
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2006/0274070 A1

Herman et al.

US 20060274070A1

(43) Pub. Date: Dec. 7, 2006

(54)

(76)

(21)

(22)

(60)

TECHNIQUES AND WORKFLOWS FOR
COMPUTER GRAPHICS ANIMATION
SYSTEM

Inventors: Daniel Lawrence Herman,
Burlingame, CA (US); Mark J.
Oftedal, Naperville, IL (US)

Correspondence Address:
FSH & RICHARDSON P.C.
PO BOX 1022
MINNEAPOLIS, MN 55440-1022 (US)

Appl. No.: 11/406,050

Filed: Apr. 17, 2006

Related U.S. Application Data

Publication Classification

(51) Int. Cl.
G06T I5/70 (2006.01)

(52) U.S. Cl. .. 345/474; 345/473

(57) ABSTRACT

The disclosed implementations describe techniques and
workflows for a computer graphics (CG) animation system.
In some implementations, systems and methods are dis
closed for representing scene composition and performing
underlying computations within a unified generalized
expression graph with cycles. Disclosed are natural mecha
nisms for level-of-detail control, adaptive caching, minimal
re-compute, lazy evaluation, predictive computation and
progressive refinement. The disclosed implementations pro
vide real-time guarantees for minimum graphics frame rates
and Support automatic tradeoffs between rendering quality,
accuracy and speed. The disclosed implementations also

Provisional application No. 60/672,459, filed on Apr. Support new workflow paradigms, including layered anima
19, 2005. tion and motion-path manipulation of articulated bodies.

Motion Path Manipulation Process
1100

Provide A Display Environment For
Presentation On A Display Device

1102

Provide A Body For Display in the Display Environment
1104

Determine A Motion Path For A First Portion Of The Body
Relative To A Second Portion Of The Body

1106

Provide A Control in The Display Environment
For Manipulating The Motion Path

1108

Manipulate The Motion Path in Response
To A User Interaction With The Control

1110

Patent Application Publication Dec. 7, 2006 Sheet 1 of 17 US 2006/0274070 A1

102

Fig. 1

Patent Application Publication Dec. 7, 2006 Sheet 2 of 17 US 2006/0274070 A1

in 1 in 2 in 3 enable goal of to Swing
IK Solver

200

Fig. 2

Patent Application Publication Dec. 7, 2006 Sheet 3 of 17 US 2006/0274070 A1

US 2006/0274070 A1 Dec. 7, 2006 Sheet 4 of 17 Patent Application Publication

× × × × × ? ?

Quae; subae!

:

8.

Patent Application Publication Dec. 7, 2006 Sheet 5 of 17 US 2006/0274070 A1

500a

ctim in Value
ifO

out_0 - Out 1

ctim in width height depth
Cube

ctim Out

ctim in radius
Sphere
Ctm Out

500b Fig. 5 5OOC

Patent Application Publication Dec. 7, 2006 Sheet 6 of 17 US 2006/0274070 A1

600

in Compute: out =

Fibonacci
Out

Fig. 6

US 2006/0274070 A1 Dec. 7, 2006 Sheet 7 of 17 Patent Application Publication

aois ausa -ê-
---*

zwl:uonea-B.
www.mimammwww.rw:x:www.mexiwxxxxxximum mix

Patent Application Publication Dec. 7, 2006 Sheet 8 of 17 US 2006/0274070 A1

| 0000005.00
se 8 At

811 812

Patent Application Publication Dec. 7, 2006 Sheet 9 of 17 US 2006/0274070 A1

it is Riff's

000000800
a L ful

812

Patent Application Publication Dec. 7, 2006 Sheet 10 of 17 US 2006/0274070 A1

Window Hel
Bottle

3S3WWW
s

Patent Application Publication Dec. 7, 2006 Sheet 11 of 17 US 2006/0274070 A1

Patent Application Publication Dec. 7, 2006 Sheet 12 of 17 US 2006/0274070 A1

Fig. 9B

Patent Application Publication Dec. 7, 2006 Sheet 13 of 17 US 2006/0274070 A1

Fig. 9C

Patent Application Publication Dec. 7, 2006 Sheet 14 of 17 US 2006/0274070 A1

J.

tler

Fig. 10A

Patent Application Publication Dec. 7, 2006 Sheet 15 of 17 US 2006/0274070 A1

Fig. 10B

Patent Application Publication Dec. 7, 2006 Sheet 16 of 17 US 2006/0274070 A1

Motion Path Manipulation Process
1100

Provide A Display Environment For
Presentation On A Display Device

1102

Provide A Body For Display in the Display Environment
1104

Determine A Motion Path For A First Portion Of The Body
Relative To A Second Portion Of The Body

1106

Provide A Control in The Display Environment
For Manipulating The Motion Path

1108

Manipulate The Motion Path in Response
To A User Interaction With The Control

1110

Fig.11

Dec. 7, 2006 Sheet 17 of 17 Patent Application Publication

US 2006/0274070 A1

TECHNIQUES AND WORKFLOWS FOR
COMPUTER GRAPHICS ANIMATION SYSTEM

RELATED APPLICATION

0001. This application claims the benefit of priority from
U.S. Provisional Patent Application No. 60/672,459, entitled
“Generalized Expression Graphs. With Temporal Caching
For Use In An Animation System, And Related Methods.”
filed Apr. 19, 2005, which provisional patent application is
incorporated by reference herein in its entirety.

TECHNICAL FIELD

0002 The disclosed implementations are generally
related to computer graphics.

BACKGROUND

0003. Three-dimensional (3D) Computer Graphics (CG)
animation systems are used by a variety of industries (e.g.,
entertainment, advertising, etc.) to generate animated con
tent for movies, video games, commercials and the like.
Unfortunately, it can take a long time to produce animated
content due to deficiencies associated with conventional 3D
CG animation systems. For example, it can take as long as
four years to produce a two-hour animated movie.
0004 Traditional animators hold paper in hand while
flipping between poses to get a sense of the motion before
recording a pencil test. This gives the animator an intuitive
“feel for the animation they are creating. CG animators
would like to flip back and forth between poses in the same
way, but the time it takes conventional 3D CG animation
systems to update a new frame does not allow for instant
visual feedback. Instant visual feedback can speed-up the
animation workflow, resulting in less time to generate the
final product.

0005 The tools of a traditional animator are simple: a
pencil and eraser. These tools are easily mastered so that the
tools become an extension of the mind of the artist. Con
ventional 3D CG animation systems are more complex to
master. Ideas can take a winding path from the mind of the
artist, through the mouse or stylus, then through the software
user interface, and finally to the character rig itself. Con
ventional 3D CG animation systems often provide user
interfaces that are too complex or that are not intuitive,
resulting in the animator spending more time learning the
animation system than on animating.
0006 Animation is an experimental process. Even vet
erans of the art form like to try something new without
worrying that it will destroy the work they have already
completed. In traditional animation, drawings are easily
erased and drawn over. Conventional CG animation systems
often do not allow non-destructive experimentation, forcing
the animator to make compromises on creativity to meet
deadlines.

0007 Traditionally, animation is a team effort. Commu
nication and artwork flow back and forth between depart
ments, animators, assistants, Supervisors, directors, manag
ers, and even Studios collaborating at great distances.
Conventional CG animation systems often fail to provide
features that facilitate collaboration among team members,
resulting in unnecessary delays in the animation process.

Dec. 7, 2006

SUMMARY

0008. The disclosed implementations describe tech
niques and workflows for a CG animation system. In some
implementations, systems and methods are disclosed for
representing scene composition and performing underlying
computations within a unified generalized expression graph
with cycles. Disclosed are natural mechanisms for level-of
detail control, adaptive caching, minimal re-compute, lazy
evaluation, predictive computation and progressive refine
ment. The disclosed implementations provide real-time
guarantees for minimum graphics frame rates and Support
automatic tradeoffs between rendering quality, accuracy and
speed. The disclosed implementations also support new
workflow paradigms, including layered animation and
motion-path manipulation of articulated bodies.
0009. In some implementations, an animation method
includes: providing a display environment for presentation
on a display device; providing a body for display in the
display environment; and determining a motion path for a
first portion of the body relative to a second portion of the
body.

0010. In some implementations, an animation includes:
providing a display environment for presentation on a dis
play device; providing a body for display in the display
environment; providing a first motion path for a first portion
of the body relative to a second portion of the body;
providing a second motion path for the first portion of the
body relative to a second portion of the body; and providing
a mechanism for animating the first portion of the body to
follow either the first or second motion path.
0011. In some implementations, a method of creating
expression graphs for an animation system includes: pro
viding a graphical user interface; receiving a first node
selection from a plurality of node types; receiving a second
node selection from the plurality of node types; displaying
graphical representations of the selected nodes in the graphi
cal user interface; and providing a connection mechanism
for enabling a user to connect at least one output of the first
node with at least one input of the second node to form a
graphical structure that represents an expression.
0012. In some implementations, a method of creating an
expression graph for an animation system includes: provid
ing a text-based programming language for specifying
expression graphs for an animation system; executing a
program developed with the programming language to gen
erate an expression graph; and animating a body in a display
environment using the expression graph.
0013 In some implementations, an animation method
includes: providing a display environment for presentation
on a display device; providing a first body for display in the
display environment; providing a second body for display in
the display environment; and determining a motion path for
a portion of the first body relative to the second body.
0014. In some implementations, an animation method
includes: providing a display environment for presentation
on a display device; providing a body for display in the
display environment; and determining a motion path for a
portion of the body relative to a coordinate system associ
ated with the display environment.
0015. In some implementations, an animation method
includes: providing a display environment for presentation

US 2006/0274070 A1

on a display device; providing a body for display in the
display environment; evaluating an expression graph asso
ciated with the body at a first rate; processing body geometry
at a second rate; and rendering the body in the display
environment at a third rate, where the first and second rates
are decoupled from the third rate.
0016 Other implementations are disclosed that are
directed to systems, methods, apparatuses and computer
readable mediums.

DESCRIPTION OF DRAWINGS

0017 FIG. 1 illustrates an exemplary data flow network.
0018 FIG. 2 illustrates an exemplary inverse-kinematics
solver node.

0019 FIGS. 3a and 3b are examples of hierarchy inver
sion via Subtree re-rooting.
0020 FIG. 4 is a screenshot of exemplary graphical user
interface for creating, viewing and editing graph structure.
0021 FIG. 5 illustrates the interconnection of nodes
using the graphical user interface shown in FIG. 4.
0022 FIG. 6 illustrates a pull-out drawer for changing
internal node settings.
0023 FIGS. 7a-7c are screenshots of exemplary manipu
lators for controlling dilation and tickertape.
0024 FIGS. 8a–8c are screenshots illustrating a bend
able-bottle model.

0.025 FIGS. 9a-9C are screenshots illustrating a character
walking in place.

0026 FIG. 10a is a screenshot illustrating the user selec
tion of a root joint of the character in FIGS. 9a-9c with
tickertaping enabled.
0027 FIG. 10b is a screenshot illustrating a lateral shift
of the motion path shown in FIG. 10a, so that frame 9 on the
path lies at the root joint.
0028 FIG. 11 is a flow diagram of an exemplary motion
path manipulation process.
0029 FIG. 12 is a block diagram of exemplary user
system architecture.

DETAILED DESCRIPTION

1.0 Generalized Expression Graphs. With Temporal Caching
0030. It is common practice in computer graphics to
represent the geometry in a scene with directed acyclic
graphs (DAG's) while possibly maintaining a separate
expression graph for update of the scene geometry. We
describe a method of representing scene composition and
underlying computations within a unified generalized
expression graph with cycles. Our System provides natural
mechanisms for level-of-detail control, adaptive caching,
minimal recompute, lazy evaluation, predictive computation
and progressive refinement. It provides real-time guarantees
for minimum graphics frame rates and Supports automatic
tradeoffs between rendering quality, accuracy and speed. It
Supports new work paradigms described herein, including
layered animation and motion-path manipulation of articu
lated bodies.

Dec. 7, 2006

1.1 Terminology
0031. At the core of our system lies an expression graph
that generalizes the scene tree data structure traditional to
computer graphics. The terms “graph” and “tree' here come
from the mathematical field of graph theory. A graph is a set
of nodes and a set of edges, or lines, that interconnect the
nodes. The edges connecting to a given node are incident to
that node. If, starting from one node A, you can follow a
series of incident edges and get to a second node B, then
there is a path between A and B; the number of edges you
traversed in getting from A to B is the path length. If there
is a path from each node in a graph to every other node, then
the graph is connected. If there is a non-empty (length>0)
path from Some node Aback to A, then this loop is called a
cycle and the graph is cyclic. A graph with no cycles is
acyclic.

0032 Throughout the discussion that follows, when
referring to graphs we will mean directed graphs or
digraphs, that is, graphs in which the edges have direction.
Typically when drawing a digraph we show the nodes as
circles or rectangles, and the edges as arrows between nodes.
If an incident directed edge points to node A, it is an
incoming edge of A. If it points away from A, it is an
outgoing edge. If an edge e is from A to B, we say A is the
origin of e, and B is the destination of e.
0033 Digraphs may be used to denote mathematical
expressions. For example, the expression “(3+4)*6” may be
represented as a digraph in which "3,"+”, “4”, “*”, “6”, are
denoted by nodes, and the steps of combining these elements
are edges between the nodes. Thus there are edges from “3”
to “+' and from “4” to “+”; and from “+', to “*” and from
“6” to “*”. Such an expression graph provides a compact
representation allowing evaluation of the mathematical
expression. Moreover, the graph illustrates dependencies in
the expression; for example, in the expression above, that
the addition occurs before the multiplication, i.e., that the
result of the multiplication depends on the addition, but not
Vice versa.

0034. A tree is an acyclic, connected graph. We can
designate a unique node of a tree to be the root; then the tree
is a rooted tree, and there is an implicit direction given to all
edges in the tree pointing away from the root. All nodes in
a rooted tree have Zero or one incoming edges and Zero or
more outgoing edges. Only the root node has Zero incoming
edges. Nodes with Zero outgoing edges are leaves.
0035 Trees are traditionally used in computer graphics to
represent the contents of a 3-dimensional (3-D) scene.
Individual nodes in the tree may denote objects that are
rendered to the screen, for example, geometry (e.g., a group
of polygons describing the Surface of an object), or geomet
ric transformations (e.g., a rotation), lights providing virtual
illumination of the scene, virtual cameras, etc. Such a
structure is referred to as a scene tree.

1.2 Generalized Scene Graph
0036 AS is common in graphics systems, we use a graph
for representing dependencies in a 3-D scene. We describe
a construction on graphs used for representing our 3-D scene
data and the computational dependencies that underlie that
data. In contrast with traditional scene trees, our graph is a
generalized directed graph that may contain cycles. This
graph represents not only our scene geometry in the way a

US 2006/0274070 A1

scene tree does, but further represents the hierarchy of
computations that govern the motion and interrelationships
between scene elements. Our expression graph is Sufficiently
general to describe any computational process that could be
described in a general-purpose programming language; spe
cifically it is Turing complete. Indeed, we describe a text
based computer language in Section 2 for use in specifying
these graphs that is capable of expressing any algorithm or
process that could be described in a programming language
Such as C.

0037 Within this expression graph, we retain the notion
of embedded subgraphs that correspond to traditional acy
clic, rooted Scene trees. However, there is not a single Such
grouping that constitutes a unique scene tree in our graph.
Rather, the same graph may have many overlapping group
ings that each constitutes a scene tree, and these groupings
may change over time. We may dynamically enable and
disable edges, change edge arrow directions, and partition
the graph into Subgraphs each with its own scene tree.
Though it is often convenient to designate a root node, this
is not necessary, and in fact at times we may designate a
different node of a particular subgraph to be the root of that
Subgraph. Embedded scene trees and the dynamic nature of
graph topology are described in detail in Sections 1.9 and
1.17.

1.3 Data Flow Network

0038 FIG. 1 illustrates an exemplary data flow network
100. Such a network represents a computation by encoding
data 102 (e.g., a number) or operations 104 (e.g., addition)
within nodes, while edges 106 denote the dependencies
between nodes. We think of data as flowing along the edges
in a graph in the direction the edge arrows point. As is
common in Such networks, nodes may internally maintain a
cache of the value they represent within the total expression.
We maintain in each node a state flag, or dirty flag, that
indicates whether the data cached at that node is currently
valid. We refer to data cached in a dirty node as stale data.
0.039 The graph implements a push-pull network, which
models the State dependencies of computational objects
underlying a character or a scene. Nodes “pull against the
direction of the edge arrows to get needed data from other
nodes higher 'up' in the graph, and when data changes
nodes push an indication of the change (though not neces
sarily the data itself) "down, in the arrow direction, to
nodes that are dependent on that data. This way, if a node A
has pulled data from another node B. A knows it does not
need to pull the data again until it receives a push from B.
0040. Because our graphs may be cyclic, the terms “up'
and “down are used loosely. In fact, a node may be “down”
(or “up') from itself, in the event it is part of a directed cycle,
that is, if while following from the node a series of edges in
(or against) the direction of the edge arrows one will
encounter that node again. For convenience, we will mean
the directions “down” and “up' to refer to traversing edges
in the direction of and against the direction of edge arrows,
respectively.

0041. Initially all nodes in the graph are dirty (i.e., their
dirty flag is set). When an output value at a particular node
is needed, we pull on the node. If the node is clean (i.e., the
dirty flag is cleared), the value stored at that node is returned.
If the node is dirty, the node pulls on its incoming edges (its

Dec. 7, 2006

inputs). Pulling on an edge fetches the value of the origin
node of the edge by pulling on that node. Such a pull may
recursively propagate upwards through the graph. In this
way, the Subgraph upstream of a node is pulled clean. Now
the node re-evaluates itself. Stores a new value in its cache,
marks itself as clean, and returns the value to the node that
initiated the pull.
0042 Conversely, an external process may cause the
value at a node to change. Now the values stored at nodes
downstream are marked dirty. The node pushes its output
edges, which in turn push their destination nodes, which in
turn push their outputs, and so forth. In this way, the
Subgraph downstream of a node is pushed dirty.
0043. This push-dirty, pull-clean mechanism allows us to
evaluate Sub-pieces of the expression graph while doing a
minimal recompute. That is, we preferably do not recompute
more than is necessary based on what data we have already
computed and cached within the graph and what has
changed to invalidate our prior computations. Significant in
this scheme is that when something changes, we don't
immediately recompute anything, we simply note the scope
of the effect (by pushing dirty through the affected sub
graph). We will later pull-clean Subgraphs only as needed.
This in effect provides lazy evaluation of the graph.
1.4 Cyclic, Multi-Cached Graph Evaluation

0044) Our graphs differ from traditional data flow net
works in many respects. Our graphs may be cyclic, that is,
they may contain loops. Normally data flow networks are
acyclic, because cycles in Such a network could lead to an
infinite cycle of pushes or pulls and thus a computer crash.
We employ a marker mechanism, described below, to pro
vide controlled looping or recursion through Such cyclic
Structures.

0045. The data flowing along edges in our system con
ceptually are (parameter value) pairs, where often (but not
always) the parameter refers to time, and the value desig
nates the State of a node output at that time. Thus, pulls
upwards in the system are for data at a particular parameter
value, while pushes downward signaling state invalidity will
indicate the parameter intervals that the state change affects.
That is, Pull(t) yields a pair (t,v), and invalidation messages
take the form Push(T), where T=(O.O.O. . . .) gives the
closed intervals O. =tt={ut,<=u<=t over which invali
dation is to occur. A pulled node itself performs a Pull(t) on
its inputs if necessary (and so on, recursively upwards
through the graph). A node may use this t internally in the
calculation it performs on its inputs in producing its output
values, or it may simply pass it upwards via the pull. A node
may even perform a pull at a different t than it itself was
pulled at, or it may perform multiple pulls at different ts.

0046. It is up to each individual node whether or not to
retain internally the data only for the most recently requested
parameter value, or to cache data across many parameter
values. We refer to the latter as “temporal caching, since
usually it is used to cache data over a range of times. The
decision whether or not to employ temporal caching within
a particular node may be made automatically, as described
below, or it may be set by a human operator.
0047. When a node pulls for data, it may either designate
an explicit parameter value for which it wants the data, or

US 2006/0274070 A1

alternatively it may ask for data at an unspecified “input'
parameter value (designated herein as kInputParam). This
second case is only allowed when the source of the data
depends on a parameter input from a “parameter driver
node, typically a clock, somewhere up the graph. Pulling on
a parameter driver yields the “current value for that param
eter. In this second case then, the pull at kInputParam is
implicitly a request for the data as it would be at the
“current parameter values for all drivers upwards in the pull
chain. In the simple case of a single parameter driver that is
the animation clock, pulling at kInputParam yields the value
of a node output for the current animation time. Pulling at
another parameter value t yields the node output data for
time t. The kInputParam token is discussed further in
Section 1.18.1.

0.048 Because the graph may contain cycles, we take care
not to pull endlessly along a series of edges that lie in a
cycle. Unchecked, such a cyclic pull would lead to an
“infinite loop' or “infinite recursion' and a program crash.
We guard against this by raising a marker flag in each node
as it begins its pull, and lower the flag once it has received
its data. If a node receives a pull while its marker flag is
raised, it knows the pull is recursive. It then has a choice to
either signal an error, to return an estimated, default, or stale
value; or to allow some finite number of recursions to occur
by keeping count of how many pulls it receives while its flag
is raised. The human operator who assembles the graph
makes the choice among these options. We use the last
option, of allowing some finite level of recursion to occur,
to build Subgraphs that are capable of recursive computa
tions, such as iterative error-minimization algorithms for
Solving inverse kinematics and dynamics problems. We use
a similar technique to provide progressive refinement of
expensive algorithms as described in a later section.

0049. When a node pushes a state invalidation messager,
this message specifies the (closed, possibly disjoint) interval
of parameter values over which the invalidation has
occurred. Again considering the usual case where the param
eter refers to animation time, the push designates that the
output of the node is invalid over some set of animation
frames. The nodes that receive this push (that is, the nodes
to which edges point from the node that initiated the push),
can themselves push along their output edges, and this
continues recursively. In this way, the graph downward from
the initiating node is flooded with state-invalidation mes
sages. Because the graph may contain cycles, we take care
not to continue this recursion through a cycle, as this would
lead to an “infinite loop' or “infinite recursion' and a
program crash. We guard against this simply by not pushing
dirty intervals past nodes that are already dirty over at least
the interval being pushed. By induction, we know that the
entire Subgraph below Such a node is already also dirty over
at least that interval, so there is no point in continuing the
push.

1.5 Adaptive Caching

0050. An individual node may contain no cache of its
current value, may contain a single-line cache of the value
for the most recently pulled parameter t, or may contain a
multi-line cache of values for various ts. In the case where
t denotes time, we refer to multi-line caching as temporal
caching. If a node contains no cache, then effectively it is
dirty: any pull on it will result in it pulling upstream. If a

Dec. 7, 2006

node caches a single value, computed for Some parameter t,
then it is clean at t but dirty at all uz t. If a node caches a
set of values, then it has a set of dirty bits, one per cache line,
and it will be clean over some (possibly empty) set of
disjoint intervals. As detailed below, these cache lines are
not infinitely sharp, that is, a parameter interval around t will
be mapped to t's cache line. We say such cache lines have
a non-Zero cache line width.

0051 Nodes may have more than one output, and each
output will have a separate cache. Outputs of the same node
that use the same caching scheme will share a common set
of dirty flags. In some cases, a node may have an output, but
no outgoing edge is connected to that output. In this case, it
is as if the node did not have the output, and no value is
computed for or cached in that output.
0052 Node outputs themselves decide which caching
scheme (none, single, or multi-line) they will use, or the user
may explicitly designate which scheme a particular output
shall use. The scheme used at a particular output may change
dynamically during program execution, either automatically
or because the user changes it.
0053 Automatic selection of a caching scheme involves
a cost-benefit calculation. Cost of a caching scheme is the
cost of the data copy during cache write plus the memory
storage cost. Using no caching has no cost; single-line
caching costs a copy on cache-write for each cache miss plus
memory needed for storing one cache slot; multi-line cach
ing costs a copy on cache-write for each cache miss plus
memory for storing in cache slots. Thus, we calculate a
unitless, abstract cost of caching an output as:

k: cache slot size: (1 + n) when cached
cache cost =

O when uncached

where cache slot size is the size of the value type for the
output, and the “1+” reflects the cost of the cache write for
cached outputs.
0054 The benefit of a cache scheme depends on how
often the node is pulled, how effective is its cache, how
expensive are cache misses, and how important is the node.
The pull rate on a node output V is the number of times V
is pulled per unit time. The cache hit ratio of V is the number
of cache hits for V divided by the total number of pulls on
V (windowed over a unit time interval); for uncached
outputs, the cache hit ratio will be zero. The cost of a cache
miss is the time spent on average in re-evaluating the node
following a miss; when a node or node output has high
evaluation cost, we say that node or output is expensive. The
importance of a node is given by that node's priority, as
described in following sections. (As detailed elsewhere, the
priority reflects salience due to projected Screen area and
user focus.) Expensive outputs of high-priority nodes with a
high pull rate but a low cache-hit ratio are good candidates
for a more aggressive caching scheme. Finally, we define the
periodic evaluation cost of a node as the aggregate time
spent re-evaluating that node over Some sliding-interval
window. Thus,

cache benefit=
evaluation cost'priority pull rate*cache hit ratio
cache inadequacy=
evaluation cost'priority pull rate*(1-cache hit ra
tio),

US 2006/0274070 A1

and we track these values (as sliding-window averages) for
every output whose cache-selection method is “automatic'
and that belongs to a node whose periodic evaluation cost
exceeds some fixed threshold. Periodically (following fre
quent cache misses or occasionally during idle time) we
reconsider the caching scheme used at Such an output. We
evaluate:

cache worth=cache benefiti (1+cache cost)

using the cache cost of the current caching scheme, and
cache need=cache inadequacy (1+cache cost),

using the cache cost of the next most aggressive caching
scheme.

0.055 Outputs with the highest cache need are switched
to a more aggressive caching scheme. Outputs with the
lowest cache worth and lacking a high cache need (or that
are already using multi-line caching) are Switched to a less
aggressive caching scheme. Also, outputs which are regu
larly differentiated or integrated (Section 1.14), or that drive
a motion path (Section 4.1) automatically use multi-line
caches when feasible.

0056. For nodes employing multi-line caches, the map
ping from parameter t to a line in the cache is determined by
a cache-mapping function M. This function depends on the
total parameter range tin, ta) that is cached, as well as
the number of cache lines, and the width of those lines. We
use the cache mapping function:

0057)
f

and say t maps to cache line S under M if and only

(Oss<N) (abs(c.t-round(c,t)) sco)
0.058 where:

0059)
0060)
0061 N=the number of lines in the cache (cache lines
are numbered from 0 to N-1),

t=the parameter value at which lookup occurs,
S=the cache line to which t maps,

0062 co-the cache line corresponding to t=0,
0063 c=the number of cache lines per unit change in
parameter t,

0064 c=the cache tolerance, equals /3 the cache line
width,

0065 round(x)=x rounded to the nearest integer,
0066 abs(x)=the absolute value of X, that is,
0067 abs(x)=x for X20, otherwise abs(x)=-X, and

=logical AND, that is,
0068) ab is true if and only if both a is true and b is
true.

t in tint maps to SOme Cache 1ne S and S 0069. If t in tit, p he li d
is marked clean, we say a cache hit occurred, otherwise we
say there was a cache miss. We define the cache inclusion
ratio as:

Cinclusion-2Ctoler

0070 If c=1, all parameter values t within ti
tyield valid cache mappings; the cache slots are maxi
mally wide (they abut one another). This provides us with

Dec. 7, 2006

potentially inaccurate but very fast graph evaluation, since
all t in this range will map onto the cache. By allowing
cis-1, we increase the accuracy of graph evaluation at
the expense of evaluation speed, since as c, decreases,
fewer queries will result in cache mappings, but the t that do
map onto the cache will be better centered within the cache
lines. At censin–0, only exact cache mappings are allowed;
the cache slots are infinitely thin. Varying cist in the
range 0,1 provides us with a continuous Level of Detail
(LOD) control on graph evaluation, enabling us to vary the
trade off between speed and accuracy. We can control this
tradeoff per-node by allowing each node to specify its own
c. This is just one of several LOD mechanisms
available, as described next.
1.6 Approximate and Partial Evaluation
0071. When a cache hit occurs in response to a query
Pull(t), the node retrieves the value V stored in cache lines,
and returns the tuple (t,v). If a cache miss occurs, the node
may do any one of

0072) 1. return the value V, which is the value
stored at the nearest cache line to S, even if that cache
line is marked dirty;

0073). 2. return the value Vine, interpolated
between the nearest neighboring cache liness and st
that are non-dirty, where S-S and s>s;

0074 3. Pull(u) on each of its incoming edges, where
normally u=t, then recompute its output values V, for
each output i.

0075 4. Pull(u) on each incoming edge, but only
partially recompute its output values.

0076. When (3) occurs, we say the node re-evaluates. If
t maps to some cache line S, then the node will place each
V, in that cache line for output i and mark the cache flag for
line S as clean.

0077. When (4) occurs, we say the node does a partial
re-evaluation. The node will not store any value in the output
caches and will not change the state of any cache flag. It will
store enough information to enable later continuing evalu
ation where it left off. In returning (t,v) to the node that
initiated the Pull(t), it will include a special token that says
this is a partial or intermediate result and needs further
Subsequent refinement. This provides a mechanism for pro
gressive refinement of complex computations within the
graph. Further, it provides the ability to create graph struc
tures Supporting looping and recursion.
0078 Nodes automatically choose between mechanisms
(1)–(4) above based on the urgency and level of detail of the
pull. The urgency is a global value, computed by the
application, that reflects how much time is left before the
total graph evaluation is complete so that the updated 3-D
scene may be drawn on the screen. (Urgency and level-of
detail are described in Section 1.7.) Ideally, all cache misses
result in (3) occurring, that is, dirty nodes are fully re
evaluated and dirty Subgraphs are pulled clean. In some
circumstances, we may begin running out of time while
doing this graph re-evaluation; the application will raise the
urgency of the evaluation as the deadline for drawing the
next frame approaches. This will result in dirty nodes
employing strategies (1), (2), or (4), as detailed in Sections

US 2006/0274070 A1

1.7 and 1.8 below. Preference between strategies (1) and (2)
for a given node is hard-coded into each node type and may
be overridden by the user or model builder per-node. Gen
erally strategy (1) is preferred over strategy (2) because it
involves no extra computation and usually it provides the
least-Surprising behavior. Strategy (1) tends to create a delay
or "lag during direct manipulation when very expensive (or
very low-priority, e.g., due to Small screen size) sections of
the 3-D scene don’t update at the full frame rate.
0079. This flexibility in providing stale, approximate, or
partial results provides us with real-time guarantees on the
execution speed of the graph evaluation, and ensures we can
maintain a target frame rate in redrawing the scene. This
provides still another LOD-mechanism, trading off accuracy
and/or node recompute rate in order to maintain frame rate.
More generally, it decouples the frame rendering rate from
node evaluation rates, and even the evaluation rates of
different nodes within the same graph. We further generalize
this level-of-detail control within the Pull() mechanism, as
described below under Level-of-Detail (Section 1.7). The
usage of this LOD control to achieve constant frame-rate is
described below under Real-Time Guarantees (Section 1.8).
17 Pull Level-of-Detail

0080 We now extend the Pull(t) semantics to include a
specification of the level of detail (LOD) for which the value
is requested. We say Pull(t.lod) yields (t,v). (The lod is
actually a vector quantity, but we discuss it first as a scalar
quantity for simplicity.) This level-of-detail control can
provide a switch between multiple alternative representa
tions, for example, geometry may be multiply represented
within the graph with the lod-mechanism used to automati
cally select the best representation. The level-of-detail can
also be used internally within nodes to select alternative
algorithms or to set the desired accuracy of an algorithm, for
example, by controlling the refinement level of a subdivision
Surface.

0081. The initial lod value originates at the application
level and is passed through a sequence of Pulls or Renders.
(Render calls are described in Section 1.9 below.) Nodes
may modify lod as they pass it along for their own internal
reasons. For example, a node may want to evaluate an input
Subgraph very roughly as one step of its own internal
evaluation, so it may initiate the Pull on that input at a low
lod. The user may explicitly raise or lower the relative lod
of particular nodes through a dialog in the user interface or
programmatically during model construction. As described
in the next section, the application can automatically lower
lod globally as needed between or even during render passes
to attempt to provide lighter-weight, and therefore faster,
graph traversal. This allows the application to trade-off
rendering detail and accuracy with speed to maximize
quality while meeting frame-rate goals.

0082 Interpretation of specific numerical values of lod is
left to the nodes themselves; at the graph level, lod is
regarded as an abstract, unitless value that is normally
greater than or equal to Zero. Zero lod specifies that the
simplest/fastest possible representation or algorithm should
be used. Lod greater than Zero specifies that a more-accurate
representation should be used. A negative lod specifies that
no evaluation or rendering should be performed at all; what
happens instead differs between Pulls and Renders. A Pull

Dec. 7, 2006

at negative lod will result in cached, stale, or incomplete
values being returned, as described in Section 1.6. The
connection between negative lod and increasing urgency is
detailed below in Section 1.8.1.

0083. For a Render with negative lod, neither that node
nor its children will be rendered at all. For Renders at Zero
lod, if an imposter (a polygon texture-mapped with an image
of an object saved from a previous render) is available, the
imposter will be drawn in place of the object itself other
wise some extremely lightweight rendering (such as a
bounding box) is used.
0084. While we have discussed lod as if it were a single
Scalar (real) value, in fact we maintain distinct levels-of
detail for geometry, articulation, deformation, shading and
lighting. That is, rather than maintaining and passing a scalar
lod, we rely on a vector-valued lod=(lodes, lode, lod
dern lodhade, lodi). Particular types of nodes generally
will depend only on a single one of these components. The
lod component(s) to which a given node type responds are
referred to as that node type’s LOD control channel(s). For
example, mesh deformer nodes generally respond just to
lod, while nodes representing light-emitting Surfaces
may respond to both lodes and lodge. Again, it is left to
each node to decide how to interpret the values within lod,
except that all node types return from Pull and Render calls
immediately when any one of their control channels fall
negative.
1.8 Real-Time Guarantees

0085 We desire to provide soft-real-time guarantees on
the maximum time taken to traverse the graph for a given
operation (typically renders). We achieve this through vari
ous mechanisms:

008.6 dynamically adapt LOD
0087
0088)
0089)
0090)
0091)

partial evaluation
progressive refinement
adaptive caching
parallel evaluation
predictive precomputation

1.8.1 Dynamic Level-of-Detail
0092. As mentioned in the previous section, the system
can dynamically adapt level-of-detail at the application level
between and during render traversals. After each render
traversal, the application notes how much time was taken
relative to the target traversal rate. If the traversal was
considerably faster than necessary, the application increases
the top-level lod. The next render pass will be initiated with
this higher lod. Conversely, if the traversal took longer than
desired, the application will reduce the top-level lod.
0093. The application can adapt lod globally during the
course of recursive Pull's or Render's by adjusting a global
urgency value. Urgency is initially 0.0 when the application
itself initiates a Pull or Render. As time passes, a watchdog
thread will increase urgency towards 1.0 as the time
approaches the traversal time deadline. In the event the
deadline is exceeded, urgency rises above 1.0. Each call to
Pull and Render multiplies its lod parameters by 1.0—
urgency and uses the results as its effective lods. Thus,
effective lod's will fall as the deadline approaches, encour

US 2006/0274070 A1

aging the use of simpler and faster representations. If the
deadline is exceeded, effective lod's will become negative,
preventing any further evaluation or rendering and ensuring
a near-immediate return from traversal recursion.

0094. In this way, based on how well a given render pass
has met its real-time deadlines, the application will adjust its
own top-level lod, attempting to maximize quality and
accuracy of the rendering without exceeding deadlines.
When the application is too ambitious, using an excessively
high lod, it will raise urgency to ensure nonetheless that
traversal terminates in soft real-time.

1.8.2 Partial Evaluation

0.095 As described in Case 4 of Section 1.6, there are
circumstances in which a node may return a pulled output
value before it has completed re-evaluation. This happens
when a node begins re-evaluation (i.e., a pull occurs) with
urgency <1.0, but urgency rises above 1.0 (i.e., effective lod
becomes negative) during evaluation. It may also happen
because the time spent in a single invocation of the node
evaluation function exceeds an application-specified time
limit. Nodes may also electively prematurely terminate a
particular evaluation, for example, because a particular
algorithmic condition occurs within the evaluation function
(such as exceeding some set number of iterations within a
loop). In all cases, graph traversal proceeds normally fol
lowing the return from the partially evaluated output, except
that the output subgraph of that output continues to be
marked dirty. Subsequent Pulls on that subgraph will in turn
pull on the partially re-evaluated node, eventually causing it
to fully re-evaluate, at which point the output subgraph will
be marked clean, as described previously.

0096. Similarly, as identified in Cases 1 and 2 of Section
1.6, a pulled node will return stale or approximate results
when the effective lod of the Pull is negative (i.e., when
urgency >1.0). Again, the Subgraph below the node will
remain dirty, and subsequent Pulls on the subgraph will
continue to pull on that node. Due to other sections of the
graph becoming clean and/or cached, these Subsequent pulls
should occur with greater time available, so that effective lod
is eventually non-negative (i.e., urgency <=1.0) upon reach
ing this node. Recall that, following Section 1.5, caching
strategies within the graph will be automatically adjusted
during these repeated pulls, shifting resources as necessary
to allow us to Pull with non-negative lod. One circumstance
in which we may not be able to achieve a non-negative-lod
Pull at a given node is if the mere process of traversing edges
upwards in the graph to reach that node exceeded the
available time bounds for graph traversal. Because edge
traversal itself is an extremely lightweight (fast) operation,
only an enormously large graph would exhibit this problem.
Clearly such a large graph would be beyond our ability to
recompute effectively, and we doubt such graphs will be
encountered in practical situations. However, this does high
light that the maximum path length in a given graph gives
important information about how costly evaluation of that
graph may be.

0097. The native ability of the graph to partially or
approximately recompute provides a mechanism for achiev
ing rough results when real-time demands do not allow for
a full recompute.

Dec. 7, 2006

1.8.3 Progressive Refinement
0098. If we perform partial evaluation over multiple
Successive traversals, we will progressively refine pass accu
racy. In the case of elective partial evaluation, we can
compute an error metric and bound, returning clean when we
have achieved the error threshold. Similar to what occurs
with strategy (1) in Section 1.6, this tends to create a delay
or "lag during direct manipulation when very expensive (or
very low-priority, e.g., due to Small screen size) sections of
the 3-D scene don’t update at the full frame rate. In the case
of progressive refinement, this gives the effect of computa
tionally heavyweight scene components gradually updating
in response to rapid user direct-manipulations. For example,
a complex deforming Surface may change shape gradually
over several frames despite the fact that the underlying
skeleton is redrawn at an interactive frame rate.

1.8.4 Adaptive Caching

0099. As mentioned above and in Section 1.5, the cach
ing strategy within a given node may change over time in
response to observed efficacy of any existing cache and cost
and frequency of node re-evaluation. This process is integral
to our ability to sensibly manage resources to enable high
priority (e.g., large screen area or user-focused) subgraphs to
re-evaluate rapidly. Thus, adaptive caching is an important
enabler of the real-time evaluation methods described in this
section.

1.8.5 Parallel Evaluation

0.100 Given that we can traverse a graph node-by-node,
pulling input subgraphs clean or rendering output subgraphs,
we may wish to break up traversals of Subgraphs into
separate threads. This enables symmetric multiprocessing on
shared-memory architectures. Every recursive pull or render
presents the opportunity to spawn a new thread. We track
pull/render cost (as described for evaluation cost in Section
1.5 and elsewhere) and use that as a guide of when to spawn
a new thread. The ideal situation is a node in which two
expensive Pull's or Renders are performed on large disjoint
Subgraphs. In this case, ideally we traverse both subgraphs
simultaneously. In fact, this occurs quite commonly in the
form of Render's at the scene graph root: different large
top-level models ideally will be evaluated on different
processors. Potentially this provides an order-n speedup
when running on a machine with n symmetric processors.
1.8.6 Predictive Precomputation

0101. It is common wisdom that the vast majority of
processor time in the typical computer is spent idle waiting
for user actions. We can take advantage of idle time to
re-evaluate dirty nodes. This is particularly valuable in
conjunction with temporal caching: we re-evaluate nodes at
times corresponding to dirty cache slots, thereby filling
those cache slots with clean values. We refer to this as
predictive evaluation, because we are anticipating that the
outputs of these nodes will be pulled at parameter values
other than the current value, although no Such pull has yet
occurred.

0102) We prioritize nodes for predictive re-evaluation
based on the product of priority and cost, with those mea
sures computed as described in Section 1.5. The greater is
the product, the higher is the priority for predictive re
evaluation. If we have an estimate of the error in a given

US 2006/0274070 A1

cache slot (this may be easily computed for certain node
types, such as those performing Subdivision or similar
refinement algorithms), we may use that error estimate to
scale the re-evaluation priority. Similarly we may track how
much time has passed since a cache-slot was last re-evalu
ated, and scale priority by cache-slot age. Scaling priority by
error is useful for nodes that employ Case 2 of Section 1.6
(return approximate value). Scaling priority by age is useful
for nodes that employ Case 1 of Section 1.6 (return stale
value).
0103 At the application level we maintain a priority
queue that ranks nodes according to:

priority * cost * age for nodes that have previously returned v
priority * cost * error for nodes that have previously returned v

and possessing an easily observable error
metric, or
for nodes that are not Pull-ed with negative
effective lod (or that lack any simple error
metric).

stale:

approximate

priority * cost

0104 For efficiency, we only bother to include in the
priority queue those nodes that have both a high priority and
a historically high actual cost. Other nodes we expect to be
poor candidates for predictive re-evaluation. In practice, this
means we include in the priority queue those nodes for
which temporal caching is enabled on one or more outputs.

0105. At program startup, we create one (or n, on n-pro
cessor systems) low-priority idle thread(s). When the system
is busy, the idle threads will sleep, yielding CPU time to
more-urgent work. When idle time becomes available, an
idle thread will run, pulling a node for re-evaluation from the
top of the priority queue. We evaluate the node at those times
at which its cache slots are dirty. This evaluation may result
in Pulls on other nodes; if these nodes have temporally
cached outputs and no other thread is re-evaluating them yet,
this idle thread will also pull these ancestor nodes from the
priority queue.

0106. In this way we wander the graph filling caches
during idle time, helping to ensure that we will be able to
respond rapidly to further user actions, especially frame
changes, which tend to be the most-challenging action to
consistently perform in real time. We refer to this process as
pre-caching, since we are filling caches in advance of when
the cached data is needed. This mechanism is especially
effective in conjunction with symmetric multiprocessing,
allowing us simultaneously to handle user interaction and to
prepare for anticipated future demands on graph evaluation.
1.9 Render

0107 The ultimate goal of graph traversal generally is to
draw something on Screen. As with prior systems, we
accomplish this via a top-down render traversal, distinct
from the bottom-up evaluation traversal initiated by a Pull.
The render traversal occurs over a connected Subgraph of
special expression nodes called scene graph nodes (or sim
ply scene nodes); we refer to this subgraph as the scene
graph. All scene nodes possess actm in input and actm out
output (and possibly additional node-specific inputs and
outputs). The parent of a scene node A is the scene node
above A's ctim in input, if any such node exists; otherwise

Dec. 7, 2006

A is an orphan. The children of a scene node A are the scene
nodes below A's ctim out output, if any such nodes exist;
otherwise A is a leaf. The ancestors of a scene node A are
those scene nodes in the scene graph above A. The descen
dents of A are the scene nodes in the output scene graph of
A. Scene graph nodes are described more fully in Section
118.3.

0.108 Render traversal initiates via a Render message to
a scene node and propagates depth-first to all enabled nodes
in the output scene graph (with certain exceptions described
here and in Section 1.17). To render the full 3D scene, the
application calls Render on a designated orphan root node.
Nodes may be disabled (explicitly, by the user), which
prevents these nodes and their children from being traversed
during rendering.

0.109 Parameters to the Render call specify: (1) a graph
ics output context, or graphics port, to which drawing should
occur, (2) the pull parameter at which to evaluate the
expression graph, (3) the desired level-of-detail of the ren
der, and (4) the render mode settings to be used. That is, a
render call is a message:

Render(gp, param, lod, CD):

0110 where:
gp=the output graphics port,

param=the graph parameter at which to perform the render
(usually the value of the global animation clock, i.e., time),
lod=(lodges. lodarties loddeform: lodshade lodlight)=the
desired levels of detail, and

d=a vector of render mode settings (described below).

0.111 When node A receives a Render, it possibly modi
fies the State of the designated graphics port in some
node-specific way, issues any node-specific geometry to that
port, and then recurses over its children by calling Render on
each enabled child. After all children have returned from
render traversal, node A reverts the graphics port to its state
prior to A's modifications, if any, and returns to whomever
initiated the render call on A.

0112 The graphics port render parameter gp designates
the graphics target to which output should be directed. For
interactive rendering, this could be an OpenGL context, for
example. For rendering to an external target, Such as a
high-quality off-line renderer, this might refer to the invo
cation context of a rendering-export plugin. “Graphics
ports' are simply a wrapper for naming Such heterogenous
output targets. It falls to the output target referenced by gp
to decide how to act upon the state changes, geometry issues,
etc., generated during render traversal. The gp parameter is
passed unmodified through the recursive render calls to the
child nodes.

0113. The param render parameter designates the anima
tion “time' at which the state of the scene should be
rendered. In most cases, this param will be used as the
parameter for resultant Pulls and for recursive Renders of
child nodes. Certain nodes perform input pulls or child
renders at different parameter values. For example, the
MotionPath node (Section 4) evaluates its ctim in input
across a range of parameter values. In fact, MotionPath
nodes entirely ignore the param render parameter except

US 2006/0274070 A1

when special path rendering options, such as tickertaping
and path dilation, are enabled (Section 4.1.2).
0114. The lod render parameter designates the levels-of
detail at which the scene should be rendered. In most cases,
this lod will be used unmodified as the lod for resultant pulls
and for recursive renders of child nodes. A node whose
bounding box projects to a small screen area may scale lod
by a value less than unity before recursing over children,
providing fast, less-detailed rendering of objects that are not
visually important in the rendered image. The lod may be
scaled by a value greater than unity for the active model, that
is, the model containing the currently or most recently
selected node. Automatic scaling of the lod parameter up or
down is generally performed in Model nodes (Section
1.18.3). In addition to automatic scaling due to visual
importance or user focus, the user may explicitly override
any of the lod values at any node via an application dialog:
the overridden value is used for input pulls or childrenders
from that node.

0115 The did render parameter designates a number of
render mode settings. These settings control various aspects
of interactive rendering, including: geometry style (e.g.,
Surfaces, skeletons, bounding boxes), render style (e.g.,
wireframe, hidden line, flat shaded, smooth shaded),
optional aids to visualizing geometry (e.g., local coordinate
frames, normals, Surface-curvature, texture coordinates,
node names, bones), and so forth. The user may explicitly
override any of the do settings at a node via an application
dialog: the overridden d is used for rendering that node and
for child render calls from that node. The did parameter has
no affect on exports to external offline renderers.
0116. Because the graph may contain cycles, we take care
not to render endlessly along a series of edges that lie in a
cycle. Unchecked, such a cyclic traversal would lead to an
“infinite loop' or “infinite recursion' and a program crash.
We guard against this by raising an in Render marker flag in
each node as it begins its render, and lower the flag once it
has completed its render. If a node receives a render message
while its in Render flag is raised, it knows the render
occurred recursively via a cycle, and it will return immedi
ately from the recursive render without traversing to its
children. This is analogous to the mechanism described in
Section 1.4 for ensuring cycle-safety of graph pulls.

0117 The value provided at the ctim in input of a scene
node is the Concatenated Transformation Matrix (CTM)
defining the coordinate space in which that node should be
rendered. This is also known as the pre-ctim of the node,
since it defines the coordinate space existing before the node
makes any of its own graphics-state changes. The ctim out
output specifies the coordinate space in which children of a
node exist, i.e., the post-ctim of the node. That is, the
post-ctim of a given node is the pre-ctim of its children. Most
nodes do not modify the coordinate system, thus the value
at the ctim in of these nodes is passed through unmodified to
ctim out, so children of Such nodes live in the same coor
dinate space as their parent. Transform nodes do modify the
coordinate system, in Some way transforming the matrix
between ctim in and ctim out. The general Transform node
accomplishes this transformation by multiplying the ctim in
matrix input by a Xform matrix input, and providing that
product at the ctim out. Subclasses of Transform provide
higher-level transform controls. For example, Rotate nodes

Dec. 7, 2006

rotate the ctim as specified by their Euler-angle or quaternion
rotation input. Two special Subclasses of Transform, Bones
and Joints, are used to assemble articulated hierarchies.
Transforms and their Subclasses, including Bones and Joints,
are described in more detail in Section 1.18.3.

0118 Several types of nodes exist to issue geometry to
the graphics port. For example, Surface nodes are used to
draw Subdivision Surfaces. Other geometry nodes produce
primitives such as points, lines, ellipses, quadrics and text.
In addition to ctim in and various node-specific inputs, most
geometry nodes also possess a material input. This accepts
values of type material, which are generated by various
kinds of Material nodes. Basic Material nodes can be used
to specify rendering state data Such as ambient, diffuse,
specular and emissive colors and Surface roughness. Mate
rial node subclasses include Texture nodes for binding a
texture image map, EnvironmentMap nodes for binding a
reflection map, FragmentProgram and VertexProgram nodes
for binding OpenGL fragment and vertex programs, and
Shader nodes for binding procedural shaders for external
offline renderers. Material nodes are described in greater
detail in Section 1.18.4.

0119) Other scene node types exist to specify the camera
projection for rendering (Camera nodes) and to define scene
lighting (Light nodes). Several node types exist to define
named scopes over their descendent Subgraphs (Models and
Parts).
0.120. There are several special kinds of scene graph
nodes, and one special situation, that modify the above view
of render traversal. Switch nodes are used to select among
multiple alternate Sub-Scenes, each beneath a distinct ctm
output. Attach nodes allow a node to exist within a coordi
nate space different from that of the parents ctim out.
Inverse Kinematics IK solver nodes provide an alternative
joint-transform evaluation mechanism in which the trans
form used at a joint is derived from the desired position of
the end-effector of the joint/bone chain, rather than the usual
case of end-effector position being determined forward
kinematically from the joint angles. Subgraph inversion is
an alternative mode that inverts the usual flow of ctim data
from parent to child within a local subgraph. These special
cases are discussed in Section 1.17—Dynamic Topology
Changes.
1.10 Data Types
0121 The value produced at a particular node output will
be one of a number of data types. Supported types include
int, Scalar (floating point, aka real), point, vector, covector
(aka normal), matrix, quaternion, curve, mesh, field, defor
mation (Section 1.18.2), material (Section 1.18.4), image,
char and string. Single- and multi-dimensional fixed-bound
arrays of these types may be used as well. Anticipating the
modeling language defined in Section 2, these may be
instantiated as C-style arrays of fixed bound, for example,
“int32, “scalar56. A field is a parameterized type
defined over a mesh; for example, “field.<normaldm' is a
Surface-normal field over mesh m.

1.11 Polymorphism
0122) While a particular node output produces data of the
same type, a given node input may accept multiple types. An
output may be connected to an input only if the type of the
output matches one of the types accepted by the input. This

US 2006/0274070 A1

style of polymorphism corresponds to that of the C++
programming language, in which functions may be over
loaded to accept multiple parameter input types, but function
overloading by return (output) type is not permitted.

1.12 Inputs and Outputs

0123. Every node type defines certain input and output
tabs, to which incoming and outgoing edges, respectively
may be connected. An input tab can function in one of three
modes.

0.124 1. If there is an edge incident to the input, we say
the input is connected and pulls at the input result in
pulls to the upstream node.

0.125 2. Alternatively, the user may specify an internal
expression for an input tab: pulls at that input result in
evaluation of the expression. The expression language
is described in Section 2.2.

0.126 3. If an input is not connected and has no internal
expression, we say the node is defaulted, and pulls of
the input yield a default value. Nodes provide standard
default values for all their inputs, and users can specify
alternative defaults.

0127. Both input and output tabs possess a name that is
unique among the inputs and outputs of that node. Input tabs
specify a list of one or more data types that may be provided
to that tab (by incoming edges, expressions, or custom
defaults). Output tabs specify the unique data type output at
that tab.

1.13 Gain and Bias

0128. The user may specify a bias and/or gain for any
input or output. The value at that input or output will be
gain original value--bias. By default, gain=1.0 and bias=0.0
for scalar inputs and outputs. Other data types use appro
priate values for gain and bias. For types for which the
concepts of gain and/or bias are not applicable, those adjust
ments are ignored. Specifying gain or bias at an input scales
or biases a single graph edge. By specifying gain or bias at
an output, the user can scale or bias all edges leaving that
output. Gain and bias may be set by the user within the
application via a "node inspector dialog box, or the model
definition code itself may specify gain and bias as described
in Section 2.1.2 below.

1.14 Integrals and Derivatives

0129 Node outputs can be integrated and differentiated
with respect to parameter t. For nodes with multi-line
caches, integration over tat, amounts to Summing the
(clean) cache lines between M(t) and M(t), scaled by
stepsize h=1/cr. That is:

findis f(t)+ f(t, + 1) + f(t, + 2 + r + ft.)
M(t) 1

= X. thi,

Dec. 7, 2006

where f(t) is the output value at parameter t, , is the value
stored on cache line i, M(t) is the cache mapping function
discussed previously and c, is the number of cache lines per
unit change in t.

0.130) Differentiating at t involves taking the finite dif
ference at M(t). Higher-order derivatives may be computed
by comparing the derivatives at Successive cache slots.
Thus:

d 1

f(t) is Vu () = civil Min = c(u,v)-buto-1),
and

k

f k ik k k (k
f(t) s Vict) = c V* if M = c. (-1) i th. M(t)-i,

i=0

where V is the finite backward difference operator, and ()
is a binomial coefficient.

0131) If some of the referenced cache lines are not
already clean, one or more Pull(t)'s may be implicitly
necessary. In some cases it may be convenient to maintain
a multi-line cache of the derivatives themselves to facilitate
fast evaluation of higher-order derivatives.

0.132 Expressions written in our expression language
may reference the integral or derivative of any node output
as described in Section 2.2.

1.15 Signal Busses

0.133 Often many edges will follow a similar routing
between two nodes or groups of nodes. Merging these edges
into a bus, drawn as a single thick edge, simplifies display
of the graph. Creating a bus has no effect on the functionality
of the graph: the bussed edges continue to function autono
mously.

1.16 Transmitters and Receivers

0.134. Another common contributor to clutter in the dis
played graph is the output that is connected to a large
number of inputs. For example, the global animation clock
will usually have an outgoing edge to the parameter input of
every avar (see Sections 1.18.1 and 2.3). Transmitter nodes
“broadcast their input value on a named channel. Any
number of receiver nodes may “tune' to that channel by
name, after which they will produce the transmitted value at
their output. Functionally this is equivalent to an edge that
connects transmitter to receiver. Expressions may reference
a broadcast by name (see Section 2.2).
1.17 Dynamic Topology Changes

0135) Sections 1.3 and 1.9 described the usual way
information and render traversal are propagated through our
expression graph. As mentioned previously, several situa
tions modify the usual chain of dependence and traversal.
Three such situations result from special nodes that enable
dynamic local changes to the effective graph topology. A
fourth situation arises when a model dynamically changes its
own root to be at a different node. We discuss each of these
four situations below.

US 2006/0274070 A1

1.17.1 Switches

0136 Switch nodes are used to select among multiple
alternate sub-scenes, each beneath a distinct CTM output.
These nodes may have any number of CTM outs, and a
scene node connected to any of these outputs is considered
a “child, but render traversal will only proceed to one such
output. The index of the active output is specified by a value
input. The state of the switch only affects render traversal,
not graph evaluation. That is, a push-dirty will push through
to all connected outputs, and a pull from any output pulls on
the inputs. The value input accepts both integer (or Scalar)
values and one-dimensional arrays of integers (or Scalars).
(Scalars will be rounded to the nearest integer.) When a
single value is provided, only one output can be active at a
time. Providing an array of values activates the multiple
corresponding outputs. The number of output tabs a Switch
node will provide is specified by the user at model-construc
tion time and may be anywhere from one to an implemen
tation-dependent fixed upper limit. A selector value that does
not correspond to the index of any connected output effec
tively disables all outputs.
0137 Switches may be used to select between alternative
representations or to dynamically enable (i.e., show) and
disable (hide) a subgraph. An example of the use of Switch
nodes to model if-then-else and multi-way “switch <selec
tor> <cases>' constructs is given in Section 2.1.9 Condi
tional Execution.

1.17.2 Attaches

0138 Attach nodes allow a node to exist within a coor
dinate space different from that of the parents ctim out. This
is useful for a model whose frame-of-reference changes
mid-shot. For example, a model of a cup sitting on a table
might logically be represented within the coordinate space
of the table; however, if a character picks up the cup, we
would now like to represent the cup within the coordinate
space of the characters hand, so that the cup will follow
movement of the hand.

0139 Attach nodes accomplish this by taking multiple
alternate CTM inputs and a pair of selector inputs, and
providing a single ctim out. One selector input, sell trans,
specifies which CTM input will be used for translation; the
other selector input, sell rot, specifies which CTM input will
be used for rotation. Translation and rotation of the input
CTMs are separated through an orthonormalization step,
then the selected translation and rotation are combined by
matrix multiplication and provided at the ctim out output.
Scale, shear and perspective components of the input CTM's
are discarded.

0140 Specifically, an attach node accepts a variable
number of inputs:
ctim in, Sel trans, Sel rot, target, target 2. . . . , target in
and provides a single ctim out.
0141 While the attach changes the coordinate space in
which its children exist, attaches do not modify the scene
graph structure itself: the parent of the attach is the node
above the one unique ctim in input, regardless of the setting
of the selector knobs. Sel trans and Sel rot accept an integer
or scalar input value, rounding scalars to the nearest integer.
A value in 1 . . . n selects the corresponding target; values
outside 1 . . . n select the ctim in matrix. The user may set

Dec. 7, 2006

in at model-construction time to any number between Zero
and an implementation-dependent fixed upper limit.
1.17.3 IK Solvers

0.142 Forward Kinematics (FK) describes the normal
chain of dependence within an articulated structure in which
coordinate-space transformations are specified at a series of
joints and/or bones and the position of the end of the chain
(the end effector) is determined by concatenating these
transformations. Inverse Kinematics (IK) reverses this pro
cess, allowing the user to specify a goal position from which
are computed joint/bone transforms to position the end
effector at (or as close as possible to) the goal. This com
putation may be over- or under constrained, and many
alternative methods exist to solve the IK problem.
0.143 We provide a general class of IK solver nodes that
solve inverse kinematic problems. Different IK solvers
implement different solutions, but all have in common a
series of transform inputs and corresponding outputs, an
enable input that enables selection between FK and IK
operation mode, and inputs for the CTM's of the goal and
the effector. Specific solvers may take other inputs as well.
When the integer (or Scalar, rounded to nearest integer)
enable input is zero or negative, the IK solver is disabled,
and the transform nodes it drives behave forward-kinemati
cally. When the enable input is greater than Zero (or 0.5, for
Scalar inputs), these transform nodes become inverse-kine
matic.

0144. Different IK solvers are capable of handling trans
form chains of different lengths. An example IK solver is
shown in FIG. 2. This node can be set up to control a
three-joint chain. The transform inputs in 1, in 2, in 3 are
driven by the forward-kinematic control graphs for these
three joints. The corresponding outputs out 1, out 2, out 3
are connected to the xform inputs of the three joints. The
enable input is connected to an FK/IK switching avar. The
goal input is connected to the ctim out of the target node.
The effector input is connected to the ctim out of the chain
end-effector node. The Swing input is connected to an avar
for Swinging the chain through alternative IK Solutions in
the underconstrained solution space. When enable is set to
Zero (or less-than 0.5 for a scalar input), in 1, in 2. and in 3
are passed through unmodified to out 1, out 2, and out 3.
respectively. When enable is set greater than 0.5, internally
computed transforms are provided at the out 1, out 2, and
out 3 outputs. Depending on the algorithm used in this
Solver, the IK Solution may completely ignore the transform
inputs, or it may use the transform inputs as Soft constraints
and attempt to minimize error between the inputs and
computed outputs. The solver algorithms we employ are
standard, widely known methods.
0145 Note that, unlike switches and attaches, both of
which are scene graph nodes, IK solvers do not take a CTM
input and do not provide a CTM output and thus are not
scene graph nodes but rather are part of the non-scene
expression graph.

0146 The IK solvers we provide use one of several
techniques. Cyclic coordinate descent (CCD) takes advan
tage of our ability to quickly re-evaluate a small number of
outputs following a localized invalidation (push dirty) in the
upstream graph. We visit each degree-of-freedom (i.e., avar)
in the chain one at a time, making an adjustment to that avar

US 2006/0274070 A1

to bring the end effector towards the goal; which way to
adjust each avar may be found experimentally by making
tentative changes to the avar and Pull-ing on the end effector.
Iterating on this process brings the effector to the goal if it
is reachable, and stretches the effector out towards the goal
if it is not reachable.

0147 Jacobian inversion solvers compute the Jacobian
matrix for the linkage at the current position. The Jacobian
is the multidimensional extension to the differentiation of a
single variable. It gives the partial derivatives indicating
how the end effector will respond to small changes in the
control avars. Inverting the Jacobian tells us how we should
change avars to move the end effector closer to the goal.
Because the Jacobian only is valid locally, we make only
Small changes, then recompute the Jacobian in the new
configuration and iterate. The Jacobian for a given node may
be found by differentiating node outputs as described in
Section 1.14. However, a more convenient way to find the
composite Jacobian across the entire linkage is to make
Small adjustments to each avar degree-of-freedom and
observe the resulting changes (deltas) in the end effector.
These deltas, suitably scaled, provide the content of the
Jacobian matrix for the current linkage configuration. In
general, we will not be able to invert the Jacobian, so we use
a pseudo-inverse. The Jacobian transpose method avoids the
(pseudo-) inversion step by using a simple matrix transpose.
0148 Users are free to implement their own IK solvers
using the External node plug-in interface described in Sec
tion 1.18.6.

1.17.4 Hierarchy Inversions
0149 Hierarchy inversion is an alternative mode that
inverts the usual flow of CTM data from parent to child
within a local Subgraph. This occurs when the user specifies
that a different node within a given subgraph should be used
as the root of that subgraph. This has the effect of flipping
edges along the path from old root to new root.
0150 FIGS. 3a and 3b are examples of hierarchy inver
sion via Subtree re-rooting. For clarity, only ctim in and
ctim out connections are shown. In FIG. 3a, the original
subtree is rooted at A. In FIG. 3b, the subtree below A is
re-rooted at J. and the edges along path A-C-F-J have been
flipped and the incoming edge incident to A has been routed
to J. The graph above A is unaffected.
0151. We introduce a new message, InvertHierarchy, that
nodes may pass and receive. The application program main
tains a serial number uniquely identifying each distinct
render traversal. Before each time the application initiates a
render, it increments the value of this serial number. When
a node that is not inverted receives the InvertHierarchy
message, it makes an internal notation that it is part of an
inverted chain during the current render pass by raising an
inverted flag and recording the serial number of the pass, and
it then passes InvertHierarchy to its parent. A node that is
inverted in the current pass (i.e., has inverted raised) will
ignore any InvertHierarchy messages. Once a node has been
inverted. Subsequent Renders within the same pass are
treated as inverted renders. When an inverted node X is
rendered, it propagates the render not only to all its children
but also to its parent. The anti-cycling in Render mechanism
described in Section 1.9 prevents the Render from recur
sively being sent back to X from its children. When a Render
is received for a different pass, the node lowers its inverted
flag and renders normally.

Dec. 7, 2006

0152 To invert a local hierarchy, the user specifies the
node at the top of that hierarchy (node A in FIGS. 3a and
3b), the node to become the new acting root (J in the Figs.),
and the animation time range over which the hierarchy
should remain inverted. Each node maintains a list of
inversions that initiate at that node. In FIGS. 3a and 3b,
node A will record internally that within the intervalt vert

tests the subtree (properly, Subgraph, since it may contain
cycles) below it is re-rooted at node J. When A receives a
Render at a parameter value in this interval, it will first raise
its in Render flag (Section 1.9) and then will send InvertHi
erarchy to J and by induction to F and C. A will then pass
the Render to J, which will recursively render F and C (and
K. E. H. and I). A will receive a Render from C but will
ignore it because A's in Render is raised; however, A will
note that it received the Render from C. When J returns from
rendering. A will proceed with rendering itself and then will
recurse over all its children except C, that is, over B and D.
0153. When rendering at a node on the inverted path from
J to A, the behavior of the ctim in and ctim out inputs and
outputs are Switched; that is, it is as though ctim in had
become ctim out, and Vice versa. Rendering of geometry
will still take place in the pre-ctim of the node; however in
this case the pre-ctim first needs to be computed from the
post-ctm. For inverted non-Transform nodes, this involves
just copying the ctim out to the ctim in. For inverted Trans
form nodes, the post-ctim from the ctim out “input' is
multiplied by the matrix inverse of the xform input and the
resulting pre-ctim is provided at the ctim in "output. This
reverses the usual (non-inverted) behavior of Transform
nodes, which multiply ctim in by Xform, yielding ctim-out.
The behavior of nodes not on the inverted path is unchanged.
0154 Hierarchy inversion may be used when an anima
tion task calls for an inverted view of a model hierarchy. For
example, a character hanging by the arm from a tree limb
may be animated relative to a model root in her hand rather
than the usual model root at her pelvis. Bending the elbow
joint of that character will then cause her entire body to
swing relative to her stationary forearm, rather than the other
way around.
1.18 Expression Nodes
0.155 Data in the graph originates from several types of
nodes, including parameter drivers, constants, file readers
and avars. Many other node types exist that process this data,
performing calculations, generating other data, and produc
ing the geometry, lighting and shading that ultimately is
rendered in the 3-D view window. Here we describe each
major category of node and give examples of each.
1.18.1 Data Sources

0156 Parameter drivers, such as clocks, have already
been mentioned. Such nodes have no inputs (or optionally
min/max range inputs) and only a single output. They may
be configured internally to vary their output over some value
range. For clocks, the rate at which they vary is often tied
internally to the application's notion of “wall-clock' time.
However clocks may be paused, run backwards, run at
slower- or faster-than-real-time speeds, or single-stepped
(that is, incremented by some fixed stepsize) forwards or
backwards. Non-clock parameter drivers also vary over
Some parameter range, but conceptually they take on all
values in that range simultaneously. In practice, they return

US 2006/0274070 A1

Zero in response to a pull for kInputParam, and otherwise
take on whatever specific value was pulled, clamped within
their allowed range, if any.
0157 Constants are another node type. As their name
implies, constants have an unchanging value, no matter at
what parameter value they are pulled. The value is set
internally to the node at model-construction time. They have
a single value output, and no inputs. There is no conceptual
difference between providing a constant-valued input
expression or connecting an input to a constant node. In
different situations, one or the other method may be more
convenient.

0158 File readers are similar to constants, except that
rather than their value being set internally, it is read from a
disk file. File readers take a file input String designating the
file path and provide a value output. Various file readers are
available for reading different types of files, and some may
have additional inputs for configuring import options or
additional outputs providing extra information about the
data read. For example, MeshReader nodes read meshes
saved in Wavefront OBJ and several other formats. This
reader has an objects input accepting a string giving names
of objects to be read in that file; if no value (or a NULL
value) is provided, all objects in the file will be imported.
Other inputs control the assembly of meshes from the OBJ
data, for example, by specifying a threshold dihedral angle
at which a hard edge (two distinct face normals) should be
introduced in the mesh normals. The Mesh Reader provides
a mesh or array of meshes at its value output, plus an
objects read output giving the names of the meshes read.
Other file readers exist for loading numerical arrays, images,
QuickTime movies, audio, motion-capture data, and so
forth.

0159. Avars are nodes that correspond to articulated
variables as defined in W. T. Reeves, E. F. Ostby, and S. J.
Leffler, The menV modeling and animation environment,
Journal of Visualization and Computer Animation, 1(1):33
40, August 1990. Examples of articulated variables are
quantities that a human operator might want to vary over
time (or other parameter value for a non-clock parameter
driver). They have a parameter value input, which usually
comes directly from the global animation clock node; an
“override' input to allow overriding the data set in the avar;
and “value' and “solo outputs. The value output gives the
value the avar takes on at the input parameter (when the pull
is at kInputParam) or at the parameter requested by a pull.
The solo output is discussed in Section 5.
0160. As described in Section 2.1.3, avars are a templated
node type and can be instantiated for any value type for
which certain basic mathematical operations are defined. We
have found scalar- and quaternion-typed avars to be of
particular value, but other types are possible as well.
0161 The value output of an avar is a function of the
param input. The function definition is complex and is
described in detail in Section 5. The function definition may
include kinematic, dynamic, procedural, sampled and sto
chastic components. The kinematic components of an avar,
if any, are defined by parameterized one-dimensional piec
wise-polynomial curves, or splines, with knots specifying
the value at particular parameters along the spline. The form
and specification of these splines are described in Section
23.

Dec. 7, 2006

0162 The application keeps track of a user-specified
current manipulation mode. Manipulation modes corre
spond to common modalities of manipulation; for example,
translation, rotation, scale, bend, squash/stretch, mesh defor
mation, global deformation, etc. The active avars at any
given moment are those avars designated (by the user at
model-construction time) as relevant to the current manipu
lation mode, and that are within a subgraph driving any input
(other than ctm) to the currently selected scene graph node
or nodes. Active knots are knots in the active layer (see
Section 5) of the active avars that are unlocked and free to
be manipulated (Section 5.3).
0.163 We provide an in-camera indication of the names
of the currently active node and the active avars. We also
indicate in-camera which active avars have active knots at
the selected motion-path knots (see Section 4.1.3) or current
frame if no path knots are selected.
0164. In the top-left of FIG. 10a, text annotations indi
cate that the active avar is the “rot avar of the “root joint'
node of the “Rod' model. The yellow box around the word
“rot' indicates that this avar has a knot at the current frame
(frame Zero). The yellow diamond on the motion path at
frame Zero confirms the existence of a knot there (Section
4.1.3), as does the yellow solid-line box around the large
frame number “O'” in the lower right corner of the view. If
there were additional avars active, they would be listed to
the right of the word “rot', and each would have a yellow
box around it if and only if that avar had a knot at frame Zero.
The box around the large frame number at the bottom right
would be drawn with a solid line if all active avars had knots
at frame Zero; if only some active avars had knots at frame
Zero it would be drawn with a dashed line.

0.165. In FIG. 10b, we see that the “rot” avar is still
active, but that it does not have a knot at the current frame
(frame nine) because the word “rot' is not boxed in yellow.
Similarly, we note there is no yellow diamond on the motion
path at frame nine, and the large frame number '9' at the
bottom-right of the view has no box around it.
0166 Each avar is internally configured at model-con
struction time to have some default value, which is the value
that avar takes on when it has no animation (i.e., no motion
channels) in any enabled layer (see Section 5). Several
settings concerning the preferred display format for avar
data may be specified. Such as the unit of measurement (e.g.,
meters, kilograms, seconds, radians, degrees), linearity (lin
ear vs. logarithmic), and Scale. An avar may also be con
figured to have an allowed output value range (i.e., hard
limits) and a preferred range (soft limits). These ranges do
not affect the evaluation of the avar itself, but they can be
queried, for example, to guide a constrained optimization
Solver running in a dependent node or an external compu
tation. The user can optionally set direct manipulation
controls (see Manipulators below) to respect these value
limits. For scalaravars, soft- and hard-limits are specified as
minimum and maximum values. For quaternion avars, soft
and hard-limits are each specified as an array of unit
quaternions demarcating a convex 'spherical polygon'
within which the avar may move.
0.167 The user can enable a Hold Poses mode in which
all time-varying avars are evaluated as though they con
tained in every layer only stepped knots at those times at
which the active avars have knots in the active layer. This

US 2006/0274070 A1

has the effect of arresting movement between active knots.
When playing the animation in this mode, at each active
knot the scene elements jump discontinuously to the posi
tions and State they normally take at that time, and otherwise
do not move. We accomplish this by substituting for the
output value of the global animation clock the knot time t
of the last active knot prior to or at the true animation time.
Since time-varying avars use this output value as their param
input, in response to pulls at kInputParam during rendering,
they will hold their own value outputs constant except when
the animation time t, passes the next active knot time
tnext hold: then theid will update to the hold, and all the avars
will jump to the output state at the new ta.
1.18.2 Operators
0168 Operators produce an output that is functionally
dependent on some number of inputs. For example, basic
operators include the polymorphically typed nodes Multiply
and Add. These are actually convenience wrappers around a
general Compute node that takes an arbitrary number of
inputs and a user-provided String that expresses some func
tion. We evaluate the function on the input tabs and provide
the result at the output tab. The expression language is
described in Section 2.1.5. Other convenience wrappers
include Translation, Rotation and Scaling, which take scalar
inputs for tX/ty/tz, rX/ry/rz and SX/sy/SZ, respectively, and
produce a transformation matrix output.
0169 IK Solvers are expression nodes for introducing
dynamic changes in graph topology in Support of inverse
kinematics. They are described in detail in Section 1.17.3.
0170 Deformers are nodes that compute some point
valued function of points. That is, a deformer expresses the
function p'=f(p). Mesh deformers apply this function across
the vertices of a mesh, usually in Some local coordinate
frame, for example, a body coordinate frame, or in a
surface-relative fashion. Spatial deformers, or global
deformers, apply their function at arbitrary positions in
global or local space. Both types of deformers accept a
mesh in input mesh or point array. The only real difference
between mesh and spatial deformers is that, while each
accept additional parameters controlling the deformation
function, the input parameters of mesh deformers are point
wise fields that conform to the input mesh, while spatial
deformers and their inputs have no knowledge of and need
not conform to, the point-data topology or layout. (The one
exception to this is that spatial deformers, like mesh deform
ers, can Subdivide mesh inputs before acting on them, as
described below.)
0171 All deformers provide two outputs: mesh out and
deformation. Deformers may be used in either of two ways.
They may be used to actually deform their input mesh or
point array in a vertex-wise or point-wise fashion, with this
deformed mesh or point array available at mesh out. Alter
natively, they may be used to compute a vector field of the
(global, local, or Surface-relative, depending on the type and
configuration of the deformer) vertex- or point-wise dis
placements as computed by the deformation function; this
vector field is available at the deformation output.
0172 In our implementation, all meshes are represented
and rendered as subdivision surfaces. When a mesh is
provided to the mesh in input on a deformer node, the
refinement level at which the deformer is acting may be

Dec. 7, 2006

specified at the deformer's sclevel input. The surface will be
deformed by moving the refined vertices at the specified
level rather than moving vertices at the base (unsubdivided)
level Zero. When specifying sdlevel >0 for a mesh deformer,
point-wise parameter fields conform to the subdivided mesh.
Sdlevel is ignored when deforming simple point arrays
lacking connectivity information.

0173 Many deformer subclasses exist, such as RotateDe
former, BendDeformer, CylindricalDeformer, SphericalDe
former, ConicalDeformer, MuscleDeformer, JointDeformer,
Bonel Deformer and numerous others. Each performs a par
ticular type of mesh deformation. These deformers may be
chained sequentially, passing the mesh out of one deformer
to the mesh in of the next; or their deformation vector-field
outputs may be combined (Summed) in parallel and later
applied to a mesh via point-vector addition. It is common for
complex deformation networks to include a mix of parallel
and sequential deformations.

0.174 The SkeletalDeformer mesh deformer takes as
inputs any number (up to Some implementation-dependent
limit) of bone ctim outs, plus four pairs of bone id, bone
weight point-wise Scalar-field inputs and a body space
CTM input. The bone ID's index (counting from one) into
the bone inputs, associating up to four bones with each point
in the input mesh (or point array). The body-space CTM
(pre- or post-, as described below) of each bone is noted with
the skeleton in its home (default) pose, then the transform
that carries each bone from home pose to the current pose is
scaled by the corresponding bone weight and used to trans
form each mesh point. For each point, up to four Such
weighted-bone transforms are applied sequentially. A posi
tive bone ID selects the post-ctim of the indexed bone, while
a negative ID selects the pre-ctim of the bone indexed by the
absolute value of the ID. Specifying a bone ID of Zero is
equivalent to specifying a Zero weight. This deformer thus
performs four-way weighted-bone deformation of the input
mesh as is popular in many consumer-level and real-time
graphics applications. On hardware that Supports the
OpenGL capabilities GL ARB vertex blend or GL vertex
program, we are able to perform the skeletal deformation

on the graphics card, provided (a) that the number of bones
falls within hardware limits and (b) that the deformed mesh
is not needed for any Subsequent computations (other than
rendering). For convenience, when connecting a Skeletal
Deformer, one need only specify the root node of the
skeleton hierarchy and the application will take care of
connecting the body space input and the many bones in the
skeleton (and will mark those bone input tabs hidden so that
they and their incident edges are not drawn in the graph
editor view, thereby reducing clutter).

1.18.3 Scene Graph Nodes

0.175 Scene graph nodes were described in general in
Section 1.9. These nodes constitute the scene graph embed
ded within the larger expression graph. While there are many
varieties of scene graph node in our system, all respond to
a Render message, and all take a Concatenated Transform
Matrix (CTM) ctim in input and provide actm out output.
The Render message and the roles of ctim in and ctim out in
render traversal are described in detail in Section 1.9. There
are numerous subclasses of the basic SceneGraphNode
class, the most important of which are described below.

US 2006/0274070 A1

0176 Group nodes are the most basic type of scene graph
node. A group node itself serves only as a collective parent
for the children beneath it.

0177 Part nodes introduce a named scope over their
scoped subgraph. We define the scoped scene nodes of a part
node Pas those scene-node descendents of Preachable by a
path, Such path having length greater than Zero and contain
ing no parts except one or two at the endpoints of the path.
We say the scoped scene nodes of P are "scoped to P'. The
non-scene Supergraph of a scene node R we define here as
the union of non-scene subgraphs above (i.e., ancestral to)
R’s inputs (other than ctim in). The potential scoped sub
graph of part P we define as the union of the scene nodes
Scoped to P plus the nodes in the non-scene supergraph of
any scene node R scoped to P that are reachable from R via
a path containing no scene nodes except R. Then we define
the scoped subgraph of part Pas the union of (a) those nodes
in P's potential scoped subgraph that do not belong to any
other part's potential scoped subgraph plus (b) those nodes
below P. or in the non-scene supergraphs above P's descen
dents, that are not in the scoped subgraph of any descendent
of P (other than P itself) and that are not in the potential
scoped subgraph of any node not descendent to P.
0178) The names of part nodes in the scene-graph path
from the root to a given node A contribute the path com
ponents to A's full path-name. For example, a node
“Thumb' whose full path is “/Fred/RArm/Hand/Thumb”
exists in the scoped subgraph of a part node "Hand', and
“Hand” is in the scoped subgraph of part “RArm', which in
turn is in the scoped subgraph of part “Fred', which itself is
in global scope.
0179 A model is a type of part node that designates the
top scope of an independently loadable scene subgraph. In
the above example, part “Fred” would be best represented as
a Model node.

0180 Most scene graph nodes pass their pre-ctim (from
ct min) through to their post-ctim (at ctim out) unmodified.
Transforms are scene graph nodes that transform their
pre-ctim to produce their post-ctm (Section 1.9). Basic
Transforms multiply their ctim in input by the transform
matrix at their Xform input and assign the result to ctim out.
Convenience subclasses of transform, such as Translate.
Rotate and Scale, simplify building common expressions,
here effectively combining a Translation, Rotation or Scal
ing node, respectively, with a Transform node. The Rotate
node is polymorphic, accepting any one of rx.ry.rz Euler
angles, an orthonormal matrix, or a quaternion. Two Trans
form subclasses, Bones and Joints, provide higher-level
control over the matrix transform and enable direct manipu
lation via Manipulator nodes (discussed below).
0181 Bones are transform nodes that represent a nomi
nally rigid linear element within an articulated skeleton.
Inputs allow for animation of prismatic (lengthwise) trans
lation, revolute axial twist, and two orthogonal axes of bend.
There are independent min u and max U inputs for con
trolling the section of bone over which bend and twist occur.
It may be convenient to normalize the length and other
animation parameters of bones so that, for example, setting
all length avars to 1.0 will produce bones of length appro
priate for the default pose of a character. This may be
accomplished by adjusting the bias (and possibly gain) of
either the bone inputs or the avar outputs; generally it is best

Dec. 7, 2006

to set the bias and/or gain at the avar output so as not to
interfere with other processes (e.g., IK solvers) that may try
to adjust the bone inputs directly (see Section 1.17.3).
Similarly, manipulation limits may be set by specifying
value limits on the avars.

0182 Joints are transforms that represent revolute or
spherical joints within an articulated skeleton. Joints accept
as their Xform input either an orthonormal matrix (e.g., from
an Euler-angle rotation) or a quaternion (e.g., from a quater
nion-valued avar). It is often desirable to assemble the model
so that all joints will be centered (i.e., Euler-rotation avars
Zeroed, quaternion avars set to quaternion identity) when the
skeleton is in the default pose. As with bone parameters, this
can be done by setting a "pre-orientation via bias and/or
gain at the avar outputs (or, less ideally, at the joint rotation
input). Joint limits are set via limits on the (scalar or
quaternion) avar(s) driving the joint. The application pro
Vides a simple "by-demonstration'joint-limit configuration
mode in which the user moves the joint through its allowed
range of motion and the application sets corresponding avar
limits. For scalar avars, this is straightforward; for quater
nion avars, we fit a convex 'spherical polygon' around the
observed motion range. The user may subsequently edit
these joint limits "in-camera by interactively manipulating
the unit-quaternion vertices of this spherical polygon drawn
on a 3-D virtual sphere centered on the joint, or the user may
specify new limits by demonstrating a new range of motion.
0183) To facilitate user understanding of the bones and
joints comprising a skeleton, we provide an application
option to draw a translucent skeleton overlay over geometry
(FIGS. 10a and 10b). This is implemented by rendering a
ghost (Section 3) in skeleton mode at the current animation
clock time. Bones and joints normally are excluded from
final (off-line) rendering.
0184 Surfaces provide a mechanism for rendering
meshes as Catmull-Clark subdivision surfaces. A surface
node accepts a mesh input and a material input (described
below). The mesh undergoes n Catmull-Clark refinement
steps, where n equals the numerical floor of the effective lod
(Section 1.7) of the render. Commonly, a mesh will originate
at a MeshReader node, be passed through a deformer
network, and ultimately be fed to a surface node for ren
dering.

0185 Switches and Attaches are scene graph nodes for
introducing dynamic changes in scene topology. They are
described in detail in Section 1.17.

0186 Glyphs are scene graph nodes providing notational
graphics that may be displayed, and possibly manipulated, in
interactive views but that are not really part of the CG scene
and are excluded from final (off-line) rendering. Examples
include MotionPath (motion-path curves), Control Hull
(meshed-surface control hulls), EditFoint (control points on
motion paths and control hulls), Annotation (text labels and
2-D graphical markup), Jack (a 3- or 6-d of point for use as
an IK goal, attach target, or anywhere elsea virtual reference
point is desired), and Manipulator (discussed below). During
a normal rendering pass, glyphs are rendered in the same
manner as other scene graph nodes, but glyphs generally are
excluded from ghost and shadow rendering passes (Section
3).
0187 Manipulators are glyphs that provide in-camera
direct-manipulation control over animatable elements of the

US 2006/0274070 A1

3-D scene. Example manipulators include an archall rotation
controller, X/y/Z translation handles, X/y/Z scale handles, and
a bend manipulator handle for controlling bend deformers.
The application is responsible for creating and deleting
manipulators appropriate to the Surface, bone, joint, or other
object currently selected and the current user-specified
“manipulation mode' (defined above). For example, if the
user selects a joint and then chooses "rotation mode, an
archall controller will be created by the application and
connected as a child of the joint node. When the user later
deselects the joint or changes to a different manipulation
mode, the application will delete the archall controller.
0188 Light scene graph nodes define theatrical lighting
in the 3-D scene. They take inputs corresponding to the
particular light type. For example, Pointlight has inputs for
diffuse and specular color, falloff rate, and linearity, while
Spotlight also has inputs for cone angle, shape and penum
bra. Like Surfaces, lights take an optional material input for
creating advanced effects Such as gobos (projected textures)
and custom beam distributions or for associating arbitrary
shaders with a light (Section 1.18.4). An nxm lighting matrix
defines the weight with which each of the n lights in a 3-D
scene illuminate each of the m Surfaces in the scene. This
matrix defaults to 1.0 everywhere and is editable by the user
in an application dialog. Each lights intensity is scaled by
the corresponding matrix entry before final rendering (and
optionally before interactive rendering) of each Surface.
0189 Camera scene graph nodes define the virtual cin
ematic cameras used for viewing a scene. A camera defines
the viewer's eye-point. The basic camera class takes trans
form-matrix inputs projection and view and sets the render
ing projection and view matrices accordingly. Subclasses of
the basic camera exist for providing higher-level control
over camera mount movements (e.g., dolly, truck, crane,
pan, tilt, and roll), view-camera movements (rise (and fall),
shift, Swing and tilt), lens settings (focal length, aperture,
distortion), shutter (shutter angle) and film transport (fps). A
filter input accepts a material value (see below) for creating
advanced effects such as lens filters, vignetting, chromatic
aberration, internal reflections (flare) and subsurface scat
tering (bloom), as well as binding arbitrary shaders to the
camera. Cameras provide an image plane output optionally
used in conjunction with Film Backs and Imagers (Section
1.18.5) to further define or utilize the rendered image
produced.
1.18.4 Material Nodes

0190. Material nodes define optical and material proper
ties such as ambient, diffuse, specular and emissive color;
Surface roughness ('shinyness”); texture, glow, reflection,
irradiance, bump and displacement maps; atmospheric
effects (“participating media”), and so forth. The simple
Color material Subclass provides a convenient way of setting
just diffuse color. Texture material nodes bind a 1-D, 2-D, or
3-D texture map to a (OpenGL or offline renderer) texturing
operation or the map input of another material node. Envi
ronmentMap nodes bind a spherical or cube reflection map.
The texture image data itself comes from an image input,
which may originate at a FileReader (Section 1.18.1) or at an
Imager (Section 1.18.5).
0191 Programmable materials include the FragmentPro
gram and VertexProgram nodes, which bind OpenGL frag
ment and vertex programs. Shader nodes allow a named

Dec. 7, 2006

external “shader to be bound for use during final (off-line)
rendering by a batch rendering program such as Pixar's
RenderMan.

0.192 All materials take a material in input and provide
a material out output. Connecting multiple materials in
series allows the assembly of complex combined effects. For
example, several texture nodes might be connected, with one
specifying a diffuse map, another modulating that diffuse
map with another map, a third specifying a glow map, and
a forth specifying a bump map. These texture nodes could be
connected to a shader for controlling the off-line rendering
process and a basic material for specifying underlying
material properties such as diffuse and specular color. The
effects of these nodes will be combined as each is chained
together.
0193 An Atmosphere node is provided as a proxy for
accepting a material input to affect the scene atmosphere,
providing participating media effects such as haze, fog,
Rayleigh Scattering (visual perspective) and diffraction
effects (e.g., halos and coronas). A given scene may have at
most one atmosphere node that has global effect over the
scene. Atmosphere material is primarily of importance for
off-line rendering; with the exception of fog (which is
Supported in hardware by current graphics cards), most
atmosphere materials are ignored during interactive render
ing. Atmosphere nodes are unusual in that they have no
outputs.

1.18.5 Imaging Nodes: "Camera Backs'
0194 Film backs may be used in conjunction with cam
eras to provide further control over the final-image genera
tion process. Film backs accept an image lane input from a
camera and a material input that can be used to simulate
properties of film stock Such as speed, transfer function,
grain and reciprocity failure. Film backs also accept inputs
for configuring the film format (aspect ratio and anisotropy).
Film backs are the only node type other than atmosphere
nodes that produce no output value. With the exception of
the aspect-ratio setting, which the user may apply in con
straining camera-window resizing during the interactive
session, film backs are used only for controlling external
off-line renderers and have no effect on interactive render
1ng.

0.195 Imagers accept an image lane input from a camera
and produce an image output. Imager nodes are analogous to
the digital-imaging backs available for traditional (physical,
film) cinematic cameras. They are typically used in con
junction with texture nodes (Section 1.18.4) to produce a
reflection map or otherwise capture a rendered image of the
scene for use within that scene. The image output may also
be directed to an export node (implemented as an External,
see Section 1.18.6) for integration into editing, compositing
or color-correction software.

1.18.6 Miscellaneous

0196. Transmitters and receivers together provide graph
wide broadcasts as described in Section 1.16.

0197) Macros are encapsulated graphs in which particular
outputs and unconnected inputs of the graph have been
designated “public'. All other outputs and inputs are private.
The user may instantiate the macro in another graph, where
it will appear as node providing these public inputs and

US 2006/0274070 A1

outputs. Macros do not alter evaluation of the total graph at
all; they only provide the user convenience of an encapsu
lated view of graph structure.
0198 Externals are nodes whose definition has been
loaded through an external plug-in interface. They are coded
in C++ by using a provided API, then are loaded at runtime
and are available for use along with macros and built-in
nodes.

1.19 Graph Editing

0199 FIG. 4 is a screen shot of an exemplary control
graph 402 for the bottle model shown in FIGS. 8a–8c. The
graph editor 400 can be used for creating, viewing and
editing the control graph 402. Example nodes 404 are shown
in FIGS. 2, 4 and 6. Edges 406 are displayed as polylines
joining node output tabs 408 and input tabs 410. Nodes 404
may be instantiated by selecting from a list of known node
types. User-created nodes (Macros and Externals) also
appear in this list. After creating a node 404, the user may
click-and-drag on the node 404 to reposition it within the
control graph 402. The user may connect node outputs to
node inputs by dragging a rubber-band line from an output
tab 408 to a type-compatible input tab 410, or vice versa. In
Some implementations, selecting one or more nodes 404 or
edges 406 and pressing the Delete key will delete the
selected graph elements. Selected nodes 404 may also be
copied and pasted to create new nodes 404 of the same type
with the same internal settings. Internal node settings (e.g.,
input expressions, gain and bias, user comments, output
caching strategies, etc.) may be viewed and edited either in
pull-out drawers 600, as shown in FIG. 6, and/or a node
inspector application dialog. In some implementations,
selecting a node 404 in the control graph 402 selects that
node 404 elsewhere throughout the application user inter
face, and vice versa.

0200 Nodes 404, input and output tabs 410, 408, and
edges 406 may be hidden, which has no effect on their
behavior but prevents them from being drawn in the graph
editor. Hiding an input tab 410 or an output tab 408
effectively also hides edges 406 incident to that tab. Hiding
a node 404 hides its connection tabs and incident edges as
well. Certain connection tabs are hidden by default. For
example, Cameras, Lights, and basic Material nodes accept
many inputs, but commonly only a few are used, so by
default the more obscure inputs are hidden. Similarly, Skel
etalDeformer nodes accept a great number of inputs, one
from each bone within a skeletal hierarchy, but these bone
inputs are all hidden by default. This provides a less
cluttered view of the graph. The user may show or hide any
node, tab or edge at runtime or model-construction time. The
user may also elect to have hidden elements shown within
the graph editor 400, for example, to allow selecting a
hidden element. Hiding a node in the graph editor 400 hides
that node in 3-D scene views, and vice versa. Control graphs
402 may also be understood and edited with an external text
editor using the text-based programming languages
described next. FIG. 5 shows nodes 500a, 500b and 500c,
connected with polylines 502a and 502b.
2. Programming Languages

0201 Expression graph structures may be built interac
tively via a visual graph editor user interface. Frequently it
is more convenient to specify the graph via a text-based

Dec. 7, 2006

programming language. We describe the core of our model
definition language (Section 2.1). Two Subsets of the mod
eling language are commonly used outside the model
definition setting: these are the syntaxes for expressions,
described in Section 2.2, and animation, described in Sec
tion 2.3. While we describe these in three distinct sections,
they all are properly part of the same language and all can
be used to define a model or collection of models. The
resulting language is Turing complete, allowing specifica
tion of any computation or algorithm that could be expressed
in a general purpose programming language Such as C.

2.1 Modeling Language

0202 The modeling language in our system is an objec
t oriented C/C++-like language. It has POEM (Parse Once,
Execute Many) execution semantics, with models being
unrolled and the corresponding graph instantiated once at
parse time, after which the same graph is evaluated as often
as necessary. The system provides garbage collection: there
are no “new” or “delete' operators. Named symbols in the
language correspond to nodes, node inputs, and node out
puts. Common preprocessor directives Such as Hinclude,
#ifdef fielif, ielse and Hendifare available. We also provide
a Hincludeonce convenience directive for including a par
ticular header only once within a given translation unit.
2.1.1 Declarations

0203 A node is created in the language simply by declar
ing it. For example, the model code:

Model Joe:
Model Sue:

0204 creates two nodes of type Model named “Joe” and
“Sue'. Node inputs may be specified within parentheses on
the declaration line as positional parameters or as

name=value pairs:
Translate sideways(5,0,0);
Translate upwards(ty=2); f* tX and tz inputs default to 0.0 */

0205 The first line above creates a Translate node “side
ways' with its input tabs tX, ty and tz, set to constant values
5, 0 and 0. The second line creates a node with only one
input set to a non-default value. Anonymous nodes may be
created as well, for example, “Translate(1.2.3). Here the
system will generate a symbol name to be used for the node,
however that symbol name will not be available to the
program So there is no way to refer to that node Subse
quently.

2.1.2 Inputs and Outputs

0206 Node inputs and outputs may be referenced via the
selection operator (“.. period), either by name as node
name.tab name or by index as node name.ini (for inputs)

or node name.outi (for outputs). The first output of a node
may be referenced with just the node name alone: thus,
“myNode' is equivalent to “myNode.out 0.” Inputs are

US 2006/0274070 A1

lvalues and outputs are rvalues. Assigning an output to an
input establishes an edge. An edge is also created when an
output is passed as an input parameter to a declaration:

Avar up, right;
Translate trans (ty=up);
trans.tx = right;

f* connect up.value -> trans.ty */
f* connect right value -> trans.tx */

0207 Nodes and inputs/outputs inhabit distinct
namespaces, so we could have written the above as:

Avar tX, ty;
Translate trans (tx=tX, ty=ty, tZ=nil);

0208. The predefined symbol "nil" (or equivalently
“NULL) indicates we wish to leave input tz disconnected.
This is commonly used with positional parameters, for
example, “Translate (tx.mil.tz)'.
0209 When referencing an output (as a parameter or as
the rvalue in an assignment), by default that output will be
Pull-ed at the param and lod at which the causational pull
occurred. (The causational pull is the pull that caused the
node on the left of the assignment operator to re-evaluate
and thus request the given output rvalue). We can pull at a
specific param and/or lod via the function-call-like format
output (param, lod). Given an avar ty, “ty(2.5) (or
“ty.value(2.5), “ty.out O(2.5), “ty (param=2.5), etc.) ref
erences the value ofty at param=2.5. "Surface coarse (mesh
(lod=0.5)):” creates a Surface node “coarse' from the output
of node "mesh' at level-of-detail 0.5.

0210. In addition to its input tabs, every node has an
implicit parameter named “comment” that can be used to
provide text for the node comment. Avar nodes may have
default values (the value the node takes when no animation
channels are present) specified via assignment.

Avar rx(policy='+', /* additive policy: see Section 5 of text */
units='degrees', f* Only affects display format in GUI */
comment="rotation about x axis) f* visible in GUI help */
= 30.0; /* defaults to 30 degrees */

2.1.3 Avars and Parameterized Types
0211 Several node types are in fact templates, and the
template type parameter may be defaulted. For example,
Avars are a template with default type “scalar'. (The type
“real' is a synonym for “scalar'.) To instantiate an avar with
a different type, a C++-like syntax is used:

f* scalar awars */
f* more scalar awars *
f* quaternion avar */

Avar tX, ty, tZ;
Avar-Scalars SX, Sy, Sz;

Avarzquaternion> rot;

0212. By default, scalar avars default to 0.0 and use an
additive layering policy. (Layering policies are described in

Dec. 7, 2006

Section 5). Quaternion avars default to quaternion identity
(x,y,z,w=0,0,0,1) and use a multiplicative layering policy.
The 0.0 default and additive layering probably are not what
we want for Scaling avars (e.g., SX. Sy, SZ above). We can
specify a different policy and/or default. The default is
inferred from the policy if not specified: additive avars
default to a type-appropriate Zero and multiplicative avars
default to identity.

Avar tX; f* will default to 0.0, additive policy */
Avar length=1: f* will default to 1.0, additive policy */
Avar SX(policy=''); f* will default to 1.0, multiplicative policy */
Avarzquaternion> rot; f* will default to identity, multiplicative policy */

0213 Implicit in the declaration of an avar is assignment
of the global animation clock output to the avar param input.
The connection is made via broadcast (i.e., through a trans
mitter/receiver pair) to reduce clutter in the graph editor. If
we do not want the avar to be time-driven, we need to
explicitly specify that the param input is nil or is connected
to Some other output, as shown in Listing 3 below.
0214) We may specify animation for the avar within a
scope block (“... O”) following the avar declaration using
the format described in Section 2.3. Normally animation for
time-variant avars would not be specified within the model
itself; however, there are situations in which it is convenient
to include “animation” within the model. For example, an
avar driven by the u-parameter of a 3D curve might be used
to define the profile of an extrusion of that curve. Similarly,
an avar could specify one coordinate of the profile curve for
a surface-of-revolution. In such cases, we may well wish to
include the avar data within our model code. An example
showing the use of embedded avar data is given in Listing
3 below.

0215. Other templated node classes include Constant,
Compute, Transmitter and Receiver. When the type can be
inferred from usage we need not specify it explicitly:

Constant name='Fred'; f* <string> is inferred */
Transmitter foo (name); /* <string> is inferred */
Transmitter<string> bar; * cant infer type so it is specified */
bar.input = name:
Receiver recw (bar); f* <string> is inferred */

2.1.4 Assembling Scene Hierarchies
0216 Scene node hierarchies may be built up by enclos
ing children within a scope block. Transform nodes implic
itly scope the nodes beneath them up to the point where the
transform itselfgoes out of Scope. Material nodes implicitly
chain into an input subgraph above the “material input tab
of Subsequent geometry until that material node goes out of
Scope. Thus:

Translate (1,0,0) {
Cube (1,1,1);

Sphere (1):

US 2006/0274070 A1

-continued

and

Translate (1,0,0);
Cube (1,1,1);

Sphere (1):

0217 both translate the cube, but not the sphere, to the
right. Similarly, we can define a simple Box model with
animation controls as:

Model Box {
Avar tx=0, ty=0, tz=0;
Avar sx(policy='*)=1, sy(policy='*)=1, Sz(policy='*)=1:
Awar-quaternions rot;
Translate(tX,ty,tz);
Rotate(rot);
Scale(SX.sy,SZ);
Avar r=1, g=1, b=1, a=1:
Texture(mytex.tiff);
Color(r.g.,b);
Cube(1,1,1);

0218. The cube primitive will be transformed, textured
and colored by the statements that precede it. The close of
Scope at the end of the model ensures that changes to the
transformation stack and material chains within model Box
will not affect geometry outside of this model.
2.1.5 Expressions and Optimization

0219 Compute nodes may be created explicitly like other
nodes or implicitly via an expression. The model program
may contain arbitrary expressions as defined in Section 2.2
below, with the one modification that certain “predefined
locals are accessed as parameter-less functions (e.g., "lod(
) and “ctm()). Standalone expressions assigned to basic
types (int, real, string, etc.) implicitly create a Compute node
(except where optimized away, as described below). Assign
ment of expressions to node inputs may be made with the
assignment operator ('='). For example:

real a = 3 + 4* time:
Scales (a+1, sin(2*a), 1);

f* create a Compute node named 'a' */
f* create a Scale node 's' with input
expressions */

Avar up down;
Translate trans;
trans.ty = 2 * up down; f* connect edge and set input

expression */

0220. These expressions and the implied graph structure
may be optimized automatically. For example, multiple
confluent expressions may be combined into a single Com
pute node (corresponding to the traditional compiler opti
mizations of “procedure integration' and "copy propaga
tion'). When possible a standalone expression whose result
is used only once will be encoded into the destination node
input rather than instantiated as a separate Compute node
("inlining’). Common Subexpressions may be merged into a
single Compute node or input expression ("common Subex

19
Dec. 7, 2006

pression elimination'). Expressions whose results are not
needed are dead-stripped (“dead code elimination') unless
their declaration is qualified by the volatile keyword:

volatile char c = a +1:/* c is unused but will not be stripped */

0221) The function within an explicitly declared Com
pute node is specified following an assignment operator
'='), using the expression language described in Section
2.2. Compute input names are scoped within the function
definition. For example, we may (re-)define the linear inter
polation function for meshes as:
Compute myMeshLerp(real x=blend, Mesh a=M0, Mesh
b=M1)=(1-x)*a+x*b:
0222. As x goes from 0 to 1, myMeshLerp...out will
linearly blend from MO to M1. (We define mesh-scalar
multiplication as a scaling of the vector distance of mesh
vertices from the local origin.) Specifying type names here
is optional. We can define a more general lerp (behaving
identically to the built-in lerp function) as:

0223) We specify “x=" (shorthand for “x=nil') to indicate
that “x” is the first input to myLerp, rather than the name of
a referenced output of some other node. The above statement
will create a Compute node with three disconnected inputs
named “X”, “a” and “b'. Input and output edge connections
to this node are legal to the extent that the data types along
those edges yield a legal expression. For example, passing
(Scalar, Scalar, Scalar) and (Scalarmesh, mesh) are both valid
because the resulting expressions are valid. However, pass
ing (mesh, Scalar, Scalar) will produce an error because mesh
scalar subtraction (the “1-x' above) is undefined.
2.1.6 Macros

0224. We may define a macro by providing the macro
body following the macro declaration:

Ms DoSomething(real p, matrixquaternion q, r =) {

0225. Here parameters q and rare declared as polymor
phic: q may be connected to matrix- or quaternion-valued
outputs, while r may be connected to an output of any type,
provided that type is compatible with the usage of r within
the macro body. A macro may not be used in code before it
is defined. Forward declarations of macros are not allowed.

0226. In the graph editor, macros appear as encapsulated
nodes. The outputs and inputs of a macro node correspond
to specific outputs and unconnected inputs of nodes within
the macro, so-called public outputs and inputs. These public
tabs are declared by identifying particular inputs and outputs
as “public' within a node declaration or by issuing export
statements. Exported tabs can be renamed via the “export
as construct. For example:

Macro ColoredCube.AndSphere {
Color (public r=, public g=, public b=);

US 2006/0274070 A1

-continued

Group g {
Cube (1,1,1);
Spheres:

export S.radius as sphereRadius;
export g.ctim in, g.ctim out;

creates a macro with r, g, b, sphereRadius and ctim in inputs
and a ctim out output.
0227. The first output of a node may exported by declar
ing the node itself as public. In the above example, we could
have declared group gas public Group g . . . rather than
explicitly exporting g.ctm out.

2.1.7 Naming Conventions
0228 We may refer to node and node-component names
by absolute or relative path. Relative path names begin with
“.” or “... to distinguish them from expressions involving
division.

Model A {
real x = 4;
Part B {
real x = 3;
real y = ...fx; f* refers to Aix *.
real Z = x: f* refers to AFB,x*.

Scale(x,1,1);
Translate(./B/X,0,0);

Model C {
Translate(A/B/y,0,0);f* inter-model reference, error if A is
not loaded *.

f* refers to Aix *.
f* refers to AFB,x*.

2.1.8 Conditional and Iterative Unrolling
0229 Conditional unrolling of model code may be speci
fied via the preprocessor directives #if, Helif, ielse and
Hendif. These conditions will be evaluated, and selected
branches followed, exactly once, at unroll time (i.e., during
initial parsing).
0230 Iterative for and while loops are unrolled at graph
construction time, thus these routines do not themselves give
rise to iterative or recursive graph structures. For example:

for (i = 1; i <= 5; i++)
Avar make symbol ('v' + itoa.(i));

creates five Avar nodes named “v1”, “v2”, “v3”, “v4 and
“v5”. Note the use of the Lisp-like make symbol to generate
symbol names procedurally. These generated symbols may
be used like any other name, for example, we could now
write “Scale s(v1,V2,v3):”.
2.1.9 Conditional Execution

0231 Conditional graph evaluation may be introduced
through conditional expressions (i.e., those containing “cond

20
Dec. 7, 2006

'? ab') or by instantiating graph structures involving con
ditional flow (i.e., Switches, attaches and IK Solvers, as
described in Section 1.17). Switches may implicitly be
created through the if-then-else language construct, for
example:

if (drawSphere == 1)
Sphere (5):
else
Cube (3,3,3);

0232 which is equivalent to:

Switch if) (nil, drawSphere == 1);
Cube (if).out 0,3,3,3);
Sphere (if).out 1.5);

where the name ifO is generated automatically. The
conditional “drawSphere ==1 evaluates to one when true
and Zero when false. The corresponding expression graph is:
0233. The underlined “value’ input tab indicates it has an
input expression (“drawSphere==1). A multi-way switch is
built by adding additional outputs to the Switch node and
providing a multi-valued input expression (possibly via a
separate Compute node).
2.1.10 Iteration and Recursion

0234) Iterative and recursive graph structures may be
created by connecting node outputs to inputs in order to form
a cyclic Subgraph. For example:

f* create Compute node with one input x', expressing the function
out = x .
Compute Fibonacci (real X) = x:
f* connect Fibonacci output to its own 'x'
input expression */
Fibonacci.x = t==0 ? 0: t==1 21
: Fibonacci (t-2) + Fibonacci (t–1).

input using the given

0235 Thus “Fibonacci (3) yields the value 2,
“Fibonacci (4) yields 3, and so forth. Referring simply to
“Fibonacci” with no explicit parameter yields the Fibonacci
number for the implicitly pulled parameter, which only has
meaning in the context of the Surrounding graph. The
scoping rules of the language are such that a node is declared
as soon as its name has been provided, even though the
declaration statement has not yet been closed by a trailing
semicolon. Thus, we could express Fibonacci simply as:

real Fibonacci = t==0 ? 0: t==1 21
:Fibonacci (t-2) + Fibonacci (t–1).

0236. Here we provide the function as the body of the
Compute rather than as an input expression. Note that
although Fibonacci is declared as a real, it can be called as
a function of (param, lod) and in fact it will return different

US 2006/0274070 A1

values for different parameters because its expression
depends on the Pull parameter t. As mentioned above, all
outputs may be used as functions, but they will only return
a value that varies with the function parameter if the variable
definition references t, either directly, or indirectly through
a time- (or more generally, parameter-) varying input. The
graph generated by the above statement is shown in FIG. 6.
0237 As mentioned previously, in part due to its ability
to represent graph structures involving iteration and recur
Sion, the modeling language, and the graph evaluation
system itself, is Turing-complete, allowing specification of
any computation or algorithm that could be expressed in a
general purpose programming language such as C.

0238 Listing 1 below gives a more complex example of
modeling language usage. Listing 1 describes building a
desk lamp.

Listing 1

#includeonce global/lighting.m.
Macro StandardModelTransforms
{
Avar tx=0, ty=0, tz=0;
Avar Sx (policy=“*”)=1, Sy (policy=“*”)=1, sz (policy=*)=1:
Awar-quaternions rot;
Translation trans (tX,ty,tz);
Scaling scale (SX.sy,SZ);
public matrix Xf out = trans * rot * scale:

Model Lamp ()
{

StandardModelTransforms xf:
Joint root.Joint (xf);
Avar r=1, g=0, b=0;
Material metal (diffuse = (r.g.,b), specular = (r.g.,b), Shine = 50);
Part Base {
Mesh mesh (“Base.obj');
Surf baseSurface (mesh, metal):

Part Arm {
Joint jQ {
Bone b0 {

Joint 1 {
Bone b1 {

Part Head

Avar kind (comment="O = pointlight, 1 =

Globals

Predefined
Locals

Dec. 7, 2006
21

-continued

Listing 1

spotlight) = 1;
Avar radius=0.25:
Avar r=1, g=1, b=1, intensity=30;
real c3 = (intensity * r, intensity * g.

intensity * b);
if (kind == 1) {
Avar coneAngle (units="degrees') = 30;
Cone (radius'2, radius' 1.5); /* draw

housing */
Spotlight (radius, coneAngle, color=c);
else
Pointlight (color=c);

Color (r.g.,b);
Sphere (radius); f* draw

bulb if

Mesh mesh (“Lamp.obj');
SkeletalDeformer deform (mesh, 0):
Surface armSurface (deform, metal);

2.2 Expression Language

0239). The language we provide for entering mathemati
cal expressions into node inputs uses standard infix math
ematical notation. The input will take on the value of the
expression after Suitable variable Substitutions. No assign
ment operator (“='') is necessary (or allowed) within the
expression. Local-node inputs and global broadcasts (Sec
tion 1.16) may be referenced by name, and there are a
number of pre-defined global and local variables, constants
and a rich set of functions, most of which are listed in Table
1 below. Expressions are parsed and evaluated by an public
off-the-shelf POEM (Parse Once, Evaluate Many) parser
engine that applies aggressive optimization to the parsed
expressions, providing fast evaluation speed approaching
that of compiled code.

TABLE 1.

Example Predefined Globals, Locals. Constants and Functions.

Name Value

Time global animation clock
starttime shot start time
endtime shot end time
fps shot frames per second
system.date, systemtime
<bcast name> or bcast<name>
SSHOT, SSEG, SPROJ, SUSER, SDEPT,

wall-clock date and time
named broadcast
program system environment

SHOST W8S
l8le local node name

path absolute path to local node
<input name> or in<name>
ini

numInputs
param ort

named input to local node
i-th input to local node (Zero
based)
number of input tabs
pulled parameter value

US 2006/0274070 A1
22

TABLE 1-continued

Example Predefined Globals, Locals, Constants and Functions.

Name Value

lodgeom, lod.artic, lod.light, . . . effective levels-of-detail
priority, cost local performance params (see

text)
ctin concatenated transformation

matrix
(only defined for scene graph
nodes)

Constants pi J = 3.14159 . . .
e e = 2.71828 . . .
<types::Zero type-specific Zero value
<types::identity type-specific identity value

Operators +, -, *, f, %, . ~, , &, , <, <=, >, >=, ==, standard infix operators
=

&&., | <<, >>
Functions exp, log, log10, log(b.x) exponentials and logarithms

sin, cos, tan, Sec, csc, cot, asin, acos, atan, trigonometric and hyberbolic
atan2, transcendental functions
asec, acsc, acot, Sinh, cosh, tanh, Sech,

Dec. 7, 2006

cSch,
coth, asinh, acosh, atanh, asech, acSch,
acoth
Sqrt, pow(x,y) Square root and power
min, max, floor, ceil, round, abs, sign, numerical functions
fimod
Srand, rand pseudorandom numbers
noise 1D, noise2D, noise3D Perlin noise
binomial (nm) binomial coefficient
lerp, bilerp, slerp, Smoothstep interpolation
cond 2 a:b binary conditional
<exprs. Derivative(n) n-th time-derivative of given

input
<exprs. PartialDerivative(n,v) n-th derivative with respect to v
<expre.Integral (a,b) definite integral over interval

a,b

0240. In addition to what is shown in the table, we
provide functions for basic character and string manipula
tions; operators for array, mesh and matrix indexing; basic
matrix and quaternion functions and operators, and so forth.

2.3 Animation Language

0241. In Section 1.18.1, we described our use of avars, or
articulated variables, to provide time- (or more generally,
parameter-) varying values within our expression graph. In
Section 5, we describe the layered representation of avar
data and detail the process by which layers are combined to
produce an articulated output value. We also describe, in
Section 5.2, the taxonomy of avar motion channels, identi
fying kinematic channels as those involving the splined
animation typically created by a human animator. Because
of its Suitability to interactive specification and modification,
kinematic animation is in many ways the most important
layer class within our system. Here we describe the text
based language used to specify kinematic data. Other layer
classes are specified via tab-delimited tables (sampled lay
ers), function pointers (procedural layers), parameters val
ues (stochastic layers), or through the combination of
parameter values and boundary values specified in lower
numbered motion channels (forward-dynamic and multi
point-dynamic layers).

0242 Following common practice, our kinematic data
consists of knots along parameterized one-dimensional
curves or splines: each kinematic motion channel has one
spline. Each knot specifies the value the spline takes at a
particular parameter and possibly some additional informa
tion about the curve shape to either side of the knot. The
spline is interpolated between knots. The data stored at a
knot, and the algorithm used for interpolation between
knots, depends on the knot type. We provide several knot
types commonly used in prior systems, including stepped,
linear, Bezier, Hermite, b-spline, cardinal, TCB and tau. For
Bezier and Hermite knots, we provide left- and right-tangent
handles that indicate the left and right derivatives at the knot.
Interpolating a spline segment between knots of dissimilar
type involves a two-step interpolation: first we interpolate
the segment twice, once as each spline type; then we
interpolate between these two splines.

0243 The information we provide in specifying channel
data includes: the path to the avar, the layer in which the
channel resides, the curve parameter at which each knot
occurs, the value of each knot and any knot-type-specific
parameters (per knot). The parameters for each knot type are
given in Table 2 below. We may optionally also specify the
layer set (Section 5.4) to which the layer belongs.

US 2006/0274070 A1

TABLE 2

Knot Types and Associated Parameters

Knot Type Code Parameter List

Stepped D empty
Linear L empty
Bezier B Left- and right-handle length and derivative
Hermite H Left- and right-handle length and derivative
B-spline S empty
Cardinal C tension (tension = 0.5 yields Catmull-Rom)
TCB T tension, continuity, bias (Kochanek-Bartels)
Tau U tension, continuity

0244 Statements within an animation file define the
Scope of a particular avar, select which layer is being
referenced, or provide the actual knot data. The format is a
subset of that described in Section 2.1, with the additions of
a “Layer layername' statement for scoping by layer and knot
statements of the form “u: knot-code value parameter-list'.
Layers and Scene hierarchy are scoped independently, that
is, “Layer C Model M Avar tX {...}}}” is equivalent to
“Model M Layer C {Avar tx {...}}}”, “Model M Avar
tX Layer C {...}}}”, “Avar/M/tx Layer C {...}}'', and
So forth. An example kinematic animation data file is shown
below in Listing 2. More particularly, Listing 2 is for
kinematic motion channels for five avars; “/Greg/LArm/
wristRot' is a quaternion-valued avar (with an extra “spin'
parameter at the end of each knot statement), the others are
Scalar-valued.

Listing 2

f* Reflex cuesheet version 0.3
* Auto-generated by Reflex dev build Jul 16 2003 18:23:58
* User mjo on 7/21/03 at 12:20 PM
:

* File: Users/mjoshots/Dive.cue
*
Layer “Up-down arc {
Model Greg {

Part LArm {
Avar ikGoal tX {

30: B-O.O2O3 O.OS O.OS O O
47: L. O.O142
56: L. O.2SO6

Avar ikGoal ty {
30: B -0.0275 O.OS 0.08O1 O.12 O.12
47: B 0.4219 O.O82 0.3912 0.1511. O.1511
56: B 0.1812 O.151. O.151 O.OO21 O.OO21

Avar ikGoal tz {
3O: B. O.1243 O.OS O.OS 0.91 0.91
47: B 0.0903 0.11 O. 11 O.1491.125
56: B 0.113 O.OS1 O.OS1 O.08 O.O8

Avar wristRot {
12: B (0.623, 0.681, 0.2, 0.29) (0,0,0,1) (0,0,0,1) 0.1, 0.05, O
37: B (0.7799, 0.54, 0.253, 0.18) (0,0,0,1) (0,0,0,1) 0.05 0.010
84: L (0.578, 0.6356, 0.4459, 0.2512) 0

Avartz {
43: B O O.OS O.OS OO
SS: B 2.3851 0.4622 O.339S O O
63: B 0.4347 O.O1 O.OS O O
64: B O.S3O3 O.OS O.OS O O
66: B 0.1788 O.OS O.OS O O

Dec. 7, 2006

-continued

Listing 2

71: B 0.3649 O.OS O.OS OO

f* END OF CUE DATA:

0245. As mentioned in Section 2.1.3, the animation
specification syntax described above is not properly a dis
tinct language from the modeling language of Section 2.1. In
fact, animation may be specified within or alongside general
model code by scoping layers and associated knot lists
within Avar node declarations, as shown in Listing 3 below.

Listing 3

#includeonce 'std defs.m.
Model Bottle
{

StandardModelTransforms xf:
Joint root.Joint (xf);
f* Specify bottle radii at various us: u=0 at bottom, u=1 at top.
* Note this restricts us to a shape that does not bend back on
* itself. A better shape could be had by using a point-valued
* avar and from that driving the Revolve node directly.
:

* We pass param=nil so the avar is not time-driven.

Avar radii (param=nil) {
Layer “Construction {

f* u: knot-type value params */
O.OOO: B. O.OO O.OS O.OS O.O.O.O
O.O10: B 3.97 O.OS O.OS O.O.O.O
O.O70: B 4.OO O.OS O.OS O.O.O.O
O.400: B 4.OO O.OS O.OS O.O.O.O
O.7SO: B 2.50 O.OS O.OS O.O.O.O
O.930: B 2.20 O.OS O.OS O.O.O.O
O.940: B 2.25 O.OS O.OS O.O.O.O
O.990: B 2.25 O.OS O.OS O.O.O.O
1.OOO: B. O.OO O.OS O.OS O.O.O.O

f* Build mesh surface-of-revolution.
real height=10;
Curve3D profile (umin-O, umax=1, x=radii, y=uheight, Z=0);
Revolve revolve (profile, y);
f* Generate surface from mesh. *
Material (“glass');
Surface (revolve);

3. Ghosts

0246. In addition to the normal rendering of geometry
described in Section 1.10, we optionally draw geometry as
it would be posed at alternate times t, or with alternate
animation variable settings, translucently into the scene as
ghosted geometry. Normally only the “active' model (the
model containing the active node) is drawn ghosted, how
ever the user may override this by specifying particular
geometry to include in the ghosted renders.

0247 The user may specify one or more arbitrary times
at which to draw a ghost. Ghosts may be drawn at regular
intervals in time, for example: "on 24's', that is, once-per
second for a 24-frames-per-second (fps) animation, as

US 2006/0274070 A1

shown in FIG. 8b. Ghosts may be drawn at “knots', or
keyframed values, in the animation (Section 4, FIG. 8a).
Ghosts may be drawn at designated “key poses’ as defined
by user-specified time markers associated with sections of
geometry. Ghosts may be drawn at a particular motion path
knot during interactive manipulation of that knot (Section 4.
FIG. 8c). In some implementations, the user may set a
preference to have Such manipulation ghosts shown (1)
never, (2) momentarily during interactive manipulation, or
(3) always when one or more path knots are selected. Other
preferences are possible. Several consecutive ghosts may be
drawn during adjustment of knot interpolation rates, such as
while the user is dragging frame-timing beads along the
motion path or manipulating path knot tangent handles
(Section 4.2.4). Rendering ghosts at alternative times is
accomplished by performing a Render pass over the speci
fied nodes after (1) setting the global animation clock to the
ghost time, and (2) rendering the ghosts using a non-opaque
color (alpha <1.0) with OpenGL or equivalent blending.
0248 Ghosts may be shown to assist in comparing alter
native animation, specifically with differing sets of enabled
layers (Section 5). We can do this by rendering the scene
once normally, then adjusting which layers are enabled, and
then rendering the ghosted nodes a second time. Because
changing enabled layers invalidates the affected portion of
our expression graph, the ghosted nodes will be rendered
under the alternative layer setup.
0249 User controls over ghost rendering include: ghost
opacity (“alpha'), illumination mode (whether to perform
per-vertex lighting computations or use constant shading),
fade rate (ghosts may fade in opacity away from the current
time, as shown in FIG. 8b), and draw style (ghosts may be
drawn as Surfaces or 'stick-figure’ skeletons). A special
“Doppler shift' mode colors ghosts at times earlier than the
current time differently than ghosts later than the current
time (blue-tinted and red-tinted, respectively, in our imple
mentation). Finally, the user may choose whether or not
ghosted geometry is selectable via the mouse cursor. By
default it is not selectable, and clicks on ghosts have the
same effect as they would if the ghost was not there, for
example, they will select opaque geometry drawn behind the
ghost.
0250 Ghost rendering follows any distortions of the
motion path as described in Section 4.1.2 and shown in
FIGS. 9a-9C. This is accomplished simply by pre-multiply
ing the ghost concatenated transform matrix (CTM) by the
path distortion transforms in Section 4. Our ability to rapidly
render ghosts across multiple animation times and layer
settings is enabled by the temporal caching scheme
described in Section 1.

4. Motion Paths

0251. In this Section, we describe the use of motion paths
for visualizing and controlling the movement of articulated
and deformable bodies. A number of animation systems
today are able to display a curve through 3D space indicating
the path followed by an object moving through that space.
We refer to such a space curve as a motion path. Some of
these systems also provide user control over the motion path
by allowing the user to directly manipulate the shape of the
path, for example, via control points on the path. This
effectively lets the user specify translation, and possibly
rotation, of an entire object traveling through space by

24
Dec. 7, 2006

manipulating the path of the object directly. Unlike previous
systems, we extend this motion path representation by
providing control of articulated bodies and deformable sur
faces, allowing not only the path of the whole object to be
viewed and manipulated, but allowing changes in the shape
of the object itself to be viewed and manipulated (FIGS.
8a-8c and 9a-9C).
0252) Some notable features of our technique are that it

is very fast due to temporal caching; it is flexible enough to
control any type of motion, including rotation, translation,
and Scaling of and within articulated bodies, Surface defor
mations, and global deformations; and the reference point
through which the motion path is drawn, and to which refers
user manipulation of the path, may be any point on or
relative to the surface.

4.1 Visualization

4.1.1 Path Shape
0253) Our technique for implementing motion paths
relies on temporal caching within our expression graph
(refer to Section 1). A user may specify any reference point
on any surface in the 3D scene by a number of means (for
example, by clicking directly on that surface while depress
ing a designated key on the keyboard). To draw a motion
path indicating where that reference point on the Surface
moves through space over time, we compute where in
world-space (i.e. global) coordinates that point is across
some series of discreet sample times, and connect these
points with line segments. We render these line segments as
a connected polyline, giving the appearance of a curve
through space. Note that we define "curve herein to include
straight line segments. Varying the spacing between time
samples allows us to produce a smooth curve without
unnecessary detail; the adaptive method for computing this
spacing is described below. What remains is to describe how
we compute the 3D position of the reference point at any
given time. For simplicity we describe this assuming the
reference point lies on the surface; note however that the
reference point could as easily lie off the surface: all that
may be required is that we know its position relative to the
local Surface coordinate system.
0254 The position of any point on a surface is governed
by the cumulative effect of a series of mathematical opera
tions defined by our expression graph. We distinguish here
two classes of cumulative effect: (1) rigid and (2) non-rigid
(refer to Section 1.10). In the first case of concatenated rigid
transformations, the position of the reference point Pef may
be represented as a 3D point P in the pre-transform (local
or body) coordinate system of the Surface containing that
point. The local coordinate system itself is defined by the
4x4 Concatenated Transformation Matrix (CTM) Cr with
which the Surface is drawn. Computing the reference point
position at any time t involves transforming P. by the
value of Cratt. C(t) is available to the Surface node at
its CTM input (refer to Sections 1.9 and 1.18). We auto
matically enable temporal caching of the CTM for a surface
through which we are drawing a motion path (refer to
Section 1.5). Thus we approximate the world-space position
at time t of a reference point lying on a Surface as:

where p is the cache lookup operator for the expression
node output connected to the CTM input of the surface.

US 2006/0274070 A1

0255 In the second case of point motion governed by
non-rigid deformations, we are faced with one of three
alternatives. First, we may regard the deformations as being
“nearly rigid’, and compute the point motion as above.
Second, if we desire an accurate representation of the motion
under a Surface deformation, we apply the deformation to
the reference points. Let Dr be the time-varying function
that maps points to their position under the Surface defor
mation, then:

0256 Finally, if we represent the motion of a point under
a global, rather than Surface-relative, deformation, we pass
transformed points through the corresponding Dissal func
tion:

Per(t)-Delobali?t, Csurf(t)Plocal)-Delobal (t, PM(Plocal).
0257 For complex motion involving a mixture of rigid
transformation, Surface deformation and global deformation,
we may combine these operations as needed.
0258. The motion path polyline itself is represented in
our expression graph as a MotionPath node (a Subclass of the
Glyph node type, see Section 1.18), which has among its
inputs the object or surface to which the reference point
belongs as well as the Surface-relative position of that point.
Thus we only recompute the motion path as necessary by
changes in the reference point position (due to the user
specifying a new reference point) or by changes to the
transformations and deformations affecting the surface (due
to user changes to the underlying animation).
4.1.2 Path Display Alternatives
0259. In complex scenes the motion path can become
difficult to see and understand clearly. This is particularly
true when the path is tightly bunched: it may begin to
resemble a ball of yarn. We have several options available
for improving the display of the path in Such circumstances.

0260. When fine detail of the path is difficult to discern,
the user may enable path dilation (also referred to as path
magnification). This enlarges, or dilates, the path about some
reference point in space. We accomplish this by translating
the points of the path polyline so the dilation center sits at
the origin, Scaling the points by a user-specified dilation
factor, and then translating them back:

Pilatea(t)=TSTCu(t)Picar-T'ST'McPeca
where T is the transformation that translates the dilation
center to the origin, and S scales uniformly by the dilation
factor. By default we wish the path to still pass through the
target surface at the current frame, for which we provide a
default mode in which the path target point is the dilation
center. In this mode, when we play the animation and the
target point moves in world space, the path will move with
it since the dilation remains centered about the target point.
0261) When the path becomes difficult to follow because

it doubles back over itself repeatedly (the ball-of-yarn
problem), the user may enable the path tickertape option (see
FIGS. 9a-9c and 10a–10b). This has the effect of stretching
the motion path out in time within the 3D world space by
mapping time to a 3D vector in that space. The direction of
the vector controls the direction in which we stretch the path,
and the magnitude of the vector controls how much the path
is stretched. To draw the path in this mode, we translate each

Dec. 7, 2006

point in world-space by the tickertaping vector V scaled by
an amount that increases with t:

kept--how) V+Cu(t)Pears(t-tow)V+Mc
local

0262 Note that the path sample point at t=t is unaf
fected by tickertaping; therefore the path continues to pass
through the target Surface/target point at the current frame,
and when the animation is played the path will seemingly
flow through space in the direction opposite the tickertaping
vector so as to keep the path correctly positioned on a
moving target surface (FIGS. 10a and 10b).
0263 FIGS. 7a-7c are screenshots illustrating manipu
lators for controlling dilation and tickertape. Sometimes
motion higher up an articulated hierarchy makes it difficult
to visualize movement at the level in which we are inter
ested. For example, we wish to view the path of the left arm
Swing of a character as the character walks across the screen.
The path will travel across the screen due to the motion of
the character; however, we may wish to see the path of the
arm Swing in isolation, without the effect of the cross-screen
movement. We allow the user to specify any reference node
relative to which to draw the path. In this example, the user
might choose to draw the path relative to the left shoulder
joint or to the root joint (e.g., the hips) of the character. We
implement this by transforming path sample points into the
coordinate space of the reference node before plotting the
path polyline:

Prelative(I)-Creference "(t)Curr(t)flocal Preference Mct)
Psurf Mofocal

in the case of rigid-body transformations, and we make an
analogous extension for the non-rigid cases. Here we will
cache the inverse CTM of the reference surface Ceres',
and pers,' is the corresponding cache lookup operator.
Note that this does not limit us to reference nodes in the
scene hierarchy above the motion path target Surface; the
path may be drawn relative to any node in the 3D scene. If
we specify the path be drawn relative to the target surface
itself, the displayed path will show the motion due only to
deformations of that surface.

0264. One particularly useful application of this is to
draw the path relative to the camera when the camera we are
looking through is moving. This causes the path to indicate
how the target point moves within the camera view, rather
than through world space. This is useful both for animated
“shot' cameras and for attached “detail” cameras that move
with the target Surface, and we provide hotkeys for enabling
these modes.

0265. To improve visibility of the path over different
colored backgrounds, and to help in distinguishing among
multiple paths, the user may specify a color for the path. The
user may also choose to have the path drawn in two
alternating colors (colorStriping), with the color changing
over some interval of t (time-striping, FIG. 8b), or at every
knot (see Section 4.1.3 below), or at user specified markers
(also referred to as poses). The user may alternatively
choose to enable the Doppler shift mode, where the section
of the path over samples preceding twis drawn in one color
and the section following t is drawn in a different color.
Or the user may elect to have the path fade out at sample
points progressively farther in time from t in the same
way ghosts may be faded in and out through time (Section
3, FIG. 8b).

US 2006/0274070 A1

0266 Sometimes it may be difficult to see the path
because it is obscured by foreground geometry. The path
bleed-through mode causes the path polyline to show
through obscuring objects as though they were translucent
(FIG. 8a). We accomplish this by rendering the path twice,
first fully opaque (that is, with “alpha' or opacity=1.0) with
depth culling enabled, then a second time translucently (that
is, with a user-specified opacity <1.0) after all other scene
geometry has been drawn.
4.1.3 Path Decorations

0267 In addition to the polyline of the path itself, we
display several other pieces of information along the motion
path. At sample points that fall on integral (whole number)
frames, we optionally draw a small blue mark or bead (FIG.
8a). This gives an indication of the rate of movement over
a section of the path: where frame beads are drawn close
together, the motion will be slow; where the beads are far
apart, the motion will be fast. The user can click and drag
with the mouse cursor on these beads to adjust interpolation
rates (Section 4.2). This provides visualization and control
over the traditional animation concepts of ease-in and ease
Out.

0268. The user may click on frame beads or drag a
selection box around those beads with the mouse cursor to
select parameter values, for example, to select the corre
sponding shot times when the avar input parameter t is time.
Subsequent program commands involving time will operate
on the selected times. Selecting two or more contiguous
frame beads selects a continuous parameter range. For
example, the user may select a time range and then choose
Copy from the application menus; this will copy animation
of the active nodes within the selected time range. This
animation may be subsequently pasted over a different time
range or on a different group of geometry.
0269. At sample points that fall on times at which active
avars have knots (Sections 1.18.1 and 2.3) we draw a yellow
diamond shape (FIG. 8a). This indicates the timing and
value of animation keys. Timing is indicated both by the
position of the knot along the path and explicitly by dis
playing next to the knot the frame number at which the knot
occurs. Value is indicated by the position of the knot in 3D
space and, for selected knots only, optionally explicitly by
displaying next to the knot the numerical value(s) specified
in the associated avar(s). Only knots for unlocked degrees of
freedom within the model are shown. For example, when
performing an axis-constrained manipulation (e.g., dragging
on an axis-constraint handle of a manipulator widget or
holding down an axis-constraint hotkey), only knots for the
unconstrained avars are displayed on the motion path. The
user can click and drag with the mouse cursor on a knot to
adjust the knot value or timing (Section 4.2). We optionally
display a text label next to the motion path knot indicating
the names of the underlying avars possessing knots at that
knot time (along with numerical values for those avars, as
described above).
0270 Knots that result in changes to the effective graph
topology (for example, knots that enable or disable inverse
kinematics, attaches, or hierarchy inversions, or that change
graph Switch-node settings) display on the motion path as a
yellow diamond with a yellow line outline.
0271 The user may select a knot on the motion path (e.g.,
by clicking on the knot with the mouse cursor or by dragging

26
Dec. 7, 2006

a selection rectangle over the knot). Selected motion-path
knots that represent non-linear knots in the underlying avars
will display path-tangency handles. The length and direction
of these handles reflect the tangent-handle settings for the
underlying avar knots, and direct-manipulating these path
handles will modify the avar knot handles and thereby the
motion path shape (Section 4.2). We compute the length and
direction of the motion path handles by differentiating the
motion path curve at the knot (Section 1.14). When one or
more of the underlying avar knots has broken tangent
handles (Sections 1.19.1 and 2.3), we draw the motion path
knot as an orange, rather than yellow, diamond shape (FIGS.
8a–8c), and the path knot handles will themselves be drawn
and behave in a “broken fashion, that is, the left and right
handles will be independent.

0272. When tangent handles are drawn, we optionally
display a rotation twist indicator on the local-coordinate
system +Z axis-line extending to the knot that indicates the
direction of a perpendicular axis (e.g., +X or +Y); this allows
visualization of how the articulation twists along its central
(i.e., Z-) axis. The twist indicator can be used as a direct
manipulator to control interpolation of axial twist between
motion path knots (Section 4.2.4).
0273. On the tangent handles themselves we optionally
display a sliding hashmark that indicates the rate at which
the motion approaches (for the left handle) and departs (right
handle) the path knot. The farther the marker is up the handle
away from the knot, the faster the motion will move; these
marks can be direct-manipulated via the mouse cursor to
slide them up and down the handle and thereby control the
motion rate (Section 4.2). This provides interpolation-rate
visualization and control of ease-in and ease-out analogous
to that provided by the frame-bead spacing described above.
The user is free to have multiple paths drawn, each through
a different piece of geometry or through a different target
point on the same geometry. These multiple paths may be
distinguished by setting each to a different color and/or by
displaying textual annotations alongside each path that indi
cate the target Surface name, the controlled bone or joint
name, or a user-specified motion-path name.

0274 FIG. 8a is a screenshot of a user interface 800 for
an exemplary 3D CG animation system. In the example
shown, the user interface 800 includes a view window 801
for presenting a display environment containing an animated
body 802. For this particular example, the animated body
802 is a bendable-bottle model. Other bodies are possible.
The term “body' includes but is not limited to: rigid objects,
models, wire structures, articulated bodies, soft bodies,
bodies with deformable surfaces, etc.

0275 A motion path 804 is displayed in the display
environment 801 with knots 806 and frame beads 808. The
motion path 804 includes knots 806 for the active avar
“rot 2 at frames 0, 15, 30, 62, and 98. Motion tangents are
broken at frame 15. The knot 806b at frame 30 is selected
and its (continuous, non-broken) handles 807 displayed.
Ghosts 810 are drawn at each of these keyframes. We can see
motion path bleed-through has been enabled, as the motion
path 804 translucently shows through where it passes behind
the bottle Surface between frames 87 and 95. We see marker
lines 813a, . . . , 813d at the keyframes in the timeline 809
below the view window 801, as well as a selected line 815
for the knot at frame 30 and a current-frame marker 817 at

US 2006/0274070 A1

frame five; these lines are also drawn on the scrollbar 812
immediately below the timeline 809. The range bar 811
below the scrollbar 812 sets the time range for which the
motion path 804 will be drawn.
0276 FIG. 8b is a screenshot of another bottle animation
showing time-fading ghosts at 1-second intervals and
motion path colorstriping. In the example shown, the active
avar 'rot 2 has knots at frames 0, 54, 71, and 94. The knot
819 at frame 54 has broken tangents. Frame beads are
hidden and colorStriping has been enabled. The colorStriping
interval on the motion path 821 matches the colorstriping
interval on the timeline 809 below the view window 801.
Ghosts 814a, . . . , 814e, are drawn at one-second intervals;
we can see their exact timing indicated by marker lines
817a,817e, in the timeline 809 and timeline scrollbar
812. Ghost fading is enabled, with ghosts 814a.814e,
fading out away from the current frame eight.
0277 FIG. 8c is a screenshot of another bottle animation
showing a manipulation ghost 822 with an archall manipu
lator 816. In the example shown, the user has selected the
knot 820 at frame 94. The absence of tangent handles
indicates this is a linear knot (or almost-linear knot with very
short tangent handles). The manipulation ghost 822 has been
created automatically at frame 94. The box 823 around the
active avar name “rot 2 confirms there is a knot at the
selected time. The round “archall' manipulator 816 has been
displayed around the “Bottle” models joint 2 node; it is
drawn with its Y-axis constraint-ring highlighted to indicate
the user is performing axis-constrained rotation about the
joint-local Y-axis, perhaps because the user is holding down
an axis-constraint hotkey or has initiated dragging by click
ing directly on the Y-axis constraint-ring. The even spacing
of frame beads 824 along the entire motion path 818
indicates that the rate of motion along the motion path 818
will be uniform, with no ease-in or ease-out.
0278 FIGS. 9a–9a show a character 902 walking in
place (he does not have any forward motion through space).
In FIG. 9a, we observe the motion path902 of the end of the
nose: it is an up-and-down cycle that overlies itself. A ghost
904 is shown at every keyframe. In FIG. 9b, the user has
enabled motion path tickertaping: now the motion path 902
is stretched sideways and we can visualize the complete
movement cycle. The ghosts 904 are displaced in space
along with the corresponding sample points on the motion
path902. In FIG.9c, the user has orbited the camera to look
from the front, and has swung the tickertape direction to
keep the motion path 902 stretched out to the right side; she
has also increased the magnitude of the tickertape Vector So
the motion path 902 is more stretched out. The ghosts 904
remain correctly positioned relative to the path knots 906.
0279. In FIG. 10a, the user has selected the root joint
1002 of the model 1000 and has tickertaping enabled. The
bones of the underlying skeleton 1004 are translucently
overlaid over the model surface 1006. At frame Zero, we can
see the motion path sample point (which happens to be at a
knot) at frame Zero lies at the root joint 1002; the rest of the
motion path 1001 stretches off in the tickertaping direction.
In FIG. 10b, the user has advanced to frame nine; now the
motion path 1001 has shifted laterally so that frame 9 on the
motion path 1001 lies at the root joint 1002.
0280 FIG. 11 is a flow diagram of an exemplary motion
path manipulation process 1100. In some implementations,

27
Dec. 7, 2006

the process 1100 begins by providing a display environment
for presentation on a display device (1102). The display
environment can be a 2D or 3D virtual environment pro
vided in a view window of a user interface that includes a
scene having one or more graphical objects. A body or
model is provided for display in the display environment
(1104). The body can be a rigid body, an articulated body, a
body with one or more deformable surfaces, or any combi
nation thereof. An example of an articulated body is the
walking character shown in FIGS. 9a-9c and 10a–10b. An
example of a soft body is the bendable-bottle shown in
FIGS. 8a–8c. A motion path can defined for a first portion of
the body relative to a second portion of the body or relative
to a coordinate system associated with the display environ
ment (1106). A control is provided in the display environ
ment for manipulating the motion path (1108). The control
can be a knot, as described with respect to FIG. 8a. Other
controls are possible. The path can be manipulated in
response to a user interaction with the control (1110). For
example, the user can use knots to change the starting and
end positions of the motion path, change the shape of the
motion path, etc. Other motion path manipulations have
been previously described with respect to other figs.
4.1.4 Adaptive Path Resolution and Range
0281 From the above description of path rendering, it
should be clear that optimally we want to plot the position
of the path only for values of t that cause valid cache
mappings; in general we pick t's that fall centered within our
cache lines. However, in Some circumstances we may desire
finer or coarser temporal resolution than the cache lines
provide.
0282. When an object is moving very slowly in space, the
path will tend to change little between Subsequent sample
points. Rather than drawing a polyline through every sample
point, we skip points that vary little in screen space from
neighboring samples. We do this locally in t, starting with a
coarse path and refining segments of the path whose mid
points differ from a straight-line interpolation of the segment
endpoints by greater than Some screen-space error threshold.
We provide user control over the error threshold: selecting
a high threshold causes the path to be less accurate but
render faster.

0283 When an object is moving very quickly through
space, the path will tend to become stretched out. In such
cases, sampling P(t) at each cache line may not provide an
accurate representation of object motion. For the greater cost
of evaluating our expression graph at non-cached ts, we
may provide finer-grained sampling of the motion. We
provide a user option to enable “accurate paths: under this
option we use a screen-space error metric to determine
whether and how far we should locally refine any segment
of the path beyond the cache-sampling rate.

0284 We optionally scale the path subdivision threshold
ess by the motion path Level of Detail lod, so that the path
becomes less (or more) accurate as the LOD of the path
decreases (or increases) (see Section 1.7).
0285 Because rendering a very long path (i.e., one that
extends across a wide range oft) can be slow, we optionally
increase the error threshold as t diverges from the global
animation clock tw:

ethresh(t)=f(t-t)*lodethresh

US 2006/0274070 A1

giving us a time-varying thresholde's(t), where f(X)=1 at
X=0 and f(x) increases as the magnitude of X increases. We
have found that simply:

max min

0286 often works well, with c providing linear control
over the rate of accuracy degradation away from t. This
procedure yields a path that is accurate around the "current
time' but becomes progressively less accurate farther from
the current time. We automatically disable this option (i.e.,
set f(X)=1) whenever the global animation clock is dynami
cally changing, such as when the user plays the animation.
0287 We also allow the user to specify the range of
parameter values tit over which the motion path will
be drawn; specifying a narrower interval both makes the
motion path render faster and reduces clutter on the screen.
The green range-bar seen at the bottom of the timeline in
FIGS. 8a–8c provides one means of controlling the path
range. We optionally also display in the camera view range
manipulator tabs at either end of the motion path itself:
dragging on one of these tabs or selecting a tab and typing
in a new time adjusts the corresponding setting for loop start
or end times.

4.1.5 Automatic Path Placement Option
0288 When manipulating an object, we often want a
motion path to be drawn through that object. In the case of
an articulated body consisting of bones connected by rota
tional joints, it is it often is convenient for a motion path to
be drawn through the end of the manipulated bone. To
facilitate this, we provide the option of automatic path
placement. With this option enabled, selecting any scene
object causes a motion path to be created drawn through the
root of that object. Selecting a part (such as a bone) within
an articulated object causes a path to be drawn through the
distal end of that part. Selecting a model (Such as a char
acter) causes a path to be drawn through the rootjoint of that
model.

4.2 Manipulation

0289. In addition to showing us the path and timing of
motion, our motion path provides full direct-manipulation
control over motion. The user can click and drag with the
mouse cursor on a knot or its handles to adjust knot value,
timing, motion tangents, twist rates and interpolation rates.
0290. In general, manipulating motion via the path
involves inverting the mechanism that is responsible for the
motion being what it is, that is, the mathematical and
procedural computations that map from changing avars to
3D movement; these computations are exactly those repre
sented by the relevant Subsections of our expression graph.
This inversion of the graph computations allows us to map
from desired changes in the path shape and timing to the
necessary changes to be made in the underlying avars. In
Some cases the forward mapping from avar to motion will be
non-invertible; in Such cases a “pseudo-inversion' is readily
available from our expression graph, as detailed below.
0291. In addition to knowing what changes need to be
made to avars, we also track dependencies arising from this

28
Dec. 7, 2006

control mechanism. Changes to the motion path cause
dependent avars to be adjusted. Adjustment of avar knots has
the side effect of pushing dirty on the avar outputs over the
interval of support of the knots. This push will recursively
push dirty through the articulation and/or deformation hier
archies, ultimately pushing the active Surface. The motion
path itself is a child of the active surface, and so it too will
receive the push that it originated. Thus manipulation of the
motion path forces us to re-evaluate and redraw the Surface
and, by extension, the motion path itself. This straightfor
ward dependency-based reciprocal invalidation of Surface
and motion path is enabled by our toleration of cycles within
the expression graph.

0292 Avar discovery is the process of traversing the
graph and enumerating the avars up-graph of a particular
node. This avar list will define the degrees-of-freedom that
exist in animating that node. Avar discovery is normally
done at model unroll time, that is, when the model is first
instantiated in core memory from disk at the beginning of an
animation session. However, we can also perform avar
discovery on a just-in-time basis, deferring discovery for
every node until the first time that node is made active. Static
changes in graph topology (for example, creating or deleting
nodes or adding or removing edges) may require that we
rediscover upstream avars. Dynamic topology changes (due
to Switches, inverse kinematics state changes, attaches, and
hierarchy inversions) may not require rediscovery however,
we simply maintain multiple lists for the upstream avars of
affected nodes, and use whichever list is currently applicable
based on the current topology. This is possible because these
dynamic topology changes are discrete changes in which the
alternative topologies are fixed and thus enumeratable at
unroll time.

4.2.1 Graph Inversion

0293. In Section 1, we detailed how our expression graph
represents the computations and dependencies underlying
our 3D scene. We identified that this is a directed graph, that
is, edges in our graph have direction, and that the direction
indicates both the conceptual flow of information and (in the
opposite direction) computational dependency. We also dis
cussed (in Section 1.17) how we can locally invert a
Subgraph within our expression graph by inverting each
node and Switching the edge directions. Recalling from that
section, nominally it falls upon each node type to define its
own inverse; however, the system can establish a local
inverse (a Jacobian) for nodes that fail to define their inverse
function. The Jacobian is not a true inverse because it only
is valid around a local region of parameter space.

0294. Here we use this same mechanism to map desired
changes in knot position to changes in the animation control
variables (avars). We recall that the forward computation
defined by the expression graph maps avar settings to scene
configurations. Said another way, the forward expression
graph maps from avar parameter space to 3D configuration
space. By inverting (or pseudo-inverting) the expression
graph, as detailed in Section 1.17, we can map from 3D
configuration space to avar parameter space. Specifically, we
can map from local changes in motion-path knot position to
corresponding changes in the underlying avars. This local
inverse mapping is precisely what the Jacobian defines. For
optimization of pseudo-inversion across complex graph
structures involving deformations and similar “expensive'

US 2006/0274070 A1

operations, we compute the composite Jacobian across the
subgraph using the method of Section 1.17. This is conve
nient when the user is direct-manipulating a motion path
dependent upon expensive articulations and deformations.

0295). In certain circumstances, the local pseudo-inver
sion provided by Section 1.17 is not capable of successfully
adjusting avar parameters in a way that would achieve the
desired change to motion-path knot position, even though
Such a change is possible. This occurs when the configura
tion becomes stuck in local minima from which our local
view of the inverse is notable to escape. Such circumstances
mostly arise only in pathological graph configurations, so
they do not overly concern us here. When they do arise, the
user will rely on other manipulation methods, such as direct
manipulation of skeletal joints and bones or adjustment of
the underlying avars themselves, to escape the local minima.

0296. In many cases we can avoid issues of local minima
by ensuring our nodes define globally valid inverse opera
tors. In some cases this won’t be possible. We can employ
an automatic stochastic technique for escaping local
minima. This is accomplished simply by injecting noise into
the avar parameters in the hope that a “lucky' random
change to an avar will allow us to escape the local minimum.
In practice, generally we have found it to be more conve
nient to allow the user to direct-manipulate the skeleton or
other geometry out of the local minimum. Because manipu
lation of the motion path knots, the skeleton or geometry
itself, and the actual avars all affect the same underlying
representation (the avars), the user may freely move between
these control mechanisms, for example by “untwisting or
otherwise manipulating geometry directly when the motion
path knots get “stuck'. Nonetheless, we do provide stochas
tic escape of local minima as a user option.
4.2.2 Knot Value Adjustment
0297 Each motion path knot represents some non-empty
set of knots on unlocked active avars (Section 4.1.3). When
the user drags with the mouse-cursor on a motion-path knot,
we wish to adjust the corresponding avar knots as necessary
to keep the motion-path knot under the cursor. In general, as
described in Section 4.2.1 and elsewhere above, this is an
underconstrained problem (that is, there are multiple “good
Solutions), although in Some situations it will be overcon
strained (there is no solution). We find a “best” solution as
follows.

0298 First, we need to identify a point in 3-space to
which we want the motion path knot to move. The mouse
position defines a ray in 3-space that begins at the camera
space origin and extends through the projection of the mouse
cursor on the screen plane. We choose as our target point for
the motion path knot the intersection of this ray with the
plane passing through the current motion path knot position
and perpendicular to the camera forward (-Z) axis. Thus the
current knot position and the target knot position both lie in
the same X-Y plane. Subtracting the current position from
the target position gives us a goal vector in that plane. We
now need to find the change to the active unlocked avars that
produces movement in the path reference point that best
approximates this vector.

0299. In the simplest case we will have an explicitly
invertible path available through the expression subgraph
that Subsumes the active avars and the path target Surface. In

29
Dec. 7, 2006

this case it is straightforward to solve for the necessary avar
changes by passing our goal vector through the inverted
graph, yielding a vector of avar deltas. These deltas are
applied to the avars as described in Section 5.

0300. In another simple case, we do not have an explicitly
invertible path but the composite Jacobian for this subgraph
is orthogonal with respect to the control avars. Here it is
straightforward to transform the vector through the Jacobian
and extract the necessary avar deltas. These deltas are then
applied as described in Section 5. We then examine how
closely the motion path knot approaches the desired posi
tion, and iterate until we reach a preset error bound. This
iteration is independent of frame rendering (see Sections 1.6
and 1.8) and therefore does not interfere with maintaining
target rendering rates. However, because we do maintain fast
update rates, rarely does the mouse move far enough in a
single update pass that one or two iterations are insufficient
to achieve the error bound, so we rarely need to iterate
further. Because we are relying on a gradient descent
method, we have no problem tolerating overconstrained
systems; we will find a “good solution, if not the exact
solution. We deal with local minima as described in Section
4.2.1 above.

0301 In more complex cases, the composite Jacobian
will not be orthogonal and may have degeneracies. The
system may still be under- or over-constrained. There are a
number of ways to deal with such systems; we take the
pragmatic approach of the model specifying preferred avar
settings (as defined by the avar default values) and limits and
weighting particular avars as being “more stiff than others,
which the human designer of the model explicitly defines.
We iterate as above, but stochastically choose among avars
to adjust and amounts to adjust them so as to favor changes
that preferentially move less-stiff avars and keep avars in
their preferred ranges and near their preferred center values.
We can use an off-the-shelf constrained optimization solver
for performing this iteration quickly. Again it is rare for the
knot target to move So far in a single update pass that we
need to iterate more than a couple times. This tends to
happen only in highly non-linear control graphs. Such
graphs are consequently difficult for us to manipulate via the
motion path, and users will typically resort to direct manipu
lation of the geometry or adjustment of the underlying avars
in controlling these structures.

0302) When assembling a model for this system, it is
worth considering how common non-linearities in the
parameterization of articulation controls may affect natural
ness of motion-path manipulation. For example, singulari
ties in Euler rotations can make direct manipulation of the
motion path awkward in Some situations. We allow users to
build models using Euler angle or quaternion rotations but
prefer quaternions because they yield more natural direct
manipulation.

0303 We provide several simple ways for users to exer
cise some control over the constrained solution without
modifying the underlying model or avar setup. First, the user
may lock particular avars at will, thereby eliminating cor
responding degrees-of-freedom in the solution space. The
most common example of this is using an axis-constraint
hotkey or manipulation handle to limit control to a single
avar. For example, rotating an Euler-angle joint by dragging
on the red (+X) axis constraint ring of the archall will adjust

US 2006/0274070 A1

only the rX avar for that joint. In the case of quaternion
rotations, the system will project the specified rotation onto
the desired rotational axis, thereby enforcing the axis con
straint without actually causing any avars to be locked. The
user may also explicitly lock or unlock any avar. Motion
path manipulation solutions will honor that lock by not
considering that avar to be a degree-of-freedom. The motion
path display reflects this by only showing knots for “free”
avars (Section 4.1.3).
0304. The user may also control the constrained solution
to some extent by adjusting the “stiffness” of the avars (as
described above). We provide a manipulation mode in which
clicking and dragging the mouse on a joint or other node
adjusts the stiffness of avars directly driving that joint. This
is particularly useful for inverse kinematics Solutions, where
we prefer a linkage to bend more at one particular joint than
at another.

0305 Finally, we may avoid the entire analytic or
numerical graph inversion process described above by hav
ing the model explicitly define inverse mappings from
common manipulations (translation, rotation, Scale, longi
tudinal bends, etc) to its avars. This is the simplest and in
many ways most convenient method, but naturally it lacks
flexibility for exceptional circumstances. Nonetheless, in
simple models such as jointed skeletons this method may be
sufficient for most or all avars.

0306 When the user enables the option to display
numerical values for the associated avars at selected motion
path knots, in addition to manipulating a path knot itself, the
user may edit the numerical labels directly or may drag right
and left on them to “mung them up and down.
4.2.3 Manipulator Widgets
0307. A model may specify supported manipulation
modes and corresponding manipulation widgets (such as the
rotation archall shown in FIG. 8c) for use in controlling
particular sets of avars. The system provides default manipu
lator widgets for translation, rotation, Scale, shear, bend,
squash/stretch and similar basic operations. Custom widgets
may be added as externally defined Glyph nodes through the
plug-in interface (Section 1.18). All avars can be associated
with some manipulation mode to be manipulated via the
mechanism described in Section 4.2.2 above. Avars associ
ated with a particular mode will be “active' only when that
mode is selected by the user.
0308 If no other manipulation style makes sense, avars
may be designated to manipulate via "munging.” Motion
path knots associated with Such avars are manipulated by
mouse cursor drags in screen space; these drags map directly
to changes in the avar value. For example, in the case of a
Scalaravar, drags to the left might decrease the value of the
avar while drags to the right would increase it. Again, it is
up to the modeler to specify these mappings.
0309 Inverse kinematics represents a special case of
direct-manipulation control. Here the control graph has
already been inverted, and we simply provide direct manipu
lation of the IK goal. That is, to visualize motion of or
control the endpoint of an IK chain, one selects the IK goal
(drawn as a jack” glyph in 3D space). The path is drawn
through the goal. The goal has simple translation, and
optionally rotation, avars that may be manipulated through
motion path knots and manipulator widgets as described

30
Dec. 7, 2006

above. Relative bend at multi-joint chains may be adjusted
by modifying the relative stiffness at these joints, as
described above. Multiple solutions obtained by rotating
about the longitudinal axis from the IK root to the IK goal
may be selected among via a 'swing manipulation mode; in
this mode, dragging on any geometry within the IK chain, or
on a motion path knot through any Such geometry, rotates
the IK chain through that solution space. More sophisticated
IK chains, for example involving non-planar linkages, or
non-revolute joints, will need to be handled through the
conventional graph inversion mechanism described above.
4.2.4 Other Manipulations
0310. In addition to the ability to reposition motion path
knots in 3D space, we provide several other manipulation
controls. For control over rotations only, for example when
the active node is a spherical joint or the root transform of
a model, we provide an axial twist control as described in
Section 4.1.3. This control is a manipulator handle that is
drawn when tangent handles for a selected path knot are
drawn. It is drawn from the joint-local Z-axis line, extending
in a direction orthogonal to that line (e.g., +X or +Y). It
indicates the axial twist around the local Z-axis. Dragging on
the handle causes the joint to rotate about that axis. We
determine the implied spherical quaternion rotation using an
arcball-style projection of the mouse cursor onto a sphere
centered at the base of the twist handle. For Euler rotations,
we then extract the Z-axis rotation from that spherical
rotation and set only the rz, avar for that joint. For joints
controlled by quaternion-valued avars, we project the
spherical rotation onto the local z=0 plane and then convert
that rz-only rotation back into a quaternion, which we use to
adjusted the avar. In both cases, the avar is updated as
described in Section 5.

0311 Tangency handles at a Bezier or Hermite motion
path knot at time t indicate the left and right derivatives of
the path around t. The user may click and drag with the
mouse cursor on a handle to control the path shape; we need
to map this control back to the necessary changes in the
underlying avars. The desired tangent handle direction and
length specifies a 3D vector; we add that vector, scaled by
the inverse of the frame rate, to the motion path knot position
to find the desired position of the path target point at times
t=t-1/fps (for the left handle) or t'=t--1/fps (for the right
handle). We pass that target point through the inverse
expression subgraph in exactly the same way as we do for
knot position (Sections 4.2.1 and 4.2.2). This gives us
desired values for each avar at t or t. Taking finite
differences with the avar Values at t gives us an estimate of
the desired derivates in each avar, which we use directly to
set the avar knot tangent handles. Sometimes it will be
impossible to select a path tangent handle with the mouse
cursor because the tangent handle is very short and thus
obscured by the path knot itself. Clicking and dragging on
the motion path knot while depressing a hotkey (our imple
mentation uses the Option/Alt key) results in dragging the
left knot handle. Pulling out tangent handles for a motion
path knot with underlying linear avar knots converts those
knots to be Beziers. Normally when dragging a knot tangent
handle, only that handle is manipulated; the opposing tan
gent handle will rotate accordingly if the handles are
“mended” (not “broken, as described above) but its length
will not change. Dragging a knot tangent handle while
depressing a hotkey (again we use the Option/Alt key)

US 2006/0274070 A1

causes the lengths of both tangent handles to change sym
metrically (regardless of whether the handles are “broken’):
the opposite handle length “mirrors” the change in the
manipulated handle. Thus, when the user "option-drags' on
a path knot with null tangent handles, not only the left handle
but the right handle also are pulled out from the knot. There
are menu items, as well as a hotkey, to “break” and “mend’
the tangent handles at the selected motion path knot; these
actions are applied to the underlying avar knots. Mending
broken tangent handles causes the right handle to be set to
match the slope and length of the left handle. Breaking
tangent handles does not immediately change the slope or
length of either handle, but allows the handles subsequently
to be manipulated independently.

0312 Motion path knots may be retimed by dragging on
them while depressing a hotkey (the Control key in our
implementation). Dragging to screen-left decreases the time
of each underlying avar knot, while dragging to Screen-right
increases the time of the avar knots. Knots can only be
retimed in the interval between nearest preceding and Suc
ceeding path knots. When multiple path knots are selected,
retiming one path knot similarly retimes the others. That is,
if path knots at frames 6 and 10 are selected, and the knot
at frame 6 is retimed to frame 7, then the knot at frame 10
will be moved to frame 11. Knot times are adjusted to the
nearest integral (whole number) frame by default, but this
behavior can be overridden in the preferences or via a hotkey
during dragging. Retiming a knot while holding an addi
tional hotkey (Option/Alt in our implementation) causes the
underlying avar knots to be copied to the new time, rather
than moved in time. Retiming a number of selected knots
while holding another hotkey causes the knot times to be
stretched in time (or, more precisely, dilated about the
current time), causing the corresponding motion to occur
more quickly or slowly.

0313 Depressing a hotkey (the Command key in our
implementation) while clicking the mouse cursor on a frame
bead inserts a new knot (i.e., a breakdown) on all active
avars at the corresponding time. We optionally insert the
new knots as Bezier knots with tangent handles adjusted to
preserve the existing shape of the path. We accomplish this
by differentiating each avar at the frame time and solving for
the tangent slope and lengths that will preserve this differ
ential. We adjust the new knot tangent slope and length and
the proximal tangent lengths of the preceding and Subse
quent knots.
0314 Interpolation rate along the path is adjusted in one
of two ways. First, the user may drag on the frame beads
displayed along the path. We solve for the change to the
nearest-knot tangent handle slope and length that will
approximate the new frame bead position in the same way
we solve for changes to the tangent handles themselves
(described above). Second, the user may adjust the interpo
lation rate slider on the handle itself changes to this are
mapped directly to the interpolation rate of the underlying
avar knots.

0315. During manipulation of knot time and interpolation
rate, we optionally display multiple ghosts along the time
interval between the preceding and Subsequent motion path
knots. These ghosts may be drawn as full ghosted models, as
minimal skeleton “stick figures of the full model or as
skeleton stick figures of the subsection of the model articu

Dec. 7, 2006

lation hierarchy being manipulated (that is, the portion of the
model skeleton from the “active' node to the node through
which the motion path is drawn).
0316. It should be clear in this description that the
motion-path-based manipulation of motion timing and shape
are orthogonal in our system. That is, a user manipulating
the motion path may adjust the timing of movement along
the path independently of the path shape, and Vice versa.
Furthermore, the motion path display and control mecha
nism we have described is equally applicable to varied types
of animated values (e.g., Scalars, points, vectors, quater
nions, and others) and to arbitrary expression graphs involv
ing articulated structures, deformable Surfaces, or indeed
any Turing-expressible computation. It provides real-time
direct manipulation and visualization fully decoupled from
frame rendering rates. All this is enabled and facilitated by
the temporal caching, cycle safety and related features of our
expression graph described in Section 1.
5. Animation Layers
0317. In Section 1.18.1, we described our use of articu
lated variables, or avars, to provide changing values within
our expression graph. Here we present the heterogenous,
multi-layered representation used within these avars; their
implementation; and associated mechanisms for their use.
We introduce the idea of layers of motion, analogous to the
image layers provided in popular image-editing applica
tions.

0318. An avar node in our expression graph expresses
Some function of its scalar input parameter. Often this
parameter is time, but that need not be the case. So far we
have said little about how this function is defined.

0319 Avars are composed of multiple motion channels,
each of which specifies some aspect of the total avar output
function. Motion channels are composited together under a
programmable functional composition, described below.
Motion channels are organized into layers. A given avar may
have Zero or one motion channels for each layer. If it has
Zero channels on a given layer, we say it has no animation
for that layer. If it has one channel on a given layer, we say
it has animation for that layer. If an avar has animation for
any layer, we say that avar is set; otherwise it is unset or
defaulted. If the output value of an avar varies as its input
parameter changes, we say the avar is animated; otherwise
it is constant.

0320. As described in Section 1.18.1, a given avar may
have any one of a number of value types. Such as Scalar,
vector, point, quaternion, Scalar field, or mesh. All motion
channels within that avar will have the same type.
0321) At a given time, a single layer is the active layer.
Direct manipulation, display of knots on the motion path,
and manipulation of the motion path all involve the active
layer only, and are only possible when the active layer is a
kinematic layer (Section 5.2). The user chooses what layer
is active and may change between active layers at will.
5.1 Motion Compositing
0322 There are two components to the channel compo
sition: (1) a layer-wide compositing operator, and (2) an
avar-specific layering policy. The compositing operator is
one of the operators defined by Porter and Duff in T. Porter
and T. Duff. Compositing Digital Images, Computer Graph

US 2006/0274070 A1

ics (Proceedings of SIGGRAPH 84), 18(3):253-259, July
1984, which article is incorporated by reference herein in its
entirety. We draw the loose analogy that our notion of
“layer corresponds to Porter and Duff’s “picture' and our
“motion channel corresponds to Porter and Duff’s “pixel’.
Accordingly, we provide the following operators for com
positing two layers A and B:

TABLE 3

Compositing operators, after Porter and Duff

Operation Name wa WB Interpretation (relative to A)

clear clear O O erase all animation
A. replace 1 O replace all underlying animation
B ignore O 1 disable layer A
A over B over 1 1 - Cra override specified avars
B over A under 1 - CE 1 override previously defaulted

8W8S

A in B in CB O keep only avars common to both
layers, overriding previous
animation

B in A mask O Ca mask out all but specified avars
A out B Out 1 - CE O animate only specified avars

except those that were
previously animated

1 - Cia mask out specified avars
1 - Cra override previously animated

8W8S

animate only specified avars,

B out A exclude O
A atop B atop CB

B atop A mask- 1 - CE, CA
under keep any existing animation in

those avars
Axor B Xor 1 - CE 1 - CA eliminate avars animated in both

layers
A plus B blend 1 1 blend layers together according

to channel layering policy
A plus B add 1 1 blend layers together using an

additive layering policy
A plus B multiply 1 1 blend layers together using a

multiplicative layering policy

0323 The operation column specifies the Porter-Duff
compositing operation, name specifies the term we use to
identify this operation, and w and w (FA and F in
Porter-Duff) are weighting factors for layers A and B as
discussed below. We part ways with Porter and Duff in that
they: (1) pre-multiply pixel values by alpha, while we do not
similarly pre-scale our motion channels, and (2) in the detail
that they specify an alpha plane that provides a fractional
masking value per pixel. In contrast, our motion channels
are not associated with individually variable alpha values.
We recall that avars lacking animation on a particular layer
do not possess a motion channel for that layer. We consider
the alpha associated with Such a non-existent channel to be
Zero. Channels that do exist in the layer all have the same
alpha, specified layer-wide by a special envelope avar. Each
layer has exactly one envelope avar, and these avars are
unique in that they are themselves unlayered, that is, each
envelope avar contains a single motion channel for the layer
that envelope affects. The envelope avar is unaffected by the
compositing operator and layer alpha. However, the enve
lope avar is optionally subject to the time-course avar
described below. For example, the envelope for a cycling
layer may optionally be cycled along with the rest of the
layer. As with otheravars, layer envelopes may be defaulted
(to 1.0), set to a constant value, or animated. The value-type
of envelope avars is scalar, and they are usually kinematic
(i.e., splined, as described below). As we shall see, setting

32
Dec. 7, 2006

envelopes to fractional values between 0.0 and 1.0 allows
continuous blending between layers.
0324. The layering policy for a given avar is either
additive or multiplicative. The policy defines how the chan
nels of that avar combine under compositing. For example,
translation avars and most other scalar avars are additive,
that is, their numerical values in layers A and B are com
bined through scalar addition. Conversely, Scale avars (SX,
sy. SZ) and unit-quaternion rotations are multiplicative: they
are combined by (scalar or quaternion, respectively) multi
plication. Transformation matrices are normally multiplica
tive. The user who constructs the expression graph for the
model may specify either policy for a given avar. The avar
will follow the same policy on all layers except those using
the add or multiply operators, both of which override the
avar-specific layering policy with a layer-wide policy.
0325 During layer compositing, the layer-weighting fac
tor (WA or WB) is multiplied by the layer alpha (recalling
that our motion channels are not pre-multiplied by alpha),
and the resulting value is used to Scale the motion channels
within the layer. Scaling a motion channel is interpreted as
a linear interpolation between the channel value and a
type-specific Zero (for additive channels) or identity (for
multiplicative channels); Zero and identity are defined per
type according to common mathematical convention, for
example, for scalars they are just the usual 0.0 and 1.0,
respectively. Scalars, points, vectors, matrices, and most
other types interpolate according to the standard linear
interpolate (lerp) operator, while unit quaternions interpolate
via the spherical interpolate (slerp) operator. Thus for an
additive Scalaravar, Scaling a motion channel corresponds to
a scalar multiply of the channel value. Scaling a (multipli
cative) quaternion rotation involves a slerp between quater
nion identity (no rotation) and the channel value.
0326 For example, given two motion channels of an
additive scalar avar f, the over operator would composite
these avars as:

B(tB)

where f(x) gives the value of avar fs motion channel for
layer V at input parameter X. For now we assume t=tA=t.
(We will reexamine that assumption below.) Similarly, two
channels of a multiplicative quaternion avar q would com
posite via the atop operator as:

q(t) = QA WA 4A (tA): a BWB4B (te)

= QAaB4A (tA): a B (1 - OA)4B (te)

= Slerp(a AaB, aidentity, 4A (tA))slerp(a B (1 - OA), qidentity, 4B (IB)).

0327 We have assumed thus far that all motion channels
are parameterized identically, that is, that t=tA=t for all
layers A and B. Now we introduce the notion of a time
course avar. Each layer has exactly one time-course avar
and, like the envelope avar, this avar is special in that it is
unlayered, that is, each contains a single motion channel for
the layer that time-course affects. The time-course avar is
unaffected by the compositing operator, layer alpha or the
layer envelope. For some layer A, the time course avar
defines a function TA mapping from avar input parameter

US 2006/0274070 A1

space to the parameterization of the evaluation function XA
for motion channels within layer A. That is, tA=TA(t).
0328. A particularly useful time-course function is the
saw-tooth function curve. This causes animation within a
layer to cyclically repeat ("cycle') over some time range.
Cycling is the most-common use of the time-course avar,
and, for convenience, we provide an easy mechanism in the
application GUI for cycling layers over some given range.
More complex time-course manipulations can be done by
editing the time-course avars directly via a spreadsheet or
curve editor.

0329. In general, layer composition for avar X involves:

O

X(t) = LIX = x, y, x,-1-1 o2 x 101 vo

where o is the (user-specified) operator for compositing
layer i upon layer i-1, with associated weighting factors WA
and was defined in Table 2, and X, is the value of the
(existent) motion channel for layer i. We recall that the
layering policy for a given compositing operation is the
layering policy of the avar being composited, except under
the special compositing operators add and multiply, as
indicated in Table 2. Then:

{ aeb when layering policy is additive
to

a Xb when layering policy is multiplicative

x; (ex i = interp(WAa;(t), 0, x, (T(t))) + interp(wba (t), 0, xi (T(t)))
y; (x) xi = interp(wAa;(t), 1, xi (T(t))): interp(wpai(t), 1, x (Ti(t)))

(t) (to if time-course affects layeri's envelope C;(t) =
E(t) otherwise.

0330 For quaternion-typed avars, interp is the spherical
linear interpolation, or slerp, operator; otherwise it is lerp. 0
and 1 denote type-appropriate values for “Zero” and “iden
tity”. E(t) is the value of the envelope avar for layer i at
parameter t, and the alternative lookup strategies for E()
reflect the user-specified option of whether a particular
layer's envelope should be affected by that layer's time
COUS aWa.

0331 We note that motion compositing is not mathemati
cally commutative, that is, the compositing order is signifi
cant, both because the Porter-Duff compositing operators are
non-commutative and because multiplication of some of our
avar data types (e.g., matrix and quaternion tensors) is
non-commutative. However, motion compositing is math
ematically associative, that is, the grouping of compositing
steps is not significant, because the Porter-Duff compositing
operators are associative and tensor multiplication is asso
ciative. In fact, one limitation we impose on value types
within our system is that those types generally are associa
tive under addition and multiplication, as well as possess a
well-defined Zero and identity.
5.2 Motion Channel Taxonomy
0332 We have said nothing yet about how the functional
mapping from parameter t to value X, within a single motion

Dec. 7, 2006

channel is specified. In fact, rather than a single Such
specification, there are alternative specifications; this choice
may be made per layer. The classes of layers include
kinematic, forward dynamic, multipoint dynamic, proce
dural, sampled, and stochastic. All motion channels within
the same layer are of the same class.
0333 Kinematic animation refers to animation that is
defined by “splines', that is, curves whose shape is defined
sparsely via knots and an interpolation rule for filling in the
gaps between knots. Kinematic animation is often, though
not necessarily, created by a human operator.
0334 Forward-dynamic motion refers to animation that
has been generated via a computer-simulation Solution to a
single-point boundary problem. The boundary value is
specified for Some initial parameter, e.g., t=0, and the
simulation uses a differential equation solver to integrate
forward in time, computing values at Subsequent ts. This is
generally done as an offline process and the resulting ani
mation data is saved in a tabled format for fast access.

0335 Multipoint-dynamic motion refers to animation
that has been generated via a computer-simulation Solution
to a multi-point boundary problem. Boundary values are
specified at a number of parameters t, and the simulation
uses an iterative process Such as gradient descent to develop
a solution that interpolates the specified boundaries subject
to certain constraints. Again, the Solution is generally com
puted as an offline process with the resulting animation data
saved in a readily accessible format
0336 Procedural animation in general is any animation
computed automatically by a computer process. Here it
refers to animation computed by a user- or modeler-supplied
external function, typically written in C++ code using a
Supplied plugin API. The animation is generated by the
external function on an as-needed basis, though values once
computed may be retained within our expression graph via
temporal caching, as described in Section 1.
0337 Sampled motion refers to animation data recorded
as discrete time-samples on disk. This includes motion
capture data and the output of externally executed computer
simulations or other computer procedures that write their
output to disk as tabled time-based samples.
0338 Stochastic motion denotes motion computed by a
pseudo-random process. We provide various controls for
“shaping the distribution of the random number generation.
In general, any user-level or code-level representation of a
probability distribution function (PDF) could be used for
shaping the generated motion, including the provision of
representative example motion whose PDF could be
extracted through an automatic or manual process.
0339) Any class of layer may be converted to a sampled
layer by Sampling the motion in that layer and outputting the
time-based samples to a data file in table format. Any class
of layer may be converted to a kinematic layer by automati
cally fitting spline segments to the motion in that layer and
storing the knots that define those spline segments.
0340 Boundary values for forward- and multipoint-dy
namic simulations are specified via selected “lower-num
bered (i.e., lower in the compositing stack) layers. These
boundary-specification layers exist only to guide the simu
lation and are effectively disabled when the overlying
dynamic layer is enabled.

US 2006/0274070 A1

0341 There is no limitation on how the different classes
of motion are intermixed. Layers of different classes may be
composited freely one upon another. The class for each layer
is independently user-specified.

5.3 Editing Kinematic Animation
0342. When the user wishes to modify by direct manipu
lation the pose of a model, we take into account the
contribution to the existing pose not only of the active layer
but of all other layers as well. We factor out the effect of the
non-active layers in deciding how to modify the active layer.
We do this by inverting the composition process around the
active layer. (For clarity, in the discussion that follows we
assume that all time-course avars give the default mappings
t=T(t) and that the envelope avar for the active layer is 1.0
everywhere. For full generality, we could replace all occur
rences of t with T(t) and scale the resulting f'(t) by the
inverse of the envelope value, as is done in our implemen
tation.)
0343 That is, in order to set avarf to value y at parameter

t, we compute the new value f'(t) for active (kinematic)
layer V as:

O

(- it, f(n)-yet- II, f(t)) when layering policy is additive
ic

-l

i=y+1 when layering policy is multiplicative
ic

0344) For example, suppose we wish to set an additive
Scalaravarf to have the value y at parameter t by modifying
only layer V. For simplicity we assume that all layers are
composited under the blend operator and that the envelope
avar for each layer is left at the default of 1.0. Then the new
value we should set in layer v is:

f(t) = f(t) + Af,
O -- (- LI f(t) y(- If f(t)

Af. = y - f(t).

0345 Thus, we can see the necessary change to layer v is
simply the difference between the desired value and the
current value, as expected. Taking another example, we wish
to set multiplicative quaternion-valued avar Q to value q.
again at parameter t and modifying only layer V. The new
value we should set in layer v is:

I , , -l Q (t) og II, Q(t)) ic

O

Q(t) = (i.
- - -l 9 prerotation i 9 postrotation

34
Dec. 7, 2006

0346) where quain is the composite rotation due to
layers prior to V, and qissation is the composite rotation
from layers Subsequent to V. Naturally, the easy way to
compute the pre- and post-active-layer composite values is
to use the existing compositing machinery described in
Section 5.1; we simply disable layers numbered 2 and sv,
respectively, and evaluate the avar at parameter t. In
pseudocode:

Avar:SetLayered Value(v,ty):

EnableLayers(0.v-1);
prevalue = Evaluate(t);
EnableLayers(v+1..n);
postvalue = Evaluate(t);
EnableLayers(0..n)
if policy = additive then
f* additive layering policy */
new value := -prevalue + y + -postvalue;
else
f* multiplicative layering policy */
new value := prevalue. Inverse() * y * postvalue. Inverse();
Layer(v). SetValue(t, new value);

/* disables all other layers */

0347 Again, we may wish to scale new value by the
inverse of the layer envelope before actually inserting or
adjusting a knot in the spline curve for layer V.
5.4 Layer Properties

0348 Layers may be given user-specified names, com
ments, and arbitrary tag-value pairs. A layer name is unique
within its layer set (see below). Layers may be searched for
and selected by name, comment or tag-value pair. A selected
layer or layers may be operated upon in a number of ways.
Clearing a layer corresponds to deleting all motion channels
for that layer, leaving a layer containing no animation.
Deleting a layer deletes the layer's motion channels as well
as the layer itself. The user may also create new layers; new
layers initially have no motion channels and thus no anima
tion. The compositing operator for a layer may be changed
at any time. In contrast, the layering policy for each avar is
normally set at model construction time.

0349 Layers may be locked or unlocked. The informa
tion stored in the motion channels of a locked layer may not
be modified. Layers may be grouped into layer groups called
layer sets. All motion channels for a given layer set are
stored on disk within a single logical file. Individual layers
may be moved between layer sets, Subject to certain limi
tations described below; the motion channel data will cor
respondingly be moved between disk files. Layer sets may
be locked or unlocked. Locking a layer set locks all layers
within the set and corresponds to locking the associated file
on disk. Unlocking a layer set corresponds to unlocking the
associated file and can only be done by a given user if that
user has sufficient operating system “privileges' to unlock
the file. When loading a layer set from disk, the contained
layers will be locked if the disk file is locked; otherwise they
will be unlocked.

0350 Layers may be enabled or disabled. Disabling a
layer is equivalent to specifying a layer alpha of Zero (See
Section 5.1). Sets of layers may be enabled and disabled
together. A layer may be soloed, which is equivalent to
enabling that layer and disabling all other layers. The output

US 2006/0274070 A1

value of an avar as it would be if the active layer were soloed
is available at the avar’s solo output. Changing active layers
pushes dirty on all avar Solo outputs.
0351 Layers are displayed within a layer list window and
optionally within a layers pane within the timeline window.
The compositing order of layers may be changed by drag
ging the layers into a different order in the list using the
mouse cursor. Each line of the layer list corresponds to one
layer and shows the layer name, the range if any over which
the layer cycles (via a sawtooth time-course function),
toggles for the layer lock and enable attributes, and an
indication of whether or not any of the active avars have
motion channels on that layer. There are two display modes
for the layer list: layers may be organized by set, so that the
layer view contains a hierarchical list, or layers may be
organized by compositing order, and then the layer view
gives a flat listing with layers color-coded to indicate set
membership by associating a (user-specified) color with
each layer set. Next to each layer is an optional preview tile
that shows the active model (or some particular model
specified by the user) rendered with only that layer enabled
(or some particular set of layers specified by the user). This
tile animates when the user moves the mouse cursor over the
tile, and otherwise shows a still image.
0352. The layer pane in the timeline window additionally
shows the duration in time over which particular layers
(and/or layer sets, when viewed hierarchically) contain
animation (that is, contain motion channels with time
varying values) by the position of colored bars for each
displayed layer drawn under the timeline itself. The layer (or
layer set) envelope may be drawn as a curve over its
corresponding layer bar, and the curve may be directly
manipulated. By setting interaction modes (with user-inter
face buttons or by depressing keyboard keys) and then
clicking and dragging with the mouse upon layer bars, the
motion within layers or layer sets can be retimed, Scaled in
time, cycled, duplicated and similarly manipulated. Specific
layer and layer set operations are discussed in Section
5.5—Operations on Layers.
0353. The contribution of a particular layer to the total
animation may be visualized in several ways. The numerical
data within layer motion channels may be viewed and edited
in a spreadsheet or curve editor. The animation may be
played back while the user toggles the layer on and off, or
soloed and non-soloed, and observes the change. The ani
mation may be played back simultaneously in both enabled
and disabled State, with geometry rendered opaquely with
the layer enabled and translucently (i.e., ghosted) with the
layer disabled, or vice versa. More generally, the user may
specify two sets of enable states for the layers, and then view
the difference between these sets by simultaneously render
ing one set opaquely and the other set ghosted.
5.5 Operations on Layers
0354) The user may perform various operations on the
active layer, on multiple selected layers, and on layer sets.
Layers may be converted to kinematic or sampled layer
classes, as described in Section 5.2. Layers may be locked
and unlocked, enabled and disabled, cycled (via the time
course avar), faded (via the envelope avar), cleared and so
on as described in previous sections. Layers may be dupli
cated, producing a new layer with motion channels identical
to those in the original layer. Layers may be renamed. Layers

Dec. 7, 2006

may be moved into a different layer set provided that the
user has write access to that set.

0355) Multiple selected layers may be flattened into a
single layer by merging the motion channels between layers.
If the layers to be flattened are not all of the same layer class,
the layers will first be converted to a common class, either
kinematic (via curve fitting) or sampled (via channel Sam
pling) according to user preference.
0356. A single layer may be decomposed into multiple
layers in a number of ways. The motion channels affecting
selected geometry may be extracted into a new layer. The
portion of all motion channels affecting a selected time range
may be extracted into a new layer. More generally, the user
may select some geometry and a time range, and extract the
motion-channel data for the selected geometry over just the
selected time range into a new layer. The geometry whose
motion is to be extracted may be specified via regexp
“regular expressions'; for example, the user may specify all
avars whose pathname matches “Foot', thereby identifying
two avars “LeftFoot/midBend' and “RightFoot/midBend'.
0357 The user may specify a range infrequency-space to
extract into a new layer. The channel data will be converted
to the sampled class (Section 5.2) and a Fast-Fourier Trans
form (FFT) of the channel data will be performed. The data
in the specified frequency band will then be copied or moved
(as specified in command-option dialogs) into a new layer.
Several frequency ranges may be specified, producing mul
tiple band-specific layers. By adjusting the alpha (Section
5.1) of the layers so extracted and then flattening these layers
back into a single layer, the user may perform parametric
equalization of the animation data. To ease this process, we
provide a single-step parametric equalization dialog with
fully adjustable band centers, widths and gains for a user
specified number of bands. This is implemented by perform
ing an FFT, decomposing by band, and recomposing with
the specified equalization. We similarly provide a single-step
notch filter using the same technique.
0358 We provide other analogs to audio signal process
ing, allowing the user to limit, compress, expand, compress
expand (compand), gate, and duck the motion-channel sig
nals. A compressor provides an automatic form of level
control, attenuating high levels and thereby reducing the
dynamic range. A limiter is an extreme form of compressor
that provides very sharp attenuation above a set level. An
expander attenuates the signal below some threshold, reduc
ing low-level noise and expanding the dynamic range. A gate
is an extreme form of expander that sharply attenuates
signals below some threshold, Suppressing noise when the
signal is low. A compander combines a compressor with an
expander, increasing dynamic range while avoiding exces
sive output level. Ducking attenuates a signal when another
signal exceeds some threshold, allowing one layer to auto
matically override another layer when a signal (i.e., motion)
of significant magnitude is present, and have no effect
otherwise. The user can specify both the primary and
override layers for ducking; the other effects involve a single
layer.
0359 Channel data may be smoothed or sharpened via
one-dimensional convolution. More generally, any finite
kernel convolution filter, specifiable by the user, may be
convolved over the channels within a layer.
0360. The difference between two layers may be
extracted as a new layer. “Difference' is interpreted relative

US 2006/0274070 A1

to the channel layering policy, with additive channels being
subtracted and multiplicative channels divided.
0361 Sampled layers may be resampled at different
sampling rates. Upsampling produces data at a higher
sample rate. Downsampling produces data at a lower rate.
We use a cubic resampling technique described in D. P.
Mitchell and A. N. Netravali, Reconstruction filters in com
puter graphics. Computer Graphics, (Proceedings of SIG
GRAPH 88), 22(4):221-228, August 1988, which article is
incorporated by reference herein in its entirety. Other sam
pling methods are possible.
0362 Entire layers may be scaled and biased. This is
accomplished by applying a gain and bias to every motion
channel within the layer, in the exactly the same way gain
and bias are applied to node inputs and outputs as described
in Section 1.13. Similarly, a layer may be shifted or stretched
in time, by retiming and stretching the animation in all
channels within the layer as described for single-channel
editing in Section 4.2.4. Indeed, most of the operations that
may be performed on individual avars may also be per
formed across entire layers, with the Software simply apply
ing the given operation to each channel within the layer. The
notable exceptions to this are operations that depend upon
the data type of an avar, for example, setting knot values.
6.0 User System Architecture
0363 FIG. 12 is a block diagram of an exemplary user
system architecture 1200 for hosting an animation applica
tion. The architecture 1200 includes one or more processors
1202 (e.g., IBM PowerPC.(R), Intel Pentium R. 4, etc.), one or
more display devices 1204 (e.g., CRT, LCD), one or more
graphics processing units 1206 (e.g., NVIDIAR. Quadro FX
4500, GeForce(R 7800 GT, etc.), one or more network
interfaces 1208 (e.g., Ethernet, FireWire, USB, etc.), one or
more input devices 1210 (e.g., keyboard, mouse, etc.), and
one or more computer-readable mediums 1212 (e.g.
SDRAM, optical disks, hard disks, flash memory, L1 or L2
cache, etc.). These components exchange communications
and data via one or more buses 1214 (e.g., EISA, PCI, PCI
Express, etc.).
0364 The term “computer-readable medium” refers to
any medium that participates in providing instructions to a
processor 1202 for execution, including without limitation,
non-volatile media (e.g., optical or magnetic disks), Volatile
media (e.g., memory) and transmission media. Transmission
media includes, without limitation, coaxial cables, copper
wire and fiber optics. Transmission media can also take the
form of acoustic, light or radio frequency waves.
0365. The computer-readable medium 1212 further
includes an operating system 1216 (e.g., Mac OSR), Win
dows.(R), Linux, etc.), a network communication module
1218, animation files 1220, an animation application 1222
and cache memory 1236. The animation application 1222
can be integrated with other applications or be configured as
a plug-in to other applications. In some implementations, the
animation application 1222 includes a UI manager 1224, a
rendering engine 1226, an animation engine 1228, a graph
editor 1230, expression graphs 1232 and a programming
module 1234.

0366 The operating system 1216 can be multi-user,
multiprocessing, multitasking, multithreading, real-time and
the like. The operating system 1216 performs basic tasks,

36
Dec. 7, 2006

including but not limited to: recognizing input from input
devices 1210; sending output to display devices 1204;
keeping track of files and directories on computer-readable
mediums 1212 (e.g., memory or a storage device); control
ling peripheral devices (e.g., disk drives, printers, GPUs
1206, etc.); and managing traffic on the one or more buses
1214. The network communications module 1218 includes
various components for establishing and maintaining net
work connections (e.g., software for implementing commu
nication protocols, such as TCP/IP, HTTP, Ethernet, etc.).
The animation application 1220, together with its compo
nents, implements the various tasks and functions, as
described with respect to FIGS. 1-11. The UI manager 1224
is responsible for the generation and display of user inter
faces. The rendering and animation engines 1226, 1228, are
responsible for renderings and animating bodies in the
display environment. The graphic editor 1230 is described in
Section 1.19. The expression graphs are described in Section
1. 1. The programming module 1234 is responsible for the
modeling, expression and animation languages described in
Section 2. The cache 1236 is used in adaptive/temporal
caching described in Section 1.
0367 The user system architecture 1100 can be imple
mented in any electronic or computing device capable of
hosting an animation application, including but not limited
to: portable or desktop computers, workstations, main frame
computers, network servers, etc.
03.68 Various modifications may be made to the dis
closed implementations and still be within the scope of the
following claims.

What is claimed is:
1. An animation method, comprising:
providing a display environment for presentation on a

display device;
providing a body for display in the display environment;

and

determining a motion path for a first portion of the body
relative to a second portion of the body.

2. The method of claim 1, where determining a motion
path further comprises:

displaying a curve in the display environment that defines
the motion path in space over time.

3. The method of claim 1, further comprising:
providing a control in the display environment for

manipulating the motion path; and
manipulating the motion path in response to a user

interaction with the control.
4. The method of claim 1, where the display environment

is a three-dimensional space.
5. The method of claim 1, where the display environment

is a two-dimensional space.
6. The method of claim 1, where the body is from a group

of bodies including articulated bodies, rigid bodies and
bodies with one or more deformable surfaces.

7. The method of claim 1, further comprising:
receiving input from an input device manipulated by a

user while viewing the body in the display environ
ment.

US 2006/0274070 A1

8. The method of claim 2, where manipulating the motion
path further comprises:

deforming one or more surfaces of the body.
9. The method of claim 2, where displaying a curve

further comprises:
determining points along the motion path at discreet

sample times; and
rendering the points to define the curve through space

over time.
10. The method of claim 9, further comprising:
rendering the curve using a number of points based at

least in part on the speed of the body along the motion
path.

11. The method of claim 9, further comprising:
automatically rendering the curve to pass through a ref

erence point on the body in response to user input.
12. The method of claim 9, further comprising:
dilating the curve about a point in space to improve

visibility of the curve in the display environment.
13. The method of claim 9, further comprising:
stretching the curve out in time to improve visibility of the

curve in the display environment.
14. The method of claim 9, further comprising:
rendering the line segments relative to a moving camera

view.
15. The method of claim 1, further comprising:
displaying one or more portions of the curve in one or
more colors to improve visibility of the curve in the
display environment.

16. The method of claim 1, further comprising:
displaying information along the motion path to indicate

rate of movement of the body over a section of the
motion path.

17. The method of claim 1, further comprising:
displaying information along the motion path to indicate

timing and one or more values associated with anima
tion key frames.

18. The method of claim 3, further comprising:
rendering ghost geometry along a section of the motion

path during interactive manipulation of the motion
path.

19. The method of claim 1, further comprising:
animating the first portion of the body to follow the

motion path.
20. The method of claim 19, further comprising:
providing ghost images of the first portion of the body

along the motion path during animation.
21. The method of claim 19, further comprising:
providing cached data associated with frames of anima

tion over time, where at least some of the cached data
is used during animation.

22. The method of claim 1, further comprising:
defining the body by an expression graph with cycles.
23. The method of claim 22, further comprising:
providing one or more articulated variables for changing

values within the expression graph.

37
Dec. 7, 2006

24. An animation method, comprising:
providing a display environment for presentation on a

display device;
providing a body for display in the display environment;
providing a first motion path for a first portion of the body

relative to a second portion of the body;
providing a second motion path for the first portion of the
body relative to a second portion of the body; and

providing a mechanism for animating the first portion of
the body to follow either the first or second motion
path.

25. The method of claim 24, further comprising:
associating the first motion path with a first layer; and
associating the second motion path with a second layer.
26. The method of claim 25, further comprising:
associating the first and second layers with a class from a

group of layer classes including: kinematic, forward
dynamic, multipoint dynamic, procedural, Sampled and
stochastic.

27. The method of claim 24, further comprising:
defining the first and second layers as a layer set.
28. The method of claim 24, further comprising:
performing one or more operations on the first and second

layers in response to user input.
29. A method of creating expression graphs for an ani

mation system, comprising:
providing a graphical user interface;
receiving a first node selection from a plurality of node

types;

receiving a second node selection from the plurality of
node types:

displaying graphical representations of the selected nodes
in the graphical user interface; and

providing a connection mechanism for enabling a user to
connect at least one output of the first node with at least
one input of the second node to form a graphical
structure that represents a unified generalized expres
sion graph with cycles.

30. The method of claim 29, where at least some of the
node types are templates.

31. The method of claim 29, where the expression
includes one or more conditions.

32. The method of claim 29, further comprising:
providing an expression language for entering mathemati

cal expressions into an input of one or more of the first
and second nodes.

33. The method of claim 29, where at least one of the first
and second nodes is associated with a cache structure for
storing one or more values for various discrete sample times.

34. The method of claim 29, where at least one of the first
and second nodes is configurable to broadcast a value on a
named channel which can be received by one or more
receiver nodes.

35. The method of claim 29, where at least one of the first
and second nodes is configurable to solve kinematic prob
lems.

US 2006/0274070 A1

36. The method of claim 29, where a user can specify
either the first node or the second node as a root node.

37. The method of claim 29, where the graphical structure
is a hierarchy which is configurable to allow data to flow
bi-directionally through the hierarchy.

38. A method of creating an expression graph for an
animation system, comprising:

providing a text-based programming language for speci
fying expression graphs for an animation system;

executing a program developed with the programming
language to generate an expression graph; and

animating a body in a display environment using the
expression graph.

39. An animation method, comprising:
providing a display environment for presentation on a

display device;
providing a first body for display in the display environ

ment;

providing a second body for display in the display envi
ronment; and

determining a motion path for a portion of the first body
relative to the second body.

40. An animation method, comprising:
providing a display environment for presentation on a

display device;
providing a body for display in the display environment;

and

determining a motion path for a portion of the body
relative to a coordinate system associated with the
display environment.

41. An animation method, comprising:
providing a display environment for presentation on a

display device;
providing a body for display in the display environment;
evaluating an expression graph associated with the body

at a first rate;
processing body geometry at a second rate; and
rendering the body in the display environment at a third

rate, where the first and second rates are decoupled
from the third rate.

42. A computer-readable medium having Stored thereon
instructions which, when executed by a processor, causes the
processor to perform the operations of

providing a display environment for presentation on a
display device;

providing a body for display in the display environment;
and

determining a motion path for a first portion of the body
relative to a second portion of the body.

43. A computer-readable medium having Stored thereon
instructions which, when executed by a processor, causes the
processor to perform the operations of

providing a display environment for presentation on a
display device;

providing a body for display in the display environment;

Dec. 7, 2006

providing a first motion path for a first portion of the body
relative to a second portion of the body;

providing a second motion path for the first portion of the
body relative to a second portion of the body; and

providing a mechanism for animating the first portion of
the body to follow either the first or second motion
path.

44. A computer-readable medium having stored thereon
instructions which, when executed by a processor, causes the
processor to perform the operations of

providing a display environment for presentation on a
display device;

providing a body for display in the display environment;
providing a first motion path for a first portion of the body

relative to a second portion of the body;
providing a second motion path for the first portion of the
body relative to a second portion of the body; and

providing a mechanism for animating the first portion of
the body to follow either the first or second motion
path.

45. A computer-readable medium having stored thereon
instructions which, when executed by a processor, causes the
processor to perform the operations of

providing a display environment for presentation on a
display device;

providing a first body for display in the display environ
ment;

providing a second body for display in the display envi
ronment; and

determining a motion path for a portion of the first body
relative to the second body.

46. A computer-readable medium having stored thereon
instructions which, when executed by a processor, causes the
processor to perform the operations of

providing a display environment for presentation on a
display device;

providing a body for display in the display environment;
and

determining a motion path for a portion of the body
relative to a coordinate system associated with the
display environment.

47. A computer-readable medium having stored thereon
instructions which, when executed by a processor, causes the
processor to perform the operations of

providing a display environment for presentation on a
display device;

providing a body for display in the display environment;
evaluating an expression graph associated with the body

at a first rate;
processing body geometry at a second rate; and
rendering the body in the display environment at a third

rate, where the first and second rates are decoupled
from the third rate.

