language used to specify kinematic data. Other layer 
classes are specified via tab-delimited tables (sampled lay 
ers), function pointers (procedural layers), parameters val 
ues (stochastic layers), or through the combination of 
parameter values and boundary values specified in lower 
numbered motion channels (forward-dynamic and multi 
point-dynamic layers). 

0242 Following common practice, our kinematic data 
consists of knots along parameterized one-dimensional 
curves or splines: each kinematic motion channel has one 
spline. Each knot specifies the value the spline takes at a 
particular parameter and possibly some additional informa 
tion about the curve shape to either side of the knot. The 
spline is interpolated between knots. The data stored at a 
knot, and the algorithm used for interpolation between 
knots, depends on the knot type. We provide several knot 
types commonly used in prior systems, including stepped, 
linear, Bezier, Hermite, b-spline, cardinal, TCB and tau. For 
Bezier and Hermite knots, we provide left- and right-tangent 
handles that indicate the left and right derivatives at the knot. 
Interpolating a spline segment between knots of dissimilar 
type involves a two-step interpolation: first we interpolate 
the segment twice, once as each spline type; then we 
interpolate between these two splines. 

0243 The information we provide in specifying channel 
data includes: the path to the avar, the layer in which the 
channel resides, the curve parameter at which each knot 
occurs, the value of each knot and any knot-type-specific 
parameters (per knot). The parameters for each knot type are 
given in Table 2 below. We may optionally also specify the 
layer set (Section 5.4) to which the layer belongs. 
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TABLE 2 

Knot Types and Associated Parameters 

Knot Type Code Parameter List 

Stepped D empty 
Linear L empty 
Bezier B Left- and right-handle length and derivative 
Hermite H Left- and right-handle length and derivative 
B-spline S empty 
Cardinal C tension (tension = 0.5 yields Catmull-Rom) 
TCB T tension, continuity, bias (Kochanek-Bartels) 
Tau U tension, continuity 

0244 Statements within an animation file define the 
Scope of a particular avar, select which layer is being 
referenced, or provide the actual knot data. The format is a 
subset of that described in Section 2.1, with the additions of 
a “Layer layername' statement for scoping by layer and knot 
statements of the form “u: knot-code value parameter-list'. 
Layers and Scene hierarchy are scoped independently, that 
is, “Layer C Model M Avar tX {...}}}” is equivalent to 
“Model M Layer C {Avar tx {...}}}”, “Model M Avar 
tX Layer C {...}}}”, “Avar/M/tx Layer C {...}}'', and 
So forth. An example kinematic animation data file is shown 
below in Listing 2. More particularly, Listing 2 is for 
kinematic motion channels for five avars; “/Greg/LArm/ 
wristRot' is a quaternion-valued avar (with an extra “spin' 
parameter at the end of each knot statement), the others are 
Scalar-valued. 

Listing 2 

f* Reflex cuesheet version 0.3 
* Auto-generated by Reflex dev build Jul 16 2003 18:23:58 
* User mjo on 7/21/03 at 12:20 PM 
: 

* File: Users/mjoshots/Dive.cue 
* 
Layer “Up-down arc { 
Model Greg { 

Part LArm { 
Avar ikGoal tX { 

30: B-O.O2O3 O.OS O.OS O O 
47: L. O.O142 
56: L. O.2SO6 

Avar ikGoal ty { 
30: B -0.0275 O.OS 0.08O1 O.12 O.12 
47: B 0.4219 O.O82 0.3912 0.1511. O.1511 
56: B 0.1812 O.151. O.151 O.OO21 O.OO21 

Avar ikGoal tz { 
3O: B. O.1243 O.OS O.OS 0.91 0.91 
47: B 0.0903 0.11 O. 11 O.1491.125 
56: B 0.113 O.OS1 O.OS1 O.08 O.O8 

Avar wristRot { 
12: B (0.623, 0.681, 0.2, 0.29) (0,0,0,1) (0,0,0,1) 0.1, 0.05, O 
37: B (0.7799, 0.54, 0.253, 0.18) (0,0,0,1) (0,0,0,1) 0.05 0.010 
84: L (0.578, 0.6356, 0.4459, 0.2512) 0 

Avartz { 
43: B O O.OS O.OS OO 
SS: B 2.3851 0.4622 O.339S O O 
63: B 0.4347 O.O1 O.OS O O 
64: B O.S3O3 O.OS O.OS O O 
66: B 0.1788 O.OS O.OS O O 
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-continued 

Listing 2 

71: B 0.3649 O.OS O.OS OO 

f* END OF CUE DATA: 

0245. As mentioned in Section 2.1.3, the animation 
specification syntax described above is not properly a dis 
tinct language from the modeling language of Section 2.1. In 
fact, animation may be specified within or alongside general 
model code by scoping layers and associated knot lists 
within Avar node declarations, as shown in Listing 3 below. 

Listing 3 

#includeonce 'std defs.m. 
Model Bottle 
{ 

StandardModelTransforms xf: 
Joint root.Joint (xf); 
f* Specify bottle radii at various us: u=0 at bottom, u=1 at top. 
* Note this restricts us to a shape that does not bend back on 
* itself. A better shape could be had by using a point-valued 
* avar and from that driving the Revolve node directly. 
: 

* We pass param=nil so the avar is not time-driven. 

Avar radii (param=nil) { 
Layer “Construction { 

f* u: knot-type value params */ 
O.OOO: B. O.OO O.OS O.OS O.O.O.O 
O.O10: B 3.97 O.OS O.OS O.O.O.O 
O.O70: B 4.OO O.OS O.OS O.O.O.O 
O.400: B 4.OO O.OS O.OS O.O.O.O 
O.7SO: B 2.50 O.OS O.OS O.O.O.O 
O.930: B 2.20 O.OS O.OS O.O.O.O 
O.940: B 2.25 O.OS O.OS O.O.O.O 
O.990: B 2.25 O.OS O.OS O.O.O.O 
1.OOO: B. O.OO O.OS O.OS O.O.O.O 

f* Build mesh surface-of-revolution. 
real height=10; 
Curve3D profile (umin-O, umax=1, x=radii, y=uheight, Z=0); 
Revolve revolve (profile, y); 
f* Generate surface from mesh. * 
Material (“glass'); 
Surface (revolve); 

3. Ghosts 

0246. In addition to the normal rendering of geometry 
described in Section 1.10, we optionally draw geometry as 
it would be posed at alternate times t, or with alternate 
animation variable settings, translucently into the scene as 
ghosted geometry. Normally only the “active' model (the 
model containing the active node) is drawn ghosted, how 
ever the user may override this by specifying particular 
geometry to include in the ghosted renders. 

0247 The user may specify one or more arbitrary times 
at which to draw a ghost. Ghosts may be drawn at regular 
intervals in time, for example: "on 24's', that is, once-per 
second for a 24-frames-per-second (fps) animation, as 
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shown in FIG. 8b. Ghosts may be drawn at “knots', or 
keyframed values, in the animation (Section 4, FIG. 8a). 
Ghosts may be drawn at designated “key poses’ as defined 
by user-specified time markers associated with sections of 
geometry. Ghosts may be drawn at a particular motion path 
knot during interactive manipulation of that knot (Section 4. 
FIG. 8c). In some implementations, the user may set a 
preference to have Such manipulation ghosts shown (1) 
never, (2) momentarily during interactive manipulation, or 
(3) always when one or more path knots are selected. Other 
preferences are possible. Several consecutive ghosts may be 
drawn during adjustment of knot interpolation rates, such as 
while the user is dragging frame-timing beads along the 
motion path or manipulating path knot tangent handles 
(Section 4.2.4). Rendering ghosts at alternative times is 
accomplished by performing a Render pass over the speci 
fied nodes after (1) setting the global animation clock to the 
ghost time, and (2) rendering the ghosts using a non-opaque 
color (alpha <1.0) with OpenGL or equivalent blending. 
0248 Ghosts may be shown to assist in comparing alter 
native animation, specifically with differing sets of enabled 
layers (Section 5). We can do this by rendering the scene 
once normally, then adjusting which layers are enabled, and 
then rendering the ghosted nodes a second time. Because 
changing enabled layers invalidates the affected portion of 
our expression graph, the ghosted nodes will be rendered 
under the alternative layer setup. 
0249 User controls over ghost rendering include: ghost 
opacity (“alpha'), illumination mode (whether to perform 
per-vertex lighting computations or use constant shading), 
fade rate (ghosts may fade in opacity away from the current 
time, as shown in FIG. 8b), and draw style (ghosts may be 
drawn as Surfaces or 'stick-figure’ skeletons). A special 
“Doppler shift' mode colors ghosts at times earlier than the 
current time differently than ghosts later than the current 
time (blue-tinted and red-tinted, respectively, in our imple 
mentation). Finally, the user may choose whether or not 
ghosted geometry is selectable via the mouse cursor. By 
default it is not selectable, and clicks on ghosts have the 
same effect as they would if the ghost was not there, for 
example, they will select opaque geometry drawn behind the 
ghost. 
0250 Ghost rendering follows any distortions of the 
motion path as described in Section 4.1.2 and shown in 
FIGS. 9a-9C. This is accomplished simply by pre-multiply 
ing the ghost concatenated transform matrix (CTM) by the 
path distortion transforms in Section 4. Our ability to rapidly 
render ghosts across multiple animation times and layer 
settings is enabled by the temporal caching scheme 
described in Section 1. 

4. Motion Paths 

0251. In this Section, we describe the use of motion paths 
for visualizing and controlling the movement of articulated 
and deformable bodies. A number of animation systems 
today are able to display a curve through 3D space indicating 
the path followed by an object moving through that space. 
We refer to such a space curve as a motion path. Some of 
these systems also provide user control over the motion path 
by allowing the user to directly manipulate the shape of the 
path, for example, via control points on the path. This 
effectively lets the user specify translation, and possibly 
rotation, of an entire object traveling through space by 
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manipulating the path of the object directly. Unlike previous 
systems, we extend this motion path representation by 
providing control of articulated bodies and deformable sur 
faces, allowing not only the path of the whole object to be 
viewed and manipulated, but allowing changes in the shape 
of the object itself to be viewed and manipulated (FIGS. 
8a-8c and 9a-9C). 
0252) Some notable features of our technique are that it 

is very fast due to temporal caching; it is flexible enough to 
control any type of motion, including rotation, translation, 
and Scaling of and within articulated bodies, Surface defor 
mations, and global deformations; and the reference point 
through which the motion path is drawn, and to which refers 
user manipulation of the path, may be any point on or 
relative to the surface. 

4.1 Visualization 

4.1.1 Path Shape 
0253) Our technique for implementing motion paths 
relies on temporal caching within our expression graph 
(refer to Section 1). A user may specify any reference point 
on any surface in the 3D scene by a number of means (for 
example, by clicking directly on that surface while depress 
ing a designated key on the keyboard). To draw a motion 
path indicating where that reference point on the Surface 
moves through space over time, we compute where in 
world-space (i.e. global) coordinates that point is across 
some series of discreet sample times, and connect these 
points with line segments. We render these line segments as 
a connected polyline, giving the appearance of a curve 
through space. Note that we define "curve herein to include 
straight line segments. Varying the spacing between time 
samples allows us to produce a smooth curve without 
unnecessary detail; the adaptive method for computing this 
spacing is described below. What remains is to describe how 
we compute the 3D position of the reference point at any 
given time. For simplicity we describe this assuming the 
reference point lies on the surface; note however that the 
reference point could as easily lie off the surface: all that 
may be required is that we know its position relative to the 
local Surface coordinate system. 
0254 The position of any point on a surface is governed 
by the cumulative effect of a series of mathematical opera 
tions defined by our expression graph. We distinguish here 
two classes of cumulative effect: (1) rigid and (2) non-rigid 
(refer to Section 1.10). In the first case of concatenated rigid 
transformations, the position of the reference point Pef may 
be represented as a 3D point P in the pre-transform (local 
or body) coordinate system of the Surface containing that 
point. The local coordinate system itself is defined by the 
4x4 Concatenated Transformation Matrix (CTM) Cr with 
which the Surface is drawn. Computing the reference point 
position at any time t involves transforming P. by the 
value of Cratt. C(t) is available to the Surface node at 
its CTM input (refer to Sections 1.9 and 1.18). We auto 
matically enable temporal caching of the CTM for a surface 
through which we are drawing a motion path (refer to 
Section 1.5). Thus we approximate the world-space position 
at time t of a reference point lying on a Surface as: 

where p is the cache lookup operator for the expression 
node output connected to the CTM input of the surface. 
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0255 In the second case of point motion governed by 
non-rigid deformations, we are faced with one of three 
alternatives. First, we may regard the deformations as being 
“nearly rigid’, and compute the point motion as above. 
Second, if we desire an accurate representation of the motion 
under a Surface deformation, we apply the deformation to 
the reference points. Let Dr be the time-varying function 
that maps points to their position under the Surface defor 
mation, then: 

0256 Finally, if we represent the motion of a point under 
a global, rather than Surface-relative, deformation, we pass 
transformed points through the corresponding Dissal func 
tion: 

Per(t)-Delobali?t, Csurf(t)Plocal)-Delobal (t, PM(Plocal). 
0257 For complex motion involving a mixture of rigid 
transformation, Surface deformation and global deformation, 
we may combine these operations as needed. 
0258. The motion path polyline itself is represented in 
our expression graph as a MotionPath node (a Subclass of the 
Glyph node type, see Section 1.18), which has among its 
inputs the object or surface to which the reference point 
belongs as well as the Surface-relative position of that point. 
Thus we only recompute the motion path as necessary by 
changes in the reference point position (due to the user 
specifying a new reference point) or by changes to the 
transformations and deformations affecting the surface (due 
to user changes to the underlying animation). 
4.1.2 Path Display Alternatives 
0259. In complex scenes the motion path can become 
difficult to see and understand clearly. This is particularly 
true when the path is tightly bunched: it may begin to 
resemble a ball of yarn. We have several options available 
for improving the display of the path in Such circumstances. 

0260. When fine detail of the path is difficult to discern, 
the user may enable path dilation (also referred to as path 
magnification). This enlarges, or dilates, the path about some 
reference point in space. We accomplish this by translating 
the points of the path polyline so the dilation center sits at 
the origin, Scaling the points by a user-specified dilation 
factor, and then translating them back: 

Pilatea(t)=TSTCu(t)Picar-T'ST'McPeca 
where T is the transformation that translates the dilation 
center to the origin, and S scales uniformly by the dilation 
factor. By default we wish the path to still pass through the 
target surface at the current frame, for which we provide a 
default mode in which the path target point is the dilation 
center. In this mode, when we play the animation and the 
target point moves in world space, the path will move with 
it since the dilation remains centered about the target point. 
0261) When the path becomes difficult to follow because 

it doubles back over itself repeatedly (the ball-of-yarn 
problem), the user may enable the path tickertape option (see 
FIGS. 9a-9c and 10a–10b). This has the effect of stretching 
the motion path out in time within the 3D world space by 
mapping time to a 3D vector in that space. The direction of 
the vector controls the direction in which we stretch the path, 
and the magnitude of the vector controls how much the path 
is stretched. To draw the path in this mode, we translate each 
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point in world-space by the tickertaping vector V scaled by 
an amount that increases with t: 

kept--how) V+Cu(t)Pears(t-tow)V+Mc 
local 

0262 Note that the path sample point at t=t is unaf 
fected by tickertaping; therefore the path continues to pass 
through the target Surface/target point at the current frame, 
and when the animation is played the path will seemingly 
flow through space in the direction opposite the tickertaping 
vector so as to keep the path correctly positioned on a 
moving target surface (FIGS. 10a and 10b). 
0263 FIGS. 7a-7c are screenshots illustrating manipu 
lators for controlling dilation and tickertape. Sometimes 
motion higher up an articulated hierarchy makes it difficult 
to visualize movement at the level in which we are inter 
ested. For example, we wish to view the path of the left arm 
Swing of a character as the character walks across the screen. 
The path will travel across the screen due to the motion of 
the character; however, we may wish to see the path of the 
arm Swing in isolation, without the effect of the cross-screen 
movement. We allow the user to specify any reference node 
relative to which to draw the path. In this example, the user 
might choose to draw the path relative to the left shoulder 
joint or to the root joint (e.g., the hips) of the character. We 
implement this by transforming path sample points into the 
coordinate space of the reference node before plotting the 
path polyline: 

Prelative(I)-Creference "(t)Curr(t)flocal Preference Mct) 
Psurf Mofocal 

in the case of rigid-body transformations, and we make an 
analogous extension for the non-rigid cases. Here we will 
cache the inverse CTM of the reference surface Ceres', 
and pers,' is the corresponding cache lookup operator. 
Note that this does not limit us to reference nodes in the 
scene hierarchy above the motion path target Surface; the 
path may be drawn relative to any node in the 3D scene. If 
we specify the path be drawn relative to the target surface 
itself, the displayed path will show the motion due only to 
deformations of that surface. 

0264. One particularly useful application of this is to 
draw the path relative to the camera when the camera we are 
looking through is moving. This causes the path to indicate 
how the target point moves within the camera view, rather 
than through world space. This is useful both for animated 
“shot' cameras and for attached “detail” cameras that move 
with the target Surface, and we provide hotkeys for enabling 
these modes. 

0265. To improve visibility of the path over different 
colored backgrounds, and to help in distinguishing among 
multiple paths, the user may specify a color for the path. The 
user may also choose to have the path drawn in two 
alternating colors (colorStriping), with the color changing 
over some interval of t (time-striping, FIG. 8b), or at every 
knot (see Section 4.1.3 below), or at user specified markers 
(also referred to as poses). The user may alternatively 
choose to enable the Doppler shift mode, where the section 
of the path over samples preceding twis drawn in one color 
and the section following t is drawn in a different color. 
Or the user may elect to have the path fade out at sample 
points progressively farther in time from t in the same 
way ghosts may be faded in and out through time (Section 
3, FIG. 8b). 
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0266 Sometimes it may be difficult to see the path 
because it is obscured by foreground geometry. The path 
bleed-through mode causes the path polyline to show 
through obscuring objects as though they were translucent 
(FIG. 8a). We accomplish this by rendering the path twice, 
first fully opaque (that is, with “alpha' or opacity=1.0) with 
depth culling enabled, then a second time translucently (that 
is, with a user-specified opacity <1.0) after all other scene 
geometry has been drawn. 
4.1.3 Path Decorations 

0267 In addition to the polyline of the path itself, we 
display several other pieces of information along the motion 
path. At sample points that fall on integral (whole number) 
frames, we optionally draw a small blue mark or bead (FIG. 
8a). This gives an indication of the rate of movement over 
a section of the path: where frame beads are drawn close 
together, the motion will be slow; where the beads are far 
apart, the motion will be fast. The user can click and drag 
with the mouse cursor on these beads to adjust interpolation 
rates (Section 4.2). This provides visualization and control 
over the traditional animation concepts of ease-in and ease 
Out. 

0268. The user may click on frame beads or drag a 
selection box around those beads with the mouse cursor to 
select parameter values, for example, to select the corre 
sponding shot times when the avar input parameter t is time. 
Subsequent program commands involving time will operate 
on the selected times. Selecting two or more contiguous 
frame beads selects a continuous parameter range. For 
example, the user may select a time range and then choose 
Copy from the application menus; this will copy animation 
of the active nodes within the selected time range. This 
animation may be subsequently pasted over a different time 
range or on a different group of geometry. 
0269. At sample points that fall on times at which active 
avars have knots (Sections 1.18.1 and 2.3) we draw a yellow 
diamond shape (FIG. 8a). This indicates the timing and 
value of animation keys. Timing is indicated both by the 
position of the knot along the path and explicitly by dis 
playing next to the knot the frame number at which the knot 
occurs. Value is indicated by the position of the knot in 3D 
space and, for selected knots only, optionally explicitly by 
displaying next to the knot the numerical value(s) specified 
in the associated avar(s). Only knots for unlocked degrees of 
freedom within the model are shown. For example, when 
performing an axis-constrained manipulation (e.g., dragging 
on an axis-constraint handle of a manipulator widget or 
holding down an axis-constraint hotkey), only knots for the 
unconstrained avars are displayed on the motion path. The 
user can click and drag with the mouse cursor on a knot to 
adjust the knot value or timing (Section 4.2). We optionally 
display a text label next to the motion path knot indicating 
the names of the underlying avars possessing knots at that 
knot time (along with numerical values for those avars, as 
described above). 
0270 Knots that result in changes to the effective graph 
topology (for example, knots that enable or disable inverse 
kinematics, attaches, or hierarchy inversions, or that change 
graph Switch-node settings) display on the motion path as a 
yellow diamond with a yellow line outline. 
0271 The user may select a knot on the motion path (e.g., 
by clicking on the knot with the mouse cursor or by dragging 
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a selection rectangle over the knot). Selected motion-path 
knots that represent non-linear knots in the underlying avars 
will display path-tangency handles. The length and direction 
of these handles reflect the tangent-handle settings for the 
underlying avar knots, and direct-manipulating these path 
handles will modify the avar knot handles and thereby the 
motion path shape (Section 4.2). We compute the length and 
direction of the motion path handles by differentiating the 
motion path curve at the knot (Section 1.14). When one or 
more of the underlying avar knots has broken tangent 
handles (Sections 1.19.1 and 2.3), we draw the motion path 
knot as an orange, rather than yellow, diamond shape (FIGS. 
8a–8c), and the path knot handles will themselves be drawn 
and behave in a “broken fashion, that is, the left and right 
handles will be independent. 

0272. When tangent handles are drawn, we optionally 
display a rotation twist indicator on the local-coordinate 
system +Z axis-line extending to the knot that indicates the 
direction of a perpendicular axis (e.g., +X or +Y); this allows 
visualization of how the articulation twists along its central 
(i.e., Z-) axis. The twist indicator can be used as a direct 
manipulator to control interpolation of axial twist between 
motion path knots (Section 4.2.4). 
0273. On the tangent handles themselves we optionally 
display a sliding hashmark that indicates the rate at which 
the motion approaches (for the left handle) and departs (right 
handle) the path knot. The farther the marker is up the handle 
away from the knot, the faster the motion will move; these 
marks can be direct-manipulated via the mouse cursor to 
slide them up and down the handle and thereby control the 
motion rate (Section 4.2). This provides interpolation-rate 
visualization and control of ease-in and ease-out analogous 
to that provided by the frame-bead spacing described above. 
The user is free to have multiple paths drawn, each through 
a different piece of geometry or through a different target 
point on the same geometry. These multiple paths may be 
distinguished by setting each to a different color and/or by 
displaying textual annotations alongside each path that indi 
cate the target Surface name, the controlled bone or joint 
name, or a user-specified motion-path name. 

0274 FIG. 8a is a screenshot of a user interface 800 for 
an exemplary 3D CG animation system. In the example 
shown, the user interface 800 includes a view window 801 
for presenting a display environment containing an animated 
body 802. For this particular example, the animated body 
802 is a bendable-bottle model. Other bodies are possible. 
The term “body' includes but is not limited to: rigid objects, 
models, wire structures, articulated bodies, soft bodies, 
bodies with deformable surfaces, etc. 

0275 A motion path 804 is displayed in the display 
environment 801 with knots 806 and frame beads 808. The 
motion path 804 includes knots 806 for the active avar 
“rot 2 at frames 0, 15, 30, 62, and 98. Motion tangents are 
broken at frame 15. The knot 806b at frame 30 is selected 
and its (continuous, non-broken) handles 807 displayed. 
Ghosts 810 are drawn at each of these keyframes. We can see 
motion path bleed-through has been enabled, as the motion 
path 804 translucently shows through where it passes behind 
the bottle Surface between frames 87 and 95. We see marker 
lines 813a, . . . , 813d at the keyframes in the timeline 809 
below the view window 801, as well as a selected line 815 
for the knot at frame 30 and a current-frame marker 817 at 



US 2006/0274070 A1 

frame five; these lines are also drawn on the scrollbar 812 
immediately below the timeline 809. The range bar 811 
below the scrollbar 812 sets the time range for which the 
motion path 804 will be drawn. 
0276 FIG. 8b is a screenshot of another bottle animation 
showing time-fading ghosts at 1-second intervals and 
motion path colorstriping. In the example shown, the active 
avar 'rot 2 has knots at frames 0, 54, 71, and 94. The knot 
819 at frame 54 has broken tangents. Frame beads are 
hidden and colorStriping has been enabled. The colorStriping 
interval on the motion path 821 matches the colorstriping 
interval on the timeline 809 below the view window 801. 
Ghosts 814a, . . . , 814e, are drawn at one-second intervals; 
we can see their exact timing indicated by marker lines 
817a, . . . .817e, in the timeline 809 and timeline scrollbar 
812. Ghost fading is enabled, with ghosts 814a. . . . .814e, 
fading out away from the current frame eight. 
0277 FIG. 8c is a screenshot of another bottle animation 
showing a manipulation ghost 822 with an archall manipu 
lator 816. In the example shown, the user has selected the 
knot 820 at frame 94. The absence of tangent handles 
indicates this is a linear knot (or almost-linear knot with very 
short tangent handles). The manipulation ghost 822 has been 
created automatically at frame 94. The box 823 around the 
active avar name “rot 2 confirms there is a knot at the 
selected time. The round “archall' manipulator 816 has been 
displayed around the “Bottle” models joint 2 node; it is 
drawn with its Y-axis constraint-ring highlighted to indicate 
the user is performing axis-constrained rotation about the 
joint-local Y-axis, perhaps because the user is holding down 
an axis-constraint hotkey or has initiated dragging by click 
ing directly on the Y-axis constraint-ring. The even spacing 
of frame beads 824 along the entire motion path 818 
indicates that the rate of motion along the motion path 818 
will be uniform, with no ease-in or ease-out. 
0278 FIGS. 9a–9a show a character 902 walking in 
place (he does not have any forward motion through space). 
In FIG. 9a, we observe the motion path902 of the end of the 
nose: it is an up-and-down cycle that overlies itself. A ghost 
904 is shown at every keyframe. In FIG. 9b, the user has 
enabled motion path tickertaping: now the motion path 902 
is stretched sideways and we can visualize the complete 
movement cycle. The ghosts 904 are displaced in space 
along with the corresponding sample points on the motion 
path902. In FIG.9c, the user has orbited the camera to look 
from the front, and has swung the tickertape direction to 
keep the motion path 902 stretched out to the right side; she 
has also increased the magnitude of the tickertape Vector So 
the motion path 902 is more stretched out. The ghosts 904 
remain correctly positioned relative to the path knots 906. 
0279. In FIG. 10a, the user has selected the root joint 
1002 of the model 1000 and has tickertaping enabled. The 
bones of the underlying skeleton 1004 are translucently 
overlaid over the model surface 1006. At frame Zero, we can 
see the motion path sample point (which happens to be at a 
knot) at frame Zero lies at the root joint 1002; the rest of the 
motion path 1001 stretches off in the tickertaping direction. 
In FIG. 10b, the user has advanced to frame nine; now the 
motion path 1001 has shifted laterally so that frame 9 on the 
motion path 1001 lies at the root joint 1002. 
0280 FIG. 11 is a flow diagram of an exemplary motion 
path manipulation process 1100. In some implementations, 
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the process 1100 begins by providing a display environment 
for presentation on a display device (1102). The display 
environment can be a 2D or 3D virtual environment pro 
vided in a view window of a user interface that includes a 
scene having one or more graphical objects. A body or 
model is provided for display in the display environment 
(1104). The body can be a rigid body, an articulated body, a 
body with one or more deformable surfaces, or any combi 
nation thereof. An example of an articulated body is the 
walking character shown in FIGS. 9a-9c and 10a–10b. An 
example of a soft body is the bendable-bottle shown in 
FIGS. 8a–8c. A motion path can defined for a first portion of 
the body relative to a second portion of the body or relative 
to a coordinate system associated with the display environ 
ment (1106). A control is provided in the display environ 
ment for manipulating the motion path (1108). The control 
can be a knot, as described with respect to FIG. 8a. Other 
controls are possible. The path can be manipulated in 
response to a user interaction with the control (1110). For 
example, the user can use knots to change the starting and 
end positions of the motion path, change the shape of the 
motion path, etc. Other motion path manipulations have 
been previously described with respect to other figs. 
4.1.4 Adaptive Path Resolution and Range 
0281 From the above description of path rendering, it 
should be clear that optimally we want to plot the position 
of the path only for values of t that cause valid cache 
mappings; in general we pick t's that fall centered within our 
cache lines. However, in Some circumstances we may desire 
finer or coarser temporal resolution than the cache lines 
provide. 
0282. When an object is moving very slowly in space, the 
path will tend to change little between Subsequent sample 
points. Rather than drawing a polyline through every sample 
point, we skip points that vary little in screen space from 
neighboring samples. We do this locally in t, starting with a 
coarse path and refining segments of the path whose mid 
points differ from a straight-line interpolation of the segment 
endpoints by greater than Some screen-space error threshold. 
We provide user control over the error threshold: selecting 
a high threshold causes the path to be less accurate but 
render faster. 

0283 When an object is moving very quickly through 
space, the path will tend to become stretched out. In such 
cases, sampling P(t) at each cache line may not provide an 
accurate representation of object motion. For the greater cost 
of evaluating our expression graph at non-cached ts, we 
may provide finer-grained sampling of the motion. We 
provide a user option to enable “accurate paths: under this 
option we use a screen-space error metric to determine 
whether and how far we should locally refine any segment 
of the path beyond the cache-sampling rate. 

0284 We optionally scale the path subdivision threshold 
ess by the motion path Level of Detail lod, so that the path 
becomes less (or more) accurate as the LOD of the path 
decreases (or increases) (see Section 1.7). 
0285 Because rendering a very long path (i.e., one that 
extends across a wide range oft) can be slow, we optionally 
increase the error threshold as t diverges from the global 
animation clock tw: 

ethresh(t)=f(t-t)*lodethresh 
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giving us a time-varying thresholde's(t), where f(X)=1 at 
X=0 and f(x) increases as the magnitude of X increases. We 
have found that simply: 

max min 

0286 often works well, with c providing linear control 
over the rate of accuracy degradation away from t. This 
procedure yields a path that is accurate around the "current 
time' but becomes progressively less accurate farther from 
the current time. We automatically disable this option (i.e., 
set f(X)=1) whenever the global animation clock is dynami 
cally changing, such as when the user plays the animation. 
0287 We also allow the user to specify the range of 
parameter values tit over which the motion path will 
be drawn; specifying a narrower interval both makes the 
motion path render faster and reduces clutter on the screen. 
The green range-bar seen at the bottom of the timeline in 
FIGS. 8a–8c provides one means of controlling the path 
range. We optionally also display in the camera view range 
manipulator tabs at either end of the motion path itself: 
dragging on one of these tabs or selecting a tab and typing 
in a new time adjusts the corresponding setting for loop start 
or end times. 

4.1.5 Automatic Path Placement Option 
0288 When manipulating an object, we often want a 
motion path to be drawn through that object. In the case of 
an articulated body consisting of bones connected by rota 
tional joints, it is it often is convenient for a motion path to 
be drawn through the end of the manipulated bone. To 
facilitate this, we provide the option of automatic path 
placement. With this option enabled, selecting any scene 
object causes a motion path to be created drawn through the 
root of that object. Selecting a part (such as a bone) within 
an articulated object causes a path to be drawn through the 
distal end of that part. Selecting a model (Such as a char 
acter) causes a path to be drawn through the rootjoint of that 
model. 

4.2 Manipulation 

0289. In addition to showing us the path and timing of 
motion, our motion path provides full direct-manipulation 
control over motion. The user can click and drag with the 
mouse cursor on a knot or its handles to adjust knot value, 
timing, motion tangents, twist rates and interpolation rates. 
0290. In general, manipulating motion via the path 
involves inverting the mechanism that is responsible for the 
motion being what it is, that is, the mathematical and 
procedural computations that map from changing avars to 
3D movement; these computations are exactly those repre 
sented by the relevant Subsections of our expression graph. 
This inversion of the graph computations allows us to map 
from desired changes in the path shape and timing to the 
necessary changes to be made in the underlying avars. In 
Some cases the forward mapping from avar to motion will be 
non-invertible; in Such cases a “pseudo-inversion' is readily 
available from our expression graph, as detailed below. 
0291. In addition to knowing what changes need to be 
made to avars, we also track dependencies arising from this 
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control mechanism. Changes to the motion path cause 
dependent avars to be adjusted. Adjustment of avar knots has 
the side effect of pushing dirty on the avar outputs over the 
interval of support of the knots. This push will recursively 
push dirty through the articulation and/or deformation hier 
archies, ultimately pushing the active Surface. The motion 
path itself is a child of the active surface, and so it too will 
receive the push that it originated. Thus manipulation of the 
motion path forces us to re-evaluate and redraw the Surface 
and, by extension, the motion path itself. This straightfor 
ward dependency-based reciprocal invalidation of Surface 
and motion path is enabled by our toleration of cycles within 
the expression graph. 

0292 Avar discovery is the process of traversing the 
graph and enumerating the avars up-graph of a particular 
node. This avar list will define the degrees-of-freedom that 
exist in animating that node. Avar discovery is normally 
done at model unroll time, that is, when the model is first 
instantiated in core memory from disk at the beginning of an 
animation session. However, we can also perform avar 
discovery on a just-in-time basis, deferring discovery for 
every node until the first time that node is made active. Static 
changes in graph topology (for example, creating or deleting 
nodes or adding or removing edges) may require that we 
rediscover upstream avars. Dynamic topology changes (due 
to Switches, inverse kinematics state changes, attaches, and 
hierarchy inversions) may not require rediscovery however, 
we simply maintain multiple lists for the upstream avars of 
affected nodes, and use whichever list is currently applicable 
based on the current topology. This is possible because these 
dynamic topology changes are discrete changes in which the 
alternative topologies are fixed and thus enumeratable at 
unroll time. 

4.2.1 Graph Inversion 

0293. In Section 1, we detailed how our expression graph 
represents the computations and dependencies underlying 
our 3D scene. We identified that this is a directed graph, that 
is, edges in our graph have direction, and that the direction 
indicates both the conceptual flow of information and (in the 
opposite direction) computational dependency. We also dis 
cussed (in Section 1.17) how we can locally invert a 
Subgraph within our expression graph by inverting each 
node and Switching the edge directions. Recalling from that 
section, nominally it falls upon each node type to define its 
own inverse; however, the system can establish a local 
inverse (a Jacobian) for nodes that fail to define their inverse 
function. The Jacobian is not a true inverse because it only 
is valid around a local region of parameter space. 

0294. Here we use this same mechanism to map desired 
changes in knot position to changes in the animation control 
variables (avars). We recall that the forward computation 
defined by the expression graph maps avar settings to scene 
configurations. Said another way, the forward expression 
graph maps from avar parameter space to 3D configuration 
space. By inverting (or pseudo-inverting) the expression 
graph, as detailed in Section 1.17, we can map from 3D 
configuration space to avar parameter space. Specifically, we 
can map from local changes in motion-path knot position to 
corresponding changes in the underlying avars. This local 
inverse mapping is precisely what the Jacobian defines. For 
optimization of pseudo-inversion across complex graph 
structures involving deformations and similar “expensive' 
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operations, we compute the composite Jacobian across the 
subgraph using the method of Section 1.17. This is conve 
nient when the user is direct-manipulating a motion path 
dependent upon expensive articulations and deformations. 

0295). In certain circumstances, the local pseudo-inver 
sion provided by Section 1.17 is not capable of successfully 
adjusting avar parameters in a way that would achieve the 
desired change to motion-path knot position, even though 
Such a change is possible. This occurs when the configura 
tion becomes stuck in local minima from which our local 
view of the inverse is notable to escape. Such circumstances 
mostly arise only in pathological graph configurations, so 
they do not overly concern us here. When they do arise, the 
user will rely on other manipulation methods, such as direct 
manipulation of skeletal joints and bones or adjustment of 
the underlying avars themselves, to escape the local minima. 

0296. In many cases we can avoid issues of local minima 
by ensuring our nodes define globally valid inverse opera 
tors. In some cases this won’t be possible. We can employ 
an automatic stochastic technique for escaping local 
minima. This is accomplished simply by injecting noise into 
the avar parameters in the hope that a “lucky' random 
change to an avar will allow us to escape the local minimum. 
In practice, generally we have found it to be more conve 
nient to allow the user to direct-manipulate the skeleton or 
other geometry out of the local minimum. Because manipu 
lation of the motion path knots, the skeleton or geometry 
itself, and the actual avars all affect the same underlying 
representation (the avars), the user may freely move between 
these control mechanisms, for example by “untwisting or 
otherwise manipulating geometry directly when the motion 
path knots get “stuck'. Nonetheless, we do provide stochas 
tic escape of local minima as a user option. 
4.2.2 Knot Value Adjustment 
0297 Each motion path knot represents some non-empty 
set of knots on unlocked active avars (Section 4.1.3). When 
the user drags with the mouse-cursor on a motion-path knot, 
we wish to adjust the corresponding avar knots as necessary 
to keep the motion-path knot under the cursor. In general, as 
described in Section 4.2.1 and elsewhere above, this is an 
underconstrained problem (that is, there are multiple “good 
Solutions), although in Some situations it will be overcon 
strained (there is no solution). We find a “best” solution as 
follows. 

0298 First, we need to identify a point in 3-space to 
which we want the motion path knot to move. The mouse 
position defines a ray in 3-space that begins at the camera 
space origin and extends through the projection of the mouse 
cursor on the screen plane. We choose as our target point for 
the motion path knot the intersection of this ray with the 
plane passing through the current motion path knot position 
and perpendicular to the camera forward (-Z) axis. Thus the 
current knot position and the target knot position both lie in 
the same X-Y plane. Subtracting the current position from 
the target position gives us a goal vector in that plane. We 
now need to find the change to the active unlocked avars that 
produces movement in the path reference point that best 
approximates this vector. 

0299. In the simplest case we will have an explicitly 
invertible path available through the expression subgraph 
that Subsumes the active avars and the path target Surface. In 
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this case it is straightforward to solve for the necessary avar 
changes by passing our goal vector through the inverted 
graph, yielding a vector of avar deltas. These deltas are 
applied to the avars as described in Section 5. 

0300. In another simple case, we do not have an explicitly 
invertible path but the composite Jacobian for this subgraph 
is orthogonal with respect to the control avars. Here it is 
straightforward to transform the vector through the Jacobian 
and extract the necessary avar deltas. These deltas are then 
applied as described in Section 5. We then examine how 
closely the motion path knot approaches the desired posi 
tion, and iterate until we reach a preset error bound. This 
iteration is independent of frame rendering (see Sections 1.6 
and 1.8) and therefore does not interfere with maintaining 
target rendering rates. However, because we do maintain fast 
update rates, rarely does the mouse move far enough in a 
single update pass that one or two iterations are insufficient 
to achieve the error bound, so we rarely need to iterate 
further. Because we are relying on a gradient descent 
method, we have no problem tolerating overconstrained 
systems; we will find a “good solution, if not the exact 
solution. We deal with local minima as described in Section 
4.2.1 above. 

0301 In more complex cases, the composite Jacobian 
will not be orthogonal and may have degeneracies. The 
system may still be under- or over-constrained. There are a 
number of ways to deal with such systems; we take the 
pragmatic approach of the model specifying preferred avar 
settings (as defined by the avar default values) and limits and 
weighting particular avars as being “more stiff than others, 
which the human designer of the model explicitly defines. 
We iterate as above, but stochastically choose among avars 
to adjust and amounts to adjust them so as to favor changes 
that preferentially move less-stiff avars and keep avars in 
their preferred ranges and near their preferred center values. 
We can use an off-the-shelf constrained optimization solver 
for performing this iteration quickly. Again it is rare for the 
knot target to move So far in a single update pass that we 
need to iterate more than a couple times. This tends to 
happen only in highly non-linear control graphs. Such 
graphs are consequently difficult for us to manipulate via the 
motion path, and users will typically resort to direct manipu 
lation of the geometry or adjustment of the underlying avars 
in controlling these structures. 

0302) When assembling a model for this system, it is 
worth considering how common non-linearities in the 
parameterization of articulation controls may affect natural 
ness of motion-path manipulation. For example, singulari 
ties in Euler rotations can make direct manipulation of the 
motion path awkward in Some situations. We allow users to 
build models using Euler angle or quaternion rotations but 
prefer quaternions because they yield more natural direct 
manipulation. 

0303 We provide several simple ways for users to exer 
cise some control over the constrained solution without 
modifying the underlying model or avar setup. First, the user 
may lock particular avars at will, thereby eliminating cor 
responding degrees-of-freedom in the solution space. The 
most common example of this is using an axis-constraint 
hotkey or manipulation handle to limit control to a single 
avar. For example, rotating an Euler-angle joint by dragging 
on the red (+X) axis constraint ring of the archall will adjust 
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only the rX avar for that joint. In the case of quaternion 
rotations, the system will project the specified rotation onto 
the desired rotational axis, thereby enforcing the axis con 
straint without actually causing any avars to be locked. The 
user may also explicitly lock or unlock any avar. Motion 
path manipulation solutions will honor that lock by not 
considering that avar to be a degree-of-freedom. The motion 
path display reflects this by only showing knots for “free” 
avars (Section 4.1.3). 
0304. The user may also control the constrained solution 
to some extent by adjusting the “stiffness” of the avars (as 
described above). We provide a manipulation mode in which 
clicking and dragging the mouse on a joint or other node 
adjusts the stiffness of avars directly driving that joint. This 
is particularly useful for inverse kinematics Solutions, where 
we prefer a linkage to bend more at one particular joint than 
at another. 

0305 Finally, we may avoid the entire analytic or 
numerical graph inversion process described above by hav 
ing the model explicitly define inverse mappings from 
common manipulations (translation, rotation, Scale, longi 
tudinal bends, etc) to its avars. This is the simplest and in 
many ways most convenient method, but naturally it lacks 
flexibility for exceptional circumstances. Nonetheless, in 
simple models such as jointed skeletons this method may be 
sufficient for most or all avars. 

0306 When the user enables the option to display 
numerical values for the associated avars at selected motion 
path knots, in addition to manipulating a path knot itself, the 
user may edit the numerical labels directly or may drag right 
and left on them to “mung them up and down. 
4.2.3 Manipulator Widgets 
0307. A model may specify supported manipulation 
modes and corresponding manipulation widgets (such as the 
rotation archall shown in FIG. 8c) for use in controlling 
particular sets of avars. The system provides default manipu 
lator widgets for translation, rotation, Scale, shear, bend, 
squash/stretch and similar basic operations. Custom widgets 
may be added as externally defined Glyph nodes through the 
plug-in interface (Section 1.18). All avars can be associated 
with some manipulation mode to be manipulated via the 
mechanism described in Section 4.2.2 above. Avars associ 
ated with a particular mode will be “active' only when that 
mode is selected by the user. 
0308 If no other manipulation style makes sense, avars 
may be designated to manipulate via "munging.” Motion 
path knots associated with Such avars are manipulated by 
mouse cursor drags in screen space; these drags map directly 
to changes in the avar value. For example, in the case of a 
Scalaravar, drags to the left might decrease the value of the 
avar while drags to the right would increase it. Again, it is 
up to the modeler to specify these mappings. 
0309 Inverse kinematics represents a special case of 
direct-manipulation control. Here the control graph has 
already been inverted, and we simply provide direct manipu 
lation of the IK goal. That is, to visualize motion of or 
control the endpoint of an IK chain, one selects the IK goal 
(drawn as a jack” glyph in 3D space). The path is drawn 
through the goal. The goal has simple translation, and 
optionally rotation, avars that may be manipulated through 
motion path knots and manipulator widgets as described 
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above. Relative bend at multi-joint chains may be adjusted 
by modifying the relative stiffness at these joints, as 
described above. Multiple solutions obtained by rotating 
about the longitudinal axis from the IK root to the IK goal 
may be selected among via a 'swing manipulation mode; in 
this mode, dragging on any geometry within the IK chain, or 
on a motion path knot through any Such geometry, rotates 
the IK chain through that solution space. More sophisticated 
IK chains, for example involving non-planar linkages, or 
non-revolute joints, will need to be handled through the 
conventional graph inversion mechanism described above. 
4.2.4 Other Manipulations 
0310. In addition to the ability to reposition motion path 
knots in 3D space, we provide several other manipulation 
controls. For control over rotations only, for example when 
the active node is a spherical joint or the root transform of 
a model, we provide an axial twist control as described in 
Section 4.1.3. This control is a manipulator handle that is 
drawn when tangent handles for a selected path knot are 
drawn. It is drawn from the joint-local Z-axis line, extending 
in a direction orthogonal to that line (e.g., +X or +Y). It 
indicates the axial twist around the local Z-axis. Dragging on 
the handle causes the joint to rotate about that axis. We 
determine the implied spherical quaternion rotation using an 
arcball-style projection of the mouse cursor onto a sphere 
centered at the base of the twist handle. For Euler rotations, 
we then extract the Z-axis rotation from that spherical 
rotation and set only the rz, avar for that joint. For joints 
controlled by quaternion-valued avars, we project the 
spherical rotation onto the local z=0 plane and then convert 
that rz-only rotation back into a quaternion, which we use to 
adjusted the avar. In both cases, the avar is updated as 
described in Section 5. 

0311 Tangency handles at a Bezier or Hermite motion 
path knot at time t indicate the left and right derivatives of 
the path around t. The user may click and drag with the 
mouse cursor on a handle to control the path shape; we need 
to map this control back to the necessary changes in the 
underlying avars. The desired tangent handle direction and 
length specifies a 3D vector; we add that vector, scaled by 
the inverse of the frame rate, to the motion path knot position 
to find the desired position of the path target point at times 
t=t-1/fps (for the left handle) or t'=t--1/fps (for the right 
handle). We pass that target point through the inverse 
expression subgraph in exactly the same way as we do for 
knot position (Sections 4.2.1 and 4.2.2). This gives us 
desired values for each avar at t or t. Taking finite 
differences with the avar Values at t gives us an estimate of 
the desired derivates in each avar, which we use directly to 
set the avar knot tangent handles. Sometimes it will be 
impossible to select a path tangent handle with the mouse 
cursor because the tangent handle is very short and thus 
obscured by the path knot itself. Clicking and dragging on 
the motion path knot while depressing a hotkey (our imple 
mentation uses the Option/Alt key) results in dragging the 
left knot handle. Pulling out tangent handles for a motion 
path knot with underlying linear avar knots converts those 
knots to be Beziers. Normally when dragging a knot tangent 
handle, only that handle is manipulated; the opposing tan 
gent handle will rotate accordingly if the handles are 
“mended” (not “broken, as described above) but its length 
will not change. Dragging a knot tangent handle while 
depressing a hotkey (again we use the Option/Alt key) 
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causes the lengths of both tangent handles to change sym 
metrically (regardless of whether the handles are “broken’): 
the opposite handle length “mirrors” the change in the 
manipulated handle. Thus, when the user "option-drags' on 
a path knot with null tangent handles, not only the left handle 
but the right handle also are pulled out from the knot. There 
are menu items, as well as a hotkey, to “break” and “mend’ 
the tangent handles at the selected motion path knot; these 
actions are applied to the underlying avar knots. Mending 
broken tangent handles causes the right handle to be set to 
match the slope and length of the left handle. Breaking 
tangent handles does not immediately change the slope or 
length of either handle, but allows the handles subsequently 
to be manipulated independently. 

0312 Motion path knots may be retimed by dragging on 
them while depressing a hotkey (the Control key in our 
implementation). Dragging to screen-left decreases the time 
of each underlying avar knot, while dragging to Screen-right 
increases the time of the avar knots. Knots can only be 
retimed in the interval between nearest preceding and Suc 
ceeding path knots. When multiple path knots are selected, 
retiming one path knot similarly retimes the others. That is, 
if path knots at frames 6 and 10 are selected, and the knot 
at frame 6 is retimed to frame 7, then the knot at frame 10 
will be moved to frame 11. Knot times are adjusted to the 
nearest integral (whole number) frame by default, but this 
behavior can be overridden in the preferences or via a hotkey 
during dragging. Retiming a knot while holding an addi 
tional hotkey (Option/Alt in our implementation) causes the 
underlying avar knots to be copied to the new time, rather 
than moved in time. Retiming a number of selected knots 
while holding another hotkey causes the knot times to be 
stretched in time (or, more precisely, dilated about the 
current time), causing the corresponding motion to occur 
more quickly or slowly. 

0313 Depressing a hotkey (the Command key in our 
implementation) while clicking the mouse cursor on a frame 
bead inserts a new knot (i.e., a breakdown) on all active 
avars at the corresponding time. We optionally insert the 
new knots as Bezier knots with tangent handles adjusted to 
preserve the existing shape of the path. We accomplish this 
by differentiating each avar at the frame time and solving for 
the tangent slope and lengths that will preserve this differ 
ential. We adjust the new knot tangent slope and length and 
the proximal tangent lengths of the preceding and Subse 
quent knots. 
0314 Interpolation rate along the path is adjusted in one 
of two ways. First, the user may drag on the frame beads 
displayed along the path. We solve for the change to the 
nearest-knot tangent handle slope and length that will 
approximate the new frame bead position in the same way 
we solve for changes to the tangent handles themselves 
(described above). Second, the user may adjust the interpo 
lation rate slider on the handle itself changes to this are 
mapped directly to the interpolation rate of the underlying 
avar knots. 

0315. During manipulation of knot time and interpolation 
rate, we optionally display multiple ghosts along the time 
interval between the preceding and Subsequent motion path 
knots. These ghosts may be drawn as full ghosted models, as 
minimal skeleton “stick figures of the full model or as 
skeleton stick figures of the subsection of the model articu 
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lation hierarchy being manipulated (that is, the portion of the 
model skeleton from the “active' node to the node through 
which the motion path is drawn). 
0316. It should be clear in this description that the 
motion-path-based manipulation of motion timing and shape 
are orthogonal in our system. That is, a user manipulating 
the motion path may adjust the timing of movement along 
the path independently of the path shape, and Vice versa. 
Furthermore, the motion path display and control mecha 
nism we have described is equally applicable to varied types 
of animated values (e.g., Scalars, points, vectors, quater 
nions, and others) and to arbitrary expression graphs involv 
ing articulated structures, deformable Surfaces, or indeed 
any Turing-expressible computation. It provides real-time 
direct manipulation and visualization fully decoupled from 
frame rendering rates. All this is enabled and facilitated by 
the temporal caching, cycle safety and related features of our 
expression graph described in Section 1. 
5. Animation Layers 
0317. In Section 1.18.1, we described our use of articu 
lated variables, or avars, to provide changing values within 
our expression graph. Here we present the heterogenous, 
multi-layered representation used within these avars; their 
implementation; and associated mechanisms for their use. 
We introduce the idea of layers of motion, analogous to the 
image layers provided in popular image-editing applica 
tions. 

0318. An avar node in our expression graph expresses 
Some function of its scalar input parameter. Often this 
parameter is time, but that need not be the case. So far we 
have said little about how this function is defined. 

0319 Avars are composed of multiple motion channels, 
each of which specifies some aspect of the total avar output 
function. Motion channels are composited together under a 
programmable functional composition, described below. 
Motion channels are organized into layers. A given avar may 
have Zero or one motion channels for each layer. If it has 
Zero channels on a given layer, we say it has no animation 
for that layer. If it has one channel on a given layer, we say 
it has animation for that layer. If an avar has animation for 
any layer, we say that avar is set; otherwise it is unset or 
defaulted. If the output value of an avar varies as its input 
parameter changes, we say the avar is animated; otherwise 
it is constant. 

0320. As described in Section 1.18.1, a given avar may 
have any one of a number of value types. Such as Scalar, 
vector, point, quaternion, Scalar field, or mesh. All motion 
channels within that avar will have the same type. 
0321) At a given time, a single layer is the active layer. 
Direct manipulation, display of knots on the motion path, 
and manipulation of the motion path all involve the active 
layer only, and are only possible when the active layer is a 
kinematic layer (Section 5.2). The user chooses what layer 
is active and may change between active layers at will. 
5.1 Motion Compositing 
0322 There are two components to the channel compo 
sition: (1) a layer-wide compositing operator, and (2) an 
avar-specific layering policy. The compositing operator is 
one of the operators defined by Porter and Duff in T. Porter 
and T. Duff. Compositing Digital Images, Computer Graph 
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ics (Proceedings of SIGGRAPH 84), 18(3):253-259, July 
1984, which article is incorporated by reference herein in its 
entirety. We draw the loose analogy that our notion of 
“layer corresponds to Porter and Duff’s “picture' and our 
“motion channel corresponds to Porter and Duff’s “pixel’. 
Accordingly, we provide the following operators for com 
positing two layers A and B: 

TABLE 3 

Compositing operators, after Porter and Duff 

Operation Name wa WB Interpretation (relative to A) 

clear clear O O erase all animation 
A. replace 1 O replace all underlying animation 
B ignore O 1 disable layer A 
A over B over 1 1 - Cra override specified avars 
B over A under 1 - CE 1 override previously defaulted 

8W8S 

A in B in CB O keep only avars common to both 
layers, overriding previous 
animation 

B in A mask O Ca mask out all but specified avars 
A out B Out 1 - CE O animate only specified avars 

except those that were 
previously animated 

1 - Cia mask out specified avars 
1 - Cra override previously animated 

8W8S 

animate only specified avars, 

B out A exclude O 
A atop B atop CB 

B atop A mask- 1 - CE, CA 
under keep any existing animation in 

those avars 
Axor B Xor 1 - CE 1 - CA eliminate avars animated in both 

layers 
A plus B blend 1 1 blend layers together according 

to channel layering policy 
A plus B add 1 1 blend layers together using an 

additive layering policy 
A plus B multiply 1 1 blend layers together using a 

multiplicative layering policy 

0323 The operation column specifies the Porter-Duff 
compositing operation, name specifies the term we use to 
identify this operation, and w and w (FA and F in 
Porter-Duff) are weighting factors for layers A and B as 
discussed below. We part ways with Porter and Duff in that 
they: (1) pre-multiply pixel values by alpha, while we do not 
similarly pre-scale our motion channels, and (2) in the detail 
that they specify an alpha plane that provides a fractional 
masking value per pixel. In contrast, our motion channels 
are not associated with individually variable alpha values. 
We recall that avars lacking animation on a particular layer 
do not possess a motion channel for that layer. We consider 
the alpha associated with Such a non-existent channel to be 
Zero. Channels that do exist in the layer all have the same 
alpha, specified layer-wide by a special envelope avar. Each 
layer has exactly one envelope avar, and these avars are 
unique in that they are themselves unlayered, that is, each 
envelope avar contains a single motion channel for the layer 
that envelope affects. The envelope avar is unaffected by the 
compositing operator and layer alpha. However, the enve 
lope avar is optionally subject to the time-course avar 
described below. For example, the envelope for a cycling 
layer may optionally be cycled along with the rest of the 
layer. As with otheravars, layer envelopes may be defaulted 
(to 1.0), set to a constant value, or animated. The value-type 
of envelope avars is scalar, and they are usually kinematic 
(i.e., splined, as described below). As we shall see, setting 
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envelopes to fractional values between 0.0 and 1.0 allows 
continuous blending between layers. 
0324. The layering policy for a given avar is either 
additive or multiplicative. The policy defines how the chan 
nels of that avar combine under compositing. For example, 
translation avars and most other scalar avars are additive, 
that is, their numerical values in layers A and B are com 
bined through scalar addition. Conversely, Scale avars (SX, 
sy. SZ) and unit-quaternion rotations are multiplicative: they 
are combined by (scalar or quaternion, respectively) multi 
plication. Transformation matrices are normally multiplica 
tive. The user who constructs the expression graph for the 
model may specify either policy for a given avar. The avar 
will follow the same policy on all layers except those using 
the add or multiply operators, both of which override the 
avar-specific layering policy with a layer-wide policy. 
0325 During layer compositing, the layer-weighting fac 
tor (WA or WB) is multiplied by the layer alpha (recalling 
that our motion channels are not pre-multiplied by alpha), 
and the resulting value is used to Scale the motion channels 
within the layer. Scaling a motion channel is interpreted as 
a linear interpolation between the channel value and a 
type-specific Zero (for additive channels) or identity (for 
multiplicative channels); Zero and identity are defined per 
type according to common mathematical convention, for 
example, for scalars they are just the usual 0.0 and 1.0, 
respectively. Scalars, points, vectors, matrices, and most 
other types interpolate according to the standard linear 
interpolate (lerp) operator, while unit quaternions interpolate 
via the spherical interpolate (slerp) operator. Thus for an 
additive Scalaravar, Scaling a motion channel corresponds to 
a scalar multiply of the channel value. Scaling a (multipli 
cative) quaternion rotation involves a slerp between quater 
nion identity (no rotation) and the channel value. 
0326 For example, given two motion channels of an 
additive scalar avar f, the over operator would composite 
these avars as: 

B(tB) 

where f(x) gives the value of avar fs motion channel for 
layer V at input parameter X. For now we assume t=tA=t. 
(We will reexamine that assumption below.) Similarly, two 
channels of a multiplicative quaternion avar q would com 
posite via the atop operator as: 

q(t) = QA WA 4A (tA): a BWB4B (te) 

= QAaB4A (tA): a B (1 - OA)4B (te) 

= Slerp(a AaB, aidentity, 4A (tA))slerp(a B (1 - OA), qidentity, 4B (IB)). 

0327 We have assumed thus far that all motion channels 
are parameterized identically, that is, that t=tA=t for all 
layers A and B. Now we introduce the notion of a time 
course avar. Each layer has exactly one time-course avar 
and, like the envelope avar, this avar is special in that it is 
unlayered, that is, each contains a single motion channel for 
the layer that time-course affects. The time-course avar is 
unaffected by the compositing operator, layer alpha or the 
layer envelope. For some layer A, the time course avar 
defines a function TA mapping from avar input parameter 
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space to the parameterization of the evaluation function XA 
for motion channels within layer A. That is, tA=TA(t). 
0328. A particularly useful time-course function is the 
saw-tooth function curve. This causes animation within a 
layer to cyclically repeat ("cycle') over some time range. 
Cycling is the most-common use of the time-course avar, 
and, for convenience, we provide an easy mechanism in the 
application GUI for cycling layers over some given range. 
More complex time-course manipulations can be done by 
editing the time-course avars directly via a spreadsheet or 
curve editor. 

0329. In general, layer composition for avar X involves: 

O 

X(t) = LIX = x, y, x,-1-1 o2 x 101 vo 

where o is the (user-specified) operator for compositing 
layer i upon layer i-1, with associated weighting factors WA 
and was defined in Table 2, and X, is the value of the 
(existent) motion channel for layer i. We recall that the 
layering policy for a given compositing operation is the 
layering policy of the avar being composited, except under 
the special compositing operators add and multiply, as 
indicated in Table 2. Then: 

{ aeb when layering policy is additive 
to 

a Xb when layering policy is multiplicative 

x; (ex i = interp(WAa;(t), 0, x, (T(t))) + interp(wba (t), 0, xi (T(t))) 
y; (x) xi = interp(wAa;(t), 1, xi (T(t))): interp(wpai(t), 1, x (Ti(t))) 

(t) (to if time-course affects layeri's envelope C;(t) = 
E(t) otherwise. 

0330 For quaternion-typed avars, interp is the spherical 
linear interpolation, or slerp, operator; otherwise it is lerp. 0 
and 1 denote type-appropriate values for “Zero” and “iden 
tity”. E(t) is the value of the envelope avar for layer i at 
parameter t, and the alternative lookup strategies for E( ) 
reflect the user-specified option of whether a particular 
layer's envelope should be affected by that layer's time 
COUS aWa. 

0331 We note that motion compositing is not mathemati 
cally commutative, that is, the compositing order is signifi 
cant, both because the Porter-Duff compositing operators are 
non-commutative and because multiplication of some of our 
avar data types (e.g., matrix and quaternion tensors) is 
non-commutative. However, motion compositing is math 
ematically associative, that is, the grouping of compositing 
steps is not significant, because the Porter-Duff compositing 
operators are associative and tensor multiplication is asso 
ciative. In fact, one limitation we impose on value types 
within our system is that those types generally are associa 
tive under addition and multiplication, as well as possess a 
well-defined Zero and identity. 
5.2 Motion Channel Taxonomy 
0332 We have said nothing yet about how the functional 
mapping from parameter t to value X, within a single motion 
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channel is specified. In fact, rather than a single Such 
specification, there are alternative specifications; this choice 
may be made per layer. The classes of layers include 
kinematic, forward dynamic, multipoint dynamic, proce 
dural, sampled, and stochastic. All motion channels within 
the same layer are of the same class. 
0333 Kinematic animation refers to animation that is 
defined by “splines', that is, curves whose shape is defined 
sparsely via knots and an interpolation rule for filling in the 
gaps between knots. Kinematic animation is often, though 
not necessarily, created by a human operator. 
0334 Forward-dynamic motion refers to animation that 
has been generated via a computer-simulation Solution to a 
single-point boundary problem. The boundary value is 
specified for Some initial parameter, e.g., t=0, and the 
simulation uses a differential equation solver to integrate 
forward in time, computing values at Subsequent ts. This is 
generally done as an offline process and the resulting ani 
mation data is saved in a tabled format for fast access. 

0335 Multipoint-dynamic motion refers to animation 
that has been generated via a computer-simulation Solution 
to a multi-point boundary problem. Boundary values are 
specified at a number of parameters t, and the simulation 
uses an iterative process Such as gradient descent to develop 
a solution that interpolates the specified boundaries subject 
to certain constraints. Again, the Solution is generally com 
puted as an offline process with the resulting animation data 
saved in a readily accessible format 
0336 Procedural animation in general is any animation 
computed automatically by a computer process. Here it 
refers to animation computed by a user- or modeler-supplied 
external function, typically written in C++ code using a 
Supplied plugin API. The animation is generated by the 
external function on an as-needed basis, though values once 
computed may be retained within our expression graph via 
temporal caching, as described in Section 1. 
0337 Sampled motion refers to animation data recorded 
as discrete time-samples on disk. This includes motion 
capture data and the output of externally executed computer 
simulations or other computer procedures that write their 
output to disk as tabled time-based samples. 
0338 Stochastic motion denotes motion computed by a 
pseudo-random process. We provide various controls for 
“shaping the distribution of the random number generation. 
In general, any user-level or code-level representation of a 
probability distribution function (PDF) could be used for 
shaping the generated motion, including the provision of 
representative example motion whose PDF could be 
extracted through an automatic or manual process. 
0339) Any class of layer may be converted to a sampled 
layer by Sampling the motion in that layer and outputting the 
time-based samples to a data file in table format. Any class 
of layer may be converted to a kinematic layer by automati 
cally fitting spline segments to the motion in that layer and 
storing the knots that define those spline segments. 
0340 Boundary values for forward- and multipoint-dy 
namic simulations are specified via selected “lower-num 
bered (i.e., lower in the compositing stack) layers. These 
boundary-specification layers exist only to guide the simu 
lation and are effectively disabled when the overlying 
dynamic layer is enabled. 
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0341 There is no limitation on how the different classes 
of motion are intermixed. Layers of different classes may be 
composited freely one upon another. The class for each layer 
is independently user-specified. 

5.3 Editing Kinematic Animation 
0342. When the user wishes to modify by direct manipu 
lation the pose of a model, we take into account the 
contribution to the existing pose not only of the active layer 
but of all other layers as well. We factor out the effect of the 
non-active layers in deciding how to modify the active layer. 
We do this by inverting the composition process around the 
active layer. (For clarity, in the discussion that follows we 
assume that all time-course avars give the default mappings 
t=T(t) and that the envelope avar for the active layer is 1.0 
everywhere. For full generality, we could replace all occur 
rences of t with T(t) and scale the resulting f'(t) by the 
inverse of the envelope value, as is done in our implemen 
tation.) 
0343 That is, in order to set avarf to value y at parameter 

t, we compute the new value f'(t) for active (kinematic) 
layer V as: 

O 

(- it, f(n)-yet- II, f(t)) when layering policy is additive 
ic 

-l 

i=y+1 when layering policy is multiplicative 
ic 

0344) For example, suppose we wish to set an additive 
Scalaravarf to have the value y at parameter t by modifying 
only layer V. For simplicity we assume that all layers are 
composited under the blend operator and that the envelope 
avar for each layer is left at the default of 1.0. Then the new 
value we should set in layer v is: 

f(t) = f(t) + Af, 
O -- (- LI f(t) y(- If f(t) 

Af. = y - f(t). 

0345 Thus, we can see the necessary change to layer v is 
simply the difference between the desired value and the 
current value, as expected. Taking another example, we wish 
to set multiplicative quaternion-valued avar Q to value q. 
again at parameter t and modifying only layer V. The new 
value we should set in layer v is: 

I , , -l Q (t) og II, Q(t)) ic 

O 

Q(t) = (i. 
- - -l 9 prerotation i 9 postrotation 
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0346) where quain is the composite rotation due to 
layers prior to V, and qissation is the composite rotation 
from layers Subsequent to V. Naturally, the easy way to 
compute the pre- and post-active-layer composite values is 
to use the existing compositing machinery described in 
Section 5.1; we simply disable layers numbered 2 and sv, 
respectively, and evaluate the avar at parameter t. In 
pseudocode: 

Avar:SetLayered Value(v,ty): 

EnableLayers(0.v-1); 
prevalue = Evaluate(t); 
EnableLayers(v+1..n); 
postvalue = Evaluate(t); 
EnableLayers(0..n) 
if policy = additive then 
f* additive layering policy */ 
new value := -prevalue + y + -postvalue; 
else 
f* multiplicative layering policy */ 
new value := prevalue. Inverse( ) * y * postvalue. Inverse(); 
Layer(v). SetValue(t, new value); 

/* disables all other layers */ 

0347 Again, we may wish to scale new value by the 
inverse of the layer envelope before actually inserting or 
adjusting a knot in the spline curve for layer V. 
5.4 Layer Properties 

0348 Layers may be given user-specified names, com 
ments, and arbitrary tag-value pairs. A layer name is unique 
within its layer set (see below). Layers may be searched for 
and selected by name, comment or tag-value pair. A selected 
layer or layers may be operated upon in a number of ways. 
Clearing a layer corresponds to deleting all motion channels 
for that layer, leaving a layer containing no animation. 
Deleting a layer deletes the layer's motion channels as well 
as the layer itself. The user may also create new layers; new 
layers initially have no motion channels and thus no anima 
tion. The compositing operator for a layer may be changed 
at any time. In contrast, the layering policy for each avar is 
normally set at model construction time. 

0349 Layers may be locked or unlocked. The informa 
tion stored in the motion channels of a locked layer may not 
be modified. Layers may be grouped into layer groups called 
layer sets. All motion channels for a given layer set are 
stored on disk within a single logical file. Individual layers 
may be moved between layer sets, Subject to certain limi 
tations described below; the motion channel data will cor 
respondingly be moved between disk files. Layer sets may 
be locked or unlocked. Locking a layer set locks all layers 
within the set and corresponds to locking the associated file 
on disk. Unlocking a layer set corresponds to unlocking the 
associated file and can only be done by a given user if that 
user has sufficient operating system “privileges' to unlock 
the file. When loading a layer set from disk, the contained 
layers will be locked if the disk file is locked; otherwise they 
will be unlocked. 

0350 Layers may be enabled or disabled. Disabling a 
layer is equivalent to specifying a layer alpha of Zero (See 
Section 5.1). Sets of layers may be enabled and disabled 
together. A layer may be soloed, which is equivalent to 
enabling that layer and disabling all other layers. The output 
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value of an avar as it would be if the active layer were soloed 
is available at the avar’s solo output. Changing active layers 
pushes dirty on all avar Solo outputs. 
0351 Layers are displayed within a layer list window and 
optionally within a layers pane within the timeline window. 
The compositing order of layers may be changed by drag 
ging the layers into a different order in the list using the 
mouse cursor. Each line of the layer list corresponds to one 
layer and shows the layer name, the range if any over which 
the layer cycles (via a sawtooth time-course function), 
toggles for the layer lock and enable attributes, and an 
indication of whether or not any of the active avars have 
motion channels on that layer. There are two display modes 
for the layer list: layers may be organized by set, so that the 
layer view contains a hierarchical list, or layers may be 
organized by compositing order, and then the layer view 
gives a flat listing with layers color-coded to indicate set 
membership by associating a (user-specified) color with 
each layer set. Next to each layer is an optional preview tile 
that shows the active model (or some particular model 
specified by the user) rendered with only that layer enabled 
(or some particular set of layers specified by the user). This 
tile animates when the user moves the mouse cursor over the 
tile, and otherwise shows a still image. 
0352. The layer pane in the timeline window additionally 
shows the duration in time over which particular layers 
(and/or layer sets, when viewed hierarchically) contain 
animation (that is, contain motion channels with time 
varying values) by the position of colored bars for each 
displayed layer drawn under the timeline itself. The layer (or 
layer set) envelope may be drawn as a curve over its 
corresponding layer bar, and the curve may be directly 
manipulated. By setting interaction modes (with user-inter 
face buttons or by depressing keyboard keys) and then 
clicking and dragging with the mouse upon layer bars, the 
motion within layers or layer sets can be retimed, Scaled in 
time, cycled, duplicated and similarly manipulated. Specific 
layer and layer set operations are discussed in Section 
5.5—Operations on Layers. 
0353. The contribution of a particular layer to the total 
animation may be visualized in several ways. The numerical 
data within layer motion channels may be viewed and edited 
in a spreadsheet or curve editor. The animation may be 
played back while the user toggles the layer on and off, or 
soloed and non-soloed, and observes the change. The ani 
mation may be played back simultaneously in both enabled 
and disabled State, with geometry rendered opaquely with 
the layer enabled and translucently (i.e., ghosted) with the 
layer disabled, or vice versa. More generally, the user may 
specify two sets of enable states for the layers, and then view 
the difference between these sets by simultaneously render 
ing one set opaquely and the other set ghosted. 
5.5 Operations on Layers 
0354) The user may perform various operations on the 
active layer, on multiple selected layers, and on layer sets. 
Layers may be converted to kinematic or sampled layer 
classes, as described in Section 5.2. Layers may be locked 
and unlocked, enabled and disabled, cycled (via the time 
course avar), faded (via the envelope avar), cleared and so 
on as described in previous sections. Layers may be dupli 
cated, producing a new layer with motion channels identical 
to those in the original layer. Layers may be renamed. Layers 
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may be moved into a different layer set provided that the 
user has write access to that set. 

0355) Multiple selected layers may be flattened into a 
single layer by merging the motion channels between layers. 
If the layers to be flattened are not all of the same layer class, 
the layers will first be converted to a common class, either 
kinematic (via curve fitting) or sampled (via channel Sam 
pling) according to user preference. 
0356. A single layer may be decomposed into multiple 
layers in a number of ways. The motion channels affecting 
selected geometry may be extracted into a new layer. The 
portion of all motion channels affecting a selected time range 
may be extracted into a new layer. More generally, the user 
may select some geometry and a time range, and extract the 
motion-channel data for the selected geometry over just the 
selected time range into a new layer. The geometry whose 
motion is to be extracted may be specified via regexp 
“regular expressions'; for example, the user may specify all 
avars whose pathname matches “Foot', thereby identifying 
two avars “LeftFoot/midBend' and “RightFoot/midBend'. 
0357 The user may specify a range infrequency-space to 
extract into a new layer. The channel data will be converted 
to the sampled class (Section 5.2) and a Fast-Fourier Trans 
form (FFT) of the channel data will be performed. The data 
in the specified frequency band will then be copied or moved 
(as specified in command-option dialogs) into a new layer. 
Several frequency ranges may be specified, producing mul 
tiple band-specific layers. By adjusting the alpha (Section 
5.1) of the layers so extracted and then flattening these layers 
back into a single layer, the user may perform parametric 
equalization of the animation data. To ease this process, we 
provide a single-step parametric equalization dialog with 
fully adjustable band centers, widths and gains for a user 
specified number of bands. This is implemented by perform 
ing an FFT, decomposing by band, and recomposing with 
the specified equalization. We similarly provide a single-step 
notch filter using the same technique. 
0358 We provide other analogs to audio signal process 
ing, allowing the user to limit, compress, expand, compress 
expand (compand), gate, and duck the motion-channel sig 
nals. A compressor provides an automatic form of level 
control, attenuating high levels and thereby reducing the 
dynamic range. A limiter is an extreme form of compressor 
that provides very sharp attenuation above a set level. An 
expander attenuates the signal below some threshold, reduc 
ing low-level noise and expanding the dynamic range. A gate 
is an extreme form of expander that sharply attenuates 
signals below some threshold, Suppressing noise when the 
signal is low. A compander combines a compressor with an 
expander, increasing dynamic range while avoiding exces 
sive output level. Ducking attenuates a signal when another 
signal exceeds some threshold, allowing one layer to auto 
matically override another layer when a signal (i.e., motion) 
of significant magnitude is present, and have no effect 
otherwise. The user can specify both the primary and 
override layers for ducking; the other effects involve a single 
layer. 
0359 Channel data may be smoothed or sharpened via 
one-dimensional convolution. More generally, any finite 
kernel convolution filter, specifiable by the user, may be 
convolved over the channels within a layer. 
0360. The difference between two layers may be 
extracted as a new layer. “Difference' is interpreted relative 
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to the channel layering policy, with additive channels being 
subtracted and multiplicative channels divided. 
0361 Sampled layers may be resampled at different 
sampling rates. Upsampling produces data at a higher 
sample rate. Downsampling produces data at a lower rate. 
We use a cubic resampling technique described in D. P. 
Mitchell and A. N. Netravali, Reconstruction filters in com 
puter graphics. Computer Graphics, (Proceedings of SIG 
GRAPH 88), 22(4):221-228, August 1988, which article is 
incorporated by reference herein in its entirety. Other sam 
pling methods are possible. 
0362 Entire layers may be scaled and biased. This is 
accomplished by applying a gain and bias to every motion 
channel within the layer, in the exactly the same way gain 
and bias are applied to node inputs and outputs as described 
in Section 1.13. Similarly, a layer may be shifted or stretched 
in time, by retiming and stretching the animation in all 
channels within the layer as described for single-channel 
editing in Section 4.2.4. Indeed, most of the operations that 
may be performed on individual avars may also be per 
formed across entire layers, with the Software simply apply 
ing the given operation to each channel within the layer. The 
notable exceptions to this are operations that depend upon 
the data type of an avar, for example, setting knot values. 
6.0 User System Architecture 
0363 FIG. 12 is a block diagram of an exemplary user 
system architecture 1200 for hosting an animation applica 
tion. The architecture 1200 includes one or more processors 
1202 (e.g., IBM PowerPC.(R), Intel Pentium R. 4, etc.), one or 
more display devices 1204 (e.g., CRT, LCD), one or more 
graphics processing units 1206 (e.g., NVIDIAR. Quadro FX 
4500, GeForce(R 7800 GT, etc.), one or more network 
interfaces 1208 (e.g., Ethernet, FireWire, USB, etc.), one or 
more input devices 1210 (e.g., keyboard, mouse, etc.), and 
one or more computer-readable mediums 1212 (e.g. 
SDRAM, optical disks, hard disks, flash memory, L1 or L2 
cache, etc.). These components exchange communications 
and data via one or more buses 1214 (e.g., EISA, PCI, PCI 
Express, etc.). 
0364 The term “computer-readable medium” refers to 
any medium that participates in providing instructions to a 
processor 1202 for execution, including without limitation, 
non-volatile media (e.g., optical or magnetic disks), Volatile 
media (e.g., memory) and transmission media. Transmission 
media includes, without limitation, coaxial cables, copper 
wire and fiber optics. Transmission media can also take the 
form of acoustic, light or radio frequency waves. 
0365. The computer-readable medium 1212 further 
includes an operating system 1216 (e.g., Mac OSR), Win 
dows.(R), Linux, etc.), a network communication module 
1218, animation files 1220, an animation application 1222 
and cache memory 1236. The animation application 1222 
can be integrated with other applications or be configured as 
a plug-in to other applications. In some implementations, the 
animation application 1222 includes a UI manager 1224, a 
rendering engine 1226, an animation engine 1228, a graph 
editor 1230, expression graphs 1232 and a programming 
module 1234. 

0366 The operating system 1216 can be multi-user, 
multiprocessing, multitasking, multithreading, real-time and 
the like. The operating system 1216 performs basic tasks, 
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including but not limited to: recognizing input from input 
devices 1210; sending output to display devices 1204; 
keeping track of files and directories on computer-readable 
mediums 1212 (e.g., memory or a storage device); control 
ling peripheral devices (e.g., disk drives, printers, GPUs 
1206, etc.); and managing traffic on the one or more buses 
1214. The network communications module 1218 includes 
various components for establishing and maintaining net 
work connections (e.g., software for implementing commu 
nication protocols, such as TCP/IP, HTTP, Ethernet, etc.). 
The animation application 1220, together with its compo 
nents, implements the various tasks and functions, as 
described with respect to FIGS. 1-11. The UI manager 1224 
is responsible for the generation and display of user inter 
faces. The rendering and animation engines 1226, 1228, are 
responsible for renderings and animating bodies in the 
display environment. The graphic editor 1230 is described in 
Section 1.19. The expression graphs are described in Section 
1. 1. The programming module 1234 is responsible for the 
modeling, expression and animation languages described in 
Section 2. The cache 1236 is used in adaptive/temporal 
caching described in Section 1. 
0367 The user system architecture 1100 can be imple 
mented in any electronic or computing device capable of 
hosting an animation application, including but not limited 
to: portable or desktop computers, workstations, main frame 
computers, network servers, etc. 
03.68 Various modifications may be made to the dis 
closed implementations and still be within the scope of the 
following claims. 

What is claimed is: 
1. An animation method, comprising: 
providing a display environment for presentation on a 

display device; 
providing a body for display in the display environment; 

and 

determining a motion path for a first portion of the body 
relative to a second portion of the body. 

2. The method of claim 1, where determining a motion 
path further comprises: 

displaying a curve in the display environment that defines 
the motion path in space over time. 

3. The method of claim 1, further comprising: 
providing a control in the display environment for 

manipulating the motion path; and 
manipulating the motion path in response to a user 

interaction with the control. 
4. The method of claim 1, where the display environment 

is a three-dimensional space. 
5. The method of claim 1, where the display environment 

is a two-dimensional space. 
6. The method of claim 1, where the body is from a group 

of bodies including articulated bodies, rigid bodies and 
bodies with one or more deformable surfaces. 

7. The method of claim 1, further comprising: 
receiving input from an input device manipulated by a 

user while viewing the body in the display environ 
ment. 
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8. The method of claim 2, where manipulating the motion 
path further comprises: 

deforming one or more surfaces of the body. 
9. The method of claim 2, where displaying a curve 

further comprises: 
determining points along the motion path at discreet 

sample times; and 
rendering the points to define the curve through space 

over time. 
10. The method of claim 9, further comprising: 
rendering the curve using a number of points based at 

least in part on the speed of the body along the motion 
path. 

11. The method of claim 9, further comprising: 
automatically rendering the curve to pass through a ref 

erence point on the body in response to user input. 
12. The method of claim 9, further comprising: 
dilating the curve about a point in space to improve 

visibility of the curve in the display environment. 
13. The method of claim 9, further comprising: 
stretching the curve out in time to improve visibility of the 

curve in the display environment. 
14. The method of claim 9, further comprising: 
rendering the line segments relative to a moving camera 

view. 
15. The method of claim 1, further comprising: 
displaying one or more portions of the curve in one or 
more colors to improve visibility of the curve in the 
display environment. 

16. The method of claim 1, further comprising: 
displaying information along the motion path to indicate 

rate of movement of the body over a section of the 
motion path. 

17. The method of claim 1, further comprising: 
displaying information along the motion path to indicate 

timing and one or more values associated with anima 
tion key frames. 

18. The method of claim 3, further comprising: 
rendering ghost geometry along a section of the motion 

path during interactive manipulation of the motion 
path. 

19. The method of claim 1, further comprising: 
animating the first portion of the body to follow the 

motion path. 
20. The method of claim 19, further comprising: 
providing ghost images of the first portion of the body 

along the motion path during animation. 
21. The method of claim 19, further comprising: 
providing cached data associated with frames of anima 

tion over time, where at least some of the cached data 
is used during animation. 

22. The method of claim 1, further comprising: 
defining the body by an expression graph with cycles. 
23. The method of claim 22, further comprising: 
providing one or more articulated variables for changing 

values within the expression graph. 
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24. An animation method, comprising: 
providing a display environment for presentation on a 

display device; 
providing a body for display in the display environment; 
providing a first motion path for a first portion of the body 

relative to a second portion of the body; 
providing a second motion path for the first portion of the 
body relative to a second portion of the body; and 

providing a mechanism for animating the first portion of 
the body to follow either the first or second motion 
path. 

25. The method of claim 24, further comprising: 
associating the first motion path with a first layer; and 
associating the second motion path with a second layer. 
26. The method of claim 25, further comprising: 
associating the first and second layers with a class from a 

group of layer classes including: kinematic, forward 
dynamic, multipoint dynamic, procedural, Sampled and 
stochastic. 

27. The method of claim 24, further comprising: 
defining the first and second layers as a layer set. 
28. The method of claim 24, further comprising: 
performing one or more operations on the first and second 

layers in response to user input. 
29. A method of creating expression graphs for an ani 

mation system, comprising: 
providing a graphical user interface; 
receiving a first node selection from a plurality of node 

types; 

receiving a second node selection from the plurality of 
node types: 

displaying graphical representations of the selected nodes 
in the graphical user interface; and 

providing a connection mechanism for enabling a user to 
connect at least one output of the first node with at least 
one input of the second node to form a graphical 
structure that represents a unified generalized expres 
sion graph with cycles. 

30. The method of claim 29, where at least some of the 
node types are templates. 

31. The method of claim 29, where the expression 
includes one or more conditions. 

32. The method of claim 29, further comprising: 
providing an expression language for entering mathemati 

cal expressions into an input of one or more of the first 
and second nodes. 

33. The method of claim 29, where at least one of the first 
and second nodes is associated with a cache structure for 
storing one or more values for various discrete sample times. 

34. The method of claim 29, where at least one of the first 
and second nodes is configurable to broadcast a value on a 
named channel which can be received by one or more 
receiver nodes. 

35. The method of claim 29, where at least one of the first 
and second nodes is configurable to solve kinematic prob 
lems. 
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36. The method of claim 29, where a user can specify 
either the first node or the second node as a root node. 

37. The method of claim 29, where the graphical structure 
is a hierarchy which is configurable to allow data to flow 
bi-directionally through the hierarchy. 

38. A method of creating an expression graph for an 
animation system, comprising: 

providing a text-based programming language for speci 
fying expression graphs for an animation system; 

executing a program developed with the programming 
language to generate an expression graph; and 

animating a body in a display environment using the 
expression graph. 

39. An animation method, comprising: 
providing a display environment for presentation on a 

display device; 
providing a first body for display in the display environ 

ment; 

providing a second body for display in the display envi 
ronment; and 

determining a motion path for a portion of the first body 
relative to the second body. 

40. An animation method, comprising: 
providing a display environment for presentation on a 

display device; 
providing a body for display in the display environment; 

and 

determining a motion path for a portion of the body 
relative to a coordinate system associated with the 
display environment. 

41. An animation method, comprising: 
providing a display environment for presentation on a 

display device; 
providing a body for display in the display environment; 
evaluating an expression graph associated with the body 

at a first rate; 
processing body geometry at a second rate; and 
rendering the body in the display environment at a third 

rate, where the first and second rates are decoupled 
from the third rate. 

42. A computer-readable medium having Stored thereon 
instructions which, when executed by a processor, causes the 
processor to perform the operations of 

providing a display environment for presentation on a 
display device; 

providing a body for display in the display environment; 
and 

determining a motion path for a first portion of the body 
relative to a second portion of the body. 

43. A computer-readable medium having Stored thereon 
instructions which, when executed by a processor, causes the 
processor to perform the operations of 

providing a display environment for presentation on a 
display device; 

providing a body for display in the display environment; 
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providing a first motion path for a first portion of the body 
relative to a second portion of the body; 

providing a second motion path for the first portion of the 
body relative to a second portion of the body; and 

providing a mechanism for animating the first portion of 
the body to follow either the first or second motion 
path. 

44. A computer-readable medium having stored thereon 
instructions which, when executed by a processor, causes the 
processor to perform the operations of 

providing a display environment for presentation on a 
display device; 

providing a body for display in the display environment; 
providing a first motion path for a first portion of the body 

relative to a second portion of the body; 
providing a second motion path for the first portion of the 
body relative to a second portion of the body; and 

providing a mechanism for animating the first portion of 
the body to follow either the first or second motion 
path. 

45. A computer-readable medium having stored thereon 
instructions which, when executed by a processor, causes the 
processor to perform the operations of 

providing a display environment for presentation on a 
display device; 

providing a first body for display in the display environ 
ment; 

providing a second body for display in the display envi 
ronment; and 

determining a motion path for a portion of the first body 
relative to the second body. 

46. A computer-readable medium having stored thereon 
instructions which, when executed by a processor, causes the 
processor to perform the operations of 

providing a display environment for presentation on a 
display device; 

providing a body for display in the display environment; 
and 

determining a motion path for a portion of the body 
relative to a coordinate system associated with the 
display environment. 

47. A computer-readable medium having stored thereon 
instructions which, when executed by a processor, causes the 
processor to perform the operations of 

providing a display environment for presentation on a 
display device; 

providing a body for display in the display environment; 
evaluating an expression graph associated with the body 

at a first rate; 
processing body geometry at a second rate; and 
rendering the body in the display environment at a third 

rate, where the first and second rates are decoupled 
from the third rate. 


