"R ‘ Paent.und Markenan NN Ol r

(19DE 11 2011 101 469 T5 2013.03.14

(12) Veroffentlichung

der internationalen Anmeldung mit der (51) Int Cl.: F 9/4 201 1
(87) Veroffentlichungs-Nr.: WO 2011/134689 GOG6F 9/ 5(013.0)

in deutscher Ubersetzung (Art. Il § 8 Abs. 2 IntPatUG)
(21) Deutsches Aktenzeichen: 11 2011 101 469.4
(86) PCT-Aktenzeichen: PCT/EP2011/052105
(86) PCT-Anmeldetag: 14.02.2011
(87) PCT-Veroffentlichungstag: 03.11.2011
(43) Veroffentlichungstag der PCT Anmeldung
in deutscher Ubersetzung: 14.03.2013

(30) Unionsprioritat: (72) Erfinder:
12/770,353 29.04.2010 US Rattermann, Joseph, Rochester, Minn., US;
Archer, Charles Jens, Rochester, Minn., US;
(71) Anmelder: Smith, Brian Edward, Rochester, Minn., US;
International Business Machines Corp., Armonk, Blocksome, Michael Alan, Rochester, Minn., US
N.Y,, US
(74) Vertreter:
RICHARDT PATENTANWALTE GbR, 65185,
Wiesbaden, DE

(54) Bezeichnung: Kompilieren von Software fiir ein hierarchisches verteiltes Verarbeitungssystem

Kennzeichren des einen oder der mehreren Kompilierungsknoten
802

Y

Bereitstellen von zu kompilierender Software fiir einen oder
mehrere Kompilierungsknoten, wobei mindestens ein Teil
der zu kompilierenden Software von einem oder mehreren
anderen Knoten ausgefiihrt werden soll

804
Y
(57) Zusammenfassung: Kompilieren von Software fir ein Kompilieren der Software durch den Kompilierungsknoten
hierarchisches verteiltes Verarbeitungssystem, wobei das 806
Kompilieren das Bereitstellen von zu kompilierender Soft-
ware fiir einen oder mehrere Kompilierungsknoten, wobei v

mindestens ein Teil der zu kompilierenden Software von

einem oder mehreren anderen Knoten ausgefiihrt werden V?{‘g’,ﬂéﬁ?eﬂgmg{gﬁﬁi’sggmﬁ"j,;ﬁei“;jfm

soll; das Kompilieren der Software durch den Kompilierungs- - durch den Korgggerungsknoten

knoten; das Verwalten von kompilierter Software, die auf -

dem Kompilierungsknoten ausgefiihrt werden soll, durch *

den Kompilierungsknoten; das Auswéhlen von einem oder Auswahlen von einem oder mehreren Knoten in einer nachsten
H i 2 H i Ebene der Hierarchie des verteilten Verarbeitungssystems

mehreren Knoten in einer nachsten Ebene der Hierarchie durch den Kompiierungsknoten in Abhénigkeit davor,

des verteilten Verarbeitungssystems durch den Kompilie- ob kompilierte Software fir den ausgewdhiten Knoten oder

rungsknoten in Abhangigkeit davon, ob kompilierte Software

fiir die Nachkommen des ausgewahiten Knotens bestimmt ist
810

flr den ausgewahlten Knoten oder fiir die Nachkommen des
ausgewahlten Knotens bestimmt ist; und das Senden von v
nur der kompilierten Software, die von dem ausgewahlten Senden von nur der komplierten Software, die von dem
Knoten oder von dem Nachkommen des ausgewahlten Kno- ausgewahiten Knoten oder den Nachkommen des
. o ausgewahiten Knotens ausgefiihrt werden soll,
tens ausgeflihrt werden soll, an den ausgewahlten Knoten, an den ausgewahiten Knoten
812

beinhaltet.

DE 11 2011 101469 TS5 2013.03.14

Beschreibung
DER ERFINDUNG ZUGRUNDE LIEGENDER ALLGEMEINER STAND DER TECHNIK
Bereich der Erfindung

[0001] Der Bereich der Erfindung ist die Datenverarbeitung oder, genauer gesagt, Verfahren, Vorrichtungen
und Produkte, um Software fir ein hierarchisches verteiltes Verarbeitungssystem zu kompilieren.

Beschreibung der verwandten Technik

[0002] Die Entwicklung des EDVAC-Systems (EDVAC steht fiir Electronic Discrete Variable Automatic Com-
puter) von 1948 wird oft als der Beginn der Computer-Ara bezeichnet. Seit dieser Zeit haben sich Computer-
systeme zu dulRerst komplizierten Einheiten entwickelt. Die heutigen Computer sind den ersten Systemen wie
zum Beispiel dem EDVAC deutlich tberlegen. Computersysteme enthalten Ublicherweise eine Kombination
aus Hardware- und Software-Komponenten, Anwendungsprogramme, Betriebssysteme, Prozessoren, Busse,
Speicher, Eingabe/Ausgabe-Einheiten und so weiter. Da Fortschritte in der Halbleiter-Verarbeitung und bei
den Computerarchitekturen die Leistungsfahigkeit des Computers immer weiter steigern, ist eine fur hohere
Anspriiche ausgelegte Computer-Software entstanden, die die héhere Leistungsfahigkeit der Hardware vor-
teilhaft nutzt, so dass wir heute Uber Computersysteme verfiigen, die weitaus leistungsstarker sind als noch
vor ein paar Jahren.

[0003] Die verteilte Datenverarbeitung ist ein Bereich der Computertechnologie, in dem Fortschritte gemacht
wurden. Die verteilte Datenverarbeitung bezieht sich im Allgemeinen auf eine Datenverarbeitung mit mehreren
halbautonomen Computersystemen, die Uber ein Datenubertragungsnetzwerk Daten austauschen. Die halb-
autonomen Computersysteme treten miteinander in Dialogverkehr, um ein gemeinsames Ziel zu erreichen.
Ein Computerprogramm oder eine Computeranwendung, die in einem verteilten Datenverarbeitungssystem
ausgeflihrt wird, kann als ein verteiltes Programm bezeichnet werden. Die verteilte Datenverarbeitung kann
sich auch auf die Verwendung von verteilten Datenverarbeitungssystemen zur Lésung von Berechnungspro-
blemen beziehen. Bei der verteilten Datenverarbeitung kann ein Problem in viele Aufgaben (Tasks) unterteilt
werden, von denen jede von einem der halbautonomen Computersysteme geldst werden kann.

[0004] Manche verteilte Datenverarbeitungssysteme werden zur Durchfiihrung einer parallelen Datenverar-
beitung optimiert. Unter der parallelen Datenverarbeitung versteht man die gleichzeitige Ausflihrung derselben
Task (aufgeteilt und speziell angepasst) auf mehreren Prozessoren, damit man Ergebnisse schneller erhalt.
Die parallele Datenverarbeitung beruht darauf, dass der Prozess des Ldsens eines Problems gewdhnlich in
kleinere Tasks aufgeteilt werden kann, die gleichzeitig koordiniert ausgefuhrt werden kénnen.

[0005] Parallele Computer fihren parallele Algorithmen aus. Ein paralleler Algorithmus kann aufgeteilt wer-
den, damit er auf vielen verschiedenen Verarbeitungseinheiten jeweils in Teilen ausgefiihrt werden kann, und
anschlieBend kann er am Ende wieder zusammengesetzt werden, damit man ein Datenverarbeitungsergebnis
erhalt. Manche Algorithmen kénnen problemlos in Teile gegliedert werden. Die Aufteilung der Aufgabe, alle
Zahlen von eins bis einhunderttausend zu priifen, um festzustellen, welches Primzahlen sind, kénnte beispiels-
weise durchgefiihrt werden, indem man jedem vorhandenen Prozessor eine Teilmenge der Zahlen zuweist
und die Liste der positiven Ergebnisse dann wieder zusammensetzt. In dieser Beschreibung werden die meh-
reren Verarbeitungseinheiten, die die einzelnen Teile eines parallelen Programms ausfiihren, als "Computer-
knoten” bezeichnet. Ein paralleler Computer besteht sowohl aus Computerknoten als auch aus anderen Verar-
beitungsknoten, zu denen beispielsweise auch Eingabe/Ausgabe-(E/A-)Knoten und Service-Knoten gehdren.

[0006] Parallele Algorithmen sind wertvoll, da sich bestimmte Arten von gro3en Rechenaufgaben aufgrund
der Funktionsweise moderner Prozessoren mittels eines parallelen Algorithmus schneller durchflihren lassen
als mittels eines seriellen (nichtparallelen) Algorithmus. Es ist weitaus schwieriger, einen Computer mit einem
einzigen schnellen Prozessor als einen mit vielen langsamen Prozessoren und dem gleichen Durchsatz zu
bauen. Es gibt auch bestimmte theoretische Grenzen fir die mégliche Geschwindigkeit von seriellen Prozes-
soren. Andererseits hat jeder parallele Algorithmus einen seriellen Teil, und folglich haben parallele Algorith-
men einen Séattigungspunkt. Nach diesem Punkt erzielt man mit dem Hinzufligen weiterer Prozessoren keinen
héheren Durchsatz, man erhéht lediglich den Verarbeitungsaufwand und die Kosten.

[0007] Parallele Algorithmen sind auch so ausgelegt, dass sie eine mehrere Ressourcen die Datenlbertra-
gungsanforderungen unter den Knoten eines parallelen Computers optimieren. Es gibt zwei Arten, in der par-

2/36

DE 11 2011 101469 TS5 2013.03.14

allele Prozessoren kommunizieren, der gemeinsam genutzte Speicher oder den Nachrichtenaustausch. Die
Verarbeitung mit gemeinsam genutztem Speicher erfordert ein zuséatzliches Sperren der Daten, ist mit einem
Mehraufwand in Form von zusatzlichen Prozessor- und Buszyklen verbunden und serialisiert dartiber hinaus
einen Teil des Algorithmus.

[0008] Bei der Verarbeitung des Nachrichtenaustausch werden Datenibertragungsnetzwerke hoher Ge-
schwindigkeit und Nachrichten-Pufferspeicher verwendet, doch ist der Transportaufwand fir die Datenibertra-
gungsnetzwerke bei dieser Ubertragung héher, fiir die Nachrichten-Pufferspeicher entsteht zusatzlicher Spei-
cherbedarf und bei den Datenulbertragungen zwischen den Knoten ist die Latenzzeit gréRer. Beim Entwurf
von parallelen Computern werden speziell konzipierte Datenlibertragungs-Verbindungsleitungen verwendet,
so dass der zusatzliche Ubertragungsaufwand gering ist, doch ist es der parallele Algorithmus, der iiber das
Volumen des Datenverkehrs entscheidet.

[0009] Viele Architekturen von Datenlbertragungsnetzwerken werden zum Nachrichtenaustausch zwischen
Knoten in parallelen Computern verwendet. Computerknoten kénnen in einem Netzwerk beispielsweise als
"Torus” oder als "Masche” aufgebaut sein. Auch kdnnen Computerknoten in einem Netzwerk als ein Baum
aufgebaut sein. Ein Torus-Netzwerk verbindet die Knoten in einer dreidimensionalen Masche mit Wrap-around-
Verbindungsleitungen. Jeder Knoten ist mit seinen sechs Nachbarn lber dieses Torus-Netzwerk verbunden,
und jeder Knoten wird von seiner x-, y-, z-Koordinate in der Masche adressiert. Auf diese Weise eignet sich ein
Torus-Netzwerk flr Punkt-zu-Punkt-Operationen. In einem Baumnetzwerk werden die Knoten Ublicherweise
zu einem Binarbaum verbunden: Jeder Knoten hat einen Elternknoten und zwei Kindknoten (obgleich manche
Knoten in Abhangigkeit von der Hardware-Konfiguration gar keine Kinder oder nur ein Kind haben durfen).
Zwar ist ein Baumnetzwerk bei der Punkt-zu-Punkt-Ubertragung gewdhnlich wenig leistungsfahig, doch bietet
es eine hohe Bandbreite und eine geringe Latenzzeit bei bestimmten kollektiven Operationen, Nachrichtenaus-
tausch-Operationen, an denen alle Computerknoten gleichzeitig teilnehmen wie zum Beispiel eine Allgather-
Operation. Bei Computern, die ein Torus- und ein Baumnetzwerk verwenden, werden die beiden Netzwerke
Ublicherweise unabhangig voneinander realisiert, mit getrennten Weiterleitungsschaltungen, getrennten phy-
sischen Verbindungsleitungen und getrennten Nachrichten-Pufferspeichen.

KURZDARSTELLUNG DER ERFINDUNG

[0010] Verfahren, Vorrichtungen und Produkte zum Kompilieren von Software fir ein hierarchisches verteiltes
Verarbeitungssystem einschlielich der Bereitstellung von zu kompilierender Software fir einen oder mehrere
Kompilierungsknoten, wobei mindestens ein Teil der zu kompilierenden Software von einem oder mehreren
anderen Knoten ausgefihrt werden soll; Kompilieren der Software durch den Kompilierungsknoten; Verwalten
von kompilierter Software, die auf dem Kompilierungsknoten ausgefiihrt werden soll, durch den Kompilierungs-
knoten; Auswahlen von einem oder mehreren Knoten in einer ndchsten Ebene der Hierarchie des verteilten
Verarbeitungssystems durch den Kompilierungsknoten in Abh&ngigkeit davon, ob kompilierte Software fur den
ausgewahlten Knoten oder fir die Nachkommen des ausgewahlten Knotens bestimmt ist; Senden von nur
der kompilierten Software, die von dem ausgewahlten Knoten oder von dem Nachkommen des ausgewahlten
Knotens ausgefihrt werden soll, an den ausgewahlten Knoten; Empfangen von kompilierter Software durch
einen ausgewahlten Knoten; Feststellen, ob die kompilierte Software fir den ausgewahlten Knoten oder fiir
einen seiner Nachkommen bestimmt ist; wenn die kompilierte Software flr den ausgewahlten Knoten bestimmt
ist, Verwalten der Software durch den ausgewahlten Knoten zur Ausfuihrung; und wenn die kompilierte Soft-
ware fir einen der Nachkommen bestimmt ist, Auswahlen eines anderen Knotens in einer nédchsten Ebene des
hierarchischen verteilten Verarbeitungssystems in Abhéngigkeit von einem Nachkommen fiur die kompilierte
Software und Senden der kompilierten Software an den ausgewahlten anderen Knoten.

[0011] Die vorstehenden und andere Aufgaben, Merkmale und Vorteile der Erfindung gehen aus den folgen-
den ausfuhrlicheren Beschreibungen von beispielhaften Ausflihrungsformen der Erfindung, die in den beige-
fugten Zeichnungen veranschaulicht sind, hervor, in denen gleiche Bezugszahlen im Allgemeinen gleiche Teile
von beispielhaften Ausfihrungsformen der Erfindung darstellen.

KURZE BESCHREIBUNG DER ZEICHNUNGEN

[0012] Fig. 1 zeigt ein beispielhaftes verteiltes Datenverarbeitungssystem, um Software fiir ein hierarchisches
verteiltes Verarbeitungssystem gemaf Ausfihrungsformen der vorliegenden Erfindung zu kompilieren.

3/36

DE 11 2011 101469 TS5 2013.03.14

[0013] Fig. 2 zeigt ein Blockschaltbild eines beispielhaften Computerknotens, der in einem parallelen Com-
puter von Nutzen ist, welcher Software fir ein hierarchisches verteiltes Verarbeitungssystem gemaf Ausfih-
rungsformen der vorliegenden Erfindung kompilieren kann.

[0014] Fig. 3A zeigt einen beispielhaften Punkt-zu-Punkt-Adapter, der in Systemen von Nutzen ist, die Soft-
ware flr ein hierarchisches verteiltes Verarbeitungssystem gemaf Ausfihrungsformen der vorliegenden Er-
findung kompilieren kénnen.

[0015] Fig. 3B zeigt einen beispielhaften Punkt-zu-Punkt-Adapter, der in Systemen von Nutzen ist, die Soft-
ware flr ein hierarchisches verteiltes Verarbeitungssystem gemaf Ausfiihrungsformen der vorliegenden Er-
findung kompilieren kénnen.

[0016] Fig. 4 zeigt eine Zeichnung mit Linien, die ein beispielhaftes Datenlbertragungsnetzwerk darstellt, das
flr Punkt-zu-Punkt-Operationen optimiert ist, welche in Systemen von Nutzen sind, die Software fiir ein hierar-
chisches verteiltes Verarbeitungssystem gemaf Ausfiihrungsformen der vorliegenden Erfindung kompilieren
kénnen.

[0017] Fig. 5 zeigt eine Zeichnung mit Linien, die ein beispielhaftes Datenlibertragungsnetzwerk darstellt, das
fur kollektive Operationen optimiert ist, welche in Systemen von Nutzen sind, die Software flr ein hierarchisches
verteiltes Verarbeitungssystem gemaf Ausfihrungsformen der vorliegenden Erfindung kompilieren kénnen.

[0018] Fig. 6 zeigt ein weiteres beispielhaftes verteiltes Datenverarbeitungssystem zum Kompilieren von Soft-
ware flr ein hierarchisches verteiltes Verarbeitungssystem gemaf Ausfiihrungsformen der vorliegenden Er-
findung, in dem das verteilte Datenverarbeitungssystem als eine hybride Datenverarbeitungsumgebung aus-
geflhrt ist.

[0019] Fig. 7 zeigt ein beispielhaftes Verfahren zum Kompilieren von Software fiir ein hierarchisches verteiltes
Verarbeitungssystem gemaf Ausfiihrungsformen der vorliegenden Erfindung.

[0020] Fig. 8 zeigt einen Ablaufplan, der ein weiteres beispielhaftes Verfahren zum Kompilieren von Software
fur ein hierarchisches verteiltes Verarbeitungssystem gemaf Ausfiihrungsformen der vorliegenden Erfindung
veranschaulicht.

[0021] Fig. 9 zeigt ein Schaubild eines beispielhaften Anwendungsfalls eines Systems zum Kompilieren von
Software fiir ein hierarchisches verteiltes Verarbeitungssystem gemaf Ausfiihrungsformen der vorliegenden
Erfindung.

AUSFUHRLICHE BESCHREIBUNG VON BEISPIELHAFTEN AUSFUHRUNGSFORMEN

[0022] Beispielhafte Verfahren, Vorrichtungen und Produkte zum Kompilieren von Software fiir ein hierarchi-
sches verteiltes Verarbeitungssystem gemaf Ausflihrungsformen der vorliegenden Erfindung werden mit Be-
zug auf die beigefligten Zeichnungen beschrieben, wobei mit Fig. 1 begonnen wird. Fig. 1 zeigt ein beispielhaf-
tes verteiltes Datenverarbeitungssystem, um Software fiir ein hierarchisches verteiltes Verarbeitungssystem
gemal Ausfiihrungsformen der vorliegenden Erfindung zu kompilieren. Das System von Fig. 1 enthalt einen
parallelen Computer (100), einen nichtfliichtigen Speicher fir den Computer in Form der Datenspeichereinheit
(118), eine Ausgabeeinheit fir den Computer in Form des Druckers (120) und eine Eingabe/Ausgabe-Einheit
fir den Computer in Form des Computerendgerats (122). Der parallele Computer (100) in dem Beispiel von
Fig. 1 enthalt eine Vielzahl von Computerknoten (102).

[0023] Die Computerknoten (102) sind fiir Datenilibertragungen Uber mehrere unabhangige Datenlibertra-
gungsnetzwerke verbunden, darunter ein Netzwerk vom Typ ”Joint Test Action Group” (JTAG) (104), ein glo-
bales Kombinationsnetzwerk (106), das fiir kollektive Operationen optimiert ist, und ein Torus-Netzwerk (108),
das fir Punkt-zu-Punkt-Operationen optimiert ist. Das globale Kombinationsnetzwerk (106) ist ein Datenlber-
tragungsnetzwerk, das Datenlibertragungs-Verbindungsleitungen enthalt, die mit den Computerknoten ver-
bunden sind, um die Computerknoten als einen Baum aufzubauen. Jedes Datenlbertragungsnetzwerk ist mit
Datenibertragungs-Verbindungsleitungen zwischen den Computerknoten (102) realisiert. Die Datenlbertra-
gungs-Verbindungsleitungen ermdéglichen Datenlbertragungen fiir parallele Operationen zwischen den Com-
puterknoten des parallelen Computers. Die Verbindungsleitungen zwischen den Computerknoten sind bidi-
rektionale Verbindungsleitungen, die Ublicherweise mit zwei getrennten gerichteten Dateniibertragungspfaden
realisiert werden.

4/36

DE 11 2011 101469 TS5 2013.03.14

[0024] Uberdies sind die Computerknoten (102) des parallelen Computers in mindestens eine operative Grup-
pe (132) von Computerknoten fiir kollektive parallele Operationen auf dem parallelen Computer (100) geglie-
dert. Bei einer operativen Gruppe von Computerknoten handelt es sich um den Satz von Computerknoten,
auf dem eine kollektive parallele Operation ausgefihrt wird. Kollektive Operationen werden mit Datentbertra-
gungen zwischen den Computerknoten einer operativen Gruppe durchgefihrt. Kollektive Operationen sind
diejenigen Funktionen, an denen alle Computerknoten einer operativen Gruppe beteiligt sind. Eine kollektive
Operation ist eine Operation, ein Befehl eines Computerprogramms zum Nachrichtenaustausch, der von allen
Computerknoten in einer operativen Gruppe von Computerknoten gleichzeitig, das heiflt, zu ungefahr dem
gleichen Zeitpunkt, ausgefiihrt wird. Eine solche operative Gruppe kann alle Computerknoten in einem paral-
lelen Computer (100) oder eine Teilmenge aller Computerknoten beinhalten. Kollektive Operationen werden
oft um Punkt-zu-Punkt-Operationen aufgebaut. Eine kollektive Operation setzt voraus, dass alle Prozesse auf
allen Computerknoten in einer operativen Gruppe dieselbe kollektive Operation mit Ubereinstimmenden Ar-
gumenten aufrufen. Eine ,Rundsendung” (broadcast) ist ein Beispiel fiir eine kollektive Operation, um Daten
zwischen Computerknoten einer operativen Gruppe zu Ubertragen. Eine ,Reduktions”-(Reduce-)Operation ist
ein Beispiel fur eine kollektive Operation, die arithmetische oder logische Funktionen an Daten ausfuhrt, die
zwischen den Computerknoten einer operativen Gruppe verteilt sind. Eine operative Gruppe kann zum Beispiel
als ein MPI-"Kommunikator” realisiert sein.

[0025] "MPI” bezieht sich auf die "Message Passing Interface”, eine Bibliothek fiir parallele Ubertragungen
nach dem Stand der Technik, ein Modul mit Computerprogrammbefehlen fir Datentbertragungen auf paral-
lelen Computern. Zu Beispielen fiir Bibliotheken fiir parallele Ubertragungen nach dem Stand der Technik,
die zur Verwendung mit Systemen gemaf Ausfihrungsformen der vorliegenden Erfindung verbessert werden
kdénnen, gehéren MPI und die Bibliothek "Parallel Virtual Machine” (PVM). PVM wurde von der University of
Tennessee, The Oak Ridge National Laboratory und der Emory University entwickelt. MPI wird vom MPI-Forum
verbreitet, einer offenen Gruppe mit Reprasentanten aus vielen Unternehmen und Organisationen, die den
MPI-Standard definieren und pflegen. MPI ist zum Zeitpunkt der Erstellung dieses Schriftstlicks der de-facto-
Standard fiir die Ubertragung zwischen Computerknoten, die ein paralleles Programm auf einem parallelen
Computer mit verteiltem Speicher ausfiihren. Diese Beschreibung verwendet der einfacheren Erklarung halber
manchmal die MPI-Terminologie, obgleich die Verwendung von MPI als solches weder ein Erfordernis noch
eine Beschrankung der vorliegenden Erfindung darstellt.

[0026] Manche kollektiven Operationen verfligen Uber einen einzigen Ursprungs- oder Empfangsprozess, der
auf einem bestimmten Computerknoten in einer operativen Gruppe ausgefihrt wird. Bei einer kollektiven Ope-
ration "Rundsendung” zum Beispiel ist der Prozess auf dem Computerknoten, der die Daten an alle anderen
Computerknoten verteilt, ein Ursprungsprozess. Bei einer ,Sammel’-(Gather-)Operation beispielsweise ist der
Prozess auf dem Computerknoten, der alle Daten von den anderen Computerknoten empfangen hat, ein Emp-
fangsprozess. Der Computerknoten, auf dem ein solcher Ursprungs- oder Empfangsprozess ausgefiihrt wird,
wird als lokaler Wurzelknoten bezeichnet.

[0027] Die meisten kollektiven Operationen sind Variationen oder Kombinationen von vier Basisoperationen:
Rundsenden (Broadcast), Sammeln (Gather), Streuen (Scatter) und Reduzieren (Reduce). Die Schnittstellen
fur diese kollektiven Operationen sind in den vom MPI-Forum verbreiteten MPI-Standards definiert. Algorith-
men zur Ausflihrung von kollektiven Operationen sind in den MPI-Standards jedoch nicht definiert. Bei einer
Rundsende-Operation geben alle Prozesse denselben Wurzelprozess an, von dem der Inhalt seines Puffer-
speichers gesendet wird. Von dem Wurzelprozess verschiedene Prozesse geben Empfangspufferspeicher an.
Nach der Operation enthalten alle Pufferspeicher die Nachricht von dem Wurzelprozess.

[0028] Bei einer Streuoperation teilt die logische Wurzel Daten in der Wurzel in Segmente und verteilt an
jeden Computerknoten in der operativen Gruppe ein anderes Segment. Bei einer Streuoperation geben alle
Prozesse gewdhnlich denselben Empfangszahlistand an. Die Sendeargumente sind nur flir den Wurzelprozess
von Bedeutung, dessen Pufferspeicher den Sendezahlstand * N Elemente eines bestimmten Datentyps enthalt,
wobei N die Anzahl der Prozesse in der bestimmten Gruppe der Computerknoten ist. Der Sendepufferspeicher
wird aufgeteilt und an alle Prozesse (einschlief3lich des Prozesses auf der logischen Wurzel) verteilt. Jedem
Computerknoten wird eine fortlaufende Kennung mit der Bezeichnung "Rang” zugewiesen. Nach der Operation
hat die Wurzel jedem Prozess in aufsteigender Rangfolge Datenelemente des Sendezahlstands gesendet. Der
Rang 0 empfangt die ersten Datenelemente des Sendezahlstands aus dem Sendepufferspeicher. Der Rang 1
empfangt die zweiten Datenelemente des Sendezahlstands aus dem Sendepufferspeicher und so weiter.

[0029] Eine Sammeloperation ist eine kollektive Viele-zu-eins-Operation, die das komplette Gegenteil der Be-
schreibung der Streuoperation ist. Das heif’t, eine Sammeloperation ist eine kollektive Viele-zu-eins-Operation,

5/36

DE 11 2011 101469 TS5 2013.03.14

bei der Elemente eines Datentyps von den nach ihrem Rang sortierten Computerknoten eingesammelt und in
einen Empfangspufferspeicher in einem Wurzelknoten eingegeben werden.

[0030] Eine Reduktionsoperation ist ebenfalls eine kollektive Viele-zu-eins-Operation, die eine arithmetische
oder logische Funktion enthalt, welche an zwei Datenelementen ausgefihrt wird. Alle Prozesse geben densel-
ben ,Zahlstand” (count) und dieselbe arithmetische oder logische Funktion an. Nach der Reduktion haben alle
Prozesse Datenelemente des Zahlstands aus den Sendepufferspeichern der Computerknoten an den Wurzel-
prozess gesendet. Bei einer Reduktionsoperation werden Datenelemente von entsprechenden Speicherplat-
zen im Sendepufferspeicher mittels arithmetischer oder logischer Operationen paarweise verknipft, um ein
einziges entsprechendes Element im Empfangspufferspeicher des Wurzelprozesses zu erzeugen. Die Anwen-
dung von bestimmten Reduktionsoperationen kann zur Laufzeit festgelegt werden. Bibliotheken flr parallele
Ubertragungen kénnen vordefinierte Operationen unterstiitzen. MPI stellt beispielsweise die folgenden vorde-
finierten Reduktionsoperationen zur Verfligung:

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Summe

MPI_PROD Produkt

MPI_LAND Logisches UND

MPI_BAND Bitweises UND

MPI_LOR Logisches ODER

MPI_BOR Bitweises ODER
MPI_LXOR Logisches exklusives ODER
MPI_BXOR Bitweises exklusives ODER

[0031] Neben Computerknoten enthalt der parallele Computer (100) auch Eingabe/Ausgabe-(E/A-)Knoten
(110, 114), die Uber das globale Kombinationsnetzwerk (106) mit den Computerknoten (102) verbunden sind.
Die Computerknoten in dem parallelen Computer (100) werden in Verarbeitungsgruppen unterteilt, so dass
jeder Computerknoten in einer Verarbeitungsgruppe fiir Datenlibertragungen mit demselben E/A-Knoten ver-
bunden ist. Jede Verarbeitungsgruppe besteht folglich aus einem E/A-Knoten und einer Teilmenge von Com-
puterknoten (102). Das Verhaltnis zwischen der Anzahl der Computerknoten und der Anzahl der E/A-Knoten in
dem ganzen System hangt iblicherweise von der fir den parallelen Computer gewahlten Hardware-Konfigura-
tion ab. Bei manchen Konfigurationen kann jede Verarbeitungsgruppe zum Beispiel aus acht Computerknoten
und einem E/A-Knoten bestehen. Bei anderen Konfigurationen kann jede Verarbeitungsgruppe aus vierund-
sechzig Computerknoten und einem E/A-Knoten bestehen. Dieses Beispiel dient jedoch lediglich der Erklarung
und ist nicht als Einschrankung zu verstehen. Jeder E/A-Knoten stellt E/A-Dienste zwischen Computerknoten
(102) seiner Verarbeitungsgruppe und einer Gruppe von E/A-Einheiten bereit. In dem Beispiel von Fig. 1 sind
die E/A-Knoten (110, 114) (ber ein lokales Netzwerk (LAN) (130), das mittels eines Hochgeschwindigkeits-
Ethernet-Netzwerks realisiert ist, fur Datentbertragungen mit den E/A-Einheiten (118, 120, 122) verbunden.

[0032] Der parallele Computer (100) von Fig. 1 enthalt auch einen Service-Knoten (116), der iber eines der
Netzwerke (104) mit den Computerknoten verbunden ist. Der Service-Knoten (116) stellt Dienste bereit, die
einer Vielzahl von Computerknoten gemein sind; er verwaltet die Konfiguration von Computerknoten, er [adt
Programme in die Computerknoten, er startet die Ausflihrung von Programmen auf den Computerknoten, er
ruft Ergebnisse von Programmoperationen auf den Computerknoten ab und so weiter. Der Service-Knoten
(116) fuhrt eine Service-Anwendung (124) aus und kommuniziert mit Benutzern (128) iber eine Schnittstelle
(126) der Service-Anwendung, die auf dem Computerendgerat (122) ausgefihrt wird.

[0033] In dem Beispiel von Fig. 1 ist auf einem der Computerknoten ein hierarchischer verteilter Compiler
(155), ein Modul einer automatisierten Datenverarbeitungsmaschine, installiert, der Software fir ein hierar-
chisches verteiltes Verarbeitungssystem gemaf Ausfiihrungsformen der vorliegenden Erfindung kompilieren
kann. Der hierarchische verteilte Compiler (155) enthalt einen Befehl eines Computerprogramms, um die Soft-
ware durch den Kompilierungsknoten zu kompilieren; um kompilierte Software, die auf dem Kompilierungs-
knoten ausgefiihrt werden soll, durch den Kompilierungsknoten zu verwalten; um einen oder mehrere Knoten
in einer nachsten Ebene der Hierarchie des verteilten Verarbeitungssystems durch den Kompilierungsknoten
in Abhangigkeit davon, ob kompilierte Software fiir den ausgewahlten Knoten oder fir die Nachkommen des
ausgewahlten Knotens bestimmt ist, auszuwahlen; um nur die kompilierte Software, die von dem ausgewahlten

6/36

DE 11 2011 101469 TS5 2013.03.14

Knoten oder von dem Nachkommen des ausgewahlten Knotens ausgefihrt werden soll, an den ausgewahl-
ten Knoten zu senden. Jeder der anderen Computerknoten (102) von Fig. 1 kann auch kompilierte Software
empfangen; Feststellen, ob die kompilierte Software flir diesen Knoten oder fiir einen seiner Nachkommen be-
stimmt ist; die Software zur Ausfiihrung verwalten, wenn die kompilierte Software fiir diesen Knoten bestimmt
ist; und einen anderen Knoten in einer ndchsten Ebene des hierarchischen verteilten Verarbeitungssystems in
Abhangigkeit von einem Nachkommen fir die kompilierte Software auswahlen, wenn die kompilierte Software
fur einen der Nachkommen bestimmt ist, und die kompilierte Software an den ausgewahlten anderen Knoten
senden.

[0034] Die Anordnung der Knoten, Netzwerke und E/A-Einheiten, die das beispielhafte in Fig. 1 dargestellte
System bilden, dient lediglich der Erklarung und ist nicht als Einschrédnkung der vorliegenden Erfindung zu ver-
stehen. Datenverarbeitungssysteme, die Software fir ein hierarchisches verteiltes Verarbeitungssystem ge-
maf Ausflihrungsformen der vorliegenden Erfindung kompilieren kénnen, kénnen weitere Knoten, Netzwerke,
Einheiten und Architekturen enthalten, die in Fig. 1 nicht gezeigt sind, wie fur den Fachmann zu erkennen
ist. Der parallele Computer (100) in dem Beispiel von Fig. 1 enthdlt zwar sechzehn Computerknoten (102),
doch wird der Leser bemerken, dass parallele Computer, die Software fiir ein hierarchisches verteiltes Ver-
arbeitungssystem gemaf Ausfiihrungsformen der vorliegenden Erfindung kompilieren kénnen, eine beliebi-
ge Anzahl von Computerknoten enthalten kénnen. Neben Ethernet und JTAG kénnen Netzwerke in solch ei-
nem Datenverarbeitungssystem viele Datenlbertragungsprotokolle unterstiitzen, darunter beispielsweise TCP
(Transmission Control Protocol), IP (Internet Protocol) und andere, wie fiir den Fachmann zu erkennen ist.
Verschiedene Ausfiihrungsformen der vorliegenden Erfindung kénnen neben den in Fig. 1 veranschaulichten
auch auf vielen verschiedenen Hardware-Plattformen realisiert werden.

[0035] Das Kompilieren von Software fir ein hierarchisches verteiltes Verarbeitungssystem gemaf Ausfih-
rungsformen der vorliegenden Erfindung kann im Allgemeinen auf einem parallelen Computer durchgefihrt
werden, der eine Vielzahl von Computerknoten enthalt. Tatsachlich kdnnen solche Computer Tausende von
solchen Computerknoten enthalten. Jeder Computerknoten ist selbst wiederum eine Art Computer, der aus
einem oder mehreren Computerprozessoren (oder Prozessorkernen), seinem eigenen Computerspeicher und
seinen eigenen Eingabe/Ausgabe-Adaptern besteht. Zur naheren Erklarung zeigt Fig. 2 daher ein Blockschalt-
bild eines beispielhaften Computerknotens, der in einem parallelen Computer von Nutzen ist, welcher Software
fur ein hierarchisches verteiltes Verarbeitungssystem gemaf Ausfiihrungsformen der vorliegenden Erfindung
kompilieren kann. Der Computerknoten (152) von Fig. 2 enthalt einen oder mehrere Verarbeitungskerne (164)
sowie einen Direktzugriffspeicher (RAM) (156). Die Verarbeitungskerne (164) sind mit dem RAM (156) Uber
einen Hochgeschwindigkeits-Speicherbus (154) und Gber einen Busadapter (194) sowie einen Erweiterungs-
bus (168) mit anderen Komponenten des Computerknotens (152) verbunden. Im RAM (156) ist ein Anwen-
dungsprogramm (158), ein Modul mit Computerprogrammbefehlen, gespeichert, das eine parallele Datenver-
arbeitung auf Benutzerebene unter Verwendung von parallelen Algorithmen durchfiihrt.

[0036] Ebenfalls im RAM (156) gespeichert ist ein Nachrichtenaustauschmodul (160), eine Bibliothek mit
Computerprogrammbefehlen, die parallele Ubertragungen zwischen Computerknoten einschlieRlich Punkt-zu-
Punkt-Operationen sowie kollektive Operationen durchfiihren. Das Anwendungsprogramm (158) fihrt kollek-
tive Operationen aus, indem es Software-Routinen in dem Nachrichtenaustauschmodul (160) aufruft. Eine Bi-
bliothek mit parallelen Ubertragungsroutinen kann zur Verwendung in Systemen geméaR Ausfiihrungsformen
der vorliegenden Erfindung von Grund auf entwickelt werden, wobei eine herkdmmliche Programmiersprache
wie zum Beispiel die Programmiersprache C und herkdmmliche Programmierverfahren verwendet werden, um
parallele Ubertragungsroutinen zu schreiben, die Daten zwischen Knoten in zwei unabhangigen Dateniiber-
tragungsnetzwerken senden und empfangen. Alternativ kdnnen vorhandene Bibliotheken nach dem Stand der
Technik verbessert werden, damit sie gemafly Ausfilhrungsformen der vorliegenden Erfindung arbeiten. Zu
Beispielen fiir Bibliotheken fiir parallele Ubertragungen nach dem Stand der Technik gehéren die Bibliothek
"Message Passing Interface” (MPI) und die Bibliothek "Parallel Virtual Machine” (PVM).

[0037] Ebenfalls im RAM gespeichert ist ein hierarchischer verteilter Compiler (155), ein Modul einer auto-
matisierten Datenverarbeitungsmaschine, der Software fiir ein hierarchisches verteiltes Verarbeitungssystem
gemal Ausfihrungsformen der vorliegenden Erfindung kompilieren kann. Der hierarchische verteilte Compiler
(155) enthalt einen Befehl eines Computerprogramms, um die Software durch den Kompilierungsknoten zu
kompilieren; um kompilierte Software, die auf dem Kompilierungsknoten ausgefiihrt werden soll, durch den
Kompilierungsknoten zu verwalten; um einen oder mehrere Knoten in einer nachsten Ebene der Hierarchie
des verteilten Verarbeitungssystems durch den Kompilierungsknoten in Abhangigkeit davon, ob kompilierte
Software flr den ausgewahlten Knoten oder fiir die Nachkommen des ausgewahlten Knotens bestimmt ist,
auszuwahlen; um nur die kompilierte Software, die von dem ausgewahlten Knoten oder von dem Nachkommen

7/36

DE 11 2011 101469 TS5 2013.03.14

des ausgewahlten Knotens ausgeflihrt werden soll, an den ausgewahlten Knoten zu senden. Jeder der ande-
ren Computerknoten in einem parallelen Computer kann auch kompilierte Software empfangen; Feststellen,
ob die kompilierte Software fiir diesen Knoten oder fiir einen seiner Nachkommen bestimmt ist; die Software
zur Ausfilhrung verwalten, wenn die kompilierte Software fiir diesen Knoten bestimmt ist; und einen anderen
Knoten in einer ndchsten Ebene des hierarchischen verteilten Verarbeitungssystems in Abhangigkeit von ei-
nem Nachkommen fiir die kompilierte Software auswahlen, wenn die kompilierte Software fir einen der Nach-
kommen bestimmt ist, und die kompilierte Software an den ausgewéahlten anderen Knoten senden.

[0038] Darliber hinaus sind im RAM (156) ein Betriebssystem (162), ein Modul mit Computerprogrammbefeh-
len und Routinen fiir den Zugriff eines Anwendungsprogramms auf andere Ressourcen des Computerknotens,
gespeichert. Es ist fiir ein Anwendungsprogramm und eine Bibliothek fiir parallele Ubertragungen in einem
Computerknoten eines parallelen Computers ublich, einen einzelnen Ausfihrungs-Thread ohne Benutzeran-
meldung und ohne Sicherheitsaspekte auszufihren, weil der Thread Uber die Berechtigung zum vollstandigen
Zugriff auf alle Ressourcen des Knotens verflgt. Die Menge und die Komplexitat der von einem Betriebssys-
tem auf einem Computerknoten in einem parallelen Computer auszufiihrenden Tasks ist folglich geringer als
die Menge und die Komplexitat der Tasks eines Betriebssystems auf einem seriellen Computer, auf dem viele
Threads gleichzeitig ausgefiihrt werden. Uberdies gibt es auf dem Computerknoten (152) von Fig. 2 keinen
Video-E/A, ein weiterer Faktor, der die Anforderungen an das Betriebssystem verringert. Bei dem Betriebssys-
tem kann es sich im Vergleich zu Betriebssystemen von Universalcomputern daher um ein abgespecktes Be-
triebssystem handeln, eine im Funktionsumfang reduzierte Variante sozusagen, oder um ein Betriebssystem,
das speziell fir Operationen auf einem bestimmten parallelen Computer entwickelt worden ist. Zu Betriebs-
systemen, die zur Verwendung in einem Computerknoten auf sinnvolle Weise verbessert, vereinfacht werden,
gehoren UNIXqy, Linuxty, Microsoft XPry, AlXgy, i5/0S von IBMyy,, und andere, wie fir den Fachmann zu
erkennen ist.

[0039] Der beispielhafte Computerknoten (152) von Fig. 2 enthalt mehrere Ubertragungsadapter (172, 176,
180, 188), um den Austausch von Daten mit anderen Knoten eines parallelen Computers durchzufiihren. Sol-
che Datenibertragungen kdnnen seriell iber RS-232-Verbindungen, Uber externe Busse wie zum Beispiel
den Universal Serial Bus (USB), Uiber Datentibertragungsnetzwerke wie zum Beispiel IP-Netzwerke und auf
andere Weise durchgefiinrt werden, wie fiir den Fachmann zu erkennen ist. Ubertragungsadapter realisieren
die Hardware-Ebene von Datenlibertragungen, tber die ein Computer entweder direkt oder Gber ein Netzwerk
Dateniibertragungen an einen anderen Computer sendet. Zu Beispielen fiir Ubertragungsadapter, die in Sys-
temen nitzlich sind, welche Software fir ein hierarchisches verteiltes Verarbeitungssystem gemaf Ausfuh-
rungsformen der vorliegenden Erfindung kompilieren, gehéren Modems fiir drahtgebundene Ubertragungen,
Ethernet-(IEEE 802.3-)Adapter fiir drahtgebundene Netzwerkiibertragungen und 802.11b-Adapter fir drahtlo-
se Netzwerkubertragungen.

[0040] Die Dateniibertragungsadapter in dem Beispiel von Fig. 2 beinhalten einen Gigabit-Ethernet-Adapter
(172), der den als Beispiel dienenden Rechnerknoten (152) fiir Datenlibertragungen mit einem Gigabit-Ether-
net-Netzwerk (174) verbindet. Gigabit Ethernet ist ein Netzwerk-Ubertragungsstandard, der in dem Standard
IEEE 802.3 festgelegt ist, die eine Datenrate von 1 Milliarde Bits pro Sekunde (ein Gigabit) vorsieht. Gigabit
Ethernet ist eine Variante von Ethernet, die Giber Mehrmoden-Lichtwellenleiterkabel, Einmoden-Lichtwellenlei-
terkabel oder nicht abgeschirmte, verdrillte Zwillingskabel betrieben wird.

[0041] Die Dateniibertragungsadapter in dem Beispiel von Fig. 2 beinhalten eine untergeordnete JTAG-Schal-
tung (JTAG-Slave-Schaltung) (176), die den als Beispiel dienenden Computerknoten (152) fir den Datenaus-
tausch mit einer Ubergeordneten JTAG-Schaltung (JTAG-Master-Schaltung) (178) verbindet. JTAG ist der flr
den Standard IEEE 1149.1 mit dem Titel "Standard Test Access Port and Boundary-Scan Architecture for test
access ports used for testing printed circuit boards using boundary scan” gebrauchliche Name. JTAG ist in
weiten Teilen so angepasst, dass Boundary-Scan derzeit mehr oder weniger gleichbedeutend mit JTAG ist.
JTAG wird nicht nur fir Leiterplatten, sondern auch fir Boundary-Scan-Tests von integrierten Schaltungen
eingesetzt und ist auch als ein Mechanismus zur Fehlersuche und -beseitigung in eingebetteten Systemen
hilfreich, da er eine praktische "Hintertlir” in das System bietet. Auf den beispielhaften Computerknoten von
Fig. 2 kann zum Beispiel alles drei von Folgendem zutreffen: Er enthalt tiblicherweise eine oder mehrere inte-
grierte Schaltungen, die auf einer Leiterplatte installiert sind, und kann als ein eingebettetes System realisiert
werden, das Uber seinen eigenen Prozessor, seinen eigenen Speicher und seine eigene E/A-Funktionalitat
verfugt. JTAG-Boundary-Scan-Tests durch den JTAG-Slave (176) kdnnen Prozessorregister und Speicher in
dem Computerknoten (152) zur Verwendung beim Kompilieren von Software fiir ein hierarchisches verteiltes
Verarbeitungssystem gemaf Ausfiihrungsformen der vorliegenden Erfindung wirksam konfigurieren.

8/36

DE 11 2011 101469 TS5 2013.03.14

[0042] Die Datenlbertragungsadapter in dem Beispiel von Fig. 2 beinhalten einen Punkt-zu-Punkt-Adapter
(180), der den beispielhaften Computerknoten (152) fur Datenlbertragungen mit einem Netzwerk (108) ver-
bindet, das fir Punkt-zu-Punkt-Nachrichtenaustauschoperationen wie zum Beispiel ein Netzwerk, das als ein
dreidimensionaler Torus oder als eine dreidimensionale Masche konfiguriert ist, optimal geeignet ist. Der Punkt-
zu-Punkt-Adapter (180) erméglicht Dateniibertragungen in sechs Richtungen auf drei Ubertragungsachsen,
X, Y und z, Uber sechs bidirektionale Verbindungsleitungen: +x (181), —x (182), +y (183), -y (184), +z (185)
und -z (186).

[0043] Die Dateniibertragungsadapter in dem Beispiel von Fig. 2 beinhalten einen Global-Combining-Net-
work-Adapter (188), der den beispielhaften Computerknoten (152) fir den Austausch von Daten mit einem
Netzwerk (106) verbindet, das fir kollektive Nachrichtenaustauschoperationen in einem globalen Kombinati-
onsnetzwerk, das zum Beispiel als ein Binarbaum konfiguriert ist, optimal geeignet ist. Der Global-Combining-
Network-Adapter (188) ermdglicht Datenlibertragungen Uber drei bidirektionale Verbindungsleitungen: zwei zu
Kindknoten (190) und eine zu einem Elternknoten (192).

[0044] Der beispielhafte Computerknoten (152) enthalt zwei Rechenwerke (arithmetic logic units — ALUS).
Die ALU (166) ist eine Komponente eines jeden Verarbeitungskerns (164), und eine gesonderte ALU (170)
ist fir den ausschlieRlichen Gebrauch durch den Global-Combining-Network-Adapter (188) zur Verwendung
bei der Durchfiihrung der arithmetischen und logischen Funktionen von Reduktionsoperationen vorgesehen.
Computerprogrammbefehle einer Reduktionsroutine in der Bibliothek fiir parallele Ubertragungen (160) kon-
nen einen Befehl fir eine arithmetische oder logische Funktion im Befehlsregister (169) zwischenspeichern.
Wenn die arithmetische oder logische Funktion einer Reduktionsoperation zum Beispiel eine "Summe” oder
ein "logisches ODER” ist, kann der Global-Combining-Network-Adapter (188) die arithmetische oder logische
Operation mittels der ALU (166) im Prozessor (164) oder, was Ublicherweise weitaus schneller ist, mittels der
fest zugeordneten ALU (170) ausfiihren.

[0045] Der beispielhafte Computerknoten (152) von Fig. 2 enthalt eine Steuereinheit fir den direkten Spei-
cherzugriff (direct memory access — DMA) (195), bei der es sich um Computer-Hardware fiir einen direkten
Speicherzugriff handelt, und eine DMA-Komponente (197), bei der es sich um Computer-Software fiir einen
direkten Speicherzugriff handelt. Die DMA-Komponente (197) von Fig. 2 wird Ublicherweise im Computerspei-
cher der DMA-Steuereinheit (195) gespeichert. Der Direktspeicherzugriff beinhaltet Lese- und Schreibopera-
tionen aus dem beziehungsweise in den Speicher von Computerknoten, wahrend die Arbeitslast der Zentral-
einheiten (164) gleichzeitig verringert wird. Bei einer DMA-Ubertragung wird im Wesentlichen ein Block des
Speichers von einem Speicherplatz an einen anderen kopiert, gewdhnlich von einem Computerknoten an ei-
nen anderen. Die CPU kann die DMA-Ubertragung zwar einleiten, fiihrt sie jedoch nicht aus.

[0046] Zur ndheren Erklarung zeigt Fig. 3A einen beispielhaften Punkt-zu-Punkt-Adapter (180), der in Syste-
men von Nutzen ist, die Software fir ein hierarchisches verteiltes Verarbeitungssystem gemaf Ausfiihrungs-
formen der vorliegenden Erfindung kompilieren kénnen. Der Punkt-zu-Punkt-Adapter (180) ist zur Verwendung
in einem fur Punkt-zu-Punkt-Operationen optimierten Datenubertragungsnetzwerk vorgesehen, einem Netz-
werk, das Computerknoten in einem dreidimensionalen Torus oder in einer dreidimensionalen Masche aufbaut.
In dem Beispiel von Fig. 3A ermoglicht der Punkt-zu-Punkt-Adapter (180) Datenubertragungen auf einer x-
Achse Uber vier einseitig gerichtete Datentbertragungs-Verbindungsleitungen, an den und von dem nachsten
Knoten in der —x-Richtung (182) und an den und von dem nachsten Knoten in der +x-Richtung (181). In dem
Beispiel von Fig. 3A ermdglicht der Punkt-zu-Punkt-Adapter (180) Datenlibertragungen auf einer x-Achse Uber
vier einseitig gerichtete Datenlibertragungs-Verbindungsleitungen, an den und von dem nachsten Knoten in
der —x-Richtung (184) und an den und von dem nachsten Knoten in der +x-Richtung (183). Der Punkt-zu-Punkt-
Adapter (180) in Fig. 3A ermdglicht auch Datenlbertragungen auf einer z-Achse Uber vier einseitig gerichtete
Datenlibertragungs-Verbindungsleitungen, an den und von dem nachsten Knoten in der —z-Richtung (186) und
an den und von dem nachsten Knoten in der +z-Richtung (185).

[0047] Zur naheren Erklarung zeigt Fig. 3B einen beispielhaften Adapter (188) eines globales Kombinations-
netzwerks, der in Systemen von Nutzen ist, die Software flr ein hierarchisches verteiltes Verarbeitungssystem
gemal Ausfihrungsformen der vorliegenden Erfindung kompilieren kénnen. Der Adapter (188) des globalen
Kombinationsnetzwerks ist zur Verwendung in einem fir kollektive Operationen optimierten Netzwerk vorge-
sehen, einem Netzwerk, das Computerknoten eines parallelen Computers als Binarbaum aufbaut. In dem Bei-
spiel von Fig. 3B ermdglicht der Adapter (188) des globalen Kombinationsnetzwerks Datenibertragungen an
und von zwei Kindknoten Uber vier einseitig gerichtete Datenlibertragungs-Verbindungsleitungen (190). Der
Adapter (188) des globalen Kombinationsnetzwerks ermdglicht auch Datenlibertragungen an einen und von
einem Elternknoten lber zwei einseitig gerichtete Datenlibertragungs-Verbindungsleitungen (192).

9/36

DE 11 2011 101469 TS5 2013.03.14

[0048] Zur naheren Erkldrung zeigt Fig. 4 eine Zeichnung mit Linien, die ein beispielhaftes Datenubertra-
gungsnetzwerk (108) darstellt, das fir Punkt-zu-Punkt-Operationen optimiert ist, welche in Systemen von
Nutzen sind, die Software flr ein hierarchisches verteiltes Verarbeitungssystem gemaf Ausfihrungsformen
der vorliegenden Erfindung kompilieren kénnen. In dem Beispiel von Fig. 4 stellen Punkte Computerknoten
(102) eines parallelen Computers dar, und die punktierten Linien zwischen den Punkten stellen Datenubertra-
gungs-Verbindungsleitungen (103) zwischen Computerknoten dar. Die Datenlbertragungs-Verbindungsleitun-
gen sind mit Punkt-zu-Punkt-Datenibertragungsadaptern realisiert, die ahnlich dem fiir das Beispiel in Fig. 3A
gezeigten Adapter mit Datenlibertragungs-Verbindungsleitungen auf drei Achsen, x, y und z, und in und aus
sechs Richtungen +x (181), —x (182), +y (183), —y (184), +z (185) und —z (186) sind. Die Verbindungsleitungen
und die Computerknoten werden von diesem fir Punkt-zu-Punkt-Operationen optimierten Datenlibertragungs-
netzwerk zu einer dreidimensionalen Masche (105) zusammengefasst. Die Masche (105) hat Wrap-around-
Verbindungsleitungen auf jeder Achse, die die dufl3ersten Computerknoten in der Masche (105) auf gegentiiber-
liegenden Seiten der Masche (105) verbinden. Diese Wrap-around-Verbindungsleitungen bilden einen Teil ei-
nes Torus (107). Jeder Computerknoten in dem Torus hat einen Speicherplatz in dem Torus, der von einem
Satz von x-, y-, z-Koordinaten eindeutig angegeben wird. Der Leser wird bemerken, dass die Wrap-around-
Verbindungsleitungen in der y- und in der z-Richtung aus Griinden der Ubersichtlichkeit weggelassen wurden,
jedoch in dhnlicher Weise wie die in der x-Richtung gezeigte Wrap-around-Verbindungsleitung konfiguriert
sind. Um die Erklarung verstandlicher zu machen, ist das Datenlbertragungsnetzwerk von Fig. 4 mit nur 27
Computerknoten gezeigt, aber der Leser wird erkennen, dass ein fir Punkt-zu-Punkt-Operationen optimiertes
Datenlibertragungsnetzwerk zur Verwendung beim Kompilieren von Software flr ein hierarchisches verteiltes
Verarbeitungssystem gemaf Ausfiihrungsformen der vorliegenden Erfindung einige wenige Computerknoten
oder aber Tausende von Computerknoten enthalten kann.

[0049] Zur naheren Erklarung zeigt Fig. 5 eine Zeichnung mit Linien, die ein beispielhaftes fiir kollektive Ope-
rationen optimiertes Datenilbertragungsnetzwerk (106) darstellt, das in Systemen von Nutzen ist, die Software
fur ein hierarchisches verteiltes Verarbeitungssystem gemaf Ausfiihrungsformen der vorliegenden Erfindung
kompilieren kénnen. Das beispielhafte Datenlibertragungsnetzwerk von Fig. 5 beinhaltet Datenlibertragungs-
Verbindungsleitungen, die mit den Computerknoten verbunden sind, um die Computerknoten als einen Baum
aufzubauen. In dem Beispiel von Fig. 5 stellen Punkte Computerknoten (102) eines parallelen Computers dar,
und die punktierten Linien (103) zwischen den Punkten stellen Datenlibertragungs-Verbindungsleitungen zwi-
schen Computerknoten dar. Die Datenlbertragungs-Verbindungsleitungen sind mit globalen Kombinations-
netzwerk-Adaptern realisiert, die ahnlich dem flr das Beispiel in Fig. 3B gezeigten Adapter sind, wobei jeder
Knoten ublicherweise Datenlbertragungen an und von zwei Kindknoten und Datenlbertragungen an einen
und von einem Elternknoten, mit ein paar Ausnahmen, ermdglicht. Knoten in einem Binadrbaum (106) konnen
als ein physischer Wurzelknoten (202), Zweigknoten (204) und Blattknoten (206) beschrieben werden. Der
Wourzelknoten (202) hat zwei Kind-, aber keinen Elternknoten. Die Blattknoten (206) haben jeweils einen El-
ternknoten, aber Blattknoten haben keine Kindknoten. Die Zweigknoten (204) haben jeweils einen Eltern- und
zwei Kindknoten. Die Verbindungsleitungen und die Computerknoten werden von diesem flr kollektive Opera-
tionen optimierten Datenlbertragungsnetzwerk dabei zu einem Bindrbaum (106) aufgebaut. Um die Erklarung
verstandlicher zu machen, ist das Datenlbertragungsnetzwerk von Fig. 5 mit nur 31 Computerknoten gezeigt,
aber der Leser wird erkennen, dass ein fur kollektive Operationen optimiertes Datenlibertragungsnetzwerk zur
Verwendung in Systemen, um Software fir ein hierarchisches verteiltes Verarbeitungssystem gemaf Ausfuh-
rungsformen der vorliegenden Erfindung zu kompilieren, einige wenige Computerknoten oder aber Tausende
von Computerknoten enthalten kann.

[0050] In dem Beispiel von Fig. 5 wird jedem Knoten in dem Baum eine Einheitenkennung zugewiesen, die
als ein "Rang” (250) bezeichnet wird. Der Rang eines Knoten kennzeichnet eindeutig den Speicherplatz des
Knotens in dem Baumnetzwerk zur Verwendung sowohl bei Punkt-zu-Punkt- als auch bei kollektiven Opera-
tionen in dem Baumnetzwerk. In diesem Beispiel werden die Rénge als ganze Zahlen zugewiesen, wobei mit 0
begonnen wird, die dem Wurzelknoten (202) zugewiesen wird, 1 wird dem ersten Knoten in der zweiten Ebene
des Baumes zugewiesen, 2 wird dem zweiten Knoten in der zweiten Ebene des Baumes zugewiesen, 3 wird
dem ersten Knoten in der dritten Ebene des Baumes zugewiesen, 4 wird dem zweiten Knoten in der dritten
Ebene des Baumes zugewiesen und so weiter. Zur einfacheren Darstellung werden hier nur die Range der
ersten drei Ebenen des Baums gezeigt, doch wird allen Computerknoten in dem Baumnetzwerk ein eindeutiger
Rang zugewiesen.

[0051] Zur ndheren Erklarung zeigt Fig. 6 ein weiteres beispielhaftes verteiltes Datenverarbeitungssystem
zum Kompilieren von Software fir ein hierarchisches verteiltes Verarbeitungssystem gemaf Ausfiihrungsfor-
men der vorliegenden Erfindung, in dem das verteilte Datenverarbeitungssystem als eine hybride Datenver-
arbeitungsumgebung ausgefihrt ist. Entsprechend der Verwendung des Begriffs in dieser Beschreibung ist

10/36

DE 11 2011 101469 TS5 2013.03.14

eine "hybride Datenverarbeitungsumgebung” insofern eine Datenverarbeitungsumgebung, als dass sie Com-
puterprozessoren enthalt, die mit dem Computerspeicher funktionsmafig verbunden sind, um eine Datenver-
arbeitung in der Form einer Ausfliihrung von Computerprogrammbefehlen durchzufiihren, die in dem Speicher
abgelegt und auf den Prozessoren ausgefuhrt werden. Die hybride Datenverarbeitungsumgebung (600) von
Fig. 6 enthalt einen Computerknoten (603), der eine kleine gesonderte hybride Datenverarbeitungsumgebung
darstellt, welche in Verbindung mit anderen ahnlichen Computerknoten (602) eine gréf3ere hybride Datenver-
arbeitungsumgebung bildet.

[0052] Der beispielhafte Computerknoten (603) von Fig. 6 kann die Ausfiihrung eines Computerhauptpro-
gramms auf Benutzerebene vornehmen, indem er administrative Dienste wie zum Beispiel das einleitende Pro-
grammladen und dergleichen von einer Service-Anwendung tbernimmt, die auf einem Service-Knoten ausge-
fuhrt wird, welcher mit dem Computerknoten (603) tber ein Datenilibertragungsnetzwerk verbunden ist. Der
beispielhafte Computerknoten kann fir Datenlibertragungen auch mit einem oder mehreren Eingabe/Ausga-
be-(E/A-)Knoten verbunden sein, die es dem Computerknoten ermdglichen, den Zugriff auf den Datenspeicher
und andere E/A-Funktionen zu erhalten. Die E/A-Knoten und der Service-Knoten kénnen mit dem beispielhaf-
ten Computerknoten (603), mit anderen Computerknoten (602) in der gréReren hybriden Datenverarbeitungs-
umgebung und mit E/A-Einheiten Uber ein lokales Netzwerk (LAN) verbunden werden, das mittels eines Hoch-
geschwindigkeits-Ethernet oder eines Datenlibertragungsnetzwerks eines anderen Netzwerk-Typs realisiert
wird, wie fir den Fachmann zu erkennen ist. Zu E/A-Einheiten, die in einer gréReren hybriden Datenverarbei-
tungsumgebung niitzlich sind, welche den Computerknoten (603) enthalt, kbnnen ein nichtfllichtiger Speicher
fur die Datenverarbeitungsumgebung in Form von einer Datenspeichereinheit, eine Ausgabeeinheit fiir die
hybride Datenverarbeitungsumgebung in Form von einem Drucker und eine E/A-Einheit fir den Benutzer in
Form von einem Computerendgerat gehdéren, welches eine Schnittstelle einer Service-Anwendung ausfihrt,
die einem Benutzer eine Schnittstelle bereitstellt, um Computerknoten in der hybriden Datenverarbeitungsum-
gebung zu konfigurieren und um die Ausfiihrung von Befehlen eines Computerhauptprogramms auf Benutzer-
ebene durch die Computerknoten einzuleiten.

[0053] Der Computerknoten (603) in dem Beispiel von Fig. 6 ist in einer erweiterten Ansicht gezeigt, um eine
hybride Datenverarbeitungsumgebung (600) ausfihrlicher erklaren zu kdnnen, die mit anderen hybriden Da-
tenverarbeitungsumgebungen wie zum Beispiel den anderen Computerknoten (602) kombiniert werden kann,
um eine grolere hybride Datenverarbeitungsumgebung zu bilden. Der Computerknoten (603) in dem Beispiel
von Fig. 6 enthalt einen Hostcomputer (610). Ein Host-Computer (610) ist ein "Host” in dem Sinn, dass es
sich dabei um den Host-Computer handelt, welcher Schnittstellenfunktionen zwischen einem Computerknoten
und anderen Komponenten der hybriden Datenverarbeitungsumgebung ausfihrt, die sich aul3erhalb eines be-
stimmten Computerknotens befindet. Das heildt, es ist der Host-Computer, der einleitende Urlade-Prozeduren,
Selbsttests beim Einschalten, grundlegende E/A-Funktionen ausfiihrt, Programm-Ladeoperationen auf Benut-
zerebene von Service-Knoten Gbernimmt und so weiter.

[0054] Der Host-Computer (610) in dem Beispiel von Fig. 6 enthalt einen Computerprozessor (652), der tiber
einen Hochgeschwindigkeits-Speicherbus (653) mit dem Computerspeicher, dem Direktzugriffspeicher (RAM)
(642), funktionsmaRig verbunden ist. Der Prozessor (652) in jedem Hostcomputer (610) verfiigt Giber einen Satz
von Architekturregistern (654), der die Architektur des Hostcomputers bestimmt. Der beispielhafte Computer-
knoten (603) von Fig. 6 enthalt auch einen oder mehrere Beschleuniger (604, 605). Ein Beschleuniger (604) ist
insofern ein "Beschleuniger”, als jeder Beschleuniger eine Beschleuniger-Architektur hat, die in Bezug auf die
Architektur des Hostcomputers hinsichtlich der Ausfiihrungsgeschwindigkeit einer bestimmten Klasse von Be-
rechnungsfunktionen optimiert ist. Zu solchen beschleunigten Berechnungsfunktionen gehéren zum Beispiel
die Vektorverarbeitung, Gleitkomma-Operationen und andere, wie fiir den Fachmann zu erkennen ist. Jeder
Beschleuniger (604, 605) in dem Beispiel von Fig. 6 enthalt einen Computerprozessor (648), der Uber einen
Hochgeschwindigkeits-Speicherbus (651) mit dem RAM (640) funktionsmafig verbunden ist. Im RAM (640,
642) des Hostcomputers und in den Beschleunigern (604, 605) ist ein Betriebssystem (645) gespeichert. Zu
Betriebssystemen, die in Hostcomputern und Beschleunigern von hybriden Datenverarbeitungsumgebungen
geman Ausfihrungsformen der vorliegenden Erfindung von Nutzen sind, gehéren UNIXyy, Linuxyy,, Microsoft
XPry, Microsoft Vistary, Microsoft NT+y,, AlXty, das Betriebssystem i5/0S von IBMy,, und andere, wie fir den
Fachmann zu erkennen ist. Es besteht keine Notwendigkeit, dass das Betriebssystem in den Hostcomputern
dasselbe wie das in den Beschleunigern verwendete Betriebssystem ist.

[0055] Der Prozessor (648) jedes Beschleunigers (604, 605) verfliigt iber einen Satz von Architekturregistern
(650), der die Architektur der Beschleuniger bestimmt. Die Architekturregister (650) des Prozessors (648) je-
des Beschleunigers unterscheiden sich von den Architekturregistern (654) des Prozessors (652) in dem Host-
computer (610). Bei den Architekturregistern handelt es sich um Register, auf die Befehle eines Computer-

11/36

DE 11 2011 101469 TS5 2013.03.14

programms zugreifen kénnen, die auf jeder Architektur ausgefiihrt werden, Register wie zum Beispiel ein Be-
fehlsregister, ein Programmzahler, Speicherindexregister, Zeiger auf die aktuelle Adresse im Stapelspeicher
(stack pointer) und dergleichen. Bei voneinander abweichenden Architekturen ware es zwar mdglich, aber un-
Ublich, dass ein Hostcomputer und ein Beschleuniger dieselben Befehlssatze unterstiitzen. Als solches wiirde
man im Allgemeinen nicht erwarten, dass fir die Ausfiihrung auf dem Prozessor (648) eines Beschleunigers
(604) kompilierte Befehle eines Computerprogramms nativ auf dem Prozessor (652) des HostComputers (610)
ausgefiihrt werden und umgekehrt. Uberdies wiirde man aufgrund der iiblichen Unterschiede bei den Hard-
ware-Architekturen zwischen Host-Prozessoren und Beschleunigern im Allgemeinen nicht erwarten, dass fur
die Ausfiihrung auf dem Prozessor (652) eines Hostcomputers (610) kompilierte Befehle eines Computerpro-
gramms nativ auf dem Prozessor (648) eines Beschleunigers (604) ausgefiihrt werden, selbst wenn der Be-
schleuniger den Befehlssatz des Hostcomputers unterstitzen wirde. Ein Beschleuniger (604) ist insofern ein
"Beschleuniger”, als jeder Beschleuniger eine Beschleuniger-Architektur hat, die in Bezug auf die Architektur
des Hostcomputers hinsichtlich der Ausfihrungsgeschwindigkeit einer bestimmten Klasse von Berechnungs-
funktionen optimiert ist. Das heif3t, dass die Ausflihrung einer Funktion oder mehrerer Funktionen, fir die der
Beschleuniger optimiert ist, auf dem Beschleuniger schneller vonstatten geht, als wenn diese Funktionen auf
dem Prozessor des Hostcomputers ausgefiihrt wirden.

[0056] Zu Beispielen fir hybride Datenverarbeitungsumgebungen gehdren ein Datenverarbeitungssystem,
das wiederum einen oder mehrere Hostcomputer enthalt, wobei jeder Hostcomputer tber einen x86-Prozes-
sor verflgt, und Beschleuniger, deren Architekturregister den PowerPC-Befehlssatz ausfiihren. Fir die Aus-
fihrung auf den x86-Prozessoren in den Hostcomputern kompilierte Befehle eines Computerprogramms kon-
nen nicht von den PowerPC-Prozessoren in den Beschleunigern nativ ausgefiihrt werden. Der Leser wird au-
Rerdem erkennen, dass einige der in dieser Beschreibung beschriebenen beispielhaften hybriden Datenverar-
beitungsumgebungen auf der Architektur des Supercomputers des Los Alamos National Laboratory ("LANL”)
beruhen, die im Rahmen des Projekts "LANL-Roadrunner” (benannt nach dem Staatsvogel von New Mexico)
entwickelt wurde, jener Supercomputer-Architektur, die daflir bekannt ist, dass sie zum ersten Mal ein "Peta-
flop”, eine Billiarde Gleitkomma-Operationen pro Sekunde, erzeugt hat. Die Supercomputer-Architektur des
LANL enthalt viele Hostcomputer mit Zweikern-Opteron-Prozessoren von AMD, die mit vielen Beschleunigern
mit Cell-Prozessoren von IBM verbunden sind, wobei die Opteron-Prozessoren und die Cell-Prozessoren eine
andere Architektur haben.

[0057] In dem Beispiel von Fig. 6 sind der Hostcomputer (610) und die Beschleuniger (604, 605) fir Daten-
Ubertragungen Uber ein Nachrichtentbermittiungsmodul auf Systemebene (system level message passing
module — SLMPM) (646) und zwei Datenlibertragungsnetzwerke (628, 630) mit mindestens zwei verschiede-
nen Arten von Netzwerken aufeinander abgestimmt. Ein Datenlibertragungsnetzwerk (628, 630) stellt eine
Konfiguration einer Datenlibertragungs-Hardware und -Software dar, die eine Datenlibertragungsverbindung
zwischen einem Hostcomputer und einem Beschleuniger realisiert. Zu Beispielen fiir Arten von Datenliber-
tragungsnetzwerken gehoren Peripheral Component Interconnect (PCl), PCI express (PCle), Ethernet, Infini-
band, Fibre Channel, Small Computer System Interface (*"SCSI”), External Serial Advanced Technology At-
tachment (eSATA), Universal Serial Bus (USB) und so weiter, wie fir den Fachmann zu erkennen ist. In dem
Beispiel von Fig. 6 sind der Hostcomputer (610) und die Beschleuniger (604, 605) fir Datenibertragungen
Uber ein PCle-Netzwerk (630) durch PCle-Datenibertragungsadapter (660) und (iber ein Ethernet-Netzwerk
(628) durch Ethernet-Dateniibertragungsadapter (661) aufeinander abgestimmt. Die Verwendung von PCle
und Ethernet dient lediglich der Erklarung und ist nicht als Einschrankung der Erfindung zu verstehen. Der
Fachleser erkennt sofort, dass zu hybriden Datenverarbeitungsumgebungen gemaf Ausfihrungsformen der
vorliegenden Erfindung auch Netzwerke anderer Art wie zum Beispiel PCI, Infiniband, Fibre Channel, SCSI,
eSATA, USB und so weiter gehoren kénnen.

[0058] Ein SLMPM (646) ist ein Modul oder eine Bibliothek mit Computerprogrammbefehlen, das beziehungs-
weise die Anwendungen auf Benutzerebene eine Anwendungsprogrammierschnittstelle (API) zur Verfligung
stellt, um Datenlibertragungen auf der Grundlage von Nachrichten zwischen dem Hostcomputer (610) und
dem Beschleuniger (604, 605) durchzufiihren. Zu Beispielen fir Bibliotheken fiir Dateniibertragungen auf der
Grundlage von Nachrichten, die zur Verwendung als ein SLMPM gemaf Ausfihrungsformen der vorliegenden
Erfindung verbessert werden kénnen, gehéren Folgende:

 die Message Passing Interface oder "MPI”, eine in zwei Versionen erhaltliche Schnittstelle in Industrie-

standard, die erstmalig auf der Supercomputing-Konferenz 1994 vorgestellt wurde und von keiner grof3en

Standardisierungsorganisation unterstitzt wird,

+ die Data Communication and Synchronization interface (DACS) des LANL-Supercomputers,

12/36

DE 11 2011 101469 TS5 2013.03.14

« die POSIX-Threads-Bibliothek (Pthreads), ein IEEE-Standard fir verteilte Multithread-Verarbeitung,

+ die Schnittstelle "Open Multi-Processing” (OpenMP), eine von der Industrie unterstitzte Spezifikation fir
die parallele Programmierung, und

+ andere fur den Fachmann erkennbare Bibliotheken.

[0059] Um Datenlibertragungen auf der Grundlage von Nachrichten zwischen dem Hostcomputer (610) und
dem Beschleuniger (604) zu unterstitzen, verfiigen sowohl der Hostcomputer (610) als auch der Beschleuniger
(604) in diesem Beispiel liber ein SLMPM (646), so dass Ubertragungen auf der Grundlage von Nachrichten
auf beiden Seiten einer jeden Verbindung fur Datenibertragungen gesendet und empfangen werden kénnen.

[0060] Das SLMPM (646) wird in diesem Beispiel im Allgemeinen zur Datenverarbeitung in einer hybriden
Datenverarbeitungsumgebung (600) betrieben, indem die Datentbertragungsleistung fir eine Vielzahl von
Datenlibertragungsmodi zwischen dem Hostcomputer (610) und den Beschleunigern (604, 605) Uiberwacht
wird, eine Anforderung (668) fiir das Senden von Daten entsprechend einem Datenubertragungsmodus von
dem Hostcomputer an einen Beschleuniger empfangen wird, festgestellt wird, ob die Daten entsprechend dem
angeforderten Datenlbertragungsmodus gesendet werden sollen, und wenn die Daten nicht entsprechend
dem angeforderten Dateniibertragungsmodus gesendet werden sollen: Auswéhlen eines anderen Datenlber-
tragungsmodus und Senden der Daten entsprechend dem ausgewahlten Datenlbertragungsmodus. In dem
Beispiel von Fig. 6 wird die Gberwachte Leistung in Form von Daten der Gberwachten Leistung (674) darge-
stellt, die wahrend des Betriebs des Computerknotens (603) von dem SLMPM (646) im RAM (642) des Host-
computers (610) gespeichert werden.

[0061] Ein Datenlibertragungsmodus gibt einen Typ eines Dateniibertragungsnetzwerks, eine Dateniber-
tragungs-Verbindungsleitung und ein Datenlbertragungsprotokoll (678) an. Eine Datenibertragungs-Verbin-
dungsleitung (656) ist eine Datentbertragungsverbindung zwischen einem Hostcomputer und einem Beschleu-
niger. In dem Beispiel von Fig. 6 kann eine Verbindungsleitung (656) zwischen dem Hostcomputer (610) und
dem Beschleuniger 604) die PCle-Verbindung (638) oder die Ethernet-Verbindung (631, 632) Gber das Ether-
net-Netzwerk (606) beinhalten. Eine Verbindungsleitung (656) zwischen dem Hostrechner (610) und dem Be-
schleuniger (605) in dem Beispiel von Fig. 6 kann die PCle-Verbindung (636) oder die Ethernet-Verbindung
(631, 634) Uber das Ethernet-Netzwerk (606) beinhalten. In dem Beispiel von Fig. 6 ist fiir jede Art von Netzwerk
zwar nur eine Verbindungsleitung zwischen dem Hostcomputer und dem Beschleuniger gezeigt, doch erkennt
der Fachleser sofort, dass es fir jede Art von Netzwerk beliebig viele Verbindungsleitungen geben kann.

[0062] Ein Dateniibertragungsprotokoll ist ein Satz von Standard-Regeln fiir die Darstellung und Ubertragung
von Daten, die Identitatsprifung und Fehlererkennung, die erforderlich sind, um Informationen von einem Host-
computer (610) an einen Beschleuniger (604) zu senden. In dem Beispiel von Fig. 6 kann das SLMPM (646)
eines von mehreren Protokollen (678) fir Datenitibertragungen zwischen dem Hostcomputer (610) und dem
Beschleuniger auswahlen. Zu Beispielen fir solche Protokolle (678) gehdren der Austausch von Daten mit
gemeinsam genutzten Speichern (shared memory tansfer — SMT) (680), der mit einer Sende- und einer Emp-
fangsoperation (681) ausgefihrt wird, und der direkte Speicherzugriff (direct memory access — DMA) (682),
der mit PUT- und GET-Operationen (683) ausgefuhrt wird.

[0063] "Shared Memory Transfer” ist ein Datenibertragungsprotokoll, das dazu dient, Daten zwischen einem
Hostcomputer und einem Beschleuniger in einen gemeinsam genutzten Speicherbereich (658) zu leiten, der
fur diesen Zweck zugeordnet wurde, so dass sich jeweils nur eine Instanz der Daten in dem Speicher befindet.
Betrachten wir das Folgende als eine Ubertragung mit gemeinsam genutztem Speicher zwischen dem Host-
computer (610) und dem Beschleuniger (604) von Fig. 6. Eine Anwendung (669) stellt eine Anforderung (668)
fir eine Ubertragung von Daten (676) vom Hostcomputer (610) an den Beschleuniger (604) gem&R dem Pro-
tokoll "SMT” (680). Eine solche Anforderung (668) kann eine Speicheradresse enthalten, die fiir einen solchen
gemeinsam genutzten Speicher zugeordnet ist. In diesem Beispiel ist das gemeinsam genutzte Speicherseg-
ment (658) in einem Speicherplatz auf dem Beschleuniger (604) gezeigt, aber der Leser erkennt, dass sich
gemeinsam genutzte Speichersegmente auf dem Beschleuniger (604), auf dem Hostcomputer (610), sowohl
auf dem Hostcomputer als auch auf dem Beschleuniger oder auch ganz aufRerhalb des lokalen Computerkno-
tens (603) befinden kénnen — solange der Hostcomputer und der Beschleuniger nach Bedarf auf das Segment
zugreifen kénnen. Um eine Ubertragung mit gemeinsam genutzten Speicher durchzufiihren, stellt das SLMPM
(646) auf dem Hostcomputer (610) mittels eines Quittungsbetriebs, der ahnlich dem TCP-Protokoll ist, eine
Datenlibertragungsverbindung mit dem SLMPM (646) her, das auf dem Beschleuniger (604) ausgefiihrt wird.
Das SLMPM (646) erzeugt dann eine Nachricht (670), die einen Kopfbereich und Nutzdaten enthalt, und stellt
die Nachricht in eine Nachrichten-Sendewarteschlange fiir eine bestimmte Verbindungsleitung eines bestimm-
ten Netzwerks. Bei der Erzeugung der Nachricht fligt das SLMPM eine Kennzeichnung des Beschleunigers

13/36

DE 11 2011 101469 TS5 2013.03.14

und eine Kennzeichnung eines Prozesses, der auf dem Beschleuniger ausgefiihrt wird, in den Kopfbereich
der Nachricht ein. Das SLMPM flgt auch die Speicheradresse aus der Anforderung (668) in die Nachricht
ein, entweder in den Kopfbereich oder als Teil der Nutzdaten. Das SLMPM fuigt auch die Daten (676), die in
der Nachricht (670) Ubertragen werden sollen, als Teil der Nutzdaten der Nachricht ein. Die Nachricht wird
dann von einem Datenlbertragungsadapter (660, 661) iber ein Netzwerk (628, 630) an das SLMPM (ibertra-
gen, das auf dem Beschleuniger (604) ausgefihrt wird, wobei das SLMPM die Nutzdaten, die Daten (676),
die Ubertragen wurden, in dem gemeinsam genutzten Speicherbereich (658) im RAM (640) entsprechend der
Speicheradresse in der Nachricht speichert.

[0064] Bei dem direkten Speicherzugriff (direct memory access — DMA) handelt es sich um ein Datenlibertra-
gungsprotokoll zum Austausch von Daten zwischen einem Hostcomputer und einem Beschleuniger, wahrend
die Arbeitslast des Computerprozessors (652) gleichzeitig verringert wird. Bei einer DMA-Ubertragung wird
im Wesentlichen ein Block des Speichers von einem Speicherplatz an einen anderen kopiert, gewdhnlich von
einem Hostcomputer an einen Beschleuniger oder umgekehrt. Ein Hostcomputer oder ein Beschleuniger oder
aber beide kdnnen eine DMA-Steuereinheit und eine DMA-Komponente, bei der es sich um eine Verbindung
von Computer-Hardware und -Software fir den direkten Speicherzugriff handelt, enthalten. Der direkte Spei-
cherzugriff beinhaltet Lese- und Schreiboperationen aus dem beziehungsweise in den Speicher von Beschleu-
nigern und Hostcomputern, wahrend die Arbeitslast ihrer Prozessoren gleichzeitig verringert wird. Eine DMA-
Komponente eines Beschleunigers kann zum Beispiel Daten in den fir DMA-Zwecke zugeordneten Speicher
schreiben oder Daten aus diesem Speicher lesen, wahrend der Prozessor des Beschleunigers Befehle eines
Computerprogrammes ausfihrt oder seinen Betrieb in anderer Weise fortsetzt. Das heil’t, ein Computerprozes-
sor kann einen Befehl zum Ausfiihren einer DMA-Ubertragung ausgeben, jedoch fiihrt die DMA-Komponente
und nicht der Prozessor die Ubertragung aus.

[0065] In dem Beispiel von Fig. 6 enthalt nur der Beschleuniger (604) eine DMA-Steuereinheit (685) und eine
DMA-Komponente (684), wahrend der Hostcomputer keine von beiden enthalt. In dieser Ausfihrungsform leitet
der Prozessor (652) auf dem Hostcomputer eine DMA-Ubertragung von Daten von dem Hostcomputer an den
Beschleuniger ein, indem er eine Nachricht gemal dem SMT-Protokoll an den Beschleuniger schickt, mit der er
den Beschleuniger anweist, eine ferne "GET”-Operation durchzufiihren. Die in dem Beispiel von Fig. 6 gezeigte
Konfiguration, bei der der Beschleuniger (604) die einzige Einheit ist, die eine DMA-Komponente enthalt, dient
lediglich der Erklarung und ist nicht als Einschrankung zu verstehen. Der Fachleser erkennt sofort, dass in
vielen Ausflihrungsformen sowohl ein Hostcomputer als auch ein Beschleuniger eine DMA-Steuereinheit und
eine DMA-Komponente enthalten kénnen, wahrend in noch anderen Ausfiihrungsformen nur ein Hostcomputer
eine DMA-Steuereinheit und eine DMA-Komponente enthalt.

[0066] Um in der hybriden Datenverarbeitungsumgebung von Fig. 6 ein DMA-Protokoll auszufiihren, wird fir
den Zugriff durch die DMA-Komponente ein bestimmter Speicherbereich zugeordnet. Die Zuordnung eines
solchen Speichers kann unabhangig von anderen Beschleunigern oder Hostcomputern vorgenommen oder
von einem anderen Beschleuniger oder Hostcomputer eingeleitet und in Zusammenarbeit mit einem anderen
Beschleuniger oder Hostcomputer abgeschlossen werden. Gemeinsam genutzte Speicherbereiche, die bei-
spielsweise gemal dem SMA-Protokoll zugeordnet werden, kénnen Speicherbereiche sein, die einer DMA-
Komponente zur Verfligung gestellt werden. Das heilt, der anfangliche Aufbau und die Durchfiihrung von
DMA-Dateniibertragungen in der hybriden Datenverarbeitungsumgebung (600) von Fig. 6 kann zumindest teil-
weise mittels des Shared-Memory-Transfer- oder mittels eines anderen Aul3erband-Datenibertragungsproto-
kolls vorgenommen werden, wobei sich "AuRerband” auf die DMA-Komponente bezieht. Die Zuordnung von
Speicher zur Durchfiihrung von DMA-Ubertragungen ist mit einer verhaltnismaRig hohen Latenzzeit verbun-
den, aber sobald er einmal zugeordnet worden ist, ermdglicht das DMA-Protokoll Datenlbertragungen hoher
Bandbreite, die den Prozessor weniger belasten als viele andere Datenlbertagungsprotokolle.

[0067] Eine direkte "PUT”-Operation ist eine Betriebsweise zur Ubertragung von Daten von einer DMA-Kom-
ponente auf einer Ursprungseinheit an eine DMA-Komponente auf einer Zieleinheit. Eine direkte "PUT”-Ope-
ration gestattet die Ubertragung und Speicherung von Daten auf der Zieleinheit mit nur geringer Beteiligung
des Prozessors der Zieleinheit. Um die Beteiligung des Prozessors der Zieleinheit an der direkten "PUT”-Ope-
ration gering zu halten, Ubertragt die Ursprungs-DMA-Komponente die auf der Zieleinheit zu speichernden
Daten zusammen mit einer bestimmten Kennzeichnung eines Speicherorts auf der Zieleinheit. Die Ursprungs-
DMA kennt den bestimmten Speicherort auf der Zieleinheit, da die Ziel-DMA-Komponente den bestimmten
Speicherort zur Speicherung der Daten auf der Zieleinheit der Ursprungs-DMA-Komponente zuvor zur Verfi-
gung gestellt hat.

14/36

DE 11 2011 101469 TS5 2013.03.14

[0068] Eine ferne "GET”-Operation, die manchmal auch als "rGET” bezeichnet wird, ist eine weitere Betriebs-
weise zur Ubertragung von Daten von einer DMA-Komponente auf einer Ursprungseinheit an eine DMA-Kom-
ponente auf einer Zieleinheit. Eine ferne "GET"-Operation gestattet die Ubertragung und Speicherung von Da-
ten auf der Zieleinheit mit nur geringer Beteiligung des Prozessors der Ursprungseinheit. Um die Beteiligung
des Prozessors der Ursprungseinheit an der fernen "GET”-Operation gering zu halten, speichert die Ursprungs-
DMA-Komponente die Daten an einem Speicherplatz, auf den die Ziel-DMA-Komponente zugreifen kann, sie
benachrichtigt die Ziel-DMA-Komponente direkt oder auBerhalb des Bandbereichs mittels einer Ubertragung
mit gemeinsam genutztem Speicher (iber den Speicherplatz und den Umfang der zur Ubertragung bereiten
Daten, und die Ziel-DMA-Komponente ruft die Daten aus dem Speicherplatz ab.

[0069] Die Uberwachung der Dateniibertragungsleistung fiir eine Vielzahl von Dateniibertragungsmodi kann
die Uberwachung von mehreren Anforderungen (668) in einer Nachrichten-Sendeanforderungswarteschlange
(662 bis 165) fir eine DatenlUbertragungs-Verbindungsleitung (656) beinhalten. In dem Beispiel von Fig. 6 ist
jeder Nachrichten-Sendeanforderungswarteschlange (662 bis 165) eine bestimmte Datenlibertragungs-Ver-
bindungsleitung (656) zugeordnet. Jede Warteschlange (662 bis 165) enthalt Eintrage fir Nachrichten (670),
die Daten (676) enthalten, welche von den Datenibertragungsadaptern (660, 661) auf einer Datentbertra-
gungs-Verbindungsleitung (656), die der Warteschlange zugeordnet ist, Uibertragen werden sollen.

[0070] Die Uberwachung der Dateniibertragungsleistung fiir eine Vielzahl von Dateniibertragungsmodi kann
auch die Uberwachung der Auslastung eines gemeinsam genutzten Speicherbereichs (658) beinhalten. In dem
Beispiel von Fig. 6 ist der gemeinsam genutzte Speicherbereich (658) im RAM (640) des Beschleunigers zuge-
ordnet. Die Auslastung stellt den Anteil des zugeordneten gemeinsam benutzten Speicherbereichs dar, in den
Daten zum Versenden an eine Zieleinheit gespeichert wurden, die von der Zieleinheit aber noch nicht gelesen
oder empfangen wurden, wobei die Auslastung tGberwacht wird, indem die Schreib- und Leseoperationen in
den und aus dem zugeordneten gemeinsam genutzten Speicher erfasst werden. In der hybriden Datenverar-
beitungsumgebung (600) von Fig. 6 ist der gemeinsam benutzte Speicherbereich — praktisch jeder Speicher —
begrenzt. Als solches besteht die Mdglichkeit, dass ein gemeinsam genutzter Speicherbereich (658) wahrend
der Ausfiihrung eines Anwendungsprogramms (669) gefiillt wird, so dass die Ubertragung von Daten vom
Hostcomputer (610) an einen Beschleuniger aufgrund von Bereichsbeschrankungen des gemeinsam benutz-
ten Speicherbereichs gegebenenfalls verlangsamt oder sogar angehalten wird.

[0071] In manchen Ausfiihrungsformen der vorliegenden Erfindung kann die hybride Datenverarbeitungsum-
gebung (600) von Fig. 6 so konfiguriert werden, dass sie als eine parallele Datenverarbeitungsumgebung be-
trieben werden kann, in der zwei oder mehr Instanzen des Anwendungsprogramms (669) auf zwei oder mehr
Hostcomputern (610) in der parallelen Datenverarbeitungsumgebung ausgefihrt werden. In solchen Ausfih-
rungsformen kann die Uiber alle Dateniibertragungsmodi hinweg stattfindende Uberwachung der Dateniibertra-
gungsleistung auch das Zusammentragen von Informationen (674) Gber die Datenlibertragungsleistung tber
eine Vielzahl von Instanzen des Anwendungsprogramms (669) beinhalten, das auf zwei oder mehr Hostcom-
putern in einer parallelen Datenverarbeitungsumgebung ausgefihrt wird. Die zusammengetragenen Informa-
tionen (674) (iber die Leistung kénnen zur Berechnung der durchschnittlichen Ubertragungslatenzzeiten bei
den Datenubertragungsmodi, der durchschnittlichen Anzahl der Anforderungen auf Datenibertragungs-Ver-
bindungsleitungen eines bestimmten Netzwerk-Typs, der durchschnittlichen Auslastung des gemeinsam be-
nutzten Speichers unter der Vielzahl der Hostcomputer und Beschleuniger in der parallelen Datenverarbei-
tungsumgebung und so weiter verwendet werden, wie fir den Fachmann zu erkennen ist. Jede beliebige Kom-
bination dieser Messwerte kann von dem SLMPM verwendet werden, um festzustellen, ob die Daten entspre-
chend dem angeforderten Dateniibertragungsmodus Ubertragen werden sollen, und auch, um einen anderen
Dateniibertragungsmodus zur Ubertragung der Daten auszuwahlen, wenn die Daten nicht entsprechend dem
angeforderten Datenibertragungsmodus (ibertragen werden sollen.

[0072] Das SLMPM (646) von Fig. 6 empfangt von einem Anwendungsprogramm (669) auf dem Hostcompu-
ter (610) eine Anforderung (668), Daten (676) entsprechend einem Datenlibertragungsmodus von dem Host-
computer (610) an den Beschleuniger (604) zu (ibertragen. Diese Daten (676) kénnen Befehle eines Com-
puterprogramms enthalten, die zur Ausfihrung durch den Beschleuniger (604) kompiliert werden, wie zum
Beispiel eine Programmdatei eines Anwendungsprogramms des Beschleunigers, Daten Uber eine Arbeitsein-
heit fur ein Anwendungsprogramm des Beschleunigers, Dateien, die fur die Ausflihrung eines Anwendungs-
programms des Beschleunigers erforderlich sind, wie zum Beispiel Bibliotheken, Datenbanken, Treiber und
dergleichen. Das Empfangen einer Anforderung (668) fiir die Ubertragung von Daten (676) entsprechend ei-
nem Dateniibertragungsmodus kann den Empfang einer Anforderung fiir die Ubertragung von Daten durch
einen angegebenen Netzwerk-Typ, den Empfang einer Anforderung fiir die Ubertragung von Daten (iber eine
angegebene Datenlbertragungs-Verbindungsleitung von dem Hostcomputer an den Beschleuniger oder den

15/36

DE 11 2011 101469 TS5 2013.03.14

Empfang einer Anforderung fiir die Ubertragung von Daten von dem Hostcomputer an den Beschleuniger ge-
maf einem Protokoll beinhalten.

[0073] Eine Anforderung (668) fiir die Ubertragung von Daten (676) entsprechend einem Dateniibertragungs-
modus kann als ein Funktionsaufruf einer Anwendung auf Benutzerebene Uber eine APl an das SLMPM (646)
erfolgen, als ein Aufruf, der einen Datentbertragungsmodus entsprechend einem Protokoll, einem Netzwerk-
Typ und einer Verbindungsleitung ausdricklich angibt. Eine als ein Funktionsaufruf realisierte Anforderung
kann ein Protokoll entsprechend der Operation des Funktionsaufrufs selbst angeben. Ein Funktionsaufruf
dacs_put() beispielsweise kann einen Aufruf Gber eine API darstellen, die von einem SLMPM zur Verfligung ge-
stellt wird, das als eine DACS-Bibliothek ausgeflhrt ist, um Daten im Standard-Modus einer DMA-"PUT”-Ope-
ration zu Ubertragen. Ein solcher Aufruf stellt aus der Sicht der aufrufenden Anwendung und des Programmie-
rers, der die aufrufende Anwendung geschrieben hat, eine Anforderung an die SLMPM-Bibliothek dar, Daten
entsprechend dem Standard-Modus zu Ubertragen, die dem Programmierer als der Standard-Modus bekannt
ist, die dem API-Schnellaufruf zugeordnet ist. Die aufgerufene Funktion, in diesem Beispiel dacs_put(), kann
in Ausfiihrungsformen mit mehreren Netzwerk-Typen, Protokollen und Verbindungsleitungen codiert werden,
damit sie selbst feststellen kann, ob die Daten entsprechend dem angeforderten Datenlibertragungsmodus,
das heifdt, entsprechend dem Standard-Modus der aufgerufenen Funktion, bertragen werden sollen. In einem
weiteren Beispiel kann ein Befehl dacs_send() einen Aufruf Gber eine API darstellen, die von einem SLMPM
zur Verfugung gestellt wird, das als eine DACS-Bibliothek ausgeflhrt ist, um Daten im Standard-Modus einer
SMT-"Sende”-Operation zu Ubertragen, wobei die aufgerufene Funktion dacs_send() in Ausflihrungsformen
mit mehreren Netzwerk-Typen, Protokollen und Verbindungsleitungen wieder codiert wird, damit sie selbst
feststellen kann, ob die Daten entsprechend dem angeforderten Modus Ubertragen werden sollen.

[0074] Eine Kennzeichnung eines bestimmten Beschleunigers in einem Funktionsaufruf kann praktisch einen
Netzwerk-Typ angeben. Ein solcher Funktionsaufruf kann eine Kennzeichnung eines bestimmten Beschleuni-
gers als Aufruf-Parameter enthalten. Eine Kennzeichnung eines bestimmten Beschleunigers, beispielsweise
durch Verwendung der Kennung (ID) eines PCle, gibt praktisch den Netzwerk-Typ "PCI” an. In einem weiteren,
ahnlichen Beispiel gibt eine Kennzeichnung eines bestimmten Beschleunigers durch Verwendung einer Me-
dienzugriffssteuerungs-(MAC-)Adresse eines Ethernet-Adapters praktisch den Netzwerk-Typ "Ethernet” an.
Statt die ID des Beschleunigers von dem Funktionsaufruf einer Anwendung, die auf dem Hostcomputer ausge-
fuhrt wird, so auszuflihren, dass sie einen Netzwerk-Typ angibt, kann der Funktionsaufruf auch nur eine global
eindeutige Kennzeichnung des bestimmten Beschleunigers als einen Parameter des Aufrufs enthalten und
damit statt eines Netzwerk-Typs nur eine Verbindungsleitung von dem Hostcomputer zu dem Beschleuniger
angeben. In diesem Fall kann die aufgerufene Funktion einen standardméaRigen Netzwerk-Typ zur Verwen-
dung mit einem bestimmten Protokoll einsetzen. Wenn die in dem SLMPM aufgerufene Funktion zum Beispiel
mit PCle als einem standardmaRigen Netzwerk-Typ zur Verwendung mit dem DMA-Protokoll konfiguriert wird
und das SLMPM eine Anforderung empfangt, Daten entsprechend dem DMA-Protokoll, einer DMA-PUT- oder
einer fernen DMA-GET-Operation an den Beschleuniger (604) zu Ubertragen, gibt die aufgerufene Funktion
ausdricklich den standardmafRigen Netzwerk-Typ fir DMA, den Netzwerktyp "PCle”, an.

[0075] In hybriden Datenverarbeitungsumgebungen, in denen nur eine Verbindungsleitung eines jeden Netz-
werk-Typs einen einzelnen Hostcomputer auf einen einzelnen Beschleuniger abstimmt, kann die Kennzeich-
nung eines bestimmten Beschleunigers in einem Parameter eines Funktionsaufrufs im Grunde ebenfalls eine
Verbindungsleitung angeben. In hybriden Datenverarbeitungsumgebungen, in denen mehr als eine Verbin-
dungsleitung eines jeden Netzwerk-Typs einen Hostcomputer und einen Beschleuniger aufeinander abstimmt,
so zum Beispiel zwei PCle-Verbindungsleitungen, die den Hostcomputer (610) mit dem Beschleuniger (604)
verbinden, kann die aufgerufene SLMPM-Funktion eine Standard-Verbindungsleitung fiir den im Parameter
des Funktionsaufrufs gekennzeichneten Beschleuniger fir den Netzwerk-Typ realisieren, der von der Kenn-
zeichnung des Beschleunigers angegeben wird.

[0076] Das SLMPM (646) in dem Beispiel von Fig. 6 stellt in Abhangigkeit von der Giberwachten Leistung (674)
auch fest, ob die Daten (676) entsprechend dem angeforderten Datentibertragungsmodus lbertragen werden
sollen. Die Feststellung, ob die Daten (676) entsprechend dem angeforderten Datenlbertragungsmodus Uber-
tragen werden sollen, kann die Feststellung beinhalten, ob die Daten von einem angeforderten Netzwerk-Typ
Ubertragen werden sollen, ob die Daten Uber eine angeforderte Dateniibertragungs-Verbindungsleitung tber-
tragen werden sollen oder ob die Daten entsprechend einem angeforderten Protokoll Gbertragen werden sollen.

[0077] In hybriden Datenverarbeitungsumgebungen gemal Ausflihrungsformen der vorliegenden Erfindung,

in denen die Uber alle Datentibertragungsmodi hinweg stattfindende Uberwachung der Dateniibertragungsleis-
tung die Uberwachung von mehreren Anforderungen in einer Nachrichten-Sendeanforderungswarteschlange

16/36

DE 11 2011 101469 TS5 2013.03.14

(662 bis 165) fur eine Datenuibertragungs-Verbindungsleitung beinhaltet, kann die Feststellung, ob die Daten
(676) entsprechend dem angeforderten Dateniibertragungsmodus tbertragen werden sollen, getroffen wer-
den, indem festgestellt wird, ob die Anzahl der Anforderungen in der Nachrichten-Sendeanforderungswarte-
schlange einen vorher festgelegten Schwellwert Uiberschreitet. In hybriden Datenverarbeitungsumgebungen
gemaR Ausfiihrungsformen der vorliegenden Erfindung, in denen die Uberwachung der Dateniibertragungs-
leistung fiir eine Vielzahl von Dateniibertragungsmodi die Uberwachung der Auslastung eines gemeinsam ge-
nutzten Speicherbereichs beinhaltet, kann die Feststellung, ob die Daten (676) entsprechend dem angefor-
derten Datenulbertragungsmodus Ubertragen werden sollen, getroffen werden, indem festgestellt wird, ob die
Auslastung des gemeinsam genutzten Speicherbereichs einen vorher festgelegten Schwellwert Gberschreitet.

[0078] Wenn die Daten nicht entsprechend dem angeforderten Datentibertragungsmodus Ubertragen werden
sollen, wahlt das SLMPM (646) in Abhangigkeit von der Uberwachten Leistung einen anderen Datenibertra-
gungsmodus fiir die Ubertragung der Daten aus und libertrégt die Daten (676) entsprechend dem ausgewahl-
ten Dateniibertragungsmodus. Die Auswahl eines anderen Dateniibertragungsmodus fiir die Ubertragung der
Daten kann die in Abhangigkeit von der Gberwachten Leistung erfolgende Auswabhl eines anderen Typs eines
Datenubertragungsnetzwerks, durch den die Daten Ubertragen werden sollen, die Auswahl einer Datenlber-
tragungs-Verbindungsleitung, Gber die die Daten Ubertragen werden sollen, und die Auswahl eines anderen
Datenubertragungsprotokolls beinhalten. Betrachten wir als ein Beispiel, dass der angeforderte Datenlber-
tragungsmodus eine DMA-Ubertragung unter Verwendung einer PUT-Operation iber die Verbindungsleitung
(638) des PCle-Netzwerks (630) an den Beschleuniger (604) ist. Wenn die Uberwachte Datenlibertragungsleis-
tung (674) anzeigt, dass die Anzahl der Anforderungen in der Nachrichten-Sendeanforderungswarteschlange
(662), die zu der Verbindungsleitung (638) gehort, einen vorher festgelegten Schwellwert Giberschreitet, kann
das SLMPM einen anderen Netzwerk-Typ, das Ethernet-Netzwerk (628) und die Verbindungsleitung (631,
632), Uiber die die Daten (676) Ubertragen werden sollen, auswahlen. Ebenfalls zu beriicksichtigen ist, dass die
Uberwachte Leistung (676) anzeigt, dass die aktuelle Auslastung des gemeinsam genutzten Speicherbereichs
(658) einen vorher festgelegten Schwellwert unterschreitet, wahrend die Anzahl der ausstehenden DMA-Uber-
tragungen in der Warteschlange (662) einen vorher festgelegten Schwellwert iberschreitet. In solch einem
Fall kann das SLMPM (646) auch ein anderes Protokoll auswahlen, wie zum Beispiel das Shared-Memory-
Transfer-Protokoll, mittels dem die Daten (674) tibertragen werden sollen.

[0079] Die Auswahl eines anderen Dateniibertragungsmodus durch das SLMPM fiir die Ubertragung der Da-
ten (672) kann auch die Auswahl eines Datenlibertragungsprotokolls (678) in Abhangigkeit von der Groflke
(672) der Datenibertragungsnachricht beinhalten. Die Auswahl eines Datenlbertragungsprotokolls (678) in
Abhangigkeit von der Grolke (672) der Datenlbertragungsnachricht kann erfolgen, indem festgestellt wird, ob
die GroRe einer Nachricht einen vorher festgelegten Schwellwert Gberschreitet. Bei grof3eren Nachrichten (670)
kann das DMA-Protokoll ein bevorzugtes Protokoll sein, da die Auslastung des Prozessors bei der Durchfiih-
rung einer DMA-Ubertragung einer gréReren Nachricht (670) gewdhnlich geringer ist als bei der Durchfiihrung
einer Ubertragung einer Nachricht derselben GréRe, bei der ein gemeinsamer Speicher genutzt wird.

[0080] Wie vorstehend erwahnt wurde, kann das SLMPM die Daten auch entsprechend dem ausgewahlten
Dateniibertragungsmodus (ibertragen. Das Ubertragen der Daten entsprechend dem ausgewéhlten Daten-
Uibertragungsmodus kann das Ubertragen der Daten durch den ausgewéhlten Typ des Dateniibertragungs-
netzwerks, das Ubertragen der Daten (iber die ausgewahlte Dateniibertragungs-Verbindungsleitung oder das
Ubertragen der Daten gemaR dem ausgewahlten Protokoll beinhalten. Das SLMPM (646) kann eine Ubertra-
gung der Daten entsprechend dem ausgewahlten Datenlbertragungsmodus durchfiihren, indem es Uber einen
Einheitentreiber den Ubertragungsadapter fiir den Typ des Dateniibertragungs-Netzwerks des ausgewahlten
Datenlbertragungsmodus anweist, die Nachricht (670) gemaf einem Protokoll des ausgewéhlten Datentber-
tragungsmodus zu Ubertragen, wobei die Nachricht in einem Kopfbereich der Nachricht eine Kennzeichnung
des Beschleunigers und in den Nutzdaten der Nachricht die zu tUbertragenden Daten (676) enthalt.

[0081] In dem Beispiel von Fig. 6 ist sowohl auf dem Hostcomputer (610) als auch auf dem Beschleuniger
(604) von einem der Computerknoten ein hierarchischer verteilter Compiler (155) installiert. Der hierarchische
verteilte Compiler (155) ist der Vollstandigkeit halber sowohl im Hostcomputer als auch im Beschleuniger ge-
zeigt. Tatsachlich kann der hierarchische verteilte Compiler (155) gemaf Ausfiihrungsformen der vorliegenden
Erfindung entweder auf einem Hostcomputer oder auf einem oder mehreren Beschleunigern oder sowohl auf
einem Hostcomputer als auch auf einem oder mehreren Beschleunigern installiert sein, wie fir den Fachmann
zu erkennen ist. Der hierarchische verteilte Compiler (155) von Fig. 6 ist ein Modul einer automatisierten Da-
tenverarbeitungsmaschine, der Software fir ein hierarchisches verteiltes Verarbeitungssystem gemaf Ausfuh-
rungsformen der vorliegenden Erfindung kompilieren kann. Der hierarchische verteilte Compiler (155) enthalt
einen Befehl eines Computerprogramms, um die Software durch den Kompilierungsknoten zu kompilieren;

17/36

DE 11 2011 101469 TS5 2013.03.14

um kompilierte Software, die auf dem Kompilierungsknoten ausgefiihrt werden soll, durch den Kompilierungs-
knoten zu verwalten; um einen oder mehrere Knoten in einer nachsten Ebene der Hierarchie des verteilten
Verarbeitungssystems durch den Kompilierungsknoten in Abh&ngigkeit davon, ob kompilierte Software fur den
ausgewahlten Knoten oder fur die Nachkommen des ausgewahlten Knotens bestimmt ist, auszuwahlen; um
nur die kompilierte Software, die von dem ausgewahlten Knoten oder von dem Nachkommen des ausgewahl-
ten Knotens ausgefiihrt werden soll, an den ausgewahlten Knoten zu senden. Jeder der anderen Computer-
knoten (602) von Fig. 16 kann auch kompilierte Software empfangen; Feststellen, ob die kompilierte Software
fur diesen Knoten oder fur einen seiner Nachkommen bestimmt ist; die Software zur Ausfiihrung verwalten,
wenn die kompilierte Software fiir diesen Knoten bestimmt ist; und einen anderen Knoten in einer nachsten
Ebene des hierarchischen verteilten Verarbeitungssystems in Abhangigkeit von einem Nachkommen fir die
kompilierte Software auswahlen, wenn die kompilierte Software flir einen der Nachkommen bestimmt ist, und
die kompilierte Software an den ausgewahlten anderen Knoten senden.

[0082] Zur ndheren Erklarung zeigt Fig. 7 ein beispielhaftes Verfahren zum Kompilieren von Software fir ein
hierarchisches verteiltes Verarbeitungssystem gemafR Ausfihrungsformen der vorliegenden Erfindung. Unter
Kompilieren versteht man den Vorgang der Umwandlung von Quellcode, der in einer Computersprache, oft-
mals in einer héheren Programmiersprache, geschrieben ist, in eine andere, Ublicherweise ausfihrbare Com-
putersprache, die gewodhnlich in Binarform dargestellt ist und manchmal als Objektcode bezeichnet wird. Das
Kompilieren gemaf Ausfuhrungsformen der vorliegenden Erfindung erfolgt Giblicherweise mit einem hierarchi-
schen verteilten Compiler, der auf Kompilierknoten gemaf der vorliegenden Erfindung installiert ist. Solch ein
hierarchischer verteilter Compiler kann Software gewdhnlich zur Verwendung auf mehreren unterschiedlichen
Arten von Zielcomputern kompilieren. Als solches kann ein hierarchischer verteilter Compiler Teile von nicht
kompilierter Quell-Software in Ziel-Objektcode zur Verwendung auf Computern unterschiedlichster Art kompi-
lieren.

[0083] Ein hierarchisches verteiltes Verarbeitungssystem kann auf mehrere Arten, zum Beispiel in einer Baum-
struktur, realisiert werden. Eine solche Baumstruktur kann kar, das heif3t eine Baumstruktur beliebiger Ordnung,
oder binar sein oder irgendeine andere Form haben, wie fiir den Fachmann zu erkennen ist. Alternativ kdnnen
hierarchische verteilte Verarbeitungssysteme gemaR der vorliegenden Erfindung in anderen Formen, die nicht
als Baumstrukturen betrachtet werden, realisiert werden, wie fiir den Fachmann zu erkennen ist. Das Verfah-
ren von Fig. 7 kann in einem verteilten Datenverarbeitungssystem durchgefiihrt werden, das den vorstehend
beschriebenen beispielhaften verteilten Datenverarbeitungssystemen ahnlich ist: den als Beispiel dienenden
parallelen Computern der Fig. 1 bis Fig. 5, der als Beispiel dienenden hybriden Datenverarbeitungsumgebung
von Fig. 6 und anderen, wie fiir den Fachmann zu erkennen ist.

[0084] Das Verfahren von Fig. 7 beinhaltet das Kennzeichnen (802) des einen oder der mehreren Kompi-
lierungsknoten. Wie vorstehend erwahnt wurde, wandeln der eine oder die mehreren Kompilierungsknoten
Quellcode, der in einer Computersprache, Ublicherweise in einer hdheren Programmiersprache, geschrieben
ist, in eine andere, haufig ausfihrbare Computersprache um, die gewdhnlich in Binarform dargestellt ist und
manchmal als Objektcode bezeichnet wird. Die Kompilierungsknoten kompilieren Teile der Software, die auf
den Kompilierungsknoten selbst ausgefiihrt werden sollen, sowie andere Teile der Software, die auf einem
anderen Knoten in dem hierarchischen verteilten Netzwerk ausgefihrt werden sollen.

[0085] Das Kennzeichnen (802) des einen oder der mehreren Kompilierungsknoten gemal dem Verfahren
von Fig. 7 kann durchgefiihrt werden, indem ein oder mehrere Knoten ausgewahlt werden, die fir den Kom-
piliervorgang rechnerisch optimiert werden. Das Auswahlen von einem oder mehreren Knoten, die fur den
Kompiliervorgang rechnerisch optimiert werden, kann das Kennzeichnen von Knoten in Abhangigkeit von de-
ren E/A-Funktionen, Verarbeitungsfunktionen und Speicherfunktionen beinhalten. Oftmals ist ein bestimmtes
Gleichgewicht dieser Funktionen optimal fir den Kompiliervorgang. Ein solches optimales Gleichgewicht kann
beim Kompilieren von verschiedenen Arten von Software-Programmen unterschiedlich sein, wobei das Aus-
wahlen von einem oder mehreren Knoten, die fiir den Kompiliervorgang rechnerisch optimiert werden, das
Auswahlen von einem oder mehreren Knoten in Abhangigkeit von der jeweiligen Software, die kompiliert wer-
den soll, beinhalten kann.

[0086] Das Kennzeichnen (802) des einen oder der mehreren Kompilierungsknoten gemal dem Verfahren
von Fig. 7 kann auch durchgefiihrt werden, indem ein oder mehrere Knoten ausgewahlt werden, die aufgrund
von ihrem Standort in der Topologie des hierarchischen verteilten Verarbeitungssystems fiir den Kompilier-
vorgang optimiert werden. In einem hierarchischen Datenverarbeitungssystem mit Baumstruktur zum Beispiel
kann sich ein Knoten, der ein Wurzelknoten ist, oder ein Knoten, der viele Nachkommen hat, so in der Topologie
angeordnet sein, dass dieser Knoten zum Kompilieren von Software fiir seine Nachkommen optimiert wird. Ein

18/36

DE 11 2011 101469 TS5 2013.03.14

Nachkomme, so wie der Begriff in dieser Beschreibung verwendet wird, ist ein Knoten, der sich in Ebenen des
hierarchischen Datenverarbeitungssystems befindet, welche unterhalb des Kompilierungsknotens und auf ei-
nem Zweig des hierarchischen Verarbeitungssystems, das den Kompilierungsknoten enthalt, angeordnet sind.

[0087] Das Verfahren von Fig. 7 beinhaltet auch das Bereitstellen (804) von zu kompilierender Software fir
einen oder mehrere Kompilierungsknoten, wobei mindestens ein Teil der zu kompilierenden Software von ei-
nem oder mehreren anderen Knoten ausgefihrt werden soll. Das Bereitstellen (804) von zu kompilierender
Software fiir einen oder mehrere Kompilierungsknoten kann durchgefiihrt werden, indem die zu kompilierende
Software in einer Nachricht an den Kompilierungsknoten gesendet wird, die Software auf den Kompilierungs-
knoten heruntergeladen wird, die Software von einem Systemadministrator auf dem Kompilierungsknoten in-
stalliert wird, oder die zu kompilierende Software in irgendeiner anderen Weise einem oder mehreren Kompi-
lierungsknoten bereitgestellt wird, wie fir den Fachmann zu erkennen ist.

[0088] Das Verfahren von Fig. 7 beinhaltet auch das Kompilieren (806) der Software durch den Kompilie-
rungsknoten. Das Kompilieren (806) der Software durch den Kompilierungsknoten kann durchgeftihrt werden,
indem Teile der Software, die auf dem Kompilierungsknoten ausgefiihrt werden sollen, gekennzeichnet wer-
den und der in einer Computersprache der nichtkompilierten Software geschriebene Code in eine ausfuhrbare
Computersprache zur Ausfliihrung auf dem Kompilierungsknoten umgewandelt wird. Das Kompilieren (806)
der Software durch den Kompilierungsknoten kann durchgefiihrt werden, indem Teile der Software, die auf
einem anderen Knoten ausgefiihrt werden sollen, gekennzeichnet werden, die Ziel-Ausfihrungsumgebung auf
dem anderen Knoten gekennzeichnet wird und die in der Computersprache der nichtkompilierten Software
geschriebene Software in eine ausflihrbare Computersprache zur Ausfiihrung auf dem anderen Knoten um-
gewandelt wird.

[0089] Das Verfahren von Fig. 7 beinhaltet auch das Verwalten (808) von kompilierter Software, die auf dem
Kompilierungsknoten ausgefihrt werden soll, durch den Kompilierungsknoten. Das Verwalten (808) von kom-
pilierter Software, die auf dem Kompilierungsknoten ausgefiihrt werden soll, durch den Kompilierungsknoten
kann durchgefiihrt werden, indem kompilierte Software, die auf dem Kompilierungsknoten ausgefiihrt werden
soll, zur Ausfiihrung gespeichert wird.

[0090] Das Verfahren von Fig. 7 beinhaltet auch das Auswahlen (810) von einem oder mehreren Knoten
in einer nachsten Ebene der Hierarchie des verteilten Verarbeitungssystems durch den Kompilierungskno-
ten in Abhangigkeit davon, ob kompilierte Software fir den ausgewahlten Knoten oder fir die Nachkommen
des ausgewahlten Knotens bestimmt ist, und das Senden (812) von nur der kompilierten Software, die von
dem ausgewahlten Knoten oder den Nachkommen des ausgewahlten Knotens ausgefiihrt werden soll, an
den ausgewahlten Knoten. Das Auswahlen (810) von einem oder mehreren Knoten in einer nachsten Ebene
der Hierarchie des verteilten Verarbeitungssystems durch den Kompilierungsknoten in Abhangigkeit davon,
ob kompilierte Software fiir den ausgewahlten Knoten oder fiir die Nachkommen des ausgewahlten Knotens
bestimmt ist, kann durchgefiihrt werden, indem eine Darstellung der Topologie des hierarchischen verteilten
Verarbeitungssystems durchlaufen wird, um den Standort von Knoten, auf denen kompilierte Software ausge-
fihrt werden soll, zu kennzeichnen, ein Zweig des hierarchischen Datenverarbeitungssystems ermittelt wird,
auf dem sich diejenigen Knoten, die die kompilierte Software ausfihren, befinden, und indem ermittelt wird,
welcher Kindknoten des Kompilierungsknotens sich ebenfalls auf diesem Zweig des hierarchischen Datenver-
arbeitungssystems befindet.

[0091] Das Senden (812) von nur der kompilierten Software, die von dem ausgewahlten Knoten oder den
Nachkommen des ausgewahlten Knotens ausgefihrt werden soll, an den ausgewahlten Knoten kann durch-
gefihrt werden, indem eine Nachricht erzeugt wird, welche die Teile der kompilierten Software enthalt, die von
dem ausgewahlten Knoten oder den Nachkommen des ausgewahlten Knotens ausgefihrt werden sollen, und
die Nachricht an den ausgewahlten Knoten gesendet wird. Das Senden (812) von nur der kompilierten Soft-
ware, die von dem ausgewahlten Knoten oder den Nachkommen des ausgewahlten Knotens ausgefiihrt wer-
den soll, an den ausgewahlten Knoten kann auch durchgefiihrt werden, indem der ausgewahlte Knoten tber
den Standort der kompilierten Software zum Herunterladen auf den Knoten, welcher die kompilierte Software
ausflihrt, benachrichtigt wird oder indem nur die kompilierte Software, die von dem ausgewahlten Knoten oder
den Nachkommen des ausgewahlten Knotens ausgefiihrt werden soll, auf irgendeine andere Art und Weise,
welche flr den Fachmann zu erkennen ist, an den ausgewahlten Knoten gesendet (812) wird.

[0092] Die kompilierte Software kann von dem ausgewahlten Knoten ausgefiihrt oder auch nicht ausgefiihrt

werden. Das heildt, die kompilierte Software kann von einem Knoten in einer Ebene unterhalb des ausgewahl-
ten Knotens ausgefiihrt werden. Zur naheren Erklarung zeigt Fig. 8 daher einen Ablaufplan, der ein weiteres

19/36

DE 11 2011 101469 TS5 2013.03.14

beispielhaftes Verfahren zum Kompilieren von Software fiir ein hierarchisches verteiltes Verarbeitungssystem
gemal Ausfiihrungsformen der vorliegenden Erfindung veranschaulicht. Das Verfahren von Fig. 8 ist dem
Verfahren in Fig. 7 insofern ahnlich, als das Verfahren von Fig. 8 das Kennzeichnen (802) des einen oder der
mehreren Kompilierungsknoten; das Bereitstellen (804) von zu kompilierender Software fiir einen oder meh-
rere Kompilierungsknoten, wobei mindestens ein Teil der zu kompilierenden Software von einem oder mehre-
ren anderen Knoten ausgefihrt werden soll; das Kompilieren (806) der Software durch den Kompilierungskno-
ten; das Verwalten (808) von kompilierter Software, die auf dem Kompilierungsknoten ausgefuhrt werden soll,
durch den Kompilierungsknoten; das Auswahlen (810) von einem oder mehreren Knoten in einer nachsten
Ebene der Hierarchie des verteilten Verarbeitungssystems durch den Kompilierungsknoten in Abhangigkeit
davon, ob kompilierte Software fiir den ausgewahlten Knoten oder fiir die Nachkommen des ausgewahlten
Knotens bestimmt ist; und das Senden (812) von nur der kompilierten Software, die von dem ausgewahlten
Knoten oder von den Nachkommen des ausgewahlten Knotens ausgefiihrt werden soll, an den ausgewahlten
Knoten, beinhaltet.

[0093] Das Verfahren von Fig. 8 beinhaltet auch zuséatzliche Schritte, die von Knoten unterhalb des Kompi-
lierungsknotens in dem hierarchischen verteilten Verarbeitungssystem durchgefiihrt werden. Das Verfahren
von Fig. 8 beinhaltet das Empfangen (814) von kompilierter Software durch einen ausgewahlten Knoten. Die
kompilierte Software kann in einer Nachricht empfangen werden, die zum Herunterladen durch den Kompilie-
rungsknoten gekennzeichnet ist, oder sie kann auf andere Arten, die flir den Fachmann zu erkennen sind,
empfangen werden.

[0094] Das Verfahren von Fig. 8 beinhaltet auch das Feststellen (816), ob die kompilierte Software fir den
ausgewahlten Knoten oder fiir einen seiner Nachkommen bestimmt ist. Der Vorgang des Feststellens (816), ob
die kompilierte Software fiir den ausgewahlten Knoten oder fiir einen seiner Nachkommen bestimmt ist, kann
durchgefiihrt werden, indem von dem Kompilierungsknoten eine Kennzeichnung der Knoten, die bestimmte
Teile der kompilierten Software ausfiihren, empfangen wird und indem festgestellt wird, ob der gekennzeich-
nete Knoten der ausgewahlte Knoten ist oder ob der gekennzeichnete Knoten einer seiner Nachkommen ist.

[0095] Wenn die kompilierte Software flir den ausgewahlten Knoten bestimmt ist, beinhaltet das Verfahren von
Fig. 8 das Verwalten (818) der Software durch den ausgewahlten Knoten zur Ausfiihrung. Das Verwalten (818)
der Software durch den ausgewahlten Knoten zur Ausflihrung kann durchgefiihrt werden, indem kompilierte
Software, die auf dem ausgewahlten Knoten ausgefiihrt werden soll, zur Ausfiihrung gespeichert wird.

[0096] Wenn die kompilierte Software fiir einen der Nachkommen bestimmt ist, beinhaltet das Verfahren von
Fig. 8 das Auswahlen (820) eines anderen Knotens in einer nachsten Ebene des hierarchischen verteilten
Verarbeitungssystems in Abhangigkeit von einem Nachkommen fiir die kompilierte Software und das Senden
(822) der kompilierten Software an den ausgewahlten anderen Knoten. Das Auswéahlen (820) von einem an-
deren Knoten in einer nachsten Ebene des hierarchischen verteilten Verarbeitungssystems in Abhangigkeit
von einem Nachkommen fiir die kompilierte Software kann durchgefiihrt werden, indem eine Darstellung der
Topologie des hierarchischen verteilten Verarbeitungssystems durchlaufen wird, um den Standort von Knoten,
auf denen kompilierte Software ausgefiihrt werden soll, zu kennzeichnen, ein Zweig des hierarchischen Daten-
verarbeitungssystems ermittelt wird, auf dem sich diejenigen Knoten, die die kompilierte Software ausfihren,
befinden, und indem ermittelt wird, welcher Kindknoten des ausgewahlten Knotens sich ebenfalls auf diesem
Zweig des hierarchischen Datenverarbeitungssystems befindet.

[0097] Das Senden (822) der kompilierten Software an den ausgewahlten anderen Knoten kann durchgefiihrt
werden, indem eine Nachricht erzeugt wird, welche die Teile der kompilierten Software enthalt, die von dem
ausgewahlten anderen Knoten oder den Nachkommen des ausgewahlten anderen Knotens ausgefiihrt werden
sollen, und die Nachricht an den ausgewahlten anderen Knoten gesendet wird. Das Senden (822) der kompi-
lierten Software an den ausgewahlten anderen Knoten kann auch durchgefiihrt werden, indem der ausgewahl-
te andere Knoten Uiber den Standort der kompilierten Software zum Herunterladen auf den Knoten, welcher die
kompilierte Software ausfiihrt, benachrichtigt wird oder indem die kompilierte Software auf irgendeine andere
Art und Weise, welche fiir den Fachmann zu erkennen ist, an den ausgewahlten Knoten gesendet (822) wird.

[0098] Zur ndheren Erklarung zeigt Fig. 9 ein Schaubild eines beispielhaften Anwendungsfalls eines Systems
zum Kompilieren von Software flr ein hierarchisches verteiltes Verarbeitungssystem gemaf Ausfiihrungsfor-
men der vorliegenden Erfindung. In dem Beispiel von Fig. 9 verfiigt ein Kompilierungs-Laptopcomputer (702)
Uber nichtkompilierte Software (722). Die nichtkompilierte Software (722) verfligt iber Teile von Software (724)
zur Ausfihrung durch den Computer (704), Teile von Software (726 und 728) zur Ausflihrung durch einen oder
mehrere Grafikprozessoren (Graphics Processing Units (GPUs) (704), Teile von Software (728, 730, 732, 734)

20/36

DE 11 2011 101469 TS5 2013.03.14

zur Ausfihrung durch Computerknoten in dem parallelen Computer (712), Teile von Software (736) zur Aus-
fihrung durch den Front-End-Knoten (714) der hybriden Datenverarbeitungsumgebung, Teile von Software
(738, 740 und 742) zur Ausfiihrung durch Hostcomputer (718) in dem hybriden Datenverarbeitungssystem und
Teile von Software (744, 746, 748 und 750) zur Ausfihrung durch Beschleuniger (720) des hybriden Daten-
verarbeitungssystems.

[0099] In dem Beispiel von Fig. 9 kompiliert der Kompilierungs-Laptopcomputer (702) den Teil der Software
(724) fir den Computer (704) und sendet diesen Teil der kompilierten Software an den Computer (704) zur
Ausflihrung. In dem Beispiel von Fig. 9 kompiliert der Kompilierungs-Laptopcomputer (702) auch die Teile der
Software (726 und 728) fiir bestimmte GPUs (708) und sendet diese Teile der kompilierten Software an den
Computer (704), der den Teil der kompilierten Software wiederum an die bestimmte GPU sendet, die den Teil
der kompilierten Software ausfiihrt.

[0100] In dem Beispiel von Fig. 9 kompiliert der Kompilierungs-Laptopcomputer (702) den Teil der Software
(728, 730, 732 und 734) fir bestimmte Computerknoten (712) des parallelen Computers und sendet diese
Teile der kompilierten Software an den E/A-Knoten (710) des parallelen Computers, der die Teile der kom-
pilierten Software wiederum an den Wurzelknoten der Computerknoten (712) sendet. Der Wurzelknoten der
Computerknoten stellt dann fest, welcher Kindknoten Nachkommen hat, die die Teile der kompilierten Software
ausflihren, und sendet nur die Teile an jedes Kind, die von diesem Kind oder seinen Nachkommen ausgefiihrt
werden. Jedes Kind, das diese Teile empfangt, stellt fest, ob es den Teil ausfiihren wird oder ob einer seiner
Nachkommen den Teil ausfiihren wird, und sendet nur diejenigen Teile, die flir seine Nachkommen bestimmt
sind, an ein Kind auf demselben Zweig wie der Nachkomme. Auf diese Weise werden die Teile der kompilier-
ten Software Ebene um Ebene an den bestimmten Computerknoten gesendet, der diese kompilierte Software
ausfuhrt.

[0101] In dem Beispiel von Fig. 9 kompiliert der Kompilierungscomputer (702) den Teil der Software (736)
fur den Front-End-Knoten (714) der hybriden Datenverarbeitungsumgebung und sendet diesen Teil der kom-
pilierten Software an den Front-End-Knoten (714) der hybriden Datenverarbeitungsumgebung zur Ausfiihrung.
In dem Beispiel von Fig. 9 kompiliert der Kompilierungscomputer (702) auch die Teile der Software (726, 738,
740 und 742) fur bestimmte Hostcomputer (718) und sendet diese Teile der kompilierten Software an den
Front-End-Knoten (714) der hybriden Datenverarbeitungsumgebung, der den Teil der kompilierten Software
wiederum an die bestimmten Hostcomputer sendet, die den Teil der kompilierten Software ausfiihren. In dem
Beispiel von Fig. 9 kompiliert der Kompilierungs-Laptop-Computer (702) auch die Teile der Software (744,
746, 748 und 750) fur bestimmte Beschleuniger (720) von Hostcomputern (718) und sendet diese Teile der
kompilierten Software an den Front-End-Knoten (714) der hybriden Datenverarbeitungsumgebung, welcher
den Teil der kompilierten Software wiederum an die jeweiligen Hostcomputer fiir diese Beschleuniger sendet,
die den Teil der kompilierten Software wiederum an den bestimmten Beschleuniger senden, der den Teil der
kompilierten Software ausflhrt.

[0102] In den vorstehenden Beispielen wurde das Kompilieren von Software fir ein hierarchisches verteiltes
Verarbeitungssystem im Allgemeinen mit einem einzigen Kompilierungsknoten erdrtert. Dies geschah zum
Zweck der Erklarung und ist nicht als Einschréankung zu verstehen. Tatsachlich kann in vielen Ausfiihrungsfor-
men der vorliegenden Erfindung mehr als ein Knoten Software fir ein hierarchisches verteiltes Verarbeitungs-
system gemal der vorliegenden Erfindung kompilieren.

[0103] Der Fachmann wird als vorteilhaft erkennen, dass Erscheinungsformen der vorliegenden Erfindung
als ein System, ein Verfahren oder ein Computerprogrammprodukt realisiert werden kénnen. Folglich kdnnen
Erscheinungsformen der vorliegenden Erfindung die Form einer ganz in Hardware realisierten Ausfiihrung,
einer ganz in Software realisierten Ausfiihrung (darunter Firmware, residente Software, Mikrocode usw.) oder
einer Ausfihrung annehmen, die Software- und Hardware-Erscheinungsformen kombiniert, die hier alle all-
gemein als eine "Schaltung”, ein "Modul” oder ein "System” bezeichnet werden kénnen. Uberdies kénnen Er-
scheinungsformen der vorliegenden Erfindung die Form eines Computerprogrammprodukts annehmen, das
sich auf einem oder mehreren computerlesbaren Datentrdgern) befindet, auf dem beziehungsweise denen
sich computerlesbarer Programmcode befindet.

[0104] Jede beliebige Kombination aus einem oder mehreren computerlesbaren Datentrédgern kann verwen-
det werden. Der computerlesbare Datentrager kann ein computerlesbarer Signaldatentrager oder ein compu-
terlesbares Speichermedium sein. Ein computerlesbares Speichermedium kann zum Beispiel, ohne auf diese
beschrankt zu sein, ein(e) elektronische(s), magnetische(s), optische(s), elektromagnetische(s), Infrarot- oder
Halbleitersystem, -vorrichtung, -einheit oder eine beliebige geeignete Kombination des Vorstehenden sein.

21/36

DE 11 2011 101469 TS5 2013.03.14

Zu konkreteren Beispielen (wobei die Liste keinen Anspruch auf Vollstandigkeit erhebt) fiir das computerles-
bare Speichermedium wirden folgende gehdren: eine elektrische Verbindung mit einer oder mehreren Lei-
tungen, eine Diskette eines tragbaren Computers, eine Festplatte, ein Direktzugriffsspeicher (RAM), ein Nur-
Lese-Speicher (ROM), ein lI6schbarer programmierbarer Nur-Lese-Speicher (EPROM oder Flash-Speicher),
ein Lichtwellenleiter, ein tragbarer Compact-Disk-Nur-Lese-Speicher (CD-ROM), eine optische Speicherein-
heit, eine magnetische Speichereinheit oder jede beliebige geeignete Kombination des Vorstehenden. Im Rah-
men dieses Schriftstlicks kann ein computerlesbares Speichermedium jedes physisch greifbare Medium sein,
das ein Programm zur Verwendung durch ein Befehlsausflihrungssystem, eine Befehlsausfiihrungsvorrichtung
oder -einheit oder zur Verwendung in Verbindung mit einem Befehlsausfiihrungssystem, einer Befehlsausfih-
rungsvorrichtung oder -einheit enthalten oder speichern kann.

[0105] Ein computerlesbarer Signaldatentrager kann ein Ubertragenes Datensignal mit einem darin enthalte-
nen computerlesbaren Programmcode, beispielsweise in einem Basisband oder als Teil einer Tragerwelle,
enthalten. Solch ein Ubertragenes Signal kann eine beliebige einer Vielzahl von Formen einschlieBlich elek-
tromagnetischer, optischer Formen oder jede beliebige geeignete Kombination dieser Formen, ohne auf die-
se beschrankt zu sein, annehmen. Bei einem computerlesbaren Signaldatentréager kann es sich um jeden be-
liebigen computerlesbaren Datentrager handeln, der kein computerlesbares Speichermedium ist und der ein
Programm zur Verwendung durch oder zur Verwendung in Verbindung mit einem Befehlsausfuhrungssystem,
einer Befehlsausflihrungsvorrichtung oder -einheit Ubertragen, weiterleiten oder transportieren kann.

[0106] Auf einem computerlesbaren Datentréger enthaltener Programmcode kann mittels eines geeigneten
Mediums, darunter einschlief3lich ein drahtloses Medium, ein drahtgebundenes Mediums, ein Lichtwellenlei-
terkabel, mittels Hochfrequenz (HF) usw., ohne auf diese beschrankt zu sein, oder mittels jeder beliebigen
geeigneten Kombination des Vorstehenden Gbertragen werden.

[0107] Computer-Programmcode zur Durchfiihrung von Operationen fur Erscheinungsformen der vorliegen-
den Erfindung kann in einer beliebigen Kombination aus einer oder mehreren Programmiersprachen, darunter
eine objektorientierte Programmiersprache wie beispielsweise Java, Smalltalk, C++ oder dergleichen, sowie in
herkémmlichen prozeduralen Programmiersprachen wie beispielsweise der Programmiersprache "C” oder in
ahnlichen Programmiersprachen, geschrieben sein. Die Ausflihrung des Programmcodes kann vollstandig auf
dem Computer des Benutzers, teilweise auf dem Computer des Benutzers, als eigensténdiges Software-Paket,
teilweise auf dem Computer des Benutzers und teilweise auf einem fernen Computer oder vollstandig auf dem
fernen Computer oder Server erfolgen. Im letzteren Szenario kann der ferne Computer mit dem Computer des
Benutzers Uber jede beliebige Art eines Netzwerks einschliellich eines lokalen Netzwerks (LAN) oder eines
Weitverkehrsnetzes (WAN) verbunden werden oder die Verbindung kann zu einem externen Computer (zum
Beispiel Uber das Internet mittels eines Internet-Diensteanbieters) hergestellt werden.

[0108] Erscheinungsformen der vorliegenden Erfindung wurden vorstehend mit Bezug auf Darstellungen in
Ablaufplanen und/oder Blockschaltbilder von Verfahren, Vorrichtungen (Systemen) und Computerprogramm-
produkten gemal Ausflihrungsformen der Erfindung beschrieben. Es versteht sich, dass jeder Block der Dar-
stellungen in den Ablaufpldnen und/oder der Blockschaltbilder sowie Kombinationen aus Blécken in den Dar-
stellungen der Ablaufplane und/oder den Blockschaltbildern mittels Computerprogrammbefehlen realisiert wer-
den kénnen. Diese Computerprogrammbefehle kdnnen einem Prozessor eines Universalcomputers, eines
Computers fiir spezielle Anwendungen oder einer anderen programmierbaren Datenverarbeitungsvorrichtung
bereitgestellt werden, um eine Maschine zu erzeugen, so dass die Befehle, die iber den Prozessor des Com-
puters oder einer anderen programmierbaren Datenverarbeitungsvorrichtung ausgefuhrt werden, ein Mittel zur
Ausflihrung der Funktionen/Vorgange erzeugen, die in dem Ablaufplan und/oder dem Block oder den Blécken
der Blockschaltbilder angegeben sind.

[0109] Diese Computerprogrammbefehle kbnnen auch auf einem computerlesbaren Datentrager gespeichert
werden, der einen Computer, eine andere programmierbare Datenverarbeitungsvorrichtung oder andere Ein-
heiten anweisen kann, auf eine bestimmte Art und Weise zu funktionieren, so dass die auf dem computerles-
baren Datentréger gespeicherten Befehle einen Herstellungsgegenstand erzeugen, der Befehle enthélt, die
die Funktion/den Vorgang ausfihren, welche beziehungsweise welcher in dem Ablaufplan und/oder dem Block
oder den Blécken des Blockschaltbilds angegeben ist.

[0110] Die Computerprogrammbefehle kénnen auch auf einen Computer, eine andere programmierbare Da-
tenverarbeitungsvorrichtung oder auf andere Einheiten geladen werden, um die Durchfiihrung einer Reihe von
Betriebsschritten auf dem Computer, einer anderen programmierbaren Vorrichtung oder auf anderen Einheiten
zu bewirken, um einen von einem Computer ausgeflihrten Prozess zu erzeugen, so dass die Befehle, die auf

22/36

DE 11 2011 101469 TS5 2013.03.14

dem Computer oder einer anderen programmierbaren Vorrichtung ausgefihrt werden, Prozesse zur Ausfiih-
rung der Funktionen/Vorgénge ermdglichen, die in dem Ablaufplan und/oder dem Block oder den Blécken des
Blockschaltbilds angegeben sind.

[0111] Der Ablaufplan und die Blockschaltbilder in den Figuren zeigen die Architektur, die Funktionalitat und
die Betriebsweise von mdglichen Ausfiihrungsarten von Systemen, Verfahren und Computerprogrammpro-
dukten geman verschiedenen Ausflihrungsformen der vorliegenden Erfindung. In dieser Hinsicht kann jeder
Block in dem Ablaufplan oder den Blockschaltbildern ein Modul, ein Segment oder einen Teil von Code dar-
stellen, das beziehungsweise der einen oder mehrere ausfiihrbare Befehle zur Ausflihrung der angegebenen
logischen Funktion(en) umfasst. Es sei auch angemerkt, dass die in dem Block angegebenen Funktionen in
manchen alternativen Ausfihrungsarten nicht in der in den Figuren angegebenen Reihenfolge auftreten kon-
nen. In Abhangigkeit von der mit ihnen verbundenen Funktionalitdt kbnnen beispielsweise zwei Blocke, die
als aufeinanderfolgende Blocke dargestellt sind, tatsachlich weitgehend gleichzeitig ausgefihrt werden oder
die Blocke kdnnen manchmal in der umgekehrten Reihenfolge ausgefiihrt werden. Man wird auch feststellen,
dass jeder Block der Blockschaltbilder und/oder der Darstellung in dem Ablaufplan sowie Kombinationen aus
Blécken in den Blockschaltbildern und/oder der Darstellung in dem Ablaufplan von Systemen, die auf Hardware
fur spezielle Anwendungen beruhen und die angegebenen Funktionen oder Vorgange durchflihren, oder von
Kombinationen aus Hardware fiir spezielle Anwendungen und Computerbefehlen ausgefiihrt werden kénnen.

[0112] Die Beschreibungen in dieser Darlegung dienen lediglich der Veranschaulichung und sind nicht als

Einschréankung zu verstehen. Der Umfang der vorliegenden Erfindung ist nur durch die Sprache der folgenden
Anspriiche beschrankt.

23/36

DE 11 2011 101469 TS5 2013.03.14

ZITATE ENTHALTEN IN DER BESCHREIBUNG

Diese Liste der vom Anmelder aufgefiihrten Dokumente wurde automatisiert erzeugt und ist ausschliel3lich
zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw.
Gebrauchsmusteranmeldung. Das DPMA lbernimmt keinerlei Haftung fiir etwaige Fehler oder Auslassungen.

Zitierte Nicht-Patentliteratur

- Standard IEEE 802.3 [0040]

- Standard IEEE 1149.1 mit dem Titel
"Standard Test Access Port and Boundary-
Scan Architecture for test access ports
used for testing printed circuit boards using
boundary scan” [0041]

24/36

DE 11 2011 101469 TS5 2013.03.14

Patentanspriiche

1. Verfahren zum Kompilieren von Software fir ein hierarchisches verteiltes Verarbeitungssystem, wobei
das Verfahren Folgendes umfasst:
Bereitstellen von zu kompilierender Software fiir einen oder mehrere Kompilierungsknoten, wobei mindestens
ein Teil der zu kompilierenden Software von einem oder mehreren anderen Knoten ausgefihrt werden soll;
Kompilieren der Software durch den Kompilierungsknoten;
Verwalten von kompilierter Software, die auf dem Kompilierungsknoten ausgefiihrt werden soll, durch den
Kompilierungsknoten; und
Auswahlen von einem oder mehreren Knoten in einer ndchsten Ebene der Hierarchie des verteilten Verarbei-
tungssystems durch den Kompilierungsknoten in Abhéngigkeit davon, ob kompilierte Software fiir den ausge-
wahlten Knoten oder fiir die Nachkommen des ausgewahlten Knotens bestimmt ist; und
Senden von nur der kompilierten Software, die von dem ausgewahlten Knoten oder von den Nachkommen
des ausgewahlten Knotens ausgefiihrt werden soll, an den ausgewahlten Knoten.

2. Verfahren nach Anspruch 1, das des Weiteren Folgendes umfasst:
Empfangen von kompilierter Software durch einen ausgewahlten Knoten;
Feststellen, ob die kompilierte Software fir den ausgewahlten Knoten oder fiir einen seiner Nachkommen
bestimmt ist;
wenn die kompilierte Software fir den ausgewahlten Knoten bestimmt ist, Verwalten der Software durch den
ausgewahlten Knoten zur Ausfuhrung; und
wenn die kompilierte Software flir einen der Nachkommen bestimmt ist, Auswahlen eines anderen Knotens in
einer n&chsten Ebene des hierarchischen verteilten Verarbeitungssystems in Abhangigkeit von einem Nach-
kommen fir die kompilierte Software und Senden der kompilierten Software an den ausgewahlten anderen
Knoten.

3. Verfahren nach Anspruch 1 oder 2, das des Weiteren das Kennzeichnen des einen oder der mehreren
Kompilierungsknoten umfasst.

4. Verfahren nach Anspruch 3, wobei das Kennzeichnen des einen oder der mehreren Kompilierungsknoten
des Weiteren das Auswahlen von einem oder mehreren Knoten umfasst, die fir den Kompiliervorgang rech-
nerisch optimiert werden.

5. Verfahren nach Anspruch 3 oder 4, wobei das Kennzeichnen des einen oder der mehreren Kompilie-
rungsknoten des Weiteren das Auswahlen von einem oder mehreren Knoten umfasst, die aufgrund von ihrem
Standort in der Topologie des hierarchischen verteilten Verarbeitungssystems fir den Kompiliervorgang opti-
miert werden.

6. Verfahren nach einem der vorhergehenden Anspriche, wobei das hierarchische verteilte Verarbeitungs-
system des Weiteren einen parallelen Computer umfasst, der Folgendes enthalt:
eine Vielzahl von Computerknoten;
ein erstes Datenubertragungsnetzwerk, das die Computerknoten fir Datenubertragungen verbindet und fir
Punkt-zu-Punkt-Datenubertragungen optimiert ist; und
ein zweites Datenibertragungsnetzwerk, das Datenibertragungs-Verbindungsleitungen enthalt, welche die
Computerknoten verbinden, um die Computerknoten als einen Baum aufzubauen, wobei jeder Computerkno-
ten Uber ein gesondertes Rechenwerk (arithmetic logic unit ("ALU”) verfiigt, das fiir parallele Operationen be-
stimmt ist.

7. Verfahren nach einem der vorhergehenden Anspriiche, wobei das hierarchische verteilte Verarbeitungs-
system des Weiteren eine hybride Datenverarbeitungsumgebung umfasst, wobei die hybride Datenverarbei-
tungsumgebung eine Vielzahl von Computerknoten umfasst, wobei jeder Computerknoten Folgendes umfasst:
einen Hostcomputer mit einer Hostcomputer-Architektur; und
einen Beschleuniger mit einer Beschleuniger-Architektur, wobei die Beschleuniger-Architektur in Bezug auf
die Architektur des Hostcomputers hinsichtlich der Ausfuhrungsgeschwindigkeit einer bestimmten Klasse von
Berechnungsfunktionen optimiert ist, wobei der Hostcomputer und der Beschleuniger fir Datentibertragungen
durch ein Nachrichtentbermittiungsmodul auf Systemebene aufeinander abgestimmt sind.

8. Vorrichtung zum Kompilieren von Software fir ein hierarchisches verteiltes Verarbeitungssystem, wobei
die Vorrichtung einen Computerprozessor und einen Computerspeicher umfasst, der mit dem Computerpro-

25/36

DE 11 2011 101469 TS5 2013.03.14

zessor betriebsfahig verbunden ist, wobei sich in dem Computerspeicher Computerprogrammbefehle befin-
den, um

zu kompilierende Software fur einen oder mehrere Kompilierungsknoten bereitzustellen, wobei mindestens ein
Teil der zu kompilierenden Software von einem oder mehreren anderen Knoten ausgefihrt werden soll;

die Software durch den Kompilierungsknoten zu kompilieren;

kompilierte Software, die auf dem Kompilierungsknoten ausgefiihrt werden soll, durch den Kompilierungskno-
ten zu verwalten; und

einen oder mehrere Knoten in einer nachsten Ebene der Hierarchie des verteilten Verarbeitungssystems durch
den Kompilierungsknoten in Abhéngigkeit davon, ob kompilierte Software fur den ausgewahlten Knoten oder
fur die Nachkommen des ausgewéhlten Knotens bestimmt ist, auszuwahlen; und

nur die kompilierte Software, die von dem ausgewahlten Knoten oder von den Nachkommen des ausgewahlten
Knotens ausgefuhrt werden soll, an den ausgewahlten Knoten zu senden.

9. Vorrichtung nach Anspruch 8, wobei sich in dem Computerspeicher auch Computerprogrammbefehle
befinden, um
kompilierte Software durch einen ausgewahlten Knoten zu empfangen;
festzustellen, ob die kompilierte Software fir den ausgewéhlten Knoten oder fir einen seiner Nachkommen
bestimmt ist;
die Software durch den ausgewahlten Knoten zur Ausfliihrung zu verwalten, wenn die kompilierte Software fr
den ausgewahlten Knoten bestimmt ist; und
einen anderen Knoten in einer néchsten Ebene des hierarchischen verteilten Verarbeitungssystems in Abhan-
gigkeit von einem Nachkommen fiir die kompilierte Software auszuwéhlen, wenn die kompilierte Software flr
einen der Nachkommen bestimmt ist, und die kompilierte Software an den ausgewahlten anderen Knoten zu
senden.

10. Vorrichtung nach Anspruch 8 oder 9, wobei sich in dem Computerspeicher auch Computerprogramm-
befehle befinden, um den einen oder die mehreren Kompilierungsknoten zu kennzeichnen.

11. Vorrichtung nach Anspruch 10, wobei Computerprogrammbefehle zum Kennzeichnen des einen oder der
mehreren Kompilierungsknoten des Weiteren Computerprogrammbefehle umfassen, um einen oder mehrere
Knoten auszuwahlen, die flir den Kompiliervorgang rechnerisch optimiert werden.

12. Vorrichtung nach Anspruch 10 oder 11, wobei Computerprogrammbefehle zum Kennzeichnen des einen
oder der mehreren Kompilierungsknoten des Weiteren Computerprogrammbefehle umfassen, um einen oder
mehrere Knoten auszuwéhlen, die aufgrund von ihrem Standort in der Topologie des hierarchischen verteilten
Verarbeitungssystems flr den Kompiliervorgang optimiert werden.

13. Vorrichtung nach einem der Anspriiche 8 bis 12, wobei das hierarchische verteilte Verarbeitungssystem
des Weiteren einen parallelen Computer umfasst, der Folgendes enthélt:
eine Vielzahl von Computerknoten;
ein erstes Datenubertragungsnetzwerk, das die Computerknoten fir Datenubertragungen verbindet und fir
Punkt-zu-Punkt-Datentbertragungen optimiert ist; und
ein zweites Datenlbertragungsnetzwerk, das Datentbertragungs-Verbindungsleitungen enthélt, welche die
Computerknoten verbinden, um die Computerknoten als einen Baum aufzubauen, wobei jeder Computerkno-
ten Uber ein gesondertes Rechenwerk (ALU) verfugt, das fir parallele Operationen bestimmt ist.

14. Vorrichtung nach einem der Anspriiche 8 bis 13, wobei das hierarchische verteilte Verarbeitungssystem
des Weiteren eine hybride Datenverarbeitungsumgebung umfasst, wobei die hybride Datenverarbeitungsum-
gebung eine Vielzahl von Computerknoten umfasst, wobei jeder Computerknoten Folgendes umfasst:
einen Hostcomputer mit einer Hostcomputer-Architektur; und
einen Beschleuniger mit einer Beschleuniger-Architektur, wobei die Beschleuniger-Architektur in Bezug auf
die Architektur des Hostcomputers hinsichtlich der Ausfuhrungsgeschwindigkeit einer bestimmten Klasse von
Berechnungsfunktionen optimiert ist, wobei der Hostcomputer und der Beschleuniger fir Datentbertragungen
durch ein Nachrichtentbermittiungsmodul auf Systemebene aufeinander abgestimmt sind.

15. Computerprogrammprodukt zum Kompilieren von Software fiir ein hierarchisches verteiltes Verarbei-
tungssystem, wobei das Computerprogrammprodukt in einem Computerlesbaren Speichermedium angeord-
net ist, wobei das Computerprogrammprodukt Computerprogrammbefehle umfasst, um
zu kompilierende Software fur einen oder mehrere Kompilierungsknoten bereitzustellen, wobei mindestens ein
Teil der zu kompilierenden Software von einem oder mehreren anderen Knoten ausgefiihrt werden soll;

26/36

DE 11 2011 101469 TS5 2013.03.14

die Software durch den Kompilierungsknoten zu kompilieren;

kompilierte Software, die auf dem Kompilierungsknoten ausgefiihrt werden soll, durch den Kompilierungskno-
ten zu verwalten; und

einen oder mehrere Knoten in einer nachsten Ebene der Hierarchie des verteilten Verarbeitungssystems durch
den Kompilierungsknoten in Abhéngigkeit davon, ob kompilierte Software fur den ausgewahlten Knoten oder
fur die Nachkommen des ausgewéhlten Knotens bestimmt ist, auszuwahlen; und

nur die kompilierte Software, die von dem ausgewahlten Knoten oder von den Nachkommen des ausgewahlten
Knotens ausgefuhrt werden soll, an den ausgewahlten Knoten zu senden.

16. Computerprogrammprodukt nach Anspruch 15, das des Weiteren Computerprogrammbefehle umfasst,
um
kompilierte Software durch einen ausgewahlten Knoten zu empfangen;
festzustellen, ob die kompilierte Software fir den ausgewéhlten Knoten oder fir einen seiner Nachkommen
bestimmt ist;
die Software durch den ausgewahlten Knoten zur Ausflihrung zu verwalten, wenn die kompilierte Software fr
den ausgewahlten Knoten bestimmt ist; und
einen anderen Knoten in einer néchsten Ebene des hierarchischen verteilten Verarbeitungssystems in Abhan-
gigkeit von einem Nachkommen fiir die kompilierte Software auszuwéhlen, wenn die kompilierte Software flr
einen der Nachkommen bestimmt ist, und die kompilierte Software an den ausgewahlten anderen Knoten zu
senden.

17. Computerprogrammprodukt nach Anspruch 15 oder Anspruch 16, das des Weiteren Computerpro-
grammbefehle umfasst, um den einen oder die mehreren Kompilierungsknoten zu kennzeichnen.

18. Computerprogrammprodukt nach Anspruch 17, wobei Computerprogrammbefehle zum Kennzeichnen
des einen oder der mehreren Kompilierungsknoten des Weiteren Computerprogrammbefehle umfassen, um
einen oder mehrere Knoten auszuwahlen, die flir den Kompiliervorgang rechnerisch optimiert werden.

19. Computerprogrammprodukt nach Anspruch 17 oder 18, wobei Computerprogrammbefehle zum Kenn-
zeichnen des einen oder der mehreren Kompilierungsknoten des Weiteren Computerprogrammbefehle um-
fassen, um einen oder mehrere Knoten auszuwahlen, die aufgrund von ihrem Standort in der Topologie des
hierarchischen verteilten Verarbeitungssystems fur den Kompiliervorgang optimiert werden.

20. Computerprogrammprodukt nach einem der Anspriiche 15 bis 19, wobei das hierarchische verteilte
Verarbeitungssystem des Weiteren einen parallelen Computer umfasst, der Folgendes enthalt:
eine Vielzahl von Computerknoten;
ein erstes Datenubertragungsnetzwerk, das die Computerknoten fir Datenubertragungen verbindet und fir
Punkt-zu-Punkt-Datentbertragungen optimiert ist; und
ein zweites Datenlbertragungsnetzwerk, das Datentbertragungs-Verbindungsleitungen enthélt, welche die
Computerknoten verbinden, um die Computerknoten als einen Baum aufzubauen, wobei jeder Computerkno-
ten Uber ein gesondertes Rechenwerk (ALU) verfugt, das fir parallele Operationen bestimmt ist.

Es folgen 9 Blatt Zeichnungen

27/36

DE 11 2011 101469 TS5 2013.03.14

Anhéangende Zeichnungen

Hierarchischer
venrteilter
Compiler

155

Computerknoten 102

Operative
Gruppe
132

ationsnetzwerk
106

Service-
Anwendung

124
E/A-Knoten E/A-1K1rhoten Service-Knoten Paralleler]
Computer
m)
—_——t | — — fetelle |
Schnittstelle
der Service-

Anwendung
126
Benutzer
128
.Daten1sp§icher
1 _
— FIG. 1

28/36

DE 11 2011 101469 TS5 2013.03.14

Computerknoten 152

RAM 156

Anwendung 158

Hierarchischer verteilter Compiler 155

Verarbeitungskeme "
164
ALU
166
Sten?%ﬁheit
- Speicherbus
Korr? l\flnﬁente 154
97
Busadapter
194

Erweiterungsbus 168

Nachrichtenaustauschmodul 160

Betriebssystem 162

'l/

Punkt-zu-Punkt-

Befenisregister
169

v
ALU 170

Adapter
o Y
Ethernet- JTAG- ,) I
Adepler | | Slave AA ﬁ Gibat Combining
12 16 188
+X -Y
181 * 184 ¢
-X +Z .
Gigabit- JTAG- 182 | 185 * Kln%lz)oten Elterqgréoten
Ethemet Master Y -7 v 19z
174 178 1 1\ J
B om
A Netzwerk
fiir kollektive
Punkt-zu-Punkt- Operationen
Nezwerk w6 FIG.2

29/36

DE 11 2011 101469 TS5 2013.03.14

-Y Computerknoten 152
184 J i T
+X
- Punkt-zu-Punkt-
X ‘ NN Adapter > 181
182 N 180 |
y A \ +y
183
-z
186 FIG. 3A
Elternknoten
192
J Computerknoten 152
Global-Combining-
Network-Adapter
188
A A
FIG. 3B
Kindknoten
190

30/36

DE 11 2011 101469 TS5 2013.03.14

Verbindungs-
leitung 103 7~

s

-X Verbindungs-
182 leitung 103
Punkte stellen
Y Computerknoten dar
; 102
Y
-7
186
Ein Netzwerk fir parallele Operationen, FIG. 4

das als "Torus"- oder "Milschen“-Netzwerk aufgebaut ist

31/36

DE 11 2011 101469 TS5 2013.03.14

Physische Wurzel
-

.
Sa
.
e

Verbindungs-
leitungen 103 \ :
> ‘Zweig-
knoten

204

¢ ¢ ¢ o
/ VS Vo v Vv : Lo H knoten
® 066 00 00 o0 e o 206

/ Punkte stellen
Computerknoten dar
102

Ein Netzwerk fiir kollektive Operationen,
das als Binarbaum aufgebaut ist
106

FIG. 5

32/36

DE 11 2011 101469 TS5 2013.03.14

Computerknoten 603

| Ethemnet-Netzwerk 628 'i Beschleuniger 604
: ! RAM 640
E 632"‘_'\L> 61 Betriebssystem 644 Prozessar £48
i ' = 8511 Architektur-
: 634 : SLMPM 646 register
! B) Gemeinsa 630
: \ * genuizter I's;éerilcqher-
M) bereich 658 r e
! Beschleuniger DMA-Steuereinheit
l 605 Hierarchischer 685
\£ Ethemet ' verteilter Compiler E)MA-Komfonente
et ! 155 =
]
|
] d { 660
5 R S—— 63— y i :
! ! - PCle- 1
| §3—‘lx(\i"{<Ver’oindungs- l 638 Netzwerk}
Lo i leitungen 656 Y 630
Ethernet-Adapter PCle-Adapter
661 660
——4- RAN 522 3

Warte- |} Warte-
schiange] {schlange
665 || 664

Warte- || Warte-
nwendungsprogramm sc%lggge schiange
auf dem %%% computer ==

g

]
i
]
]
i
i
'
|
i
]
[}
|
]
]
|
[}
|
|
[}
]
]
[}
l
]
i
]
i
!
J
|
]
)
]
)
}
|
]
| s
—
]
J
[}
]
l
]
]
}
i
]
i
]
]
|
l
'
[}
i
[}
|
|
]
[}
|
]
|
[}
]
1
1
]
]
i
[}
]
i
§
[}
i

Nachrichtenibermittlungs-
modul auf Systemebene Anforderung 668 N Leést?ngs-
aten
ol Nachricht 670 Grofe 672 674
- Computer-
SMT680 | [Senden/Emptangen 681] |2 bertragende Daten knoten
Protokolle 676 602
178 DMA 882 PUT/GET 683 : : 7y
Hierarchischer
verteilter Compiler
Betriebssystem 645
Speicher-
bus 653 Prozessor Architekturregister
652 654
Hostcomputer 610
L e e e e —— ——— e e Y
Computer- Computer-
/ knoten < IG > knoten
Hybride Datenverarbeitungsumgebung 600 602 FIG. 6 602

33/36

DE 11 2011 101469 TS5 2013.03.14

Kennzeichnen des einen oder der mehreren Kompilierungsknoten
802

:

Bereitstellen von zu kompilierender Software fir einen oder
mehrere Kompilierungsknoten, wobei mindestens ein Teil
der zu kompilierenden Software von einem oder mehreren

anderen Knoten ausgefuhrt werden soll
804

i

Kompilieren der Software durch den Kompilierungsknoten
806

l

Verwalten von kompilierter Software, die auf dem
Kompilierungsknoten ausgefiihrt werden soll,
durch den Kompilierungsknoten
808

Y

Auswihlen von einem oder mehreren Knoten in einer nachsten
Ebene der Hierarchie des verteilten Verarbeitungssystems
durch den Kompilierungsknoten in Abhéngigkeit davon,
ob kompilierte Software flr den ausgewahlten Knoten oder
fir die Nachkommen des ausgewahiten Knotens bestimmt ist

810

l

Senden von nur der kompilierten Software, die von dem
ausgewahlten Knoten oder den Nachkommen des
ausgewahlten Knotens ausgefiihrt werden soll,
an den au_sg%wéhlten Knoten
12

34/36

FIG.7

DE 11 2011 101469 TS5 2013.03.14

Kennzeichnen des einen oder
der mehreren Kompilierungsknoten
802

Bereitstellen von zu kompilierender Soft-
ware fiir einen oder mehrere Kompilierungs-
knoten, wobei mindestens ein Teil der
zu kompilierenden Software von einem
oder mehreren anderen Knoten ausgefiihrt
werden soll 804

'

Verwalten von kompilierter Software,
die aut dem Kompilierungsknoten
ausgefiihrt werden soll,
durch den Kompilierungsknoten
808

—]

Kompilieren der Software
durch den Korgggierungsknoten

Y

Auswahlen von einem oder mehreren Knoten
in einer nachsten Ebene der Hierarchie des
verteilten Verarbeitungssystems durch den
Kompilierungsknoten in Abhangigkeit davon,

ob kompilierte- Software fir den ausge-
wabhlten Knoten oder fiir die Nachkommen
des ausgewahiten Kr(m)otens bestimmt ist
81

die von dem ausgewahiten Knoten oder den

Senden von nur der kompilietten Software,

Nachkommen des ausgewahliten Knotens
ausgefihrt werden soll,
an den ausgewahiten Knoten
812

'

Empfangen von kompilierter Software
durch einen ausgewahiten Knoten
814

" Aus-
7gewdhlter Knoten
oder Nachkommen des
’ ausgewdahiten
Knotens
\ 516
\

Fir ausgewahlten
Knoten

v

Verwalten der Software
durch den ausgewéhiten
Knoten zur Ausfilhrung
818

Nachkomme =9

Auswahlen eines anderen Knotens
in einer nachsten Ebene des
hierarchischen verteilten
Verarbeitungssystems in Abhangigkeit
von einem Nachkommen fir
die kompilierte Software 820

2

Senden der kompilierten Software
an den ausgewéihlt;2n anderen Knoten
822

FIG. 8

35/36

DE 11 2011 101469 TS5 2013.03.14

Nichtkompilierte Software
722

Computer 724
GPU1 726
GPU2 728

Computerknoten 3 728
Computerknoten'8 730
Computerknoten 9 732
Computerknoten 5 734

Hybrides Front-End 736,
Hostcomputer 2 738
Hostcomputer 3 740
Hostcomputer4 742

Beschleuniger 3 744.
Beschleuniger 33 746
Beschleuniger 47 748
Beschleuniger 66 750.

>

Computer
704

Kompilieruﬁgs—Laptopcomputer

A\

Front-End-Knoten
der hybriden Daten-
verarbeitungsumgebung 714

E/A-Knoten
des parallelen Computers

(yviv iy iy
anAAAAAA
IRV VEVRVEVEYRTEY
Computerknoten
des
arallelen
Jomputers
112

Beschleuniger 720

FIG. 9

36/36

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

