发明名称
一种碱式硝酸铜的制备方法

摘要
本发明公开了一种碱式硝酸铜的制备方法，包括如下步骤：
1. 配制包含 Cu²⁺ 和 NO₃⁻ 的 A 溶液；
2. 配制包含 OH⁻ 的 B 溶液；
3. 引入柠檬酸根离子催化剂；
4. 制备中间产物；
5. 转移中间产物；
6. 制备目标产物碱式硝酸铜。有益之处在于：利用廉价易得的原料，并且在反应过程中引入了催化剂从而提高生产效率；同时简化生产设备，缩减工艺流程，更加有利于工业化生产和操作，进而提高了碱式硝酸铜的生产成本。此外，本发明的方法制备出的碱式硝酸铜产品质量好且品质稳定。
1. 一种碱式硝酸铜的制备方法，其特征在于，包括如下步骤：
 (1) 配制 A 溶液：在第一反应器中配制包含 Cu²⁺ 和 NO₃⁻ 的 A 溶液；
 (2) 配制 B 溶液：在第二反应器中配制包含 OH⁻ 的 B 溶液；
 (3) 引入催化剂：向 A 溶液或者 B 溶液中的至少一个中加入 C，上述 C 溶于水或水溶液形成包含柠檬酸根离子的溶液；进行该步骤后，步骤（1）和步骤（2）中的 A 溶液和 B 溶液分别记作 A’溶液和 B’溶液；
 (4) 制备中间产物：将 A’ 溶液和 B’ 溶液同时流入第三反应器中，在水相中进行反应，控制第三反应器中反应液的 pH 值为 3~10，制得中间产物；
 (5) 转移中间产物：将中间产物转移至第四反应器中，并且洗涤至洗涤液呈中性，然后进行初步除水处理，制得初步产物；
 (6) 制备目标产物：在第五反应器中对初步产物进行脱水处理，再将其转移至干燥处理器中，在 30℃~180℃下进行干燥处理，制得目标产物碱式硝酸铜。

2. 根据权利要求 1 所述的一种碱式硝酸铜的制备方法，其特征在于，上述步骤（4）中，通过调节 A’溶液和 B’溶液的流量控制第三反应器中反应液的 pH 值。

3. 根据权利要求 1 所述的一种碱式硝酸铜的制备方法，其特征在于，上述 A 溶液直接由硝酸铜溶于水制得，或者由铜、氢氧化铜、碱式碳酸铜、氧化铜与硝酸反应制得。

4. 根据权利要求 1 所述的一种碱式硝酸铜的制备方法，其特征在于，上述 B 溶液为可溶性氢氧化物溶于水形成的溶液。

5. 根据权利要求 1 所述的一种碱式硝酸铜的制备方法，其特征在于，上述 C 为柠檬酸或可溶性柠檬酸盐。

6. 根据权利要求 1 所述的一种碱式硝酸铜的制备方法，其特征在于，上述 Cu²⁺ 与柠檬酸根离子的摩尔比为 1:0.01~0.8。

7. 根据权利要求 3 所述的一种碱式硝酸铜的制备方法，其特征在于，上述 A 溶液的波美度为 5~55。

8. 根据权利要求 3 所述的一种碱式硝酸铜的制备方法，其特征在于，上述步骤（4）中的反应温度为：10℃~95℃。

9. 根据权利要求 1 所述的一种碱式硝酸铜的制备方法，其特征在于，上述 B 溶液中 OH⁻ 的质量浓度为 1%~30%。

10. 根据权利要求 1~9 任一项所述的一种碱式硝酸铜的制备方法，其特征在于，上述步骤（4）中的 pH 值为 6~8。
一种碱式硝酸铜的制备方法

技术领域

[0001] 本发明涉及一种化学产品的制备方法，具体涉及一种碱式硝酸铜的制备方法。

背景技术

[0002] 碱式硝酸铜可以广泛应用于烟火、推进剂、铜制品中间体以及制备安全气囊发生剂的氧化剂等众多领域，尤其是随着汽车工业的快速发展以及对安全气囊发生剂的性能和稳定性提高的要求，碱式硝酸铜的市场需求缺口一直很大。目前市场上的碱式硝酸铜很多都只是硝酸铜与氢氧化铜的简单混合物，质量极不稳定。实际上还没有一种制备碱式硝酸铜的方法，能够生产出品质稳定的碱式硝酸铜，兼顾生产成本与生产效率，所以，开发出一种便于工业化生产、原料价格合理、有效提高生产效率、降低生产成本的碱式硝酸铜制备方法迫在眉睫。

发明内容

[0003] 为解决现有技术的不足，本发明的目的在于提供一种碱式硝酸铜的制备方法，采用较为廉价易得的原料，简化生产设备，便于工业化生产和操作，缩减工艺流程，引入催化剂有效提高了生产效率，降低生产成本的碱式硝酸铜的生产成本。此外，本发明的方法制备出的碱式硝酸铜产品质量好且品质稳定。

[0004] 为了实现上述目标，本发明采用如下技术方案：

[0005] 一种碱式硝酸铜的制备方法，其特征在于，包括如下步骤：

[0006] (1) 配制 A 溶液：在第一反应器中配置包含 Cu^{2+} 和 NO_{3}^{-} 的 A 溶液；

[0007] (2) 配制 B 溶液：在第二反应器中配置包含 OH^{-} 的 B 溶液；

[0008] (3) 引入催化剂：向 A 溶液或者 B 溶液的至少一个中加入 C，上述 C 溶于水或水溶液形成包含柠檬酸根离子的溶液；进行该步骤后，步骤 (1) 和步骤 (2) 中的 A 溶液和 B 溶液分别记作 A' 溶液和 B' 溶液；

[0009] (4) 制备中间产物：将 A' 溶液和 B' 溶液同时流入第三反应器中，在水相中进行反应，控制第三反应器中反应液的 pH 值为 3 ~ 10，制得中间产物；

[0010] (5) 转移中间产物：将中间产物转移至第四反应器中，并且洗涤至洗涤液呈中性，然后进行初步除水处理，制得初步产物；

[0011] (6) 制备目标产物：在第五反应器中对初步产物进行脱水处理，再将其转移至干燥装置中，在 30℃ ~ 180℃下进行干燥处理，制得目标产物碱式硝酸铜。

[0012] 前述的一种碱式硝酸铜的制备方法，其特征在于，上述步骤 (4) 中，通过调节 A' 溶液和 B' 溶液的流量控制第三反应器中反应液的 pH 值。

[0013] 前述的一种碱式硝酸铜的制备方法，其特征在于，上述 A 溶液直接由硝酸铜溶于水制得，或者由铜、氢氧化铜、碱式碳酸铜、氧化铜与硝酸反应制得。

[0014] 前述的一种碱式硝酸铜的制备方法，其特征在于，上述 B 溶液为可溶性氢氧化物溶于水形成的。
前述的一种碱式硝酸铜的制备方法，其特征在于，上述 C 为柠檬酸或可溶性柠檬酸盐。

前述的一种碱式硝酸铜的制备方法，其特征在于，上述 Cu²⁺ 与柠檬酸根离子的摩尔比为 1 : 0.01 ~ 0.8。

前述的一种碱式硝酸铜的制备方法，其特征在于，上述 A 溶液的波美度为 5 ~ 55。

前述的一种碱式硝酸铜的制备方法，其特征在于，上述步骤 (4) 中的反应温度为 10℃ ~ 95℃。

前述的一种碱式硝酸铜的制备方法，其特征在于，上述 B 溶液中 OH⁻ 的质量浓度为 1% ~ 30%。

前述的一种碱式硝酸铜的制备方法，其特征在于，上述步骤 (4) 中的 pH 值为 6 ~ 8。

本发明的有益之处在于；利用廉价易得的原料，并且在反应过程中引入了催化剂从而提高生产效率；同时简化生产设备，缩减工艺流程，更加有利于工业化生产和操作，进而减低了碱式硝酸铜的生产成本。此外，本发明的方法制备出的碱式硝酸铜产品质量好且品质稳定。

附图说明
[0022] 图 1 是本发明的一种碱式硝酸铜的制备方法示意图。

具体实施方式
[0023] 以下结合附图和具体实施例对本发明作具体的介绍。
[0024] 参见图 1，本发明的一种碱式硝酸铜的制备方法包括以下几个步骤：
[0025] (1) 配制 A 溶液：在第一反应器中配制包含 Cu²⁺ 和 NO₃⁻ 的 A 溶液；
[0026] 具体来说，A 溶液可以由硝酸铜溶于水配制而成，也可以由铜、氢氧化铜、碱式碳酸铜、氧化铜等与硝酸反应制得。此处对 A 溶液的浓度没有特殊的要求，作为一种优选，A 溶液的波美度为 5 ~ 55。
[0027] (2) 配制 B 溶液：在第二反应器中配制包含 OH⁻ 的 B 溶液；
[0028] 一般情况下，B 溶液是由可溶性氢氧化物，如氢氧化钾、氢氧化钠溶于水配制而成的。作为一种优选，B 溶液中 OH⁻ 的质量浓度为 1% ~ 30%。作为进一步的优选，OH⁻ 的质量浓度为 10% ~ 20%。
[0029] (3) 引入催化剂：
[0030] 向 A 溶液或者 B 溶液中的至少一个中加入 C，C 溶于水或水溶液形成包含柠檬酸根离子 (C₆H₅O₃⁻) 的溶液；进行该步骤后，为了便于描述步骤 (1) 和步骤 (2) 中的 A 溶液和 B 溶液分别标记为 A’ 溶液和 B’ 溶液。
[0031] 从上面的描述中我们可以看出，在反应中起催化剂作用的是柠檬酸根离子 (C₆H₅O₃⁻)，可以加入 A 溶液或 B 溶液中，也可以同时加入 A 溶液和 B 溶液中。鉴于 C 溶于水或水溶液后应形成柠檬酸根离子，所以，C 为柠檬酸或可溶性柠檬酸盐，如柠檬酸钠、柠檬酸钾等。
[0032] 作为一种优选方案，Cu²⁺ 与柠檬酸根离子的摩尔比为 1 : 0.01 ~ 0.8。
（4）制备中间产物：
将A’溶液和B’溶液同时流入第三反应器中，在水相中进行反应，控制第三反应器中反应液的pH值为3～10，制得中间产物。
本发明中所指水相是指水或可溶性物质与水形成的溶液。
前面我们已经说过，柠檬酸根离子起催化作用，实际生产表明，在其他条件相同的情况下，使用催化剂后可以将反应时间缩短三分之一以上。具体反应过程是：首先与铜离子反应生成螯合物[Cu₄(C₆H₄O₇H₃)₄]^{2+}，然后在OH⁻作用下生成氢氧化铜，生成的氢氧化铜在C₆H₄O₇⁻作用下与溶液中的硝酸铜反应生成碱式硝酸铜沉淀。
具体的反应原理为：
\[Cu(NO_3)_2 + C_6H_4O_7^{2+} \rightarrow [Cu_4(C_6H_4O_7H_3)_4]^{2+} + HNO_3\]
\[[Cu_4(C_6H_4O_7H_3)_4]^{2+} + HNO_3 + OH^- \rightarrow Cu(OH)_2 + C_6H_4O_7NO_3\]
\[Cu(OH)_2 + Cu(NO_3)_2 + C_6H_4O_7^{2+} \rightarrow Cu(NO_3)_2 \cdot 3Cu(OH)_2\]
因此，本发明中所说的中间产物实际上是指由碱式硝酸铜沉淀与反应液（即其他可溶性物质的水溶液）组成的固液混合物。
该步骤是制备碱式硝酸铜的关键步骤，反应条件的控制对产品的质量、品质及稳定性有显著的影响。该步骤中反应温度没有严格的要求，最好控制在10℃～95℃。
作为进一步的优选，反应过程中，第三反应器中反应液的pH值为6～8。
本发明中对pH值的控制非常简便，只需要通过调整A’溶液和B’溶液的流量即可以控制第三反应器中反应液的pH值。具体来说，B’溶液中包含OH⁻，如果我们要控制反应液的pH值为6～8，一旦监测到反应液的pH值小于6，那么我们可以通过减小A’溶液或增大B’溶液的流量，使pH值增大；反之，则增大A’溶液或减小B’溶液的流量，使pH值减小。
为了有效监测pH值，可以通过pH试纸对反应液的pH值进行监测，当然，为了更加便于工业化生产，优选采用pH计对反应液进行连续的实时自动监测。
（5）转移中间产物：
将中间产物转移至第四反应器中，并且洗涤至洗涤液呈中性，然后进行初步除水处理，制得初步产物。
该步骤实际上是上一步制备出的中间产物进行初步加工的过程，这里所说的初步产物是已经进行过洗涤并经初步除水处理的碱式硝酸铜。所以，作为一种优选，第四反应器为沉淀器，不但可以在沉淀器中对中间产物进行洗涤，洗涤是否达到要求则以洗涤液的情况来判断，一般情况下，当洗涤液呈中性或者基本呈中性时，表示已经洗涤达标。则进行下一个工序——抽滤，对中间产物进行初步除水处理，制得初步产物。
（6）制备目标产物：
在第五反应器中对初步产物进行脱水处理，再将其转移至干燥处理中，在30℃～180℃下进行干燥处理，制得目标产物碱式硝酸铜。该步骤是为了对初步产物进行进一步处理，以制备出稳定性好的目标产物碱式硝酸铜。至于具体的脱水和干燥处理时间并没有严格的要求，根据具体工艺情况而定。
通过上述步骤，我们制得了碱式硝酸铜。但是，不同的工业领域对碱式硝酸铜往往有不同的要求，鉴于此，还可以对碱式硝酸铜进行粉碎或分筛，制得适用于不同的工业生产
的工业型盐式硝酸钠。当然，对于不同工业需求，粉末或分筛的具体工艺过程也是不尽相同的，此处不作赘述。

0052 实施例一：
0053 (1) 配制 A 溶液：在第一反应器中配制一定量的波美度为 5 的硝酸铜溶液，待用；
0054 (2) 配制 B 溶液：在第二反应器中配制一定量的 OH- 质量浓度为 1% 的氢氧化物溶液，待用；
0055 (3) 引入催化剂：向 A 溶液中加入柠檬酸，使摩尔比 Cu^{2+}：C_{6}H_{8}O_{7}^{3-} = 1：0.01；A 溶液和 B 溶液分别记作 A’溶液和 B’溶液；
0056 (4) 向 2000L 的第三反应器中加入 500L 水，水温为 10℃，然后使 A’溶液和 B’溶液同时，缓慢地流入第三反应器中，进行反应过程。反应过程中采用 pH 计实时地监测第三反应器中溶液的 pH 值并根据情况确定是否调整两种溶液的流量，使反应器中的 pH 值控制在 3 左右。连续反应一段时间后，关闭两种溶液，制得中间产物；
0057 (5) 转移中间产物：将中间产物转移至第四反应器中，并洗涤至洗涤液呈中性，然后进行初步除水处理，制得初步产物；
0058 (6) 制备目标产物：在第五反应器中对初步产物进行脱水处理，再将其转移至干燥处理器中，在 30℃进行干燥处理，制得目标产物碱式硝酸铜。

0059 实施例二：
0060 (1) 配制 A 溶液：在第一反应器中配制一定量的波美度为 10 的硝酸铜溶液，待用；
0061 (2) 配制 B 溶液：在第二反应器中配制一定量的 OH- 质量浓度为 10% 的氢氧化物溶液，待用；
0062 (3) 引入催化剂：向 A 溶液中加入柠檬酸钠，使摩尔比 Cu^{2+}：C_{6}H_{8}O_{7}^{3-} = 1：0.3；A 溶液和 B 溶液分别记作 A’溶液和 B’溶液；
0063 (4) 向 2000L 的第三反应器中加入 500L 水，水温为 40℃，然后使 A’溶液和 B’溶液同时，缓慢地流入第三反应器中，进行反应过程。反应过程中采用 pH 计实时地监测第三反应器中溶液的 pH 值并根据情况确定是否调整两种溶液的流量，使反应器中的 pH 值控制在 6 左右。连续反应一段时间后，关闭两种溶液，制得中间产物；
0064 (5) 转移中间产物：将中间产物转移至第四反应器中，并洗涤至洗涤液呈中性，然后进行初步除水处理，制得初步产物；
0065 (6) 制备目标产物：在第五反应器中对初步产物进行脱水处理，再将其转移至干燥处理器中，在 80℃下进行干燥处理，制得目标产物碱式硝酸铜。

0066 实施例三：
0067 (1) 配制 A 溶液：在第一反应器中配制一定量的波美度为 20 的硝酸铜溶液，待用；
0068 (2) 配制 B 溶液：在第二反应器中配制一定量的 OH- 质量浓度为 20% 的氢氧化物溶液，待用；
0069 (3) 引入催化剂：向 B 溶液中加入柠檬酸，使摩尔比 Cu^{2+}：C_{6}H_{8}O_{7}^{3-} = 1：0.6；A 溶液和 B 溶液分别记作 A’溶液和 B’溶液；
0070 (4) 向 2000L 的第三反应器中加入 500L 水，水温为 70℃，然后使 A’溶液和 B’溶液同时，缓慢地流入第三反应器中，进行反应过程。反应过程中采用 pH 计实时地监测第三反应器中溶液的 pH 值并根据情况确定是否调整两种溶液的流量，使反应器中的 pH 值控制
在 8 左右。连续反应一段时间后，关闭两种溶液，制得中间产物；
【0071】（5）转移中间产物，将中间产物转移至第四反应器中，并洗涤至洗涤液呈中性。然后进行初步除水处理，制得初步产物；
【0072】（6）制备目标产物：在第五反应器中对初步产物进行脱水处理，再将其转移至干燥容器中，在 100℃下进行干燥处理，制得目标产物碱式硝酸铜。
【0073】实施例四：
【0074】（1）配制 A 溶液：在第一反应器中配制一定量的波美度为 55 的硝酸铜溶液，待用；
【0075】（2）配制 B 溶液：在第二反应器中配制一定量的 OH 质量浓度为 30%的氢氧化物溶液，待用；
【0076】（3）引入催化剂：向 A 溶液中加入柠檬酸钾，使摩尔比 Cu^{2+} : C_{6}H_{5}OH_{2}^{3-} = 1 : 0.8；
A 溶液和 B 溶液分别记作 A' 溶液和 B' 溶液；
【0077】（4）向 2000 L 的第三反应器中加入 500 L 水，水温为 95℃，然后使 A' 溶液和 B' 溶液同时、缓慢地流入第三反应器中，进行反应过程。反应过程中采用 pH 计实时地监测第三反应器中溶液的 pH 值，并根据情况确定是否调整两种溶液的流量，使反应器中的 pH 值控制在 10 左右。连续反应一段时间后，关闭两种溶液，制得中间产物；
【0078】（5）转移中间产物，将中间产物转移至第四反应器中，并洗涤至洗涤液呈中性，然后进行初步除水处理，制得初步产物；
【0079】（6）制备目标产物：在第五反应器中对初步产物进行脱水处理，再将其转移至干燥容器中，在 180℃进行干燥处理，制得目标产物碱式硝酸铜。
【0080】我们对以上四个实施例制备出的样品进行了热分析（TGA），记录其热分解开始和结束的温度，具体数值见表 1：
【0081】

<table>
<thead>
<tr>
<th>样品</th>
<th>热分解开始温度（℃）</th>
<th>热分解结束温度（℃）</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 1</td>
<td>218.24</td>
<td>240.58</td>
</tr>
<tr>
<td>实施例 2</td>
<td>220.61</td>
<td>245.32</td>
</tr>
<tr>
<td>实施例 3</td>
<td>223.27</td>
<td>249.51</td>
</tr>
<tr>
<td>实施例 4</td>
<td>221.09</td>
<td>238.69</td>
</tr>
</tbody>
</table>

【0082】表 1
【0083】在热分解过程中，生成了黑色的物质，即氧化铜 (CuO)，这符合碱式硝酸铜分解的化学方程式：
【0084】Cu(NO_{2})_{2} \cdot 3Cu(OH)_{2} \rightarrow 4CuO + 3H_{2}O + 2N_{2} + O_{2}
【0085】同时，我们知道，氢氧化铜的分解温度为 60℃～80℃，硝酸铜的分解温度为 170℃左右，所以，本发明的产物绝不是氢氧化铜和硝酸铜的简单混合物，进一步佐证了该方法制备出的产品为分解温度高、稳定性好的碱式硝酸铜。
【0086】上述实施例不以任何形式限制本发明，凡采用等同替换或等效变换的方式所获得的技术方案，均落在本发明的保护范围内。
图 1

(1) 配制A溶液

(2) 配制B溶液

(3) 引入催化剂

(4) 制备中间产物

(5) 转移中间产物

(6) 制备目标产物