大直径钢管简易弯管装置

摘要

本发明公开了一种大直径钢管简易弯管装置，包括：用于向待弯钢管提供弯曲力的牵引装置、弯管装置主体和用于连接所述待弯钢管和所述牵引装置的固定卡具，所述固定卡具的一端为锥形圆钢，所述固定卡具的另一端通过牵引绳与所述牵引装置连接，所述弯管装置主体包括由支撑连接杆固定连接的两侧支座板，两个固定滚轮和一个可调滚轮；所述固定滚轮和所述可调滚轮通过转动轴与所述支座板连接，所述固定滚轮和所述可调滚轮与所述转动轴通过轴承连接。本发明采用上述结构的大直径钢管简易弯管装置，能够降低施工成本，方便工人施工。
1. 一种大直径钢管简易弯管装置，其特征在于，包括：用于向待弯钢管提供弯曲力的牵引装置、弯管装置主体和用于连接所述待弯钢管和所述牵引装置的固定卡具，所述固定卡具的一端为锥形圆钢，所述固定卡具的另一端通过牵引绳与所述牵引装置连接，所述弯管装置主体包括由支座连接杆固定连接的两侧支座板、两个固定滚轮和一个可调滚轮，所述固定滚轮和所述可调滚轮通过螺纹轴与所述支座板连接，所述固定滚轮和所述可调滚轮与所述螺纹轴通过轴承连接。

2. 根据权利要求1所述的大直径钢管简易弯管装置，其特征在于：所述弯管装置主体上设有滑动轨道，所述可调滚轮通过调节丝杠和丝杠螺母固定于所述滑动轨道上。

3. 根据权利要求2所述的大直径钢管简易弯管装置，其特征在于：所述固定滚轮和所述可调滚轮上设有与所述待弯钢管相适应的圆弧形槽。

4. 根据权利要求3所述的大直径钢管简易弯管装置，其特征在于：所述可调滚轮的轮心位于所述两个固定滚轮的轮心连线的垂直平分线上。

5. 根据权利要求4所述的大直径钢管简易弯管装置，其特征在于：所述可调滚轮和所述固定滚轮的直径相同。

6. 根据权利要求5所述的大直径钢管简易弯管装置，其特征在于：所述两个固定滚轮的轮心间距不小于所述固定滚轮直径的2倍。

7. 根据权利要求6所述的大直径钢管简易弯管装置，其特征在于：所述固定卡具上设有透孔，所述牵引绳一端固定于所述透孔内，另一端固定于所述牵引装置上。

8. 根据权利要求7所述的大直径钢管简易弯管装置，其特征在于：所述牵引绳与所述待弯钢管的牵引角度介于5度和30度之间。

9. 根据权利要求8所述的大直径钢管简易弯管装置，其特征在于：所述牵引绳为钢丝绳。

10. 根据权利要求9所述的大直径钢管简易弯管装置，其特征在于：所述牵引装置为卷扬机。
说明书

大直径钢管简易弯管装置

技术领域
[0001] 本发明涉及一种施工用钢管加工工具，尤其是涉及一种大直径钢管简易弯管装置。

背景技术
[0002] 在机场、体育场馆及会展中心等建筑中，多采用圆弧形钢管桁架结构，需要将大直径钢管弯曲成一定的弧形，但成品的弯管机体积大，不便于运输至施工现场，且价格昂贵，既不方便施工，又增加了施工成本。

发明内容
[0003] 本发明的目的是提供一种大直径钢管简易弯管装置，能够降低施工成本，方便工人施工。
[0004] 为实现上述目的，本发明提供了一种大直径钢管简易弯管装置，包括用于向待弯钢管提供弯曲力的牵引装置、弯管装置主体和用于连接所述待弯钢管和所述牵引装置的固定卡具，所述固定卡具的一端为锥形圆管，所述固定卡具的另一端通过牵引绳与所述牵引装置连接，所述弯管装置主体包括由支撑连接杆固定连接的两侧支板，两个固定辊轮和一个可调辊轮，所述固定辊轮和所述可调辊轮通过转动轴与所述支撑板连接，所述固定辊轮和所述可调辊轮与所述转动轴通过轴承连接。
[0005] 优选的，所述弯管装置主体上设有滑动轨道，所述可调辊轮通过调节丝杠和丝杠螺母固定于所述滑动轨道上。
[0006] 优选的，所述固定辊轮和所述可调辊轮上设有与所述待弯钢管相适应的圆弧形沟槽。
[0007] 优选的，所述可调辊轮的轮心位于所述两个固定辊轮的轮心连线的垂直平分线上。
[0008] 优选的，所述可调辊轮和所述固定辊轮的直径相同。
[0009] 优选的，所述两个固定辊轮的轮心间距不小于所述固定辊轮直径的2倍。
[0010] 优选的，所述固定卡具上设有透孔，所述牵引绳一端固定于所述透孔内，另一端固定于所述牵引装置上。
[0011] 优选的，所述牵引绳与所述待弯钢管的牵引角度介于5度和30度之间。
[0012] 优选的，所述牵引绳为钢丝绳。
[0013] 优选的，所述牵引装置为卷扬机。
[0014] 因此，本发明采用上述结构的大直径钢管简易弯管装置，能够降低施工成本，方便工人施工。
[0015] 下面通过附图和实施例，对本发明的技术方案做进一步的详细描述。

附图说明
具体实施方式

图 1 为本发明大直径钢管简易弯管装置实施例的结构示意图；图 2 为本发明大直径钢管简易弯管装置实施例的俯视结构示意图；图 3 为本发明大直径钢管简易弯管装置实施例的侧视结构示意图；图 4 为本发明大直径钢管简易弯管装置实施例中所述固定卡具的结构示意图。

实施例

图 1 为本发明大直径钢管简易弯管装置实施例的结构示意图，如图 1 所示，包括：用于向待弯钢管 1 提供弯曲力的牵引装置 2，弯管装置主体 3 和用于连接待弯钢管 1 和牵引装置 2 的固定卡具 4，固定卡具 4 的一端为锥形圆钢，在弯管过程中，其插入待弯钢管 1 内部，与待弯钢管 1 固定连接。图 4 为本发明大直径钢管简易弯管装置实施例中固定卡具 4 的结构示意图，锥形圆钢的角度介于 30 度到 50 度之间。图 1 中固定卡具 4 的另一端通过牵引绳 5 与牵引装置 2 连接。图 2 为本发明大直径钢管简易弯管装置实施例的俯视结构示意图，图 3 为本发明大直径钢管简易弯管装置实施例的侧视结构示意图，如图 2 和图 3 所示，弯管装置主体 3 包括由支座连接杆 39 固定连接的两侧支座板 41、两个固定搅轴 32 和一个可调搅轴 33，固定搅轴 32 和可调搅轴 33 通过转动轴 34 与支座板 31 连接，固定搅轴 32 和可调搅轴 33 与转动轴 34 通过轴承连接，这样使得固定搅轴 32 和可调搅轴 33 在牵引绳 5 的作用下随着待弯钢管 1 的移动而绕转动轴转动。弯管装置主体 3 上设有滑动轨道 35，可调搅轴 33 通过调节丝杠 36 和丝杠螺母 37 固定于滑动轨道 35 上，可通过丝杠 36 调整可调搅轴 33 与固定搅轴 32 的中心距。在弯管过程中，通过调整调节丝杠 36 和丝杠螺母 37 来调节可调搅轴 33 与两个固定搅轴的相对位置，从而形成对待弯钢管 1 的压力。固定搅轴 32 和可调搅轴 33 上设有沟槽 38，沟槽 38 为与待弯钢管相适应的圆弧形沟槽，使得待弯钢管 1 的外表面在移动过程中始终与沟槽 38 贴合。这样由于在待弯钢管 1 的移动过程中，始终存在着固定搅轴 32 和可调搅轴 33 对待弯钢管 1 的压力，从而使待弯钢管 1 在弯管过程结束后形成一定的弧度，满足现场施工的需要。并且，由于待弯钢管 1 在移动过程中，固定搅轴 32 和可调搅轴 33 始终随着待弯钢管 1 一起转动，因此避免了在待弯钢管表面形成划痕，提高了待弯钢管弯曲后表面的美观度，而且也避免了死弯现象的出现。

本实施例中可调搅轴 33 的轮心位于两个固定搅轴轮心连线的垂直平分线上，可调搅轴和固定搅轴的直径选用相同情况，两个固定搅轴的轮心间距不小于固定搅轴直径的 2 倍，上述措施，经过实验证明，有效提高了弯管操作的工作效率，大多数钢管经过一到两次弯管操作即可达到施工要求。

本实施例中固定卡具 4 上设有透孔 41，牵引绳 5 一端固定于透孔 41 内，另一端固定于牵引装置 2 上。本实施例的弯管过程中，牵引绳 5 与所述待弯钢管的牵引角度介于 5 度和 30 度之间，上述角度的控制在实际施工过程中发现，能够有效的避免弯管死弯现象的出现。

本实施例中，牵引绳 5 选用钢丝绳，牵引装置选用卷扬机。

因此，本发明采用上述结构的大直径钢管简易弯管装置，达到了对大直径钢管进行弯曲的目的，价格便宜，施工方便，完全可以满足对大直径钢管进行弯曲的需要，降低了施工成本，方便了工人施工。
最后应说明的是:以上实施例仅用以说明本发明的技术方案而非对其进行限制，尽管参照较佳实施例对本发明进行了详细的说明，本领域的普通技术人员应当理解：其依然可以对本发明的技术方案进行修改或者等同替换，而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明技术方案的精神和范围。