
(19) *DE112011101469T520130314*

(10) DE 11 2011 101 469 T5 2013.03.14

(12) Veröffentlichung

der internationalen Anmeldung mit der
(87) Veröffentlichungs-Nr.: WO 2011/134689

in deutscher Übersetzung (Art. III § 8 Abs. 2 IntPatÜG)
(21) Deutsches Aktenzeichen: 11 2011 101 469.4
(86) PCT-Aktenzeichen: PCT/EP2011/052105
(86) PCT-Anmeldetag: 14.02.2011
(87) PCT-Veröffentlichungstag: 03.11.2011
(43) Veröffentlichungstag der PCT Anmeldung

in deutscher Übersetzung: 14.03.2013

(51) Int Cl.: G06F 9/45 (2013.01)

(30) Unionspriorität:
12/770,353 29.04.2010 US

(71) Anmelder:
International Business Machines Corp., Armonk,
N.Y., US

(74) Vertreter:
RICHARDT PATENTANWÄLTE GbR, 65185,
Wiesbaden, DE

(72) Erfinder:
Rattermann, Joseph, Rochester, Minn., US;
Archer, Charles Jens, Rochester, Minn., US;
Smith, Brian Edward, Rochester, Minn., US;
Blocksome, Michael Alan, Rochester, Minn., US

(54) Bezeichnung: Kompilieren von Software für ein hierarchisches verteiltes Verarbeitungssystem

(57) Zusammenfassung: Kompilieren von Software für ein
hierarchisches verteiltes Verarbeitungssystem, wobei das
Kompilieren das Bereitstellen von zu kompilierender Soft-
ware für einen oder mehrere Kompilierungsknoten, wobei
mindestens ein Teil der zu kompilierenden Software von
einem oder mehreren anderen Knoten ausgeführt werden
soll; das Kompilieren der Software durch den Kompilierungs-
knoten; das Verwalten von kompilierter Software, die auf
dem Kompilierungsknoten ausgeführt werden soll, durch
den Kompilierungsknoten; das Auswählen von einem oder
mehreren Knoten in einer nächsten Ebene der Hierarchie
des verteilten Verarbeitungssystems durch den Kompilie-
rungsknoten in Abhängigkeit davon, ob kompilierte Software
für den ausgewählten Knoten oder für die Nachkommen des
ausgewählten Knotens bestimmt ist; und das Senden von
nur der kompilierten Software, die von dem ausgewählten
Knoten oder von dem Nachkommen des ausgewählten Kno-
tens ausgeführt werden soll, an den ausgewählten Knoten,
beinhaltet.



DE 11 2011 101 469 T5    2013.03.14

2/36

Beschreibung

DER ERFINDUNG ZUGRUNDE LIEGENDER ALLGEMEINER STAND DER TECHNIK

Bereich der Erfindung

[0001] Der Bereich der Erfindung ist die Datenverarbeitung oder, genauer gesagt, Verfahren, Vorrichtungen
und Produkte, um Software für ein hierarchisches verteiltes Verarbeitungssystem zu kompilieren.

Beschreibung der verwandten Technik

[0002] Die Entwicklung des EDVAC-Systems (EDVAC steht für Electronic Discrete Variable Automatic Com-
puter) von 1948 wird oft als der Beginn der Computer-Ära bezeichnet. Seit dieser Zeit haben sich Computer-
systeme zu äußerst komplizierten Einheiten entwickelt. Die heutigen Computer sind den ersten Systemen wie
zum Beispiel dem EDVAC deutlich überlegen. Computersysteme enthalten üblicherweise eine Kombination
aus Hardware- und Software-Komponenten, Anwendungsprogramme, Betriebssysteme, Prozessoren, Busse,
Speicher, Eingabe/Ausgabe-Einheiten und so weiter. Da Fortschritte in der Halbleiter-Verarbeitung und bei
den Computerarchitekturen die Leistungsfähigkeit des Computers immer weiter steigern, ist eine für höhere
Ansprüche ausgelegte Computer-Software entstanden, die die höhere Leistungsfähigkeit der Hardware vor-
teilhaft nutzt, so dass wir heute über Computersysteme verfügen, die weitaus leistungsstärker sind als noch
vor ein paar Jahren.

[0003] Die verteilte Datenverarbeitung ist ein Bereich der Computertechnologie, in dem Fortschritte gemacht
wurden. Die verteilte Datenverarbeitung bezieht sich im Allgemeinen auf eine Datenverarbeitung mit mehreren
halbautonomen Computersystemen, die über ein Datenübertragungsnetzwerk Daten austauschen. Die halb-
autonomen Computersysteme treten miteinander in Dialogverkehr, um ein gemeinsames Ziel zu erreichen.
Ein Computerprogramm oder eine Computeranwendung, die in einem verteilten Datenverarbeitungssystem
ausgeführt wird, kann als ein verteiltes Programm bezeichnet werden. Die verteilte Datenverarbeitung kann
sich auch auf die Verwendung von verteilten Datenverarbeitungssystemen zur Lösung von Berechnungspro-
blemen beziehen. Bei der verteilten Datenverarbeitung kann ein Problem in viele Aufgaben (Tasks) unterteilt
werden, von denen jede von einem der halbautonomen Computersysteme gelöst werden kann.

[0004] Manche verteilte Datenverarbeitungssysteme werden zur Durchführung einer parallelen Datenverar-
beitung optimiert. Unter der parallelen Datenverarbeitung versteht man die gleichzeitige Ausführung derselben
Task (aufgeteilt und speziell angepasst) auf mehreren Prozessoren, damit man Ergebnisse schneller erhält.
Die parallele Datenverarbeitung beruht darauf, dass der Prozess des Lösens eines Problems gewöhnlich in
kleinere Tasks aufgeteilt werden kann, die gleichzeitig koordiniert ausgeführt werden können.

[0005] Parallele Computer führen parallele Algorithmen aus. Ein paralleler Algorithmus kann aufgeteilt wer-
den, damit er auf vielen verschiedenen Verarbeitungseinheiten jeweils in Teilen ausgeführt werden kann, und
anschließend kann er am Ende wieder zusammengesetzt werden, damit man ein Datenverarbeitungsergebnis
erhält. Manche Algorithmen können problemlos in Teile gegliedert werden. Die Aufteilung der Aufgabe, alle
Zahlen von eins bis einhunderttausend zu prüfen, um festzustellen, welches Primzahlen sind, könnte beispiels-
weise durchgeführt werden, indem man jedem vorhandenen Prozessor eine Teilmenge der Zahlen zuweist
und die Liste der positiven Ergebnisse dann wieder zusammensetzt. In dieser Beschreibung werden die meh-
reren Verarbeitungseinheiten, die die einzelnen Teile eines parallelen Programms ausführen, als ”Computer-
knoten” bezeichnet. Ein paralleler Computer besteht sowohl aus Computerknoten als auch aus anderen Verar-
beitungsknoten, zu denen beispielsweise auch Eingabe/Ausgabe-(E/A-)Knoten und Service-Knoten gehören.

[0006] Parallele Algorithmen sind wertvoll, da sich bestimmte Arten von großen Rechenaufgaben aufgrund
der Funktionsweise moderner Prozessoren mittels eines parallelen Algorithmus schneller durchführen lassen
als mittels eines seriellen (nichtparallelen) Algorithmus. Es ist weitaus schwieriger, einen Computer mit einem
einzigen schnellen Prozessor als einen mit vielen langsamen Prozessoren und dem gleichen Durchsatz zu
bauen. Es gibt auch bestimmte theoretische Grenzen für die mögliche Geschwindigkeit von seriellen Prozes-
soren. Andererseits hat jeder parallele Algorithmus einen seriellen Teil, und folglich haben parallele Algorith-
men einen Sättigungspunkt. Nach diesem Punkt erzielt man mit dem Hinzufügen weiterer Prozessoren keinen
höheren Durchsatz, man erhöht lediglich den Verarbeitungsaufwand und die Kosten.

[0007] Parallele Algorithmen sind auch so ausgelegt, dass sie eine mehrere Ressourcen die Datenübertra-
gungsanforderungen unter den Knoten eines parallelen Computers optimieren. Es gibt zwei Arten, in der par-



DE 11 2011 101 469 T5    2013.03.14

3/36

allele Prozessoren kommunizieren, der gemeinsam genutzte Speicher oder den Nachrichtenaustausch. Die
Verarbeitung mit gemeinsam genutztem Speicher erfordert ein zusätzliches Sperren der Daten, ist mit einem
Mehraufwand in Form von zusätzlichen Prozessor- und Buszyklen verbunden und serialisiert darüber hinaus
einen Teil des Algorithmus.

[0008] Bei der Verarbeitung des Nachrichtenaustausch werden Datenübertragungsnetzwerke hoher Ge-
schwindigkeit und Nachrichten-Pufferspeicher verwendet, doch ist der Transportaufwand für die Datenübertra-
gungsnetzwerke bei dieser Übertragung höher, für die Nachrichten-Pufferspeicher entsteht zusätzlicher Spei-
cherbedarf und bei den Datenübertragungen zwischen den Knoten ist die Latenzzeit größer. Beim Entwurf
von parallelen Computern werden speziell konzipierte Datenübertragungs-Verbindungsleitungen verwendet,
so dass der zusätzliche Übertragungsaufwand gering ist, doch ist es der parallele Algorithmus, der über das
Volumen des Datenverkehrs entscheidet.

[0009] Viele Architekturen von Datenübertragungsnetzwerken werden zum Nachrichtenaustausch zwischen
Knoten in parallelen Computern verwendet. Computerknoten können in einem Netzwerk beispielsweise als
”Torus” oder als ”Masche” aufgebaut sein. Auch können Computerknoten in einem Netzwerk als ein Baum
aufgebaut sein. Ein Torus-Netzwerk verbindet die Knoten in einer dreidimensionalen Masche mit Wrap-around-
Verbindungsleitungen. Jeder Knoten ist mit seinen sechs Nachbarn über dieses Torus-Netzwerk verbunden,
und jeder Knoten wird von seiner x-, y-, z-Koordinate in der Masche adressiert. Auf diese Weise eignet sich ein
Torus-Netzwerk für Punkt-zu-Punkt-Operationen. In einem Baumnetzwerk werden die Knoten üblicherweise
zu einem Binärbaum verbunden: Jeder Knoten hat einen Elternknoten und zwei Kindknoten (obgleich manche
Knoten in Abhängigkeit von der Hardware-Konfiguration gar keine Kinder oder nur ein Kind haben dürfen).
Zwar ist ein Baumnetzwerk bei der Punkt-zu-Punkt-Übertragung gewöhnlich wenig leistungsfähig, doch bietet
es eine hohe Bandbreite und eine geringe Latenzzeit bei bestimmten kollektiven Operationen, Nachrichtenaus-
tausch-Operationen, an denen alle Computerknoten gleichzeitig teilnehmen wie zum Beispiel eine Allgather-
Operation. Bei Computern, die ein Torus- und ein Baumnetzwerk verwenden, werden die beiden Netzwerke
üblicherweise unabhängig voneinander realisiert, mit getrennten Weiterleitungsschaltungen, getrennten phy-
sischen Verbindungsleitungen und getrennten Nachrichten-Pufferspeichen.

KURZDARSTELLUNG DER ERFINDUNG

[0010] Verfahren, Vorrichtungen und Produkte zum Kompilieren von Software für ein hierarchisches verteiltes
Verarbeitungssystem einschließlich der Bereitstellung von zu kompilierender Software für einen oder mehrere
Kompilierungsknoten, wobei mindestens ein Teil der zu kompilierenden Software von einem oder mehreren
anderen Knoten ausgeführt werden soll; Kompilieren der Software durch den Kompilierungsknoten; Verwalten
von kompilierter Software, die auf dem Kompilierungsknoten ausgeführt werden soll, durch den Kompilierungs-
knoten; Auswählen von einem oder mehreren Knoten in einer nächsten Ebene der Hierarchie des verteilten
Verarbeitungssystems durch den Kompilierungsknoten in Abhängigkeit davon, ob kompilierte Software für den
ausgewählten Knoten oder für die Nachkommen des ausgewählten Knotens bestimmt ist; Senden von nur
der kompilierten Software, die von dem ausgewählten Knoten oder von dem Nachkommen des ausgewählten
Knotens ausgeführt werden soll, an den ausgewählten Knoten; Empfangen von kompilierter Software durch
einen ausgewählten Knoten; Feststellen, ob die kompilierte Software für den ausgewählten Knoten oder für
einen seiner Nachkommen bestimmt ist; wenn die kompilierte Software für den ausgewählten Knoten bestimmt
ist, Verwalten der Software durch den ausgewählten Knoten zur Ausführung; und wenn die kompilierte Soft-
ware für einen der Nachkommen bestimmt ist, Auswählen eines anderen Knotens in einer nächsten Ebene des
hierarchischen verteilten Verarbeitungssystems in Abhängigkeit von einem Nachkommen für die kompilierte
Software und Senden der kompilierten Software an den ausgewählten anderen Knoten.

[0011] Die vorstehenden und andere Aufgaben, Merkmale und Vorteile der Erfindung gehen aus den folgen-
den ausführlicheren Beschreibungen von beispielhaften Ausführungsformen der Erfindung, die in den beige-
fügten Zeichnungen veranschaulicht sind, hervor, in denen gleiche Bezugszahlen im Allgemeinen gleiche Teile
von beispielhaften Ausführungsformen der Erfindung darstellen.

KURZE BESCHREIBUNG DER ZEICHNUNGEN

[0012] Fig. 1 zeigt ein beispielhaftes verteiltes Datenverarbeitungssystem, um Software für ein hierarchisches
verteiltes Verarbeitungssystem gemäß Ausführungsformen der vorliegenden Erfindung zu kompilieren.



DE 11 2011 101 469 T5    2013.03.14

4/36

[0013] Fig. 2 zeigt ein Blockschaltbild eines beispielhaften Computerknotens, der in einem parallelen Com-
puter von Nutzen ist, welcher Software für ein hierarchisches verteiltes Verarbeitungssystem gemäß Ausfüh-
rungsformen der vorliegenden Erfindung kompilieren kann.

[0014] Fig. 3A zeigt einen beispielhaften Punkt-zu-Punkt-Adapter, der in Systemen von Nutzen ist, die Soft-
ware für ein hierarchisches verteiltes Verarbeitungssystem gemäß Ausführungsformen der vorliegenden Er-
findung kompilieren können.

[0015] Fig. 3B zeigt einen beispielhaften Punkt-zu-Punkt-Adapter, der in Systemen von Nutzen ist, die Soft-
ware für ein hierarchisches verteiltes Verarbeitungssystem gemäß Ausführungsformen der vorliegenden Er-
findung kompilieren können.

[0016] Fig. 4 zeigt eine Zeichnung mit Linien, die ein beispielhaftes Datenübertragungsnetzwerk darstellt, das
für Punkt-zu-Punkt-Operationen optimiert ist, welche in Systemen von Nutzen sind, die Software für ein hierar-
chisches verteiltes Verarbeitungssystem gemäß Ausführungsformen der vorliegenden Erfindung kompilieren
können.

[0017] Fig. 5 zeigt eine Zeichnung mit Linien, die ein beispielhaftes Datenübertragungsnetzwerk darstellt, das
für kollektive Operationen optimiert ist, welche in Systemen von Nutzen sind, die Software für ein hierarchisches
verteiltes Verarbeitungssystem gemäß Ausführungsformen der vorliegenden Erfindung kompilieren können.

[0018] Fig. 6 zeigt ein weiteres beispielhaftes verteiltes Datenverarbeitungssystem zum Kompilieren von Soft-
ware für ein hierarchisches verteiltes Verarbeitungssystem gemäß Ausführungsformen der vorliegenden Er-
findung, in dem das verteilte Datenverarbeitungssystem als eine hybride Datenverarbeitungsumgebung aus-
geführt ist.

[0019] Fig. 7 zeigt ein beispielhaftes Verfahren zum Kompilieren von Software für ein hierarchisches verteiltes
Verarbeitungssystem gemäß Ausführungsformen der vorliegenden Erfindung.

[0020] Fig. 8 zeigt einen Ablaufplan, der ein weiteres beispielhaftes Verfahren zum Kompilieren von Software
für ein hierarchisches verteiltes Verarbeitungssystem gemäß Ausführungsformen der vorliegenden Erfindung
veranschaulicht.

[0021] Fig. 9 zeigt ein Schaubild eines beispielhaften Anwendungsfalls eines Systems zum Kompilieren von
Software für ein hierarchisches verteiltes Verarbeitungssystem gemäß Ausführungsformen der vorliegenden
Erfindung.

AUSFÜHRLICHE BESCHREIBUNG VON BEISPIELHAFTEN AUSFÜHRUNGSFORMEN

[0022] Beispielhafte Verfahren, Vorrichtungen und Produkte zum Kompilieren von Software für ein hierarchi-
sches verteiltes Verarbeitungssystem gemäß Ausführungsformen der vorliegenden Erfindung werden mit Be-
zug auf die beigefügten Zeichnungen beschrieben, wobei mit Fig. 1 begonnen wird. Fig. 1 zeigt ein beispielhaf-
tes verteiltes Datenverarbeitungssystem, um Software für ein hierarchisches verteiltes Verarbeitungssystem
gemäß Ausführungsformen der vorliegenden Erfindung zu kompilieren. Das System von Fig. 1 enthält einen
parallelen Computer (100), einen nichtflüchtigen Speicher für den Computer in Form der Datenspeichereinheit
(118), eine Ausgabeeinheit für den Computer in Form des Druckers (120) und eine Eingabe/Ausgabe-Einheit
für den Computer in Form des Computerendgeräts (122). Der parallele Computer (100) in dem Beispiel von
Fig. 1 enthält eine Vielzahl von Computerknoten (102).

[0023] Die Computerknoten (102) sind für Datenübertragungen über mehrere unabhängige Datenübertra-
gungsnetzwerke verbunden, darunter ein Netzwerk vom Typ ”Joint Test Action Group” (JTAG) (104), ein glo-
bales Kombinationsnetzwerk (106), das für kollektive Operationen optimiert ist, und ein Torus-Netzwerk (108),
das für Punkt-zu-Punkt-Operationen optimiert ist. Das globale Kombinationsnetzwerk (106) ist ein Datenüber-
tragungsnetzwerk, das Datenübertragungs-Verbindungsleitungen enthält, die mit den Computerknoten ver-
bunden sind, um die Computerknoten als einen Baum aufzubauen. Jedes Datenübertragungsnetzwerk ist mit
Datenübertragungs-Verbindungsleitungen zwischen den Computerknoten (102) realisiert. Die Datenübertra-
gungs-Verbindungsleitungen ermöglichen Datenübertragungen für parallele Operationen zwischen den Com-
puterknoten des parallelen Computers. Die Verbindungsleitungen zwischen den Computerknoten sind bidi-
rektionale Verbindungsleitungen, die üblicherweise mit zwei getrennten gerichteten Datenübertragungspfaden
realisiert werden.



DE 11 2011 101 469 T5    2013.03.14

5/36

[0024] Überdies sind die Computerknoten (102) des parallelen Computers in mindestens eine operative Grup-
pe (132) von Computerknoten für kollektive parallele Operationen auf dem parallelen Computer (100) geglie-
dert. Bei einer operativen Gruppe von Computerknoten handelt es sich um den Satz von Computerknoten,
auf dem eine kollektive parallele Operation ausgeführt wird. Kollektive Operationen werden mit Datenübertra-
gungen zwischen den Computerknoten einer operativen Gruppe durchgeführt. Kollektive Operationen sind
diejenigen Funktionen, an denen alle Computerknoten einer operativen Gruppe beteiligt sind. Eine kollektive
Operation ist eine Operation, ein Befehl eines Computerprogramms zum Nachrichtenaustausch, der von allen
Computerknoten in einer operativen Gruppe von Computerknoten gleichzeitig, das heißt, zu ungefähr dem
gleichen Zeitpunkt, ausgeführt wird. Eine solche operative Gruppe kann alle Computerknoten in einem paral-
lelen Computer (100) oder eine Teilmenge aller Computerknoten beinhalten. Kollektive Operationen werden
oft um Punkt-zu-Punkt-Operationen aufgebaut. Eine kollektive Operation setzt voraus, dass alle Prozesse auf
allen Computerknoten in einer operativen Gruppe dieselbe kollektive Operation mit übereinstimmenden Ar-
gumenten aufrufen. Eine „Rundsendung” (broadcast) ist ein Beispiel für eine kollektive Operation, um Daten
zwischen Computerknoten einer operativen Gruppe zu übertragen. Eine „Reduktions”-(Reduce-)Operation ist
ein Beispiel für eine kollektive Operation, die arithmetische oder logische Funktionen an Daten ausführt, die
zwischen den Computerknoten einer operativen Gruppe verteilt sind. Eine operative Gruppe kann zum Beispiel
als ein MPI-”Kommunikator” realisiert sein.

[0025] ”MPI” bezieht sich auf die ”Message Passing Interface”, eine Bibliothek für parallele Übertragungen
nach dem Stand der Technik, ein Modul mit Computerprogrammbefehlen für Datenübertragungen auf paral-
lelen Computern. Zu Beispielen für Bibliotheken für parallele Übertragungen nach dem Stand der Technik,
die zur Verwendung mit Systemen gemäß Ausführungsformen der vorliegenden Erfindung verbessert werden
können, gehören MPI und die Bibliothek ”Parallel Virtual Machine” (PVM). PVM wurde von der University of
Tennessee, The Oak Ridge National Laboratory und der Emory University entwickelt. MPI wird vom MPI-Forum
verbreitet, einer offenen Gruppe mit Repräsentanten aus vielen Unternehmen und Organisationen, die den
MPI-Standard definieren und pflegen. MPI ist zum Zeitpunkt der Erstellung dieses Schriftstücks der de-facto-
Standard für die Übertragung zwischen Computerknoten, die ein paralleles Programm auf einem parallelen
Computer mit verteiltem Speicher ausführen. Diese Beschreibung verwendet der einfacheren Erklärung halber
manchmal die MPI-Terminologie, obgleich die Verwendung von MPI als solches weder ein Erfordernis noch
eine Beschränkung der vorliegenden Erfindung darstellt.

[0026] Manche kollektiven Operationen verfügen über einen einzigen Ursprungs- oder Empfangsprozess, der
auf einem bestimmten Computerknoten in einer operativen Gruppe ausgeführt wird. Bei einer kollektiven Ope-
ration ”Rundsendung” zum Beispiel ist der Prozess auf dem Computerknoten, der die Daten an alle anderen
Computerknoten verteilt, ein Ursprungsprozess. Bei einer „Sammel”-(Gather-)Operation beispielsweise ist der
Prozess auf dem Computerknoten, der alle Daten von den anderen Computerknoten empfangen hat, ein Emp-
fangsprozess. Der Computerknoten, auf dem ein solcher Ursprungs- oder Empfangsprozess ausgeführt wird,
wird als lokaler Wurzelknoten bezeichnet.

[0027] Die meisten kollektiven Operationen sind Variationen oder Kombinationen von vier Basisoperationen:
Rundsenden (Broadcast), Sammeln (Gather), Streuen (Scatter) und Reduzieren (Reduce). Die Schnittstellen
für diese kollektiven Operationen sind in den vom MPI-Forum verbreiteten MPI-Standards definiert. Algorith-
men zur Ausführung von kollektiven Operationen sind in den MPI-Standards jedoch nicht definiert. Bei einer
Rundsende-Operation geben alle Prozesse denselben Wurzelprozess an, von dem der Inhalt seines Puffer-
speichers gesendet wird. Von dem Wurzelprozess verschiedene Prozesse geben Empfangspufferspeicher an.
Nach der Operation enthalten alle Pufferspeicher die Nachricht von dem Wurzelprozess.

[0028] Bei einer Streuoperation teilt die logische Wurzel Daten in der Wurzel in Segmente und verteilt an
jeden Computerknoten in der operativen Gruppe ein anderes Segment. Bei einer Streuoperation geben alle
Prozesse gewöhnlich denselben Empfangszählstand an. Die Sendeargumente sind nur für den Wurzelprozess
von Bedeutung, dessen Pufferspeicher den Sendezählstand * N Elemente eines bestimmten Datentyps enthält,
wobei N die Anzahl der Prozesse in der bestimmten Gruppe der Computerknoten ist. Der Sendepufferspeicher
wird aufgeteilt und an alle Prozesse (einschließlich des Prozesses auf der logischen Wurzel) verteilt. Jedem
Computerknoten wird eine fortlaufende Kennung mit der Bezeichnung ”Rang” zugewiesen. Nach der Operation
hat die Wurzel jedem Prozess in aufsteigender Rangfolge Datenelemente des Sendezählstands gesendet. Der
Rang 0 empfängt die ersten Datenelemente des Sendezählstands aus dem Sendepufferspeicher. Der Rang 1
empfängt die zweiten Datenelemente des Sendezählstands aus dem Sendepufferspeicher und so weiter.

[0029] Eine Sammeloperation ist eine kollektive Viele-zu-eins-Operation, die das komplette Gegenteil der Be-
schreibung der Streuoperation ist. Das heißt, eine Sammeloperation ist eine kollektive Viele-zu-eins-Operation,



DE 11 2011 101 469 T5    2013.03.14

6/36

bei der Elemente eines Datentyps von den nach ihrem Rang sortierten Computerknoten eingesammelt und in
einen Empfangspufferspeicher in einem Wurzelknoten eingegeben werden.

[0030] Eine Reduktionsoperation ist ebenfalls eine kollektive Viele-zu-eins-Operation, die eine arithmetische
oder logische Funktion enthält, welche an zwei Datenelementen ausgeführt wird. Alle Prozesse geben densel-
ben „Zählstand” (count) und dieselbe arithmetische oder logische Funktion an. Nach der Reduktion haben alle
Prozesse Datenelemente des Zählstands aus den Sendepufferspeichern der Computerknoten an den Wurzel-
prozess gesendet. Bei einer Reduktionsoperation werden Datenelemente von entsprechenden Speicherplät-
zen im Sendepufferspeicher mittels arithmetischer oder logischer Operationen paarweise verknüpft, um ein
einziges entsprechendes Element im Empfangspufferspeicher des Wurzelprozesses zu erzeugen. Die Anwen-
dung von bestimmten Reduktionsoperationen kann zur Laufzeit festgelegt werden. Bibliotheken für parallele
Übertragungen können vordefinierte Operationen unterstützen. MPI stellt beispielsweise die folgenden vorde-
finierten Reduktionsoperationen zur Verfügung:

MPI_MAX Maximum
MPI_MIN Minimum
MPI_SUM Summe
MPI_PROD Produkt
MPI_LAND Logisches UND
MPI_BAND Bitweises UND
MPI_LOR Logisches ODER
MPI_BOR Bitweises ODER
MPI_LXOR Logisches exklusives ODER
MPI_BXOR Bitweises exklusives ODER

[0031] Neben Computerknoten enthält der parallele Computer (100) auch Eingabe/Ausgabe-(E/A-)Knoten
(110, 114), die über das globale Kombinationsnetzwerk (106) mit den Computerknoten (102) verbunden sind.
Die Computerknoten in dem parallelen Computer (100) werden in Verarbeitungsgruppen unterteilt, so dass
jeder Computerknoten in einer Verarbeitungsgruppe für Datenübertragungen mit demselben E/A-Knoten ver-
bunden ist. Jede Verarbeitungsgruppe besteht folglich aus einem E/A-Knoten und einer Teilmenge von Com-
puterknoten (102). Das Verhältnis zwischen der Anzahl der Computerknoten und der Anzahl der E/A-Knoten in
dem ganzen System hängt üblicherweise von der für den parallelen Computer gewählten Hardware-Konfigura-
tion ab. Bei manchen Konfigurationen kann jede Verarbeitungsgruppe zum Beispiel aus acht Computerknoten
und einem E/A-Knoten bestehen. Bei anderen Konfigurationen kann jede Verarbeitungsgruppe aus vierund-
sechzig Computerknoten und einem E/A-Knoten bestehen. Dieses Beispiel dient jedoch lediglich der Erklärung
und ist nicht als Einschränkung zu verstehen. Jeder E/A-Knoten stellt E/A-Dienste zwischen Computerknoten
(102) seiner Verarbeitungsgruppe und einer Gruppe von E/A-Einheiten bereit. In dem Beispiel von Fig. 1 sind
die E/A-Knoten (110, 114) über ein lokales Netzwerk (LAN) (130), das mittels eines Hochgeschwindigkeits-
Ethernet-Netzwerks realisiert ist, für Datenübertragungen mit den E/A-Einheiten (118, 120, 122) verbunden.

[0032] Der parallele Computer (100) von Fig. 1 enthält auch einen Service-Knoten (116), der über eines der
Netzwerke (104) mit den Computerknoten verbunden ist. Der Service-Knoten (116) stellt Dienste bereit, die
einer Vielzahl von Computerknoten gemein sind; er verwaltet die Konfiguration von Computerknoten, er lädt
Programme in die Computerknoten, er startet die Ausführung von Programmen auf den Computerknoten, er
ruft Ergebnisse von Programmoperationen auf den Computerknoten ab und so weiter. Der Service-Knoten
(116) führt eine Service-Anwendung (124) aus und kommuniziert mit Benutzern (128) über eine Schnittstelle
(126) der Service-Anwendung, die auf dem Computerendgerät (122) ausgeführt wird.

[0033] In dem Beispiel von Fig. 1 ist auf einem der Computerknoten ein hierarchischer verteilter Compiler
(155), ein Modul einer automatisierten Datenverarbeitungsmaschine, installiert, der Software für ein hierar-
chisches verteiltes Verarbeitungssystem gemäß Ausführungsformen der vorliegenden Erfindung kompilieren
kann. Der hierarchische verteilte Compiler (155) enthält einen Befehl eines Computerprogramms, um die Soft-
ware durch den Kompilierungsknoten zu kompilieren; um kompilierte Software, die auf dem Kompilierungs-
knoten ausgeführt werden soll, durch den Kompilierungsknoten zu verwalten; um einen oder mehrere Knoten
in einer nächsten Ebene der Hierarchie des verteilten Verarbeitungssystems durch den Kompilierungsknoten
in Abhängigkeit davon, ob kompilierte Software für den ausgewählten Knoten oder für die Nachkommen des
ausgewählten Knotens bestimmt ist, auszuwählen; um nur die kompilierte Software, die von dem ausgewählten



DE 11 2011 101 469 T5    2013.03.14

7/36

Knoten oder von dem Nachkommen des ausgewählten Knotens ausgeführt werden soll, an den ausgewähl-
ten Knoten zu senden. Jeder der anderen Computerknoten (102) von Fig. 1 kann auch kompilierte Software
empfangen; Feststellen, ob die kompilierte Software für diesen Knoten oder für einen seiner Nachkommen be-
stimmt ist; die Software zur Ausführung verwalten, wenn die kompilierte Software für diesen Knoten bestimmt
ist; und einen anderen Knoten in einer nächsten Ebene des hierarchischen verteilten Verarbeitungssystems in
Abhängigkeit von einem Nachkommen für die kompilierte Software auswählen, wenn die kompilierte Software
für einen der Nachkommen bestimmt ist, und die kompilierte Software an den ausgewählten anderen Knoten
senden.

[0034] Die Anordnung der Knoten, Netzwerke und E/A-Einheiten, die das beispielhafte in Fig. 1 dargestellte
System bilden, dient lediglich der Erklärung und ist nicht als Einschränkung der vorliegenden Erfindung zu ver-
stehen. Datenverarbeitungssysteme, die Software für ein hierarchisches verteiltes Verarbeitungssystem ge-
mäß Ausführungsformen der vorliegenden Erfindung kompilieren können, können weitere Knoten, Netzwerke,
Einheiten und Architekturen enthalten, die in Fig. 1 nicht gezeigt sind, wie für den Fachmann zu erkennen
ist. Der parallele Computer (100) in dem Beispiel von Fig. 1 enthält zwar sechzehn Computerknoten (102),
doch wird der Leser bemerken, dass parallele Computer, die Software für ein hierarchisches verteiltes Ver-
arbeitungssystem gemäß Ausführungsformen der vorliegenden Erfindung kompilieren können, eine beliebi-
ge Anzahl von Computerknoten enthalten können. Neben Ethernet und JTAG können Netzwerke in solch ei-
nem Datenverarbeitungssystem viele Datenübertragungsprotokolle unterstützen, darunter beispielsweise TCP
(Transmission Control Protocol), IP (Internet Protocol) und andere, wie für den Fachmann zu erkennen ist.
Verschiedene Ausführungsformen der vorliegenden Erfindung können neben den in Fig. 1 veranschaulichten
auch auf vielen verschiedenen Hardware-Plattformen realisiert werden.

[0035] Das Kompilieren von Software für ein hierarchisches verteiltes Verarbeitungssystem gemäß Ausfüh-
rungsformen der vorliegenden Erfindung kann im Allgemeinen auf einem parallelen Computer durchgeführt
werden, der eine Vielzahl von Computerknoten enthält. Tatsächlich können solche Computer Tausende von
solchen Computerknoten enthalten. Jeder Computerknoten ist selbst wiederum eine Art Computer, der aus
einem oder mehreren Computerprozessoren (oder Prozessorkernen), seinem eigenen Computerspeicher und
seinen eigenen Eingabe/Ausgabe-Adaptern besteht. Zur näheren Erklärung zeigt Fig. 2 daher ein Blockschalt-
bild eines beispielhaften Computerknotens, der in einem parallelen Computer von Nutzen ist, welcher Software
für ein hierarchisches verteiltes Verarbeitungssystem gemäß Ausführungsformen der vorliegenden Erfindung
kompilieren kann. Der Computerknoten (152) von Fig. 2 enthält einen oder mehrere Verarbeitungskerne (164)
sowie einen Direktzugriffspeicher (RAM) (156). Die Verarbeitungskerne (164) sind mit dem RAM (156) über
einen Hochgeschwindigkeits-Speicherbus (154) und über einen Busadapter (194) sowie einen Erweiterungs-
bus (168) mit anderen Komponenten des Computerknotens (152) verbunden. Im RAM (156) ist ein Anwen-
dungsprogramm (158), ein Modul mit Computerprogrammbefehlen, gespeichert, das eine parallele Datenver-
arbeitung auf Benutzerebene unter Verwendung von parallelen Algorithmen durchführt.

[0036] Ebenfalls im RAM (156) gespeichert ist ein Nachrichtenaustauschmodul (160), eine Bibliothek mit
Computerprogrammbefehlen, die parallele Übertragungen zwischen Computerknoten einschließlich Punkt-zu-
Punkt-Operationen sowie kollektive Operationen durchführen. Das Anwendungsprogramm (158) führt kollek-
tive Operationen aus, indem es Software-Routinen in dem Nachrichtenaustauschmodul (160) aufruft. Eine Bi-
bliothek mit parallelen Übertragungsroutinen kann zur Verwendung in Systemen gemäß Ausführungsformen
der vorliegenden Erfindung von Grund auf entwickelt werden, wobei eine herkömmliche Programmiersprache
wie zum Beispiel die Programmiersprache C und herkömmliche Programmierverfahren verwendet werden, um
parallele Übertragungsroutinen zu schreiben, die Daten zwischen Knoten in zwei unabhängigen Datenüber-
tragungsnetzwerken senden und empfangen. Alternativ können vorhandene Bibliotheken nach dem Stand der
Technik verbessert werden, damit sie gemäß Ausführungsformen der vorliegenden Erfindung arbeiten. Zu
Beispielen für Bibliotheken für parallele Übertragungen nach dem Stand der Technik gehören die Bibliothek
”Message Passing Interface” (MPI) und die Bibliothek ”Parallel Virtual Machine” (PVM).

[0037] Ebenfalls im RAM gespeichert ist ein hierarchischer verteilter Compiler (155), ein Modul einer auto-
matisierten Datenverarbeitungsmaschine, der Software für ein hierarchisches verteiltes Verarbeitungssystem
gemäß Ausführungsformen der vorliegenden Erfindung kompilieren kann. Der hierarchische verteilte Compiler
(155) enthält einen Befehl eines Computerprogramms, um die Software durch den Kompilierungsknoten zu
kompilieren; um kompilierte Software, die auf dem Kompilierungsknoten ausgeführt werden soll, durch den
Kompilierungsknoten zu verwalten; um einen oder mehrere Knoten in einer nächsten Ebene der Hierarchie
des verteilten Verarbeitungssystems durch den Kompilierungsknoten in Abhängigkeit davon, ob kompilierte
Software für den ausgewählten Knoten oder für die Nachkommen des ausgewählten Knotens bestimmt ist,
auszuwählen; um nur die kompilierte Software, die von dem ausgewählten Knoten oder von dem Nachkommen



DE 11 2011 101 469 T5    2013.03.14

8/36

des ausgewählten Knotens ausgeführt werden soll, an den ausgewählten Knoten zu senden. Jeder der ande-
ren Computerknoten in einem parallelen Computer kann auch kompilierte Software empfangen; Feststellen,
ob die kompilierte Software für diesen Knoten oder für einen seiner Nachkommen bestimmt ist; die Software
zur Ausführung verwalten, wenn die kompilierte Software für diesen Knoten bestimmt ist; und einen anderen
Knoten in einer nächsten Ebene des hierarchischen verteilten Verarbeitungssystems in Abhängigkeit von ei-
nem Nachkommen für die kompilierte Software auswählen, wenn die kompilierte Software für einen der Nach-
kommen bestimmt ist, und die kompilierte Software an den ausgewählten anderen Knoten senden.

[0038] Darüber hinaus sind im RAM (156) ein Betriebssystem (162), ein Modul mit Computerprogrammbefeh-
len und Routinen für den Zugriff eines Anwendungsprogramms auf andere Ressourcen des Computerknotens,
gespeichert. Es ist für ein Anwendungsprogramm und eine Bibliothek für parallele Übertragungen in einem
Computerknoten eines parallelen Computers üblich, einen einzelnen Ausführungs-Thread ohne Benutzeran-
meldung und ohne Sicherheitsaspekte auszuführen, weil der Thread über die Berechtigung zum vollständigen
Zugriff auf alle Ressourcen des Knotens verfügt. Die Menge und die Komplexität der von einem Betriebssys-
tem auf einem Computerknoten in einem parallelen Computer auszuführenden Tasks ist folglich geringer als
die Menge und die Komplexität der Tasks eines Betriebssystems auf einem seriellen Computer, auf dem viele
Threads gleichzeitig ausgeführt werden. Überdies gibt es auf dem Computerknoten (152) von Fig. 2 keinen
Video-E/A, ein weiterer Faktor, der die Anforderungen an das Betriebssystem verringert. Bei dem Betriebssys-
tem kann es sich im Vergleich zu Betriebssystemen von Universalcomputern daher um ein abgespecktes Be-
triebssystem handeln, eine im Funktionsumfang reduzierte Variante sozusagen, oder um ein Betriebssystem,
das speziell für Operationen auf einem bestimmten parallelen Computer entwickelt worden ist. Zu Betriebs-
systemen, die zur Verwendung in einem Computerknoten auf sinnvolle Weise verbessert, vereinfacht werden,
gehören UNIXTM, LinuxTM, Microsoft XPTM, AIXTM, i5/OS von IBMTM und andere, wie für den Fachmann zu
erkennen ist.

[0039] Der beispielhafte Computerknoten (152) von Fig. 2 enthält mehrere Übertragungsadapter (172, 176,
180, 188), um den Austausch von Daten mit anderen Knoten eines parallelen Computers durchzuführen. Sol-
che Datenübertragungen können seriell über RS-232-Verbindungen, über externe Busse wie zum Beispiel
den Universal Serial Bus (USB), über Datenübertragungsnetzwerke wie zum Beispiel IP-Netzwerke und auf
andere Weise durchgeführt werden, wie für den Fachmann zu erkennen ist. Übertragungsadapter realisieren
die Hardware-Ebene von Datenübertragungen, über die ein Computer entweder direkt oder über ein Netzwerk
Datenübertragungen an einen anderen Computer sendet. Zu Beispielen für Übertragungsadapter, die in Sys-
temen nützlich sind, welche Software für ein hierarchisches verteiltes Verarbeitungssystem gemäß Ausfüh-
rungsformen der vorliegenden Erfindung kompilieren, gehören Modems für drahtgebundene Übertragungen,
Ethernet-(IEEE 802.3-)Adapter für drahtgebundene Netzwerkübertragungen und 802.11b-Adapter für drahtlo-
se Netzwerkübertragungen.

[0040] Die Datenübertragungsadapter in dem Beispiel von Fig. 2 beinhalten einen Gigabit-Ethernet-Adapter
(172), der den als Beispiel dienenden Rechnerknoten (152) für Datenübertragungen mit einem Gigabit-Ether-
net-Netzwerk (174) verbindet. Gigabit Ethernet ist ein Netzwerk-Übertragungsstandard, der in dem Standard
IEEE 802.3 festgelegt ist, die eine Datenrate von 1 Milliarde Bits pro Sekunde (ein Gigabit) vorsieht. Gigabit
Ethernet ist eine Variante von Ethernet, die über Mehrmoden-Lichtwellenleiterkabel, Einmoden-Lichtwellenlei-
terkabel oder nicht abgeschirmte, verdrillte Zwillingskabel betrieben wird.

[0041] Die Datenübertragungsadapter in dem Beispiel von Fig. 2 beinhalten eine untergeordnete JTAG-Schal-
tung (JTAG-Slave-Schaltung) (176), die den als Beispiel dienenden Computerknoten (152) für den Datenaus-
tausch mit einer übergeordneten JTAG-Schaltung (JTAG-Master-Schaltung) (178) verbindet. JTAG ist der für
den Standard IEEE 1149.1 mit dem Titel ”Standard Test Access Port and Boundary-Scan Architecture for test
access ports used for testing printed circuit boards using boundary scan” gebräuchliche Name. JTAG ist in
weiten Teilen so angepasst, dass Boundary-Scan derzeit mehr oder weniger gleichbedeutend mit JTAG ist.
JTAG wird nicht nur für Leiterplatten, sondern auch für Boundary-Scan-Tests von integrierten Schaltungen
eingesetzt und ist auch als ein Mechanismus zur Fehlersuche und -beseitigung in eingebetteten Systemen
hilfreich, da er eine praktische ”Hintertür” in das System bietet. Auf den beispielhaften Computerknoten von
Fig. 2 kann zum Beispiel alles drei von Folgendem zutreffen: Er enthält üblicherweise eine oder mehrere inte-
grierte Schaltungen, die auf einer Leiterplatte installiert sind, und kann als ein eingebettetes System realisiert
werden, das über seinen eigenen Prozessor, seinen eigenen Speicher und seine eigene E/A-Funktionalität
verfügt. JTAG-Boundary-Scan-Tests durch den JTAG-Slave (176) können Prozessorregister und Speicher in
dem Computerknoten (152) zur Verwendung beim Kompilieren von Software für ein hierarchisches verteiltes
Verarbeitungssystem gemäß Ausführungsformen der vorliegenden Erfindung wirksam konfigurieren.



DE 11 2011 101 469 T5    2013.03.14

9/36

[0042] Die Datenübertragungsadapter in dem Beispiel von Fig. 2 beinhalten einen Punkt-zu-Punkt-Adapter
(180), der den beispielhaften Computerknoten (152) für Datenübertragungen mit einem Netzwerk (108) ver-
bindet, das für Punkt-zu-Punkt-Nachrichtenaustauschoperationen wie zum Beispiel ein Netzwerk, das als ein
dreidimensionaler Torus oder als eine dreidimensionale Masche konfiguriert ist, optimal geeignet ist. Der Punkt-
zu-Punkt-Adapter (180) ermöglicht Datenübertragungen in sechs Richtungen auf drei Übertragungsachsen,
x, y und z, über sechs bidirektionale Verbindungsleitungen: +x (181), –x (182), +y (183), –y (184), +z (185)
und –z (186).

[0043] Die Datenübertragungsadapter in dem Beispiel von Fig. 2 beinhalten einen Global-Combining-Net-
work-Adapter (188), der den beispielhaften Computerknoten (152) für den Austausch von Daten mit einem
Netzwerk (106) verbindet, das für kollektive Nachrichtenaustauschoperationen in einem globalen Kombinati-
onsnetzwerk, das zum Beispiel als ein Binärbaum konfiguriert ist, optimal geeignet ist. Der Global-Combining-
Network-Adapter (188) ermöglicht Datenübertragungen über drei bidirektionale Verbindungsleitungen: zwei zu
Kindknoten (190) und eine zu einem Elternknoten (192).

[0044] Der beispielhafte Computerknoten (152) enthält zwei Rechenwerke (arithmetic logic units – ALUs).
Die ALU (166) ist eine Komponente eines jeden Verarbeitungskerns (164), und eine gesonderte ALU (170)
ist für den ausschließlichen Gebrauch durch den Global-Combining-Network-Adapter (188) zur Verwendung
bei der Durchführung der arithmetischen und logischen Funktionen von Reduktionsoperationen vorgesehen.
Computerprogrammbefehle einer Reduktionsroutine in der Bibliothek für parallele Übertragungen (160) kön-
nen einen Befehl für eine arithmetische oder logische Funktion im Befehlsregister (169) zwischenspeichern.
Wenn die arithmetische oder logische Funktion einer Reduktionsoperation zum Beispiel eine ”Summe” oder
ein ”logisches ODER” ist, kann der Global-Combining-Network-Adapter (188) die arithmetische oder logische
Operation mittels der ALU (166) im Prozessor (164) oder, was üblicherweise weitaus schneller ist, mittels der
fest zugeordneten ALU (170) ausführen.

[0045] Der beispielhafte Computerknoten (152) von Fig. 2 enthält eine Steuereinheit für den direkten Spei-
cherzugriff (direct memory access – DMA) (195), bei der es sich um Computer-Hardware für einen direkten
Speicherzugriff handelt, und eine DMA-Komponente (197), bei der es sich um Computer-Software für einen
direkten Speicherzugriff handelt. Die DMA-Komponente (197) von Fig. 2 wird üblicherweise im Computerspei-
cher der DMA-Steuereinheit (195) gespeichert. Der Direktspeicherzugriff beinhaltet Lese- und Schreibopera-
tionen aus dem beziehungsweise in den Speicher von Computerknoten, während die Arbeitslast der Zentral-
einheiten (164) gleichzeitig verringert wird. Bei einer DMA-Übertragung wird im Wesentlichen ein Block des
Speichers von einem Speicherplatz an einen anderen kopiert, gewöhnlich von einem Computerknoten an ei-
nen anderen. Die CPU kann die DMA-Übertragung zwar einleiten, führt sie jedoch nicht aus.

[0046] Zur näheren Erklärung zeigt Fig. 3A einen beispielhaften Punkt-zu-Punkt-Adapter (180), der in Syste-
men von Nutzen ist, die Software für ein hierarchisches verteiltes Verarbeitungssystem gemäß Ausführungs-
formen der vorliegenden Erfindung kompilieren können. Der Punkt-zu-Punkt-Adapter (180) ist zur Verwendung
in einem für Punkt-zu-Punkt-Operationen optimierten Datenübertragungsnetzwerk vorgesehen, einem Netz-
werk, das Computerknoten in einem dreidimensionalen Torus oder in einer dreidimensionalen Masche aufbaut.
In dem Beispiel von Fig. 3A ermöglicht der Punkt-zu-Punkt-Adapter (180) Datenübertragungen auf einer x-
Achse über vier einseitig gerichtete Datenübertragungs-Verbindungsleitungen, an den und von dem nächsten
Knoten in der –x-Richtung (182) und an den und von dem nächsten Knoten in der +x-Richtung (181). In dem
Beispiel von Fig. 3A ermöglicht der Punkt-zu-Punkt-Adapter (180) Datenübertragungen auf einer x-Achse über
vier einseitig gerichtete Datenübertragungs-Verbindungsleitungen, an den und von dem nächsten Knoten in
der –x-Richtung (184) und an den und von dem nächsten Knoten in der +x-Richtung (183). Der Punkt-zu-Punkt-
Adapter (180) in Fig. 3A ermöglicht auch Datenübertragungen auf einer z-Achse über vier einseitig gerichtete
Datenübertragungs-Verbindungsleitungen, an den und von dem nächsten Knoten in der –z-Richtung (186) und
an den und von dem nächsten Knoten in der +z-Richtung (185).

[0047] Zur näheren Erklärung zeigt Fig. 3B einen beispielhaften Adapter (188) eines globales Kombinations-
netzwerks, der in Systemen von Nutzen ist, die Software für ein hierarchisches verteiltes Verarbeitungssystem
gemäß Ausführungsformen der vorliegenden Erfindung kompilieren können. Der Adapter (188) des globalen
Kombinationsnetzwerks ist zur Verwendung in einem für kollektive Operationen optimierten Netzwerk vorge-
sehen, einem Netzwerk, das Computerknoten eines parallelen Computers als Binärbaum aufbaut. In dem Bei-
spiel von Fig. 3B ermöglicht der Adapter (188) des globalen Kombinationsnetzwerks Datenübertragungen an
und von zwei Kindknoten über vier einseitig gerichtete Datenübertragungs-Verbindungsleitungen (190). Der
Adapter (188) des globalen Kombinationsnetzwerks ermöglicht auch Datenübertragungen an einen und von
einem Elternknoten über zwei einseitig gerichtete Datenübertragungs-Verbindungsleitungen (192).



DE 11 2011 101 469 T5    2013.03.14

10/36

[0048] Zur näheren Erklärung zeigt Fig. 4 eine Zeichnung mit Linien, die ein beispielhaftes Datenübertra-
gungsnetzwerk (108) darstellt, das für Punkt-zu-Punkt-Operationen optimiert ist, welche in Systemen von
Nutzen sind, die Software für ein hierarchisches verteiltes Verarbeitungssystem gemäß Ausführungsformen
der vorliegenden Erfindung kompilieren können. In dem Beispiel von Fig. 4 stellen Punkte Computerknoten
(102) eines parallelen Computers dar, und die punktierten Linien zwischen den Punkten stellen Datenübertra-
gungs-Verbindungsleitungen (103) zwischen Computerknoten dar. Die Datenübertragungs-Verbindungsleitun-
gen sind mit Punkt-zu-Punkt-Datenübertragungsadaptern realisiert, die ähnlich dem für das Beispiel in Fig. 3A
gezeigten Adapter mit Datenübertragungs-Verbindungsleitungen auf drei Achsen, x, y und z, und in und aus
sechs Richtungen +x (181), –x (182), +y (183), –y (184), +z (185) und –z (186) sind. Die Verbindungsleitungen
und die Computerknoten werden von diesem für Punkt-zu-Punkt-Operationen optimierten Datenübertragungs-
netzwerk zu einer dreidimensionalen Masche (105) zusammengefasst. Die Masche (105) hat Wrap-around-
Verbindungsleitungen auf jeder Achse, die die äußersten Computerknoten in der Masche (105) auf gegenüber-
liegenden Seiten der Masche (105) verbinden. Diese Wrap-around-Verbindungsleitungen bilden einen Teil ei-
nes Torus (107). Jeder Computerknoten in dem Torus hat einen Speicherplatz in dem Torus, der von einem
Satz von x-, y-, z-Koordinaten eindeutig angegeben wird. Der Leser wird bemerken, dass die Wrap-around-
Verbindungsleitungen in der y- und in der z-Richtung aus Gründen der Übersichtlichkeit weggelassen wurden,
jedoch in ähnlicher Weise wie die in der x-Richtung gezeigte Wrap-around-Verbindungsleitung konfiguriert
sind. Um die Erklärung verständlicher zu machen, ist das Datenübertragungsnetzwerk von Fig. 4 mit nur 27
Computerknoten gezeigt, aber der Leser wird erkennen, dass ein für Punkt-zu-Punkt-Operationen optimiertes
Datenübertragungsnetzwerk zur Verwendung beim Kompilieren von Software für ein hierarchisches verteiltes
Verarbeitungssystem gemäß Ausführungsformen der vorliegenden Erfindung einige wenige Computerknoten
oder aber Tausende von Computerknoten enthalten kann.

[0049] Zur näheren Erklärung zeigt Fig. 5 eine Zeichnung mit Linien, die ein beispielhaftes für kollektive Ope-
rationen optimiertes Datenübertragungsnetzwerk (106) darstellt, das in Systemen von Nutzen ist, die Software
für ein hierarchisches verteiltes Verarbeitungssystem gemäß Ausführungsformen der vorliegenden Erfindung
kompilieren können. Das beispielhafte Datenübertragungsnetzwerk von Fig. 5 beinhaltet Datenübertragungs-
Verbindungsleitungen, die mit den Computerknoten verbunden sind, um die Computerknoten als einen Baum
aufzubauen. In dem Beispiel von Fig. 5 stellen Punkte Computerknoten (102) eines parallelen Computers dar,
und die punktierten Linien (103) zwischen den Punkten stellen Datenübertragungs-Verbindungsleitungen zwi-
schen Computerknoten dar. Die Datenübertragungs-Verbindungsleitungen sind mit globalen Kombinations-
netzwerk-Adaptern realisiert, die ähnlich dem für das Beispiel in Fig. 3B gezeigten Adapter sind, wobei jeder
Knoten üblicherweise Datenübertragungen an und von zwei Kindknoten und Datenübertragungen an einen
und von einem Elternknoten, mit ein paar Ausnahmen, ermöglicht. Knoten in einem Binärbaum (106) können
als ein physischer Wurzelknoten (202), Zweigknoten (204) und Blattknoten (206) beschrieben werden. Der
Wurzelknoten (202) hat zwei Kind-, aber keinen Elternknoten. Die Blattknoten (206) haben jeweils einen El-
ternknoten, aber Blattknoten haben keine Kindknoten. Die Zweigknoten (204) haben jeweils einen Eltern- und
zwei Kindknoten. Die Verbindungsleitungen und die Computerknoten werden von diesem für kollektive Opera-
tionen optimierten Datenübertragungsnetzwerk dabei zu einem Binärbaum (106) aufgebaut. Um die Erklärung
verständlicher zu machen, ist das Datenübertragungsnetzwerk von Fig. 5 mit nur 31 Computerknoten gezeigt,
aber der Leser wird erkennen, dass ein für kollektive Operationen optimiertes Datenübertragungsnetzwerk zur
Verwendung in Systemen, um Software für ein hierarchisches verteiltes Verarbeitungssystem gemäß Ausfüh-
rungsformen der vorliegenden Erfindung zu kompilieren, einige wenige Computerknoten oder aber Tausende
von Computerknoten enthalten kann.

[0050] In dem Beispiel von Fig. 5 wird jedem Knoten in dem Baum eine Einheitenkennung zugewiesen, die
als ein ”Rang” (250) bezeichnet wird. Der Rang eines Knoten kennzeichnet eindeutig den Speicherplatz des
Knotens in dem Baumnetzwerk zur Verwendung sowohl bei Punkt-zu-Punkt- als auch bei kollektiven Opera-
tionen in dem Baumnetzwerk. In diesem Beispiel werden die Ränge als ganze Zahlen zugewiesen, wobei mit 0
begonnen wird, die dem Wurzelknoten (202) zugewiesen wird, 1 wird dem ersten Knoten in der zweiten Ebene
des Baumes zugewiesen, 2 wird dem zweiten Knoten in der zweiten Ebene des Baumes zugewiesen, 3 wird
dem ersten Knoten in der dritten Ebene des Baumes zugewiesen, 4 wird dem zweiten Knoten in der dritten
Ebene des Baumes zugewiesen und so weiter. Zur einfacheren Darstellung werden hier nur die Ränge der
ersten drei Ebenen des Baums gezeigt, doch wird allen Computerknoten in dem Baumnetzwerk ein eindeutiger
Rang zugewiesen.

[0051] Zur näheren Erklärung zeigt Fig. 6 ein weiteres beispielhaftes verteiltes Datenverarbeitungssystem
zum Kompilieren von Software für ein hierarchisches verteiltes Verarbeitungssystem gemäß Ausführungsfor-
men der vorliegenden Erfindung, in dem das verteilte Datenverarbeitungssystem als eine hybride Datenver-
arbeitungsumgebung ausgeführt ist. Entsprechend der Verwendung des Begriffs in dieser Beschreibung ist



DE 11 2011 101 469 T5    2013.03.14

11/36

eine ”hybride Datenverarbeitungsumgebung” insofern eine Datenverarbeitungsumgebung, als dass sie Com-
puterprozessoren enthält, die mit dem Computerspeicher funktionsmäßig verbunden sind, um eine Datenver-
arbeitung in der Form einer Ausführung von Computerprogrammbefehlen durchzuführen, die in dem Speicher
abgelegt und auf den Prozessoren ausgeführt werden. Die hybride Datenverarbeitungsumgebung (600) von
Fig. 6 enthält einen Computerknoten (603), der eine kleine gesonderte hybride Datenverarbeitungsumgebung
darstellt, welche in Verbindung mit anderen ähnlichen Computerknoten (602) eine größere hybride Datenver-
arbeitungsumgebung bildet.

[0052] Der beispielhafte Computerknoten (603) von Fig. 6 kann die Ausführung eines Computerhauptpro-
gramms auf Benutzerebene vornehmen, indem er administrative Dienste wie zum Beispiel das einleitende Pro-
grammladen und dergleichen von einer Service-Anwendung übernimmt, die auf einem Service-Knoten ausge-
führt wird, welcher mit dem Computerknoten (603) über ein Datenübertragungsnetzwerk verbunden ist. Der
beispielhafte Computerknoten kann für Datenübertragungen auch mit einem oder mehreren Eingabe/Ausga-
be-(E/A-)Knoten verbunden sein, die es dem Computerknoten ermöglichen, den Zugriff auf den Datenspeicher
und andere E/A-Funktionen zu erhalten. Die E/A-Knoten und der Service-Knoten können mit dem beispielhaf-
ten Computerknoten (603), mit anderen Computerknoten (602) in der größeren hybriden Datenverarbeitungs-
umgebung und mit E/A-Einheiten über ein lokales Netzwerk (LAN) verbunden werden, das mittels eines Hoch-
geschwindigkeits-Ethernet oder eines Datenübertragungsnetzwerks eines anderen Netzwerk-Typs realisiert
wird, wie für den Fachmann zu erkennen ist. Zu E/A-Einheiten, die in einer größeren hybriden Datenverarbei-
tungsumgebung nützlich sind, welche den Computerknoten (603) enthält, können ein nichtflüchtiger Speicher
für die Datenverarbeitungsumgebung in Form von einer Datenspeichereinheit, eine Ausgabeeinheit für die
hybride Datenverarbeitungsumgebung in Form von einem Drucker und eine E/A-Einheit für den Benutzer in
Form von einem Computerendgerät gehören, welches eine Schnittstelle einer Service-Anwendung ausführt,
die einem Benutzer eine Schnittstelle bereitstellt, um Computerknoten in der hybriden Datenverarbeitungsum-
gebung zu konfigurieren und um die Ausführung von Befehlen eines Computerhauptprogramms auf Benutzer-
ebene durch die Computerknoten einzuleiten.

[0053] Der Computerknoten (603) in dem Beispiel von Fig. 6 ist in einer erweiterten Ansicht gezeigt, um eine
hybride Datenverarbeitungsumgebung (600) ausführlicher erklären zu können, die mit anderen hybriden Da-
tenverarbeitungsumgebungen wie zum Beispiel den anderen Computerknoten (602) kombiniert werden kann,
um eine größere hybride Datenverarbeitungsumgebung zu bilden. Der Computerknoten (603) in dem Beispiel
von Fig. 6 enthält einen Hostcomputer (610). Ein Host-Computer (610) ist ein ”Host” in dem Sinn, dass es
sich dabei um den Host-Computer handelt, welcher Schnittstellenfunktionen zwischen einem Computerknoten
und anderen Komponenten der hybriden Datenverarbeitungsumgebung ausführt, die sich außerhalb eines be-
stimmten Computerknotens befindet. Das heißt, es ist der Host-Computer, der einleitende Urlade-Prozeduren,
Selbsttests beim Einschalten, grundlegende E/A-Funktionen ausführt, Programm-Ladeoperationen auf Benut-
zerebene von Service-Knoten übernimmt und so weiter.

[0054] Der Host-Computer (610) in dem Beispiel von Fig. 6 enthält einen Computerprozessor (652), der über
einen Hochgeschwindigkeits-Speicherbus (653) mit dem Computerspeicher, dem Direktzugriffspeicher (RAM)
(642), funktionsmäßig verbunden ist. Der Prozessor (652) in jedem Hostcomputer (610) verfügt über einen Satz
von Architekturregistern (654), der die Architektur des Hostcomputers bestimmt. Der beispielhafte Computer-
knoten (603) von Fig. 6 enthält auch einen oder mehrere Beschleuniger (604, 605). Ein Beschleuniger (604) ist
insofern ein ”Beschleuniger”, als jeder Beschleuniger eine Beschleuniger-Architektur hat, die in Bezug auf die
Architektur des Hostcomputers hinsichtlich der Ausführungsgeschwindigkeit einer bestimmten Klasse von Be-
rechnungsfunktionen optimiert ist. Zu solchen beschleunigten Berechnungsfunktionen gehören zum Beispiel
die Vektorverarbeitung, Gleitkomma-Operationen und andere, wie für den Fachmann zu erkennen ist. Jeder
Beschleuniger (604, 605) in dem Beispiel von Fig. 6 enthält einen Computerprozessor (648), der über einen
Hochgeschwindigkeits-Speicherbus (651) mit dem RAM (640) funktionsmäßig verbunden ist. Im RAM (640,
642) des Hostcomputers und in den Beschleunigern (604, 605) ist ein Betriebssystem (645) gespeichert. Zu
Betriebssystemen, die in Hostcomputern und Beschleunigern von hybriden Datenverarbeitungsumgebungen
gemäß Ausführungsformen der vorliegenden Erfindung von Nutzen sind, gehören UNIXTM, LinuxTM, Microsoft
XPTM, Microsoft VistaTM, Microsoft NTTM, AIXTM, das Betriebssystem i5/OS von IBMTM und andere, wie für den
Fachmann zu erkennen ist. Es besteht keine Notwendigkeit, dass das Betriebssystem in den Hostcomputern
dasselbe wie das in den Beschleunigern verwendete Betriebssystem ist.

[0055] Der Prozessor (648) jedes Beschleunigers (604, 605) verfügt über einen Satz von Architekturregistern
(650), der die Architektur der Beschleuniger bestimmt. Die Architekturregister (650) des Prozessors (648) je-
des Beschleunigers unterscheiden sich von den Architekturregistern (654) des Prozessors (652) in dem Host-
computer (610). Bei den Architekturregistern handelt es sich um Register, auf die Befehle eines Computer-



DE 11 2011 101 469 T5    2013.03.14

12/36

programms zugreifen können, die auf jeder Architektur ausgeführt werden, Register wie zum Beispiel ein Be-
fehlsregister, ein Programmzähler, Speicherindexregister, Zeiger auf die aktuelle Adresse im Stapelspeicher
(stack pointer) und dergleichen. Bei voneinander abweichenden Architekturen wäre es zwar möglich, aber un-
üblich, dass ein Hostcomputer und ein Beschleuniger dieselben Befehlssätze unterstützen. Als solches würde
man im Allgemeinen nicht erwarten, dass für die Ausführung auf dem Prozessor (648) eines Beschleunigers
(604) kompilierte Befehle eines Computerprogramms nativ auf dem Prozessor (652) des HostComputers (610)
ausgeführt werden und umgekehrt. Überdies würde man aufgrund der üblichen Unterschiede bei den Hard-
ware-Architekturen zwischen Host-Prozessoren und Beschleunigern im Allgemeinen nicht erwarten, dass für
die Ausführung auf dem Prozessor (652) eines Hostcomputers (610) kompilierte Befehle eines Computerpro-
gramms nativ auf dem Prozessor (648) eines Beschleunigers (604) ausgeführt werden, selbst wenn der Be-
schleuniger den Befehlssatz des Hostcomputers unterstützen würde. Ein Beschleuniger (604) ist insofern ein
”Beschleuniger”, als jeder Beschleuniger eine Beschleuniger-Architektur hat, die in Bezug auf die Architektur
des Hostcomputers hinsichtlich der Ausführungsgeschwindigkeit einer bestimmten Klasse von Berechnungs-
funktionen optimiert ist. Das heißt, dass die Ausführung einer Funktion oder mehrerer Funktionen, für die der
Beschleuniger optimiert ist, auf dem Beschleuniger schneller vonstatten geht, als wenn diese Funktionen auf
dem Prozessor des Hostcomputers ausgeführt würden.

[0056] Zu Beispielen für hybride Datenverarbeitungsumgebungen gehören ein Datenverarbeitungssystem,
das wiederum einen oder mehrere Hostcomputer enthält, wobei jeder Hostcomputer über einen x86-Prozes-
sor verfügt, und Beschleuniger, deren Architekturregister den PowerPC-Befehlssatz ausführen. Für die Aus-
führung auf den x86-Prozessoren in den Hostcomputern kompilierte Befehle eines Computerprogramms kön-
nen nicht von den PowerPC-Prozessoren in den Beschleunigern nativ ausgeführt werden. Der Leser wird au-
ßerdem erkennen, dass einige der in dieser Beschreibung beschriebenen beispielhaften hybriden Datenverar-
beitungsumgebungen auf der Architektur des Supercomputers des Los Alamos National Laboratory (”LANL”)
beruhen, die im Rahmen des Projekts ”LANL-Roadrunner” (benannt nach dem Staatsvogel von New Mexico)
entwickelt wurde, jener Supercomputer-Architektur, die dafür bekannt ist, dass sie zum ersten Mal ein ”Peta-
flop”, eine Billiarde Gleitkomma-Operationen pro Sekunde, erzeugt hat. Die Supercomputer-Architektur des
LANL enthält viele Hostcomputer mit Zweikern-Opteron-Prozessoren von AMD, die mit vielen Beschleunigern
mit Cell-Prozessoren von IBM verbunden sind, wobei die Opteron-Prozessoren und die Cell-Prozessoren eine
andere Architektur haben.

[0057] In dem Beispiel von Fig. 6 sind der Hostcomputer (610) und die Beschleuniger (604, 605) für Daten-
übertragungen über ein Nachrichtenübermittlungsmodul auf Systemebene (system level message passing
module – SLMPM) (646) und zwei Datenübertragungsnetzwerke (628, 630) mit mindestens zwei verschiede-
nen Arten von Netzwerken aufeinander abgestimmt. Ein Datenübertragungsnetzwerk (628, 630) stellt eine
Konfiguration einer Datenübertragungs-Hardware und -Software dar, die eine Datenübertragungsverbindung
zwischen einem Hostcomputer und einem Beschleuniger realisiert. Zu Beispielen für Arten von Datenüber-
tragungsnetzwerken gehören Peripheral Component Interconnect (PCI), PCI express (PCIe), Ethernet, Infini-
band, Fibre Channel, Small Computer System Interface (”SCSI”), External Serial Advanced Technology At-
tachment (eSATA), Universal Serial Bus (USB) und so weiter, wie für den Fachmann zu erkennen ist. In dem
Beispiel von Fig. 6 sind der Hostcomputer (610) und die Beschleuniger (604, 605) für Datenübertragungen
über ein PCIe-Netzwerk (630) durch PCIe-Datenübertragungsadapter (660) und über ein Ethernet-Netzwerk
(628) durch Ethernet-Datenübertragungsadapter (661) aufeinander abgestimmt. Die Verwendung von PCIe
und Ethernet dient lediglich der Erklärung und ist nicht als Einschränkung der Erfindung zu verstehen. Der
Fachleser erkennt sofort, dass zu hybriden Datenverarbeitungsumgebungen gemäß Ausführungsformen der
vorliegenden Erfindung auch Netzwerke anderer Art wie zum Beispiel PCI, Infiniband, Fibre Channel, SCSI,
eSATA, USB und so weiter gehören können.

[0058] Ein SLMPM (646) ist ein Modul oder eine Bibliothek mit Computerprogrammbefehlen, das beziehungs-
weise die Anwendungen auf Benutzerebene eine Anwendungsprogrammierschnittstelle (API) zur Verfügung
stellt, um Datenübertragungen auf der Grundlage von Nachrichten zwischen dem Hostcomputer (610) und
dem Beschleuniger (604, 605) durchzuführen. Zu Beispielen für Bibliotheken für Datenübertragungen auf der
Grundlage von Nachrichten, die zur Verwendung als ein SLMPM gemäß Ausführungsformen der vorliegenden
Erfindung verbessert werden können, gehören Folgende:

• die Message Passing Interface oder ”MPI”, eine in zwei Versionen erhältliche Schnittstelle in Industrie-
standard, die erstmalig auf der Supercomputing-Konferenz 1994 vorgestellt wurde und von keiner großen
Standardisierungsorganisation unterstützt wird,
• die Data Communication and Synchronization interface (DACS) des LANL-Supercomputers,



DE 11 2011 101 469 T5    2013.03.14

13/36

• die POSIX-Threads-Bibliothek (Pthreads), ein IEEE-Standard für verteilte Multithread-Verarbeitung,
• die Schnittstelle ”Open Multi-Processing” (OpenMP), eine von der Industrie unterstützte Spezifikation für
die parallele Programmierung, und
• andere für den Fachmann erkennbare Bibliotheken.

[0059] Um Datenübertragungen auf der Grundlage von Nachrichten zwischen dem Hostcomputer (610) und
dem Beschleuniger (604) zu unterstützen, verfügen sowohl der Hostcomputer (610) als auch der Beschleuniger
(604) in diesem Beispiel über ein SLMPM (646), so dass Übertragungen auf der Grundlage von Nachrichten
auf beiden Seiten einer jeden Verbindung für Datenübertragungen gesendet und empfangen werden können.

[0060] Das SLMPM (646) wird in diesem Beispiel im Allgemeinen zur Datenverarbeitung in einer hybriden
Datenverarbeitungsumgebung (600) betrieben, indem die Datenübertragungsleistung für eine Vielzahl von
Datenübertragungsmodi zwischen dem Hostcomputer (610) und den Beschleunigern (604, 605) überwacht
wird, eine Anforderung (668) für das Senden von Daten entsprechend einem Datenübertragungsmodus von
dem Hostcomputer an einen Beschleuniger empfangen wird, festgestellt wird, ob die Daten entsprechend dem
angeforderten Datenübertragungsmodus gesendet werden sollen, und wenn die Daten nicht entsprechend
dem angeforderten Datenübertragungsmodus gesendet werden sollen: Auswählen eines anderen Datenüber-
tragungsmodus und Senden der Daten entsprechend dem ausgewählten Datenübertragungsmodus. In dem
Beispiel von Fig. 6 wird die überwachte Leistung in Form von Daten der überwachten Leistung (674) darge-
stellt, die während des Betriebs des Computerknotens (603) von dem SLMPM (646) im RAM (642) des Host-
computers (610) gespeichert werden.

[0061] Ein Datenübertragungsmodus gibt einen Typ eines Datenübertragungsnetzwerks, eine Datenüber-
tragungs-Verbindungsleitung und ein Datenübertragungsprotokoll (678) an. Eine Datenübertragungs-Verbin-
dungsleitung (656) ist eine Datenübertragungsverbindung zwischen einem Hostcomputer und einem Beschleu-
niger. In dem Beispiel von Fig. 6 kann eine Verbindungsleitung (656) zwischen dem Hostcomputer (610) und
dem Beschleuniger 604) die PCIe-Verbindung (638) oder die Ethernet-Verbindung (631, 632) über das Ether-
net-Netzwerk (606) beinhalten. Eine Verbindungsleitung (656) zwischen dem Hostrechner (610) und dem Be-
schleuniger (605) in dem Beispiel von Fig. 6 kann die PCIe-Verbindung (636) oder die Ethernet-Verbindung
(631, 634) über das Ethernet-Netzwerk (606) beinhalten. In dem Beispiel von Fig. 6 ist für jede Art von Netzwerk
zwar nur eine Verbindungsleitung zwischen dem Hostcomputer und dem Beschleuniger gezeigt, doch erkennt
der Fachleser sofort, dass es für jede Art von Netzwerk beliebig viele Verbindungsleitungen geben kann.

[0062] Ein Datenübertragungsprotokoll ist ein Satz von Standard-Regeln für die Darstellung und Übertragung
von Daten, die Identitätsprüfung und Fehlererkennung, die erforderlich sind, um Informationen von einem Host-
computer (610) an einen Beschleuniger (604) zu senden. In dem Beispiel von Fig. 6 kann das SLMPM (646)
eines von mehreren Protokollen (678) für Datenübertragungen zwischen dem Hostcomputer (610) und dem
Beschleuniger auswählen. Zu Beispielen für solche Protokolle (678) gehören der Austausch von Daten mit
gemeinsam genutzten Speichern (shared memory tansfer – SMT) (680), der mit einer Sende- und einer Emp-
fangsoperation (681) ausgeführt wird, und der direkte Speicherzugriff (direct memory access – DMA) (682),
der mit PUT- und GET-Operationen (683) ausgeführt wird.

[0063] ”Shared Memory Transfer” ist ein Datenübertragungsprotokoll, das dazu dient, Daten zwischen einem
Hostcomputer und einem Beschleuniger in einen gemeinsam genutzten Speicherbereich (658) zu leiten, der
für diesen Zweck zugeordnet wurde, so dass sich jeweils nur eine Instanz der Daten in dem Speicher befindet.
Betrachten wir das Folgende als eine Übertragung mit gemeinsam genutztem Speicher zwischen dem Host-
computer (610) und dem Beschleuniger (604) von Fig. 6. Eine Anwendung (669) stellt eine Anforderung (668)
für eine Übertragung von Daten (676) vom Hostcomputer (610) an den Beschleuniger (604) gemäß dem Pro-
tokoll ”SMT” (680). Eine solche Anforderung (668) kann eine Speicheradresse enthalten, die für einen solchen
gemeinsam genutzten Speicher zugeordnet ist. In diesem Beispiel ist das gemeinsam genutzte Speicherseg-
ment (658) in einem Speicherplatz auf dem Beschleuniger (604) gezeigt, aber der Leser erkennt, dass sich
gemeinsam genutzte Speichersegmente auf dem Beschleuniger (604), auf dem Hostcomputer (610), sowohl
auf dem Hostcomputer als auch auf dem Beschleuniger oder auch ganz außerhalb des lokalen Computerkno-
tens (603) befinden können – solange der Hostcomputer und der Beschleuniger nach Bedarf auf das Segment
zugreifen können. Um eine Übertragung mit gemeinsam genutzten Speicher durchzuführen, stellt das SLMPM
(646) auf dem Hostcomputer (610) mittels eines Quittungsbetriebs, der ähnlich dem TCP-Protokoll ist, eine
Datenübertragungsverbindung mit dem SLMPM (646) her, das auf dem Beschleuniger (604) ausgeführt wird.
Das SLMPM (646) erzeugt dann eine Nachricht (670), die einen Kopfbereich und Nutzdaten enthält, und stellt
die Nachricht in eine Nachrichten-Sendewarteschlange für eine bestimmte Verbindungsleitung eines bestimm-
ten Netzwerks. Bei der Erzeugung der Nachricht fügt das SLMPM eine Kennzeichnung des Beschleunigers



DE 11 2011 101 469 T5    2013.03.14

14/36

und eine Kennzeichnung eines Prozesses, der auf dem Beschleuniger ausgeführt wird, in den Kopfbereich
der Nachricht ein. Das SLMPM fügt auch die Speicheradresse aus der Anforderung (668) in die Nachricht
ein, entweder in den Kopfbereich oder als Teil der Nutzdaten. Das SLMPM fügt auch die Daten (676), die in
der Nachricht (670) übertragen werden sollen, als Teil der Nutzdaten der Nachricht ein. Die Nachricht wird
dann von einem Datenübertragungsadapter (660, 661) über ein Netzwerk (628, 630) an das SLMPM übertra-
gen, das auf dem Beschleuniger (604) ausgeführt wird, wobei das SLMPM die Nutzdaten, die Daten (676),
die übertragen wurden, in dem gemeinsam genutzten Speicherbereich (658) im RAM (640) entsprechend der
Speicheradresse in der Nachricht speichert.

[0064] Bei dem direkten Speicherzugriff (direct memory access – DMA) handelt es sich um ein Datenübertra-
gungsprotokoll zum Austausch von Daten zwischen einem Hostcomputer und einem Beschleuniger, während
die Arbeitslast des Computerprozessors (652) gleichzeitig verringert wird. Bei einer DMA-Übertragung wird
im Wesentlichen ein Block des Speichers von einem Speicherplatz an einen anderen kopiert, gewöhnlich von
einem Hostcomputer an einen Beschleuniger oder umgekehrt. Ein Hostcomputer oder ein Beschleuniger oder
aber beide können eine DMA-Steuereinheit und eine DMA-Komponente, bei der es sich um eine Verbindung
von Computer-Hardware und -Software für den direkten Speicherzugriff handelt, enthalten. Der direkte Spei-
cherzugriff beinhaltet Lese- und Schreiboperationen aus dem beziehungsweise in den Speicher von Beschleu-
nigern und Hostcomputern, während die Arbeitslast ihrer Prozessoren gleichzeitig verringert wird. Eine DMA-
Komponente eines Beschleunigers kann zum Beispiel Daten in den für DMA-Zwecke zugeordneten Speicher
schreiben oder Daten aus diesem Speicher lesen, während der Prozessor des Beschleunigers Befehle eines
Computerprogramms ausführt oder seinen Betrieb in anderer Weise fortsetzt. Das heißt, ein Computerprozes-
sor kann einen Befehl zum Ausführen einer DMA-Übertragung ausgeben, jedoch führt die DMA-Komponente
und nicht der Prozessor die Übertragung aus.

[0065] In dem Beispiel von Fig. 6 enthält nur der Beschleuniger (604) eine DMA-Steuereinheit (685) und eine
DMA-Komponente (684), während der Hostcomputer keine von beiden enthält. In dieser Ausführungsform leitet
der Prozessor (652) auf dem Hostcomputer eine DMA-Übertragung von Daten von dem Hostcomputer an den
Beschleuniger ein, indem er eine Nachricht gemäß dem SMT-Protokoll an den Beschleuniger schickt, mit der er
den Beschleuniger anweist, eine ferne ”GET”-Operation durchzuführen. Die in dem Beispiel von Fig. 6 gezeigte
Konfiguration, bei der der Beschleuniger (604) die einzige Einheit ist, die eine DMA-Komponente enthält, dient
lediglich der Erklärung und ist nicht als Einschränkung zu verstehen. Der Fachleser erkennt sofort, dass in
vielen Ausführungsformen sowohl ein Hostcomputer als auch ein Beschleuniger eine DMA-Steuereinheit und
eine DMA-Komponente enthalten können, während in noch anderen Ausführungsformen nur ein Hostcomputer
eine DMA-Steuereinheit und eine DMA-Komponente enthält.

[0066] Um in der hybriden Datenverarbeitungsumgebung von Fig. 6 ein DMA-Protokoll auszuführen, wird für
den Zugriff durch die DMA-Komponente ein bestimmter Speicherbereich zugeordnet. Die Zuordnung eines
solchen Speichers kann unabhängig von anderen Beschleunigern oder Hostcomputern vorgenommen oder
von einem anderen Beschleuniger oder Hostcomputer eingeleitet und in Zusammenarbeit mit einem anderen
Beschleuniger oder Hostcomputer abgeschlossen werden. Gemeinsam genutzte Speicherbereiche, die bei-
spielsweise gemäß dem SMA-Protokoll zugeordnet werden, können Speicherbereiche sein, die einer DMA-
Komponente zur Verfügung gestellt werden. Das heißt, der anfängliche Aufbau und die Durchführung von
DMA-Datenübertragungen in der hybriden Datenverarbeitungsumgebung (600) von Fig. 6 kann zumindest teil-
weise mittels des Shared-Memory-Transfer- oder mittels eines anderen Außerband-Datenübertragungsproto-
kolls vorgenommen werden, wobei sich ”Außerband” auf die DMA-Komponente bezieht. Die Zuordnung von
Speicher zur Durchführung von DMA-Übertragungen ist mit einer verhältnismäßig hohen Latenzzeit verbun-
den, aber sobald er einmal zugeordnet worden ist, ermöglicht das DMA-Protokoll Datenübertragungen hoher
Bandbreite, die den Prozessor weniger belasten als viele andere Datenübertagungsprotokolle.

[0067] Eine direkte ”PUT”-Operation ist eine Betriebsweise zur Übertragung von Daten von einer DMA-Kom-
ponente auf einer Ursprungseinheit an eine DMA-Komponente auf einer Zieleinheit. Eine direkte ”PUT”-Ope-
ration gestattet die Übertragung und Speicherung von Daten auf der Zieleinheit mit nur geringer Beteiligung
des Prozessors der Zieleinheit. Um die Beteiligung des Prozessors der Zieleinheit an der direkten ”PUT”-Ope-
ration gering zu halten, überträgt die Ursprungs-DMA-Komponente die auf der Zieleinheit zu speichernden
Daten zusammen mit einer bestimmten Kennzeichnung eines Speicherorts auf der Zieleinheit. Die Ursprungs-
DMA kennt den bestimmten Speicherort auf der Zieleinheit, da die Ziel-DMA-Komponente den bestimmten
Speicherort zur Speicherung der Daten auf der Zieleinheit der Ursprungs-DMA-Komponente zuvor zur Verfü-
gung gestellt hat.



DE 11 2011 101 469 T5    2013.03.14

15/36

[0068] Eine ferne ”GET”-Operation, die manchmal auch als ”rGET” bezeichnet wird, ist eine weitere Betriebs-
weise zur Übertragung von Daten von einer DMA-Komponente auf einer Ursprungseinheit an eine DMA-Kom-
ponente auf einer Zieleinheit. Eine ferne ”GET”-Operation gestattet die Übertragung und Speicherung von Da-
ten auf der Zieleinheit mit nur geringer Beteiligung des Prozessors der Ursprungseinheit. Um die Beteiligung
des Prozessors der Ursprungseinheit an der fernen ”GET”-Operation gering zu halten, speichert die Ursprungs-
DMA-Komponente die Daten an einem Speicherplatz, auf den die Ziel-DMA-Komponente zugreifen kann, sie
benachrichtigt die Ziel-DMA-Komponente direkt oder außerhalb des Bandbereichs mittels einer Übertragung
mit gemeinsam genutztem Speicher über den Speicherplatz und den Umfang der zur Übertragung bereiten
Daten, und die Ziel-DMA-Komponente ruft die Daten aus dem Speicherplatz ab.

[0069] Die Überwachung der Datenübertragungsleistung für eine Vielzahl von Datenübertragungsmodi kann
die Überwachung von mehreren Anforderungen (668) in einer Nachrichten-Sendeanforderungswarteschlange
(662 bis 165) für eine Datenübertragungs-Verbindungsleitung (656) beinhalten. In dem Beispiel von Fig. 6 ist
jeder Nachrichten-Sendeanforderungswarteschlange (662 bis 165) eine bestimmte Datenübertragungs-Ver-
bindungsleitung (656) zugeordnet. Jede Warteschlange (662 bis 165) enthält Einträge für Nachrichten (670),
die Daten (676) enthalten, welche von den Datenübertragungsadaptern (660, 661) auf einer Datenübertra-
gungs-Verbindungsleitung (656), die der Warteschlange zugeordnet ist, übertragen werden sollen.

[0070] Die Überwachung der Datenübertragungsleistung für eine Vielzahl von Datenübertragungsmodi kann
auch die Überwachung der Auslastung eines gemeinsam genutzten Speicherbereichs (658) beinhalten. In dem
Beispiel von Fig. 6 ist der gemeinsam genutzte Speicherbereich (658) im RAM (640) des Beschleunigers zuge-
ordnet. Die Auslastung stellt den Anteil des zugeordneten gemeinsam benutzten Speicherbereichs dar, in den
Daten zum Versenden an eine Zieleinheit gespeichert wurden, die von der Zieleinheit aber noch nicht gelesen
oder empfangen wurden, wobei die Auslastung überwacht wird, indem die Schreib- und Leseoperationen in
den und aus dem zugeordneten gemeinsam genutzten Speicher erfasst werden. In der hybriden Datenverar-
beitungsumgebung (600) von Fig. 6 ist der gemeinsam benutzte Speicherbereich – praktisch jeder Speicher –
begrenzt. Als solches besteht die Möglichkeit, dass ein gemeinsam genutzter Speicherbereich (658) während
der Ausführung eines Anwendungsprogramms (669) gefüllt wird, so dass die Übertragung von Daten vom
Hostcomputer (610) an einen Beschleuniger aufgrund von Bereichsbeschränkungen des gemeinsam benutz-
ten Speicherbereichs gegebenenfalls verlangsamt oder sogar angehalten wird.

[0071] In manchen Ausführungsformen der vorliegenden Erfindung kann die hybride Datenverarbeitungsum-
gebung (600) von Fig. 6 so konfiguriert werden, dass sie als eine parallele Datenverarbeitungsumgebung be-
trieben werden kann, in der zwei oder mehr Instanzen des Anwendungsprogramms (669) auf zwei oder mehr
Hostcomputern (610) in der parallelen Datenverarbeitungsumgebung ausgeführt werden. In solchen Ausfüh-
rungsformen kann die über alle Datenübertragungsmodi hinweg stattfindende Überwachung der Datenübertra-
gungsleistung auch das Zusammentragen von Informationen (674) über die Datenübertragungsleistung über
eine Vielzahl von Instanzen des Anwendungsprogramms (669) beinhalten, das auf zwei oder mehr Hostcom-
putern in einer parallelen Datenverarbeitungsumgebung ausgeführt wird. Die zusammengetragenen Informa-
tionen (674) über die Leistung können zur Berechnung der durchschnittlichen Übertragungslatenzzeiten bei
den Datenübertragungsmodi, der durchschnittlichen Anzahl der Anforderungen auf Datenübertragungs-Ver-
bindungsleitungen eines bestimmten Netzwerk-Typs, der durchschnittlichen Auslastung des gemeinsam be-
nutzten Speichers unter der Vielzahl der Hostcomputer und Beschleuniger in der parallelen Datenverarbei-
tungsumgebung und so weiter verwendet werden, wie für den Fachmann zu erkennen ist. Jede beliebige Kom-
bination dieser Messwerte kann von dem SLMPM verwendet werden, um festzustellen, ob die Daten entspre-
chend dem angeforderten Datenübertragungsmodus übertragen werden sollen, und auch, um einen anderen
Datenübertragungsmodus zur Übertragung der Daten auszuwählen, wenn die Daten nicht entsprechend dem
angeforderten Datenübertragungsmodus übertragen werden sollen.

[0072] Das SLMPM (646) von Fig. 6 empfängt von einem Anwendungsprogramm (669) auf dem Hostcompu-
ter (610) eine Anforderung (668), Daten (676) entsprechend einem Datenübertragungsmodus von dem Host-
computer (610) an den Beschleuniger (604) zu übertragen. Diese Daten (676) können Befehle eines Com-
puterprogramms enthalten, die zur Ausführung durch den Beschleuniger (604) kompiliert werden, wie zum
Beispiel eine Programmdatei eines Anwendungsprogramms des Beschleunigers, Daten über eine Arbeitsein-
heit für ein Anwendungsprogramm des Beschleunigers, Dateien, die für die Ausführung eines Anwendungs-
programms des Beschleunigers erforderlich sind, wie zum Beispiel Bibliotheken, Datenbanken, Treiber und
dergleichen. Das Empfangen einer Anforderung (668) für die Übertragung von Daten (676) entsprechend ei-
nem Datenübertragungsmodus kann den Empfang einer Anforderung für die Übertragung von Daten durch
einen angegebenen Netzwerk-Typ, den Empfang einer Anforderung für die Übertragung von Daten über eine
angegebene Datenübertragungs-Verbindungsleitung von dem Hostcomputer an den Beschleuniger oder den



DE 11 2011 101 469 T5    2013.03.14

16/36

Empfang einer Anforderung für die Übertragung von Daten von dem Hostcomputer an den Beschleuniger ge-
mäß einem Protokoll beinhalten.

[0073] Eine Anforderung (668) für die Übertragung von Daten (676) entsprechend einem Datenübertragungs-
modus kann als ein Funktionsaufruf einer Anwendung auf Benutzerebene über eine API an das SLMPM (646)
erfolgen, als ein Aufruf, der einen Datenübertragungsmodus entsprechend einem Protokoll, einem Netzwerk-
Typ und einer Verbindungsleitung ausdrücklich angibt. Eine als ein Funktionsaufruf realisierte Anforderung
kann ein Protokoll entsprechend der Operation des Funktionsaufrufs selbst angeben. Ein Funktionsaufruf
dacs_put() beispielsweise kann einen Aufruf über eine API darstellen, die von einem SLMPM zur Verfügung ge-
stellt wird, das als eine DACS-Bibliothek ausgeführt ist, um Daten im Standard-Modus einer DMA-”PUT”-Ope-
ration zu übertragen. Ein solcher Aufruf stellt aus der Sicht der aufrufenden Anwendung und des Programmie-
rers, der die aufrufende Anwendung geschrieben hat, eine Anforderung an die SLMPM-Bibliothek dar, Daten
entsprechend dem Standard-Modus zu übertragen, die dem Programmierer als der Standard-Modus bekannt
ist, die dem API-Schnellaufruf zugeordnet ist. Die aufgerufene Funktion, in diesem Beispiel dacs_put(), kann
in Ausführungsformen mit mehreren Netzwerk-Typen, Protokollen und Verbindungsleitungen codiert werden,
damit sie selbst feststellen kann, ob die Daten entsprechend dem angeforderten Datenübertragungsmodus,
das heißt, entsprechend dem Standard-Modus der aufgerufenen Funktion, übertragen werden sollen. In einem
weiteren Beispiel kann ein Befehl dacs_send() einen Aufruf über eine API darstellen, die von einem SLMPM
zur Verfügung gestellt wird, das als eine DACS-Bibliothek ausgeführt ist, um Daten im Standard-Modus einer
SMT-”Sende”-Operation zu übertragen, wobei die aufgerufene Funktion dacs_send() in Ausführungsformen
mit mehreren Netzwerk-Typen, Protokollen und Verbindungsleitungen wieder codiert wird, damit sie selbst
feststellen kann, ob die Daten entsprechend dem angeforderten Modus übertragen werden sollen.

[0074] Eine Kennzeichnung eines bestimmten Beschleunigers in einem Funktionsaufruf kann praktisch einen
Netzwerk-Typ angeben. Ein solcher Funktionsaufruf kann eine Kennzeichnung eines bestimmten Beschleuni-
gers als Aufruf-Parameter enthalten. Eine Kennzeichnung eines bestimmten Beschleunigers, beispielsweise
durch Verwendung der Kennung (ID) eines PCIe, gibt praktisch den Netzwerk-Typ ”PCI” an. In einem weiteren,
ähnlichen Beispiel gibt eine Kennzeichnung eines bestimmten Beschleunigers durch Verwendung einer Me-
dienzugriffssteuerungs-(MAC-)Adresse eines Ethernet-Adapters praktisch den Netzwerk-Typ ”Ethernet” an.
Statt die ID des Beschleunigers von dem Funktionsaufruf einer Anwendung, die auf dem Hostcomputer ausge-
führt wird, so auszuführen, dass sie einen Netzwerk-Typ angibt, kann der Funktionsaufruf auch nur eine global
eindeutige Kennzeichnung des bestimmten Beschleunigers als einen Parameter des Aufrufs enthalten und
damit statt eines Netzwerk-Typs nur eine Verbindungsleitung von dem Hostcomputer zu dem Beschleuniger
angeben. In diesem Fall kann die aufgerufene Funktion einen standardmäßigen Netzwerk-Typ zur Verwen-
dung mit einem bestimmten Protokoll einsetzen. Wenn die in dem SLMPM aufgerufene Funktion zum Beispiel
mit PCIe als einem standardmäßigen Netzwerk-Typ zur Verwendung mit dem DMA-Protokoll konfiguriert wird
und das SLMPM eine Anforderung empfängt, Daten entsprechend dem DMA-Protokoll, einer DMA-PUT- oder
einer fernen DMA-GET-Operation an den Beschleuniger (604) zu übertragen, gibt die aufgerufene Funktion
ausdrücklich den standardmäßigen Netzwerk-Typ für DMA, den Netzwerktyp ”PCIe”, an.

[0075] In hybriden Datenverarbeitungsumgebungen, in denen nur eine Verbindungsleitung eines jeden Netz-
werk-Typs einen einzelnen Hostcomputer auf einen einzelnen Beschleuniger abstimmt, kann die Kennzeich-
nung eines bestimmten Beschleunigers in einem Parameter eines Funktionsaufrufs im Grunde ebenfalls eine
Verbindungsleitung angeben. In hybriden Datenverarbeitungsumgebungen, in denen mehr als eine Verbin-
dungsleitung eines jeden Netzwerk-Typs einen Hostcomputer und einen Beschleuniger aufeinander abstimmt,
so zum Beispiel zwei PCIe-Verbindungsleitungen, die den Hostcomputer (610) mit dem Beschleuniger (604)
verbinden, kann die aufgerufene SLMPM-Funktion eine Standard-Verbindungsleitung für den im Parameter
des Funktionsaufrufs gekennzeichneten Beschleuniger für den Netzwerk-Typ realisieren, der von der Kenn-
zeichnung des Beschleunigers angegeben wird.

[0076] Das SLMPM (646) in dem Beispiel von Fig. 6 stellt in Abhängigkeit von der überwachten Leistung (674)
auch fest, ob die Daten (676) entsprechend dem angeforderten Datenübertragungsmodus übertragen werden
sollen. Die Feststellung, ob die Daten (676) entsprechend dem angeforderten Datenübertragungsmodus über-
tragen werden sollen, kann die Feststellung beinhalten, ob die Daten von einem angeforderten Netzwerk-Typ
übertragen werden sollen, ob die Daten über eine angeforderte Datenübertragungs-Verbindungsleitung über-
tragen werden sollen oder ob die Daten entsprechend einem angeforderten Protokoll übertragen werden sollen.

[0077] In hybriden Datenverarbeitungsumgebungen gemäß Ausführungsformen der vorliegenden Erfindung,
in denen die über alle Datenübertragungsmodi hinweg stattfindende Überwachung der Datenübertragungsleis-
tung die Überwachung von mehreren Anforderungen in einer Nachrichten-Sendeanforderungswarteschlange



DE 11 2011 101 469 T5    2013.03.14

17/36

(662 bis 165) für eine Datenübertragungs-Verbindungsleitung beinhaltet, kann die Feststellung, ob die Daten
(676) entsprechend dem angeforderten Datenübertragungsmodus übertragen werden sollen, getroffen wer-
den, indem festgestellt wird, ob die Anzahl der Anforderungen in der Nachrichten-Sendeanforderungswarte-
schlange einen vorher festgelegten Schwellwert überschreitet. In hybriden Datenverarbeitungsumgebungen
gemäß Ausführungsformen der vorliegenden Erfindung, in denen die Überwachung der Datenübertragungs-
leistung für eine Vielzahl von Datenübertragungsmodi die Überwachung der Auslastung eines gemeinsam ge-
nutzten Speicherbereichs beinhaltet, kann die Feststellung, ob die Daten (676) entsprechend dem angefor-
derten Datenübertragungsmodus übertragen werden sollen, getroffen werden, indem festgestellt wird, ob die
Auslastung des gemeinsam genutzten Speicherbereichs einen vorher festgelegten Schwellwert überschreitet.

[0078] Wenn die Daten nicht entsprechend dem angeforderten Datenübertragungsmodus übertragen werden
sollen, wählt das SLMPM (646) in Abhängigkeit von der überwachten Leistung einen anderen Datenübertra-
gungsmodus für die Übertragung der Daten aus und überträgt die Daten (676) entsprechend dem ausgewähl-
ten Datenübertragungsmodus. Die Auswahl eines anderen Datenübertragungsmodus für die Übertragung der
Daten kann die in Abhängigkeit von der überwachten Leistung erfolgende Auswahl eines anderen Typs eines
Datenübertragungsnetzwerks, durch den die Daten übertragen werden sollen, die Auswahl einer Datenüber-
tragungs-Verbindungsleitung, über die die Daten übertragen werden sollen, und die Auswahl eines anderen
Datenübertragungsprotokolls beinhalten. Betrachten wir als ein Beispiel, dass der angeforderte Datenüber-
tragungsmodus eine DMA-Übertragung unter Verwendung einer PUT-Operation über die Verbindungsleitung
(638) des PCIe-Netzwerks (630) an den Beschleuniger (604) ist. Wenn die überwachte Datenübertragungsleis-
tung (674) anzeigt, dass die Anzahl der Anforderungen in der Nachrichten-Sendeanforderungswarteschlange
(662), die zu der Verbindungsleitung (638) gehört, einen vorher festgelegten Schwellwert überschreitet, kann
das SLMPM einen anderen Netzwerk-Typ, das Ethernet-Netzwerk (628) und die Verbindungsleitung (631,
632), über die die Daten (676) übertragen werden sollen, auswählen. Ebenfalls zu berücksichtigen ist, dass die
überwachte Leistung (676) anzeigt, dass die aktuelle Auslastung des gemeinsam genutzten Speicherbereichs
(658) einen vorher festgelegten Schwellwert unterschreitet, während die Anzahl der ausstehenden DMA-Über-
tragungen in der Warteschlange (662) einen vorher festgelegten Schwellwert überschreitet. In solch einem
Fall kann das SLMPM (646) auch ein anderes Protokoll auswählen, wie zum Beispiel das Shared-Memory-
Transfer-Protokoll, mittels dem die Daten (674) übertragen werden sollen.

[0079] Die Auswahl eines anderen Datenübertragungsmodus durch das SLMPM für die Übertragung der Da-
ten (672) kann auch die Auswahl eines Datenübertragungsprotokolls (678) in Abhängigkeit von der Größe
(672) der Datenübertragungsnachricht beinhalten. Die Auswahl eines Datenübertragungsprotokolls (678) in
Abhängigkeit von der Größe (672) der Datenübertragungsnachricht kann erfolgen, indem festgestellt wird, ob
die Größe einer Nachricht einen vorher festgelegten Schwellwert überschreitet. Bei größeren Nachrichten (670)
kann das DMA-Protokoll ein bevorzugtes Protokoll sein, da die Auslastung des Prozessors bei der Durchfüh-
rung einer DMA-Übertragung einer größeren Nachricht (670) gewöhnlich geringer ist als bei der Durchführung
einer Übertragung einer Nachricht derselben Größe, bei der ein gemeinsamer Speicher genutzt wird.

[0080] Wie vorstehend erwähnt wurde, kann das SLMPM die Daten auch entsprechend dem ausgewählten
Datenübertragungsmodus übertragen. Das Übertragen der Daten entsprechend dem ausgewählten Daten-
übertragungsmodus kann das Übertragen der Daten durch den ausgewählten Typ des Datenübertragungs-
netzwerks, das Übertragen der Daten über die ausgewählte Datenübertragungs-Verbindungsleitung oder das
Übertragen der Daten gemäß dem ausgewählten Protokoll beinhalten. Das SLMPM (646) kann eine Übertra-
gung der Daten entsprechend dem ausgewählten Datenübertragungsmodus durchführen, indem es über einen
Einheitentreiber den Übertragungsadapter für den Typ des Datenübertragungs-Netzwerks des ausgewählten
Datenübertragungsmodus anweist, die Nachricht (670) gemäß einem Protokoll des ausgewählten Datenüber-
tragungsmodus zu übertragen, wobei die Nachricht in einem Kopfbereich der Nachricht eine Kennzeichnung
des Beschleunigers und in den Nutzdaten der Nachricht die zu übertragenden Daten (676) enthält.

[0081] In dem Beispiel von Fig. 6 ist sowohl auf dem Hostcomputer (610) als auch auf dem Beschleuniger
(604) von einem der Computerknoten ein hierarchischer verteilter Compiler (155) installiert. Der hierarchische
verteilte Compiler (155) ist der Vollständigkeit halber sowohl im Hostcomputer als auch im Beschleuniger ge-
zeigt. Tatsächlich kann der hierarchische verteilte Compiler (155) gemäß Ausführungsformen der vorliegenden
Erfindung entweder auf einem Hostcomputer oder auf einem oder mehreren Beschleunigern oder sowohl auf
einem Hostcomputer als auch auf einem oder mehreren Beschleunigern installiert sein, wie für den Fachmann
zu erkennen ist. Der hierarchische verteilte Compiler (155) von Fig. 6 ist ein Modul einer automatisierten Da-
tenverarbeitungsmaschine, der Software für ein hierarchisches verteiltes Verarbeitungssystem gemäß Ausfüh-
rungsformen der vorliegenden Erfindung kompilieren kann. Der hierarchische verteilte Compiler (155) enthält
einen Befehl eines Computerprogramms, um die Software durch den Kompilierungsknoten zu kompilieren;



DE 11 2011 101 469 T5    2013.03.14

18/36

um kompilierte Software, die auf dem Kompilierungsknoten ausgeführt werden soll, durch den Kompilierungs-
knoten zu verwalten; um einen oder mehrere Knoten in einer nächsten Ebene der Hierarchie des verteilten
Verarbeitungssystems durch den Kompilierungsknoten in Abhängigkeit davon, ob kompilierte Software für den
ausgewählten Knoten oder für die Nachkommen des ausgewählten Knotens bestimmt ist, auszuwählen; um
nur die kompilierte Software, die von dem ausgewählten Knoten oder von dem Nachkommen des ausgewähl-
ten Knotens ausgeführt werden soll, an den ausgewählten Knoten zu senden. Jeder der anderen Computer-
knoten (602) von Fig. 16 kann auch kompilierte Software empfangen; Feststellen, ob die kompilierte Software
für diesen Knoten oder für einen seiner Nachkommen bestimmt ist; die Software zur Ausführung verwalten,
wenn die kompilierte Software für diesen Knoten bestimmt ist; und einen anderen Knoten in einer nächsten
Ebene des hierarchischen verteilten Verarbeitungssystems in Abhängigkeit von einem Nachkommen für die
kompilierte Software auswählen, wenn die kompilierte Software für einen der Nachkommen bestimmt ist, und
die kompilierte Software an den ausgewählten anderen Knoten senden.

[0082] Zur näheren Erklärung zeigt Fig. 7 ein beispielhaftes Verfahren zum Kompilieren von Software für ein
hierarchisches verteiltes Verarbeitungssystem gemäß Ausführungsformen der vorliegenden Erfindung. Unter
Kompilieren versteht man den Vorgang der Umwandlung von Quellcode, der in einer Computersprache, oft-
mals in einer höheren Programmiersprache, geschrieben ist, in eine andere, üblicherweise ausführbare Com-
putersprache, die gewöhnlich in Binärform dargestellt ist und manchmal als Objektcode bezeichnet wird. Das
Kompilieren gemäß Ausführungsformen der vorliegenden Erfindung erfolgt üblicherweise mit einem hierarchi-
schen verteilten Compiler, der auf Kompilierknoten gemäß der vorliegenden Erfindung installiert ist. Solch ein
hierarchischer verteilter Compiler kann Software gewöhnlich zur Verwendung auf mehreren unterschiedlichen
Arten von Zielcomputern kompilieren. Als solches kann ein hierarchischer verteilter Compiler Teile von nicht
kompilierter Quell-Software in Ziel-Objektcode zur Verwendung auf Computern unterschiedlichster Art kompi-
lieren.

[0083] Ein hierarchisches verteiltes Verarbeitungssystem kann auf mehrere Arten, zum Beispiel in einer Baum-
struktur, realisiert werden. Eine solche Baumstruktur kann kär, das heißt eine Baumstruktur beliebiger Ordnung,
oder binär sein oder irgendeine andere Form haben, wie für den Fachmann zu erkennen ist. Alternativ können
hierarchische verteilte Verarbeitungssysteme gemäß der vorliegenden Erfindung in anderen Formen, die nicht
als Baumstrukturen betrachtet werden, realisiert werden, wie für den Fachmann zu erkennen ist. Das Verfah-
ren von Fig. 7 kann in einem verteilten Datenverarbeitungssystem durchgeführt werden, das den vorstehend
beschriebenen beispielhaften verteilten Datenverarbeitungssystemen ähnlich ist: den als Beispiel dienenden
parallelen Computern der Fig. 1 bis Fig. 5, der als Beispiel dienenden hybriden Datenverarbeitungsumgebung
von Fig. 6 und anderen, wie für den Fachmann zu erkennen ist.

[0084] Das Verfahren von Fig. 7 beinhaltet das Kennzeichnen (802) des einen oder der mehreren Kompi-
lierungsknoten. Wie vorstehend erwähnt wurde, wandeln der eine oder die mehreren Kompilierungsknoten
Quellcode, der in einer Computersprache, üblicherweise in einer höheren Programmiersprache, geschrieben
ist, in eine andere, häufig ausführbare Computersprache um, die gewöhnlich in Binärform dargestellt ist und
manchmal als Objektcode bezeichnet wird. Die Kompilierungsknoten kompilieren Teile der Software, die auf
den Kompilierungsknoten selbst ausgeführt werden sollen, sowie andere Teile der Software, die auf einem
anderen Knoten in dem hierarchischen verteilten Netzwerk ausgeführt werden sollen.

[0085] Das Kennzeichnen (802) des einen oder der mehreren Kompilierungsknoten gemäß dem Verfahren
von Fig. 7 kann durchgeführt werden, indem ein oder mehrere Knoten ausgewählt werden, die für den Kom-
piliervorgang rechnerisch optimiert werden. Das Auswählen von einem oder mehreren Knoten, die für den
Kompiliervorgang rechnerisch optimiert werden, kann das Kennzeichnen von Knoten in Abhängigkeit von de-
ren E/A-Funktionen, Verarbeitungsfunktionen und Speicherfunktionen beinhalten. Oftmals ist ein bestimmtes
Gleichgewicht dieser Funktionen optimal für den Kompiliervorgang. Ein solches optimales Gleichgewicht kann
beim Kompilieren von verschiedenen Arten von Software-Programmen unterschiedlich sein, wobei das Aus-
wählen von einem oder mehreren Knoten, die für den Kompiliervorgang rechnerisch optimiert werden, das
Auswählen von einem oder mehreren Knoten in Abhängigkeit von der jeweiligen Software, die kompiliert wer-
den soll, beinhalten kann.

[0086] Das Kennzeichnen (802) des einen oder der mehreren Kompilierungsknoten gemäß dem Verfahren
von Fig. 7 kann auch durchgeführt werden, indem ein oder mehrere Knoten ausgewählt werden, die aufgrund
von ihrem Standort in der Topologie des hierarchischen verteilten Verarbeitungssystems für den Kompilier-
vorgang optimiert werden. In einem hierarchischen Datenverarbeitungssystem mit Baumstruktur zum Beispiel
kann sich ein Knoten, der ein Wurzelknoten ist, oder ein Knoten, der viele Nachkommen hat, so in der Topologie
angeordnet sein, dass dieser Knoten zum Kompilieren von Software für seine Nachkommen optimiert wird. Ein



DE 11 2011 101 469 T5    2013.03.14

19/36

Nachkomme, so wie der Begriff in dieser Beschreibung verwendet wird, ist ein Knoten, der sich in Ebenen des
hierarchischen Datenverarbeitungssystems befindet, welche unterhalb des Kompilierungsknotens und auf ei-
nem Zweig des hierarchischen Verarbeitungssystems, das den Kompilierungsknoten enthält, angeordnet sind.

[0087] Das Verfahren von Fig. 7 beinhaltet auch das Bereitstellen (804) von zu kompilierender Software für
einen oder mehrere Kompilierungsknoten, wobei mindestens ein Teil der zu kompilierenden Software von ei-
nem oder mehreren anderen Knoten ausgeführt werden soll. Das Bereitstellen (804) von zu kompilierender
Software für einen oder mehrere Kompilierungsknoten kann durchgeführt werden, indem die zu kompilierende
Software in einer Nachricht an den Kompilierungsknoten gesendet wird, die Software auf den Kompilierungs-
knoten heruntergeladen wird, die Software von einem Systemadministrator auf dem Kompilierungsknoten in-
stalliert wird, oder die zu kompilierende Software in irgendeiner anderen Weise einem oder mehreren Kompi-
lierungsknoten bereitgestellt wird, wie für den Fachmann zu erkennen ist.

[0088] Das Verfahren von Fig. 7 beinhaltet auch das Kompilieren (806) der Software durch den Kompilie-
rungsknoten. Das Kompilieren (806) der Software durch den Kompilierungsknoten kann durchgeführt werden,
indem Teile der Software, die auf dem Kompilierungsknoten ausgeführt werden sollen, gekennzeichnet wer-
den und der in einer Computersprache der nichtkompilierten Software geschriebene Code in eine ausführbare
Computersprache zur Ausführung auf dem Kompilierungsknoten umgewandelt wird. Das Kompilieren (806)
der Software durch den Kompilierungsknoten kann durchgeführt werden, indem Teile der Software, die auf
einem anderen Knoten ausgeführt werden sollen, gekennzeichnet werden, die Ziel-Ausführungsumgebung auf
dem anderen Knoten gekennzeichnet wird und die in der Computersprache der nichtkompilierten Software
geschriebene Software in eine ausführbare Computersprache zur Ausführung auf dem anderen Knoten um-
gewandelt wird.

[0089] Das Verfahren von Fig. 7 beinhaltet auch das Verwalten (808) von kompilierter Software, die auf dem
Kompilierungsknoten ausgeführt werden soll, durch den Kompilierungsknoten. Das Verwalten (808) von kom-
pilierter Software, die auf dem Kompilierungsknoten ausgeführt werden soll, durch den Kompilierungsknoten
kann durchgeführt werden, indem kompilierte Software, die auf dem Kompilierungsknoten ausgeführt werden
soll, zur Ausführung gespeichert wird.

[0090] Das Verfahren von Fig. 7 beinhaltet auch das Auswählen (810) von einem oder mehreren Knoten
in einer nächsten Ebene der Hierarchie des verteilten Verarbeitungssystems durch den Kompilierungskno-
ten in Abhängigkeit davon, ob kompilierte Software für den ausgewählten Knoten oder für die Nachkommen
des ausgewählten Knotens bestimmt ist, und das Senden (812) von nur der kompilierten Software, die von
dem ausgewählten Knoten oder den Nachkommen des ausgewählten Knotens ausgeführt werden soll, an
den ausgewählten Knoten. Das Auswählen (810) von einem oder mehreren Knoten in einer nächsten Ebene
der Hierarchie des verteilten Verarbeitungssystems durch den Kompilierungsknoten in Abhängigkeit davon,
ob kompilierte Software für den ausgewählten Knoten oder für die Nachkommen des ausgewählten Knotens
bestimmt ist, kann durchgeführt werden, indem eine Darstellung der Topologie des hierarchischen verteilten
Verarbeitungssystems durchlaufen wird, um den Standort von Knoten, auf denen kompilierte Software ausge-
führt werden soll, zu kennzeichnen, ein Zweig des hierarchischen Datenverarbeitungssystems ermittelt wird,
auf dem sich diejenigen Knoten, die die kompilierte Software ausführen, befinden, und indem ermittelt wird,
welcher Kindknoten des Kompilierungsknotens sich ebenfalls auf diesem Zweig des hierarchischen Datenver-
arbeitungssystems befindet.

[0091] Das Senden (812) von nur der kompilierten Software, die von dem ausgewählten Knoten oder den
Nachkommen des ausgewählten Knotens ausgeführt werden soll, an den ausgewählten Knoten kann durch-
geführt werden, indem eine Nachricht erzeugt wird, welche die Teile der kompilierten Software enthält, die von
dem ausgewählten Knoten oder den Nachkommen des ausgewählten Knotens ausgeführt werden sollen, und
die Nachricht an den ausgewählten Knoten gesendet wird. Das Senden (812) von nur der kompilierten Soft-
ware, die von dem ausgewählten Knoten oder den Nachkommen des ausgewählten Knotens ausgeführt wer-
den soll, an den ausgewählten Knoten kann auch durchgeführt werden, indem der ausgewählte Knoten über
den Standort der kompilierten Software zum Herunterladen auf den Knoten, welcher die kompilierte Software
ausführt, benachrichtigt wird oder indem nur die kompilierte Software, die von dem ausgewählten Knoten oder
den Nachkommen des ausgewählten Knotens ausgeführt werden soll, auf irgendeine andere Art und Weise,
welche für den Fachmann zu erkennen ist, an den ausgewählten Knoten gesendet (812) wird.

[0092] Die kompilierte Software kann von dem ausgewählten Knoten ausgeführt oder auch nicht ausgeführt
werden. Das heißt, die kompilierte Software kann von einem Knoten in einer Ebene unterhalb des ausgewähl-
ten Knotens ausgeführt werden. Zur näheren Erklärung zeigt Fig. 8 daher einen Ablaufplan, der ein weiteres



DE 11 2011 101 469 T5    2013.03.14

20/36

beispielhaftes Verfahren zum Kompilieren von Software für ein hierarchisches verteiltes Verarbeitungssystem
gemäß Ausführungsformen der vorliegenden Erfindung veranschaulicht. Das Verfahren von Fig. 8 ist dem
Verfahren in Fig. 7 insofern ähnlich, als das Verfahren von Fig. 8 das Kennzeichnen (802) des einen oder der
mehreren Kompilierungsknoten; das Bereitstellen (804) von zu kompilierender Software für einen oder meh-
rere Kompilierungsknoten, wobei mindestens ein Teil der zu kompilierenden Software von einem oder mehre-
ren anderen Knoten ausgeführt werden soll; das Kompilieren (806) der Software durch den Kompilierungskno-
ten; das Verwalten (808) von kompilierter Software, die auf dem Kompilierungsknoten ausgeführt werden soll,
durch den Kompilierungsknoten; das Auswählen (810) von einem oder mehreren Knoten in einer nächsten
Ebene der Hierarchie des verteilten Verarbeitungssystems durch den Kompilierungsknoten in Abhängigkeit
davon, ob kompilierte Software für den ausgewählten Knoten oder für die Nachkommen des ausgewählten
Knotens bestimmt ist; und das Senden (812) von nur der kompilierten Software, die von dem ausgewählten
Knoten oder von den Nachkommen des ausgewählten Knotens ausgeführt werden soll, an den ausgewählten
Knoten, beinhaltet.

[0093] Das Verfahren von Fig. 8 beinhaltet auch zusätzliche Schritte, die von Knoten unterhalb des Kompi-
lierungsknotens in dem hierarchischen verteilten Verarbeitungssystem durchgeführt werden. Das Verfahren
von Fig. 8 beinhaltet das Empfangen (814) von kompilierter Software durch einen ausgewählten Knoten. Die
kompilierte Software kann in einer Nachricht empfangen werden, die zum Herunterladen durch den Kompilie-
rungsknoten gekennzeichnet ist, oder sie kann auf andere Arten, die für den Fachmann zu erkennen sind,
empfangen werden.

[0094] Das Verfahren von Fig. 8 beinhaltet auch das Feststellen (816), ob die kompilierte Software für den
ausgewählten Knoten oder für einen seiner Nachkommen bestimmt ist. Der Vorgang des Feststellens (816), ob
die kompilierte Software für den ausgewählten Knoten oder für einen seiner Nachkommen bestimmt ist, kann
durchgeführt werden, indem von dem Kompilierungsknoten eine Kennzeichnung der Knoten, die bestimmte
Teile der kompilierten Software ausführen, empfangen wird und indem festgestellt wird, ob der gekennzeich-
nete Knoten der ausgewählte Knoten ist oder ob der gekennzeichnete Knoten einer seiner Nachkommen ist.

[0095] Wenn die kompilierte Software für den ausgewählten Knoten bestimmt ist, beinhaltet das Verfahren von
Fig. 8 das Verwalten (818) der Software durch den ausgewählten Knoten zur Ausführung. Das Verwalten (818)
der Software durch den ausgewählten Knoten zur Ausführung kann durchgeführt werden, indem kompilierte
Software, die auf dem ausgewählten Knoten ausgeführt werden soll, zur Ausführung gespeichert wird.

[0096] Wenn die kompilierte Software für einen der Nachkommen bestimmt ist, beinhaltet das Verfahren von
Fig. 8 das Auswählen (820) eines anderen Knotens in einer nächsten Ebene des hierarchischen verteilten
Verarbeitungssystems in Abhängigkeit von einem Nachkommen für die kompilierte Software und das Senden
(822) der kompilierten Software an den ausgewählten anderen Knoten. Das Auswählen (820) von einem an-
deren Knoten in einer nächsten Ebene des hierarchischen verteilten Verarbeitungssystems in Abhängigkeit
von einem Nachkommen für die kompilierte Software kann durchgeführt werden, indem eine Darstellung der
Topologie des hierarchischen verteilten Verarbeitungssystems durchlaufen wird, um den Standort von Knoten,
auf denen kompilierte Software ausgeführt werden soll, zu kennzeichnen, ein Zweig des hierarchischen Daten-
verarbeitungssystems ermittelt wird, auf dem sich diejenigen Knoten, die die kompilierte Software ausführen,
befinden, und indem ermittelt wird, welcher Kindknoten des ausgewählten Knotens sich ebenfalls auf diesem
Zweig des hierarchischen Datenverarbeitungssystems befindet.

[0097] Das Senden (822) der kompilierten Software an den ausgewählten anderen Knoten kann durchgeführt
werden, indem eine Nachricht erzeugt wird, welche die Teile der kompilierten Software enthält, die von dem
ausgewählten anderen Knoten oder den Nachkommen des ausgewählten anderen Knotens ausgeführt werden
sollen, und die Nachricht an den ausgewählten anderen Knoten gesendet wird. Das Senden (822) der kompi-
lierten Software an den ausgewählten anderen Knoten kann auch durchgeführt werden, indem der ausgewähl-
te andere Knoten über den Standort der kompilierten Software zum Herunterladen auf den Knoten, welcher die
kompilierte Software ausführt, benachrichtigt wird oder indem die kompilierte Software auf irgendeine andere
Art und Weise, welche für den Fachmann zu erkennen ist, an den ausgewählten Knoten gesendet (822) wird.

[0098] Zur näheren Erklärung zeigt Fig. 9 ein Schaubild eines beispielhaften Anwendungsfalls eines Systems
zum Kompilieren von Software für ein hierarchisches verteiltes Verarbeitungssystem gemäß Ausführungsfor-
men der vorliegenden Erfindung. In dem Beispiel von Fig. 9 verfügt ein Kompilierungs-Laptopcomputer (702)
über nichtkompilierte Software (722). Die nichtkompilierte Software (722) verfügt über Teile von Software (724)
zur Ausführung durch den Computer (704), Teile von Software (726 und 728) zur Ausführung durch einen oder
mehrere Grafikprozessoren (Graphics Processing Units (GPUs) (704), Teile von Software (728, 730, 732, 734)



DE 11 2011 101 469 T5    2013.03.14

21/36

zur Ausführung durch Computerknoten in dem parallelen Computer (712), Teile von Software (736) zur Aus-
führung durch den Front-End-Knoten (714) der hybriden Datenverarbeitungsumgebung, Teile von Software
(738, 740 und 742) zur Ausführung durch Hostcomputer (718) in dem hybriden Datenverarbeitungssystem und
Teile von Software (744, 746, 748 und 750) zur Ausführung durch Beschleuniger (720) des hybriden Daten-
verarbeitungssystems.

[0099] In dem Beispiel von Fig. 9 kompiliert der Kompilierungs-Laptopcomputer (702) den Teil der Software
(724) für den Computer (704) und sendet diesen Teil der kompilierten Software an den Computer (704) zur
Ausführung. In dem Beispiel von Fig. 9 kompiliert der Kompilierungs-Laptopcomputer (702) auch die Teile der
Software (726 und 728) für bestimmte GPUs (708) und sendet diese Teile der kompilierten Software an den
Computer (704), der den Teil der kompilierten Software wiederum an die bestimmte GPU sendet, die den Teil
der kompilierten Software ausführt.

[0100] In dem Beispiel von Fig. 9 kompiliert der Kompilierungs-Laptopcomputer (702) den Teil der Software
(728, 730, 732 und 734) für bestimmte Computerknoten (712) des parallelen Computers und sendet diese
Teile der kompilierten Software an den E/A-Knoten (710) des parallelen Computers, der die Teile der kom-
pilierten Software wiederum an den Wurzelknoten der Computerknoten (712) sendet. Der Wurzelknoten der
Computerknoten stellt dann fest, welcher Kindknoten Nachkommen hat, die die Teile der kompilierten Software
ausführen, und sendet nur die Teile an jedes Kind, die von diesem Kind oder seinen Nachkommen ausgeführt
werden. Jedes Kind, das diese Teile empfängt, stellt fest, ob es den Teil ausführen wird oder ob einer seiner
Nachkommen den Teil ausführen wird, und sendet nur diejenigen Teile, die für seine Nachkommen bestimmt
sind, an ein Kind auf demselben Zweig wie der Nachkomme. Auf diese Weise werden die Teile der kompilier-
ten Software Ebene um Ebene an den bestimmten Computerknoten gesendet, der diese kompilierte Software
ausführt.

[0101] In dem Beispiel von Fig. 9 kompiliert der Kompilierungscomputer (702) den Teil der Software (736)
für den Front-End-Knoten (714) der hybriden Datenverarbeitungsumgebung und sendet diesen Teil der kom-
pilierten Software an den Front-End-Knoten (714) der hybriden Datenverarbeitungsumgebung zur Ausführung.
In dem Beispiel von Fig. 9 kompiliert der Kompilierungscomputer (702) auch die Teile der Software (726, 738,
740 und 742) für bestimmte Hostcomputer (718) und sendet diese Teile der kompilierten Software an den
Front-End-Knoten (714) der hybriden Datenverarbeitungsumgebung, der den Teil der kompilierten Software
wiederum an die bestimmten Hostcomputer sendet, die den Teil der kompilierten Software ausführen. In dem
Beispiel von Fig. 9 kompiliert der Kompilierungs-Laptop-Computer (702) auch die Teile der Software (744,
746, 748 und 750) für bestimmte Beschleuniger (720) von Hostcomputern (718) und sendet diese Teile der
kompilierten Software an den Front-End-Knoten (714) der hybriden Datenverarbeitungsumgebung, welcher
den Teil der kompilierten Software wiederum an die jeweiligen Hostcomputer für diese Beschleuniger sendet,
die den Teil der kompilierten Software wiederum an den bestimmten Beschleuniger senden, der den Teil der
kompilierten Software ausführt.

[0102] In den vorstehenden Beispielen wurde das Kompilieren von Software für ein hierarchisches verteiltes
Verarbeitungssystem im Allgemeinen mit einem einzigen Kompilierungsknoten erörtert. Dies geschah zum
Zweck der Erklärung und ist nicht als Einschränkung zu verstehen. Tatsächlich kann in vielen Ausführungsfor-
men der vorliegenden Erfindung mehr als ein Knoten Software für ein hierarchisches verteiltes Verarbeitungs-
system gemäß der vorliegenden Erfindung kompilieren.

[0103] Der Fachmann wird als vorteilhaft erkennen, dass Erscheinungsformen der vorliegenden Erfindung
als ein System, ein Verfahren oder ein Computerprogrammprodukt realisiert werden können. Folglich können
Erscheinungsformen der vorliegenden Erfindung die Form einer ganz in Hardware realisierten Ausführung,
einer ganz in Software realisierten Ausführung (darunter Firmware, residente Software, Mikrocode usw.) oder
einer Ausführung annehmen, die Software- und Hardware-Erscheinungsformen kombiniert, die hier alle all-
gemein als eine ”Schaltung”, ein ”Modul” oder ein ”System” bezeichnet werden können. Überdies können Er-
scheinungsformen der vorliegenden Erfindung die Form eines Computerprogrammprodukts annehmen, das
sich auf einem oder mehreren computerlesbaren Datenträgern) befindet, auf dem beziehungsweise denen
sich computerlesbarer Programmcode befindet.

[0104] Jede beliebige Kombination aus einem oder mehreren computerlesbaren Datenträgern kann verwen-
det werden. Der computerlesbare Datenträger kann ein computerlesbarer Signaldatenträger oder ein compu-
terlesbares Speichermedium sein. Ein computerlesbares Speichermedium kann zum Beispiel, ohne auf diese
beschränkt zu sein, ein(e) elektronische(s), magnetische(s), optische(s), elektromagnetische(s), Infrarot- oder
Halbleitersystem, -vorrichtung, -einheit oder eine beliebige geeignete Kombination des Vorstehenden sein.



DE 11 2011 101 469 T5    2013.03.14

22/36

Zu konkreteren Beispielen (wobei die Liste keinen Anspruch auf Vollständigkeit erhebt) für das computerles-
bare Speichermedium würden folgende gehören: eine elektrische Verbindung mit einer oder mehreren Lei-
tungen, eine Diskette eines tragbaren Computers, eine Festplatte, ein Direktzugriffsspeicher (RAM), ein Nur-
Lese-Speicher (ROM), ein löschbarer programmierbarer Nur-Lese-Speicher (EPROM oder Flash-Speicher),
ein Lichtwellenleiter, ein tragbarer Compact-Disk-Nur-Lese-Speicher (CD-ROM), eine optische Speicherein-
heit, eine magnetische Speichereinheit oder jede beliebige geeignete Kombination des Vorstehenden. Im Rah-
men dieses Schriftstücks kann ein computerlesbares Speichermedium jedes physisch greifbare Medium sein,
das ein Programm zur Verwendung durch ein Befehlsausführungssystem, eine Befehlsausführungsvorrichtung
oder -einheit oder zur Verwendung in Verbindung mit einem Befehlsausführungssystem, einer Befehlsausfüh-
rungsvorrichtung oder -einheit enthalten oder speichern kann.

[0105] Ein computerlesbarer Signaldatenträger kann ein übertragenes Datensignal mit einem darin enthalte-
nen computerlesbaren Programmcode, beispielsweise in einem Basisband oder als Teil einer Trägerwelle,
enthalten. Solch ein übertragenes Signal kann eine beliebige einer Vielzahl von Formen einschließlich elek-
tromagnetischer, optischer Formen oder jede beliebige geeignete Kombination dieser Formen, ohne auf die-
se beschränkt zu sein, annehmen. Bei einem computerlesbaren Signaldatenträger kann es sich um jeden be-
liebigen computerlesbaren Datenträger handeln, der kein computerlesbares Speichermedium ist und der ein
Programm zur Verwendung durch oder zur Verwendung in Verbindung mit einem Befehlsausführungssystem,
einer Befehlsausführungsvorrichtung oder -einheit übertragen, weiterleiten oder transportieren kann.

[0106] Auf einem computerlesbaren Datenträger enthaltener Programmcode kann mittels eines geeigneten
Mediums, darunter einschließlich ein drahtloses Medium, ein drahtgebundenes Mediums, ein Lichtwellenlei-
terkabel, mittels Hochfrequenz (HF) usw., ohne auf diese beschränkt zu sein, oder mittels jeder beliebigen
geeigneten Kombination des Vorstehenden übertragen werden.

[0107] Computer-Programmcode zur Durchführung von Operationen für Erscheinungsformen der vorliegen-
den Erfindung kann in einer beliebigen Kombination aus einer oder mehreren Programmiersprachen, darunter
eine objektorientierte Programmiersprache wie beispielsweise Java, Smalltalk, C++ oder dergleichen, sowie in
herkömmlichen prozeduralen Programmiersprachen wie beispielsweise der Programmiersprache ”C” oder in
ähnlichen Programmiersprachen, geschrieben sein. Die Ausführung des Programmcodes kann vollständig auf
dem Computer des Benutzers, teilweise auf dem Computer des Benutzers, als eigenständiges Software-Paket,
teilweise auf dem Computer des Benutzers und teilweise auf einem fernen Computer oder vollständig auf dem
fernen Computer oder Server erfolgen. Im letzteren Szenario kann der ferne Computer mit dem Computer des
Benutzers über jede beliebige Art eines Netzwerks einschließlich eines lokalen Netzwerks (LAN) oder eines
Weitverkehrsnetzes (WAN) verbunden werden oder die Verbindung kann zu einem externen Computer (zum
Beispiel über das Internet mittels eines Internet-Diensteanbieters) hergestellt werden.

[0108] Erscheinungsformen der vorliegenden Erfindung wurden vorstehend mit Bezug auf Darstellungen in
Ablaufplänen und/oder Blockschaltbilder von Verfahren, Vorrichtungen (Systemen) und Computerprogramm-
produkten gemäß Ausführungsformen der Erfindung beschrieben. Es versteht sich, dass jeder Block der Dar-
stellungen in den Ablaufplänen und/oder der Blockschaltbilder sowie Kombinationen aus Blöcken in den Dar-
stellungen der Ablaufpläne und/oder den Blockschaltbildern mittels Computerprogrammbefehlen realisiert wer-
den können. Diese Computerprogrammbefehle können einem Prozessor eines Universalcomputers, eines
Computers für spezielle Anwendungen oder einer anderen programmierbaren Datenverarbeitungsvorrichtung
bereitgestellt werden, um eine Maschine zu erzeugen, so dass die Befehle, die über den Prozessor des Com-
puters oder einer anderen programmierbaren Datenverarbeitungsvorrichtung ausgeführt werden, ein Mittel zur
Ausführung der Funktionen/Vorgänge erzeugen, die in dem Ablaufplan und/oder dem Block oder den Blöcken
der Blockschaltbilder angegeben sind.

[0109] Diese Computerprogrammbefehle können auch auf einem computerlesbaren Datenträger gespeichert
werden, der einen Computer, eine andere programmierbare Datenverarbeitungsvorrichtung oder andere Ein-
heiten anweisen kann, auf eine bestimmte Art und Weise zu funktionieren, so dass die auf dem computerles-
baren Datenträger gespeicherten Befehle einen Herstellungsgegenstand erzeugen, der Befehle enthält, die
die Funktion/den Vorgang ausführen, welche beziehungsweise welcher in dem Ablaufplan und/oder dem Block
oder den Blöcken des Blockschaltbilds angegeben ist.

[0110] Die Computerprogrammbefehle können auch auf einen Computer, eine andere programmierbare Da-
tenverarbeitungsvorrichtung oder auf andere Einheiten geladen werden, um die Durchführung einer Reihe von
Betriebsschritten auf dem Computer, einer anderen programmierbaren Vorrichtung oder auf anderen Einheiten
zu bewirken, um einen von einem Computer ausgeführten Prozess zu erzeugen, so dass die Befehle, die auf



DE 11 2011 101 469 T5    2013.03.14

23/36

dem Computer oder einer anderen programmierbaren Vorrichtung ausgeführt werden, Prozesse zur Ausfüh-
rung der Funktionen/Vorgänge ermöglichen, die in dem Ablaufplan und/oder dem Block oder den Blöcken des
Blockschaltbilds angegeben sind.

[0111] Der Ablaufplan und die Blockschaltbilder in den Figuren zeigen die Architektur, die Funktionalität und
die Betriebsweise von möglichen Ausführungsarten von Systemen, Verfahren und Computerprogrammpro-
dukten gemäß verschiedenen Ausführungsformen der vorliegenden Erfindung. In dieser Hinsicht kann jeder
Block in dem Ablaufplan oder den Blockschaltbildern ein Modul, ein Segment oder einen Teil von Code dar-
stellen, das beziehungsweise der einen oder mehrere ausführbare Befehle zur Ausführung der angegebenen
logischen Funktion(en) umfasst. Es sei auch angemerkt, dass die in dem Block angegebenen Funktionen in
manchen alternativen Ausführungsarten nicht in der in den Figuren angegebenen Reihenfolge auftreten kön-
nen. In Abhängigkeit von der mit ihnen verbundenen Funktionalität können beispielsweise zwei Blöcke, die
als aufeinanderfolgende Blöcke dargestellt sind, tatsächlich weitgehend gleichzeitig ausgeführt werden oder
die Blöcke können manchmal in der umgekehrten Reihenfolge ausgeführt werden. Man wird auch feststellen,
dass jeder Block der Blockschaltbilder und/oder der Darstellung in dem Ablaufplan sowie Kombinationen aus
Blöcken in den Blockschaltbildern und/oder der Darstellung in dem Ablaufplan von Systemen, die auf Hardware
für spezielle Anwendungen beruhen und die angegebenen Funktionen oder Vorgänge durchführen, oder von
Kombinationen aus Hardware für spezielle Anwendungen und Computerbefehlen ausgeführt werden können.

[0112] Die Beschreibungen in dieser Darlegung dienen lediglich der Veranschaulichung und sind nicht als
Einschränkung zu verstehen. Der Umfang der vorliegenden Erfindung ist nur durch die Sprache der folgenden
Ansprüche beschränkt.



DE 11 2011 101 469 T5    2013.03.14

24/36

ZITATE ENTHALTEN IN DER BESCHREIBUNG

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich
zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw.
Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.

Zitierte Nicht-Patentliteratur

- Standard IEEE 802.3 [0040]
- Standard IEEE 1149.1 mit dem Titel

”Standard Test Access Port and Boundary-
Scan Architecture for test access ports
used for testing printed circuit boards using
boundary scan” [0041]



DE 11 2011 101 469 T5    2013.03.14

25/36

Patentansprüche

1.  Verfahren zum Kompilieren von Software für ein hierarchisches verteiltes Verarbeitungssystem, wobei
das Verfahren Folgendes umfasst:
Bereitstellen von zu kompilierender Software für einen oder mehrere Kompilierungsknoten, wobei mindestens
ein Teil der zu kompilierenden Software von einem oder mehreren anderen Knoten ausgeführt werden soll;
Kompilieren der Software durch den Kompilierungsknoten;
Verwalten von kompilierter Software, die auf dem Kompilierungsknoten ausgeführt werden soll, durch den
Kompilierungsknoten; und
Auswählen von einem oder mehreren Knoten in einer nächsten Ebene der Hierarchie des verteilten Verarbei-
tungssystems durch den Kompilierungsknoten in Abhängigkeit davon, ob kompilierte Software für den ausge-
wählten Knoten oder für die Nachkommen des ausgewählten Knotens bestimmt ist; und
Senden von nur der kompilierten Software, die von dem ausgewählten Knoten oder von den Nachkommen
des ausgewählten Knotens ausgeführt werden soll, an den ausgewählten Knoten.

2.  Verfahren nach Anspruch 1, das des Weiteren Folgendes umfasst:
Empfangen von kompilierter Software durch einen ausgewählten Knoten;
Feststellen, ob die kompilierte Software für den ausgewählten Knoten oder für einen seiner Nachkommen
bestimmt ist;
wenn die kompilierte Software für den ausgewählten Knoten bestimmt ist, Verwalten der Software durch den
ausgewählten Knoten zur Ausführung; und
wenn die kompilierte Software für einen der Nachkommen bestimmt ist, Auswählen eines anderen Knotens in
einer nächsten Ebene des hierarchischen verteilten Verarbeitungssystems in Abhängigkeit von einem Nach-
kommen für die kompilierte Software und Senden der kompilierten Software an den ausgewählten anderen
Knoten.

3.  Verfahren nach Anspruch 1 oder 2, das des Weiteren das Kennzeichnen des einen oder der mehreren
Kompilierungsknoten umfasst.

4.  Verfahren nach Anspruch 3, wobei das Kennzeichnen des einen oder der mehreren Kompilierungsknoten
des Weiteren das Auswählen von einem oder mehreren Knoten umfasst, die für den Kompiliervorgang rech-
nerisch optimiert werden.

5.  Verfahren nach Anspruch 3 oder 4, wobei das Kennzeichnen des einen oder der mehreren Kompilie-
rungsknoten des Weiteren das Auswählen von einem oder mehreren Knoten umfasst, die aufgrund von ihrem
Standort in der Topologie des hierarchischen verteilten Verarbeitungssystems für den Kompiliervorgang opti-
miert werden.

6.  Verfahren nach einem der vorhergehenden Ansprüche, wobei das hierarchische verteilte Verarbeitungs-
system des Weiteren einen parallelen Computer umfasst, der Folgendes enthält:
eine Vielzahl von Computerknoten;
ein erstes Datenübertragungsnetzwerk, das die Computerknoten für Datenübertragungen verbindet und für
Punkt-zu-Punkt-Datenübertragungen optimiert ist; und
ein zweites Datenübertragungsnetzwerk, das Datenübertragungs-Verbindungsleitungen enthält, welche die
Computerknoten verbinden, um die Computerknoten als einen Baum aufzubauen, wobei jeder Computerkno-
ten über ein gesondertes Rechenwerk (arithmetic logic unit (”ALU”) verfügt, das für parallele Operationen be-
stimmt ist.

7.  Verfahren nach einem der vorhergehenden Ansprüche, wobei das hierarchische verteilte Verarbeitungs-
system des Weiteren eine hybride Datenverarbeitungsumgebung umfasst, wobei die hybride Datenverarbei-
tungsumgebung eine Vielzahl von Computerknoten umfasst, wobei jeder Computerknoten Folgendes umfasst:
einen Hostcomputer mit einer Hostcomputer-Architektur; und
einen Beschleuniger mit einer Beschleuniger-Architektur, wobei die Beschleuniger-Architektur in Bezug auf
die Architektur des Hostcomputers hinsichtlich der Ausführungsgeschwindigkeit einer bestimmten Klasse von
Berechnungsfunktionen optimiert ist, wobei der Hostcomputer und der Beschleuniger für Datenübertragungen
durch ein Nachrichtenübermittlungsmodul auf Systemebene aufeinander abgestimmt sind.

8.  Vorrichtung zum Kompilieren von Software für ein hierarchisches verteiltes Verarbeitungssystem, wobei
die Vorrichtung einen Computerprozessor und einen Computerspeicher umfasst, der mit dem Computerpro-



DE 11 2011 101 469 T5    2013.03.14

26/36

zessor betriebsfähig verbunden ist, wobei sich in dem Computerspeicher Computerprogrammbefehle befin-
den, um
zu kompilierende Software für einen oder mehrere Kompilierungsknoten bereitzustellen, wobei mindestens ein
Teil der zu kompilierenden Software von einem oder mehreren anderen Knoten ausgeführt werden soll;
die Software durch den Kompilierungsknoten zu kompilieren;
kompilierte Software, die auf dem Kompilierungsknoten ausgeführt werden soll, durch den Kompilierungskno-
ten zu verwalten; und
einen oder mehrere Knoten in einer nächsten Ebene der Hierarchie des verteilten Verarbeitungssystems durch
den Kompilierungsknoten in Abhängigkeit davon, ob kompilierte Software für den ausgewählten Knoten oder
für die Nachkommen des ausgewählten Knotens bestimmt ist, auszuwählen; und
nur die kompilierte Software, die von dem ausgewählten Knoten oder von den Nachkommen des ausgewählten
Knotens ausgeführt werden soll, an den ausgewählten Knoten zu senden.

9.   Vorrichtung nach Anspruch 8, wobei sich in dem Computerspeicher auch Computerprogrammbefehle
befinden, um
kompilierte Software durch einen ausgewählten Knoten zu empfangen;
festzustellen, ob die kompilierte Software für den ausgewählten Knoten oder für einen seiner Nachkommen
bestimmt ist;
die Software durch den ausgewählten Knoten zur Ausführung zu verwalten, wenn die kompilierte Software für
den ausgewählten Knoten bestimmt ist; und
einen anderen Knoten in einer nächsten Ebene des hierarchischen verteilten Verarbeitungssystems in Abhän-
gigkeit von einem Nachkommen für die kompilierte Software auszuwählen, wenn die kompilierte Software für
einen der Nachkommen bestimmt ist, und die kompilierte Software an den ausgewählten anderen Knoten zu
senden.

10.  Vorrichtung nach Anspruch 8 oder 9, wobei sich in dem Computerspeicher auch Computerprogramm-
befehle befinden, um den einen oder die mehreren Kompilierungsknoten zu kennzeichnen.

11.  Vorrichtung nach Anspruch 10, wobei Computerprogrammbefehle zum Kennzeichnen des einen oder der
mehreren Kompilierungsknoten des Weiteren Computerprogrammbefehle umfassen, um einen oder mehrere
Knoten auszuwählen, die für den Kompiliervorgang rechnerisch optimiert werden.

12.  Vorrichtung nach Anspruch 10 oder 11, wobei Computerprogrammbefehle zum Kennzeichnen des einen
oder der mehreren Kompilierungsknoten des Weiteren Computerprogrammbefehle umfassen, um einen oder
mehrere Knoten auszuwählen, die aufgrund von ihrem Standort in der Topologie des hierarchischen verteilten
Verarbeitungssystems für den Kompiliervorgang optimiert werden.

13.  Vorrichtung nach einem der Ansprüche 8 bis 12, wobei das hierarchische verteilte Verarbeitungssystem
des Weiteren einen parallelen Computer umfasst, der Folgendes enthält:
eine Vielzahl von Computerknoten;
ein erstes Datenübertragungsnetzwerk, das die Computerknoten für Datenübertragungen verbindet und für
Punkt-zu-Punkt-Datenübertragungen optimiert ist; und
ein zweites Datenübertragungsnetzwerk, das Datenübertragungs-Verbindungsleitungen enthält, welche die
Computerknoten verbinden, um die Computerknoten als einen Baum aufzubauen, wobei jeder Computerkno-
ten über ein gesondertes Rechenwerk (ALU) verfügt, das für parallele Operationen bestimmt ist.

14.  Vorrichtung nach einem der Ansprüche 8 bis 13, wobei das hierarchische verteilte Verarbeitungssystem
des Weiteren eine hybride Datenverarbeitungsumgebung umfasst, wobei die hybride Datenverarbeitungsum-
gebung eine Vielzahl von Computerknoten umfasst, wobei jeder Computerknoten Folgendes umfasst:
einen Hostcomputer mit einer Hostcomputer-Architektur; und
einen Beschleuniger mit einer Beschleuniger-Architektur, wobei die Beschleuniger-Architektur in Bezug auf
die Architektur des Hostcomputers hinsichtlich der Ausführungsgeschwindigkeit einer bestimmten Klasse von
Berechnungsfunktionen optimiert ist, wobei der Hostcomputer und der Beschleuniger für Datenübertragungen
durch ein Nachrichtenübermittlungsmodul auf Systemebene aufeinander abgestimmt sind.

15.  Computerprogrammprodukt zum Kompilieren von Software für ein hierarchisches verteiltes Verarbei-
tungssystem, wobei das Computerprogrammprodukt in einem Computerlesbaren Speichermedium angeord-
net ist, wobei das Computerprogrammprodukt Computerprogrammbefehle umfasst, um
zu kompilierende Software für einen oder mehrere Kompilierungsknoten bereitzustellen, wobei mindestens ein
Teil der zu kompilierenden Software von einem oder mehreren anderen Knoten ausgeführt werden soll;



DE 11 2011 101 469 T5    2013.03.14

27/36

die Software durch den Kompilierungsknoten zu kompilieren;
kompilierte Software, die auf dem Kompilierungsknoten ausgeführt werden soll, durch den Kompilierungskno-
ten zu verwalten; und
einen oder mehrere Knoten in einer nächsten Ebene der Hierarchie des verteilten Verarbeitungssystems durch
den Kompilierungsknoten in Abhängigkeit davon, ob kompilierte Software für den ausgewählten Knoten oder
für die Nachkommen des ausgewählten Knotens bestimmt ist, auszuwählen; und
nur die kompilierte Software, die von dem ausgewählten Knoten oder von den Nachkommen des ausgewählten
Knotens ausgeführt werden soll, an den ausgewählten Knoten zu senden.

16.  Computerprogrammprodukt nach Anspruch 15, das des Weiteren Computerprogrammbefehle umfasst,
um
kompilierte Software durch einen ausgewählten Knoten zu empfangen;
festzustellen, ob die kompilierte Software für den ausgewählten Knoten oder für einen seiner Nachkommen
bestimmt ist;
die Software durch den ausgewählten Knoten zur Ausführung zu verwalten, wenn die kompilierte Software für
den ausgewählten Knoten bestimmt ist; und
einen anderen Knoten in einer nächsten Ebene des hierarchischen verteilten Verarbeitungssystems in Abhän-
gigkeit von einem Nachkommen für die kompilierte Software auszuwählen, wenn die kompilierte Software für
einen der Nachkommen bestimmt ist, und die kompilierte Software an den ausgewählten anderen Knoten zu
senden.

17.    Computerprogrammprodukt nach Anspruch 15 oder Anspruch 16, das des Weiteren Computerpro-
grammbefehle umfasst, um den einen oder die mehreren Kompilierungsknoten zu kennzeichnen.

18.  Computerprogrammprodukt nach Anspruch 17, wobei Computerprogrammbefehle zum Kennzeichnen
des einen oder der mehreren Kompilierungsknoten des Weiteren Computerprogrammbefehle umfassen, um
einen oder mehrere Knoten auszuwählen, die für den Kompiliervorgang rechnerisch optimiert werden.

19.  Computerprogrammprodukt nach Anspruch 17 oder 18, wobei Computerprogrammbefehle zum Kenn-
zeichnen des einen oder der mehreren Kompilierungsknoten des Weiteren Computerprogrammbefehle um-
fassen, um einen oder mehrere Knoten auszuwählen, die aufgrund von ihrem Standort in der Topologie des
hierarchischen verteilten Verarbeitungssystems für den Kompiliervorgang optimiert werden.

20.   Computerprogrammprodukt nach einem der Ansprüche 15 bis 19, wobei das hierarchische verteilte
Verarbeitungssystem des Weiteren einen parallelen Computer umfasst, der Folgendes enthält:
eine Vielzahl von Computerknoten;
ein erstes Datenübertragungsnetzwerk, das die Computerknoten für Datenübertragungen verbindet und für
Punkt-zu-Punkt-Datenübertragungen optimiert ist; und
ein zweites Datenübertragungsnetzwerk, das Datenübertragungs-Verbindungsleitungen enthält, welche die
Computerknoten verbinden, um die Computerknoten als einen Baum aufzubauen, wobei jeder Computerkno-
ten über ein gesondertes Rechenwerk (ALU) verfügt, das für parallele Operationen bestimmt ist.

Es folgen 9 Blatt Zeichnungen



DE 11 2011 101 469 T5    2013.03.14

28/36

Anhängende Zeichnungen



DE 11 2011 101 469 T5    2013.03.14

29/36



DE 11 2011 101 469 T5    2013.03.14

30/36



DE 11 2011 101 469 T5    2013.03.14

31/36



DE 11 2011 101 469 T5    2013.03.14

32/36



DE 11 2011 101 469 T5    2013.03.14

33/36



DE 11 2011 101 469 T5    2013.03.14

34/36



DE 11 2011 101 469 T5    2013.03.14

35/36



DE 11 2011 101 469 T5    2013.03.14

36/36


	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

