发明名称 可生产病毒颗粒的被囊化细胞

摘要

本发明涉及可生产病毒颗粒（特别是含有携带治疗基因的逆转录病毒载体基因组的逆转录病毒颗粒）的被囊化细胞，制备这种被囊化细胞的方法，以及用这种被囊化细胞治疗疾病的应用。
1. 能生产病毒颗粒的被囊化细胞，该被囊化细胞包括一个内含细胞的核心；以及一个围绕所述的核心的多孔的囊壁，该多孔囊壁可透过所述的病毒颗粒。

2. 按照权利要求1的被囊化细胞，其中所述的多孔囊壁由一种带相反电荷的聚电解质所形成的聚电解质复合物构成。

3. 按照权利要求1-2的被囊化细胞，其中所述的多孔囊壁由含有硫酸基的多糖或多糖衍生物或含有磺酸基的合成多聚体，及含有四元醚基的多聚体所形成的一种聚电解质复合物构成。

4. 按照权利要求3的被囊化细胞，其中的含有硫酸基的多糖或多糖衍生物是纤维素硫酸盐、醋酸纤维素硫酸盐、羧甲基纤维素硫酸盐、聚糖硫酸盐、或淀粉硫酸盐；其中的含有磺酸基的合成多聚体是一种聚苯乙烯磺酸盐。

5. 按照权利要求3的被囊化细胞，其中的含有四元醚基的多聚体是聚二甲基二烯丙基二甲基铵或聚乙烯基苯甲基-三甲基铵。

6. 按照权利要求1-5的被囊化细胞，其中的多孔囊壁由纤维素硫酸盐和聚二甲基二烯丙基二甲基铵形成的一种复合物构成。

7. 按照权利要求1-6的被囊化细胞，具有多种囊的形状，其直径为0.01～5mm，优选地0.1～1mm。

8. 按照权利要求1-7的被囊化细胞，其中所述的囊含有海绵质的纤维素硫酸盐基质，形成其囊内壁，外面围以带小孔的囊表层；所述的海绵质基质内充满着细胞。

9. 按照权利要求1-8的被囊化细胞，其中的多孔囊壁表层小孔的孔径为80～150nm，优选为100～120nm。

10. 按照权利要求1-9中的任一权利要求所述的被囊化细胞，其中的由被囊化细胞生产的病毒颗粒是一种含有一种逆转录病毒载体的基因组的逆转录病毒颗粒。

11. 按照权利要求10的被囊化细胞，其中的可生产逆转录病毒颗粒的被囊化细胞是一种转染了表达载体的包装细胞系，所述的表达载体携带有一个逆转录病毒载体结构，能够感染并引导该逆转录病毒载体结构所携带的一个或多个编码序列在靶细胞中的表达；所述的包装细胞系至少包含着一种携带
有编码为所述的逆转录病毒载体结构的基因组包装所需的蛋白质的编码基因的表达载体。

12. 按照权利要求11的被囊化细胞，其中至少有一种所述的编码序列是为编码选自标志基因、治疗基因、抗病毒基因、抗肿瘤基因、和细胞因子基因的异源多肽。

13. 按照权利要求12的被囊化细胞，其中所述的标志基因选自编码诸如β-半乳糖苷酶、新霉素、乙醇脱氢酶、嘌呤霉素、次黄嘌呤转磷酸核糖基酶(HPRT)、潮霉素，以及分泌型碱性磷酸酶等蛋白质的标志基因组；其中所述的治疗基因是选自编码诸如单纯性疱疹病毒胸苷激酶、胞嘧啶脱氨酶基因、鸟嘌呤转磷酸核糖基酶(gpt)、细胞色素P450等蛋白质的基因，细胞周期调节基因诸如SDI，编码诸如p53等蛋白质的肿瘤抑制基因，编码诸如蜂菌肽、天冬抗菌肽、或细胞因子(如IL-2)等蛋白质的抗增殖基因。

14. 按照权利要求11的被囊化细胞，其中的包装细胞系选自psi-2、psicrypt、psi-AM、GP+E-86、PA317、和GP+envAM-12。

15. 按照权利要求11的被囊化细胞，其中的表达载体是pBAG，pLXSN，p125LX，pLX2B1，或pc3/2B1或其衍生物。

16. 一种制备按照权利要求1-15的被囊化细胞的工艺，包括将能生产病毒颗粒的细胞悬浮在一种聚电解质水溶液中，然后将预先加工成的颗粒的悬浮液导入内含一种带相反电荷的聚电解质水溶液的沉淀浴中；

17. 按照权利要求16的一种工艺，其中的颗粒是经喷雾形成。

18. 按照权利要求16-17的一种工艺，其中的细胞悬浮在一种含硫酸基的多糖或多糖衍生物、或一种含磷酸基的合成多聚体的水溶液中。

19. 按照权利要求18的一种工艺，其中含硫酸基的多糖或多糖衍生物选自纤维素硫酸钠、醋酸纤维素硫酸盐、羧甲基纤维素硫酸盐、葡聚糖硫酸盐，或淀粉硫酸盐，其中含磷酸基的合成多聚体是一种聚苯乙烯硫酸盐。

20. 按照权利要求16-17的一种工艺，其中沉淀浴内有一种含四元铵基的多聚体的水溶液。

21. 按照权利要求20的一种工艺，其中含有四元铵基的多聚体是聚二甲基二烯丙基铵或聚乙烯基苯甲基-三甲基铵。
22. 按照权利要求16-17的一种工艺，其中细胞悬浮在一种纤维素硫酸钠的水溶液中，并被导入含有一种聚二甲基二烯丙基氯化铵的水溶液的沉淀浴中。

23. 按照权利要求22的一种方法，其中的纤维素硫酸盐水溶液由0.5-50%，优选地为2-5%的纤维素硫酸钠及2-10%，优选地为5%的胎牛血清的缓冲盐构成。

24. 按照权利要求22的一种方法，其中在沉淀浴中的水溶液由0.5-50%，优选地为2-10%，或更优选地为3%的聚二甲基二烯丙基氯化铵的缓冲盐构成。

25. 按照权利要求1-15的囊化细胞，是按照权利要求16-24中的任一权利要求所述的一种工艺生产的。

26. 应用按照权利要求1-15的囊化细胞将基因运送至靶器官/细胞的步骤包括:

 a)在一合适的培养基中培养囊化细胞，以及

 b)把囊化细胞植入一活的动物(包括人类)体内。

27. 按照权利要求26的应用，其中的靶器官/细胞是乳腺或胰腺。

28. 按照权利要求26的应用，其中的靶器官/细胞是围绕动脉的平滑肌细胞。
可生产病毒颗粒的被囊化细胞

本发明涉及可生产病毒颗粒（特别是含有携带有关治疗基因的逆转录病毒载体基因组的逆转录病毒颗粒）的被囊化细胞。制备这种被囊化细胞的方法；以及应用这种被囊化细胞将基因（特别是治疗基因）运送到靶器官/细胞。

将有治疗作用的基因运送到靶细胞中，是基因治疗的关键所在。如果基因治疗能成为一项常规工作的话，那么最为重要的是要建立能在体内有效地将治疗基因运送到靶细胞的体系。

病毒载体，特别是逆转录病毒载体，是基因治疗最常用的运送载体（Morgan and Anderson, 1993）。目前已批准的基因治疗方案中，绝大多数采用的是体外途径，即将细胞从病人体内取出来，在体外进行遗传学修饰，然后在回输到病人体内。这种途径操作复杂，费用昂贵，而且仅限于先进的技术设备。此外，这种途径仅限用于易于分离、培养和再植入的细胞（Gunzburg等，1995）。尽管治疗基因的体内运送可提供许多优点，但在现阶段，该途径不仅无效，而且也问题重重。由于基因转移的低效率，所以一个主要的问题是需要多次应用病毒载体，而多次载体转移的要求，不仅使操作繁琐，而且也可能由于直接对病毒颗粒的免疫应答导致失败。

解决这些问题的一条可能的途径是：直接植入能生产病毒颗粒的细胞。将能生产含病毒载体基因组的病毒颗粒的细胞原位植入到靶器官或靶细胞附近，也可使得病毒载体能直接应用到靶细胞/器官中。

此外，如果所使用的病毒载体病毒是一种逆转录病毒载体病毒，那么这样一种途径比多次单独高剂量应用要好，因为靶细胞经历复制时载体病毒在场的机会增加了，因而载体病毒感染细胞的机会也增加了。此外，低水平但持续地释放病毒颗粒，这种情况可能有利于躲避宿主对病毒颗粒的免疫应答。

为了有效地运送病毒载体，生产病毒颗粒的细胞应能够在植入宿主后在宿主内存活较长的时间，并且必须在此期间生产出病毒颗粒并从细胞中释放出来。当不存在明显的免疫应答时，如植入大脑后，这些细胞能生存很长的
时间(Culver等, 1992; Ram等, 1993)。但要在身体的其它部位植入获得成功，则必须保护生产者细胞，使其免受免疫系统的影响。

因而这种途径的长期有效性取决于：(1)保护细胞免受宿主免疫系统的影响。正常情况下宿主免疫系统会清除能生产病毒颗粒的细胞，尤其是如果能生产病毒颗粒的细胞是来自不同的种(而这种细胞通常是这种情况)；(2)细胞在原位能存活很长的时间，这可能要求血管化(vascularisation)。

将细胞包裹到具有通透性的结构中，这种结构允许某些生物学活性分子的释放，但可保护生产这些分子的细胞免受免疫系统的应答，这项工作已取得一些成功(参见综述：Chang, 1995)。已将经遗传学修饰可生产人生长激素(hGH)(Tai和Sun, 1993)或分泌人腺苷脱氨酶(Hughes等, 1994)的细胞进行了被囊化。在这两项研究中，细胞均被包裹到多聚-L-赖氨酸-Mβ聚亚酸盐囊中，并且实验表明，这种细胞可在培养基中存活很长时间，同时伴随酶或激素的长期生成。此外，研究表明(Tai和Sun, 1993)，将这种囊移植入小鼠后，细胞能存活一年，并可继续生产hGH，证明囊可保护转运的细胞免受宿主免疫系统的破坏。

也已有文献报道了用别的材料来包裹细胞。已将经遗传学修饰可生产神经生长因子的大鼠幼鼠肾细胞包裹在聚丙烯腈/氯乙烯内，并植入鼠大脑中。该被囊化细胞至少存活了6个月，并可继续生产NGF(Winn等, 1994; Deglon等, 1995)。

此外，已将肝细胞成功地包裹到一种纤维素硫酸盐和聚二甲基二烯丙基铵的多聚电解质复合物中(Stange等, 1993)。90%以上的被囊化肝细胞保持了它们的活性，并且与单层生长的肝细胞相比，被囊化细胞显示出增强了的代谢活力。但这并不提示纤维素硫酸盐/聚二甲基二烯丙基铵囊能支持其它类型的细胞(如能生产病毒颗粒的细胞)的生长，或允许病毒颗粒从这种囊中逸出。

本发明中所采用的纤维素硫酸盐囊的制备方法已在DE 40 21 050 A1中作了详细描述。关于纤维素硫酸盐的合成，也已在专利申请中作了描述。对纤维素硫酸盐囊的综合鉴定方法已在"H. Dautzenberg等，生物材料技术，细胞及材料中固定的生物技术(Biomat., Art Cells & Immob. Biotech.), 21(3), 399-405(1993)"中作了详细的研究。其它的纤维素硫酸盐囊已在GB 2 135 954中作了描述。纤维素囊的特性，即囊的大小、孔的大小、壁的厚度以及机械特性，
取决于几个因素，如囊制备时的物理环境、沉淀浴(precipitation bath)的粘度、其离子强度、温度、加入细胞/纤维素硫酸盐悬浮液的速度、纤维素硫酸盐的组成，以及Dautzenberg小组所描述的其它一些参数。

令人惊奇的是，发现通过将细胞包裹到一种多聚电解质复合物中，可使病毒颗粒不断地从植入的细胞中生产出来。尽管这种囊的孔径大到足以允许已知能灭活病毒的抗体和补体(Welsh等，1975; Cornetta等，1990)进入囊，但我们并没有发现有显著的免疫或炎性应答，或在植入的囊的邻近区域坏死的证据。此外，另一个令人惊奇发现是，按本发明制备的囊，能很好地移入宿主，并迅速血管化。因此按照本发明的被囊化细胞，可长期地在体内运送携带治疗基因的病毒载体。

本发明特别包括以下单独或组合内容：

能生产病毒颗粒的被囊化细胞，包括一个内含细胞的核心；以及围绕在该核心周围的一个多孔囊壁，该多孔囊壁可透过所述的病毒颗粒；

上述的被囊化细胞，其中所述的多孔囊壁由一个由带反电荷的多聚电解质所形成的多聚电解质复合物构成；

如上述的被囊化细胞，其中所述的多孔囊壁由一个由含有硫酸基的多糖或多糖衍生物或含有磷酸基的合成多聚体，和含有四元铵基的多聚体所形成的聚电解质复合物构成；

如上述的被囊化细胞，其中的含有磷酸基的多糖或多糖衍生物是纤维素硫酸盐、醋酸纤维素硫酸盐、羧甲基纤维素硫酸盐、葡聚糖硫酸盐，或淀粉硫酸盐；其中的含有磷酸基的合成多聚体是一种聚苯乙烯磺酸盐；

如上述的被囊化细胞，其中的含有四元铵基的多聚体是聚二甲基二烯丙基铵或聚乙烯基苯基甲基-三甲基铵；

如上述的被囊化细胞，其中的多孔囊壁由纤维素硫酸盐和聚二甲基二烯丙基铵所形成的复合物构成；

如上述的被囊化细胞，具有一种囊的形状，其直径为0.01～5mm，优先地为0.1～1mm；

如上述的被囊化细胞，其中所述的囊由海绵质的纤维素硫酸盐基质构成其囊内壁，外面围以带小孔的囊表层；所述的海绵质基质内充满着细胞；

如上述的被囊化细胞，其中的多孔囊壁的表层小孔的孔径为80～150nm，优选地为100～120nm；
如上述的被囊化细胞，其中的由被囊化细胞生产的病毒颗粒是一种含有一个逆转录病毒载体基因组的逆转录病毒颗粒；

如上述的被囊化细胞，其中的可生产逆转录病毒颗粒的被囊化细胞是一种转染了表达载体的包装细胞系，该表达载体携带有可逆转录病毒载体结构，其能够感染并引导该逆转录病毒载体结构所携带的一个或多个编码序列在靶细胞中的表达；所述的包装细胞系至少包含一种编码有编码逆转录病毒载体结构所需的蛋白质的编码基因的表达载体；

如上述的被囊化细胞，其中至少有一种所述的编码序列是为编码选自标志基因、治疗基因、抗病毒基因、抗肿瘤基因、和细胞因子基因的异源肽；

如上述的被囊化细胞，其中所述的标志基因选自编码诸如β-半乳糖苷酶、新霉素、乙醇脱氢酶、嘌呤霉素、次黄嘌呤转磷酸核糖基酶（HPRT）、潮霉素、以及分泌型碱性磷酸酶等蛋白质的标志基因组；其中所述的治疗基因是选自编码诸如单纯疱疹病毒胸苷激酶、胞嘧啶脱氨酶、鸟嘌呤转磷酸核糖基酶（gpt）、细胞色素P450等蛋白质的基因，及细胞周期调节基因诸如SDI，编码诸如p53等蛋白质的肿瘤抑制基因，或编码诸如蜂毒素、天蚕抗肽、或细胞因子（如IL-2）等蛋白质的抗增殖基因；

如上述的被囊化细胞，其中包装细胞系选自psi-2、psi-crypt、psi-AM、GP+E-86、PA317、和GP+envAM-12；

如上述的被囊化细胞，其中转染到包装细胞系的表达载体是pBAG、pLXSN、p125LX、pLX2B1、或pc3/2B1或其衍生物；

一种制备上述的被囊化细胞的工艺，包括将能生产病毒颗粒的细胞悬浮在一种聚电解质水溶液中，然后将预先加工成的颗粒悬浮液导入内含一种带有相反电荷的聚电解质水溶液的沉淀浴中；

如上述的一种工艺，其中的颗粒是经喷雾形成；

如上述的一种工艺，其中细胞悬浮在一种含硫酸基的多糖或多糖衍生物、或一种含磷酸基的合成多聚体的水溶液中；

如上述的工艺，其中含磷酸基的多糖或多糖衍生物选自纤维素硫酸盐、醋酸纤维素硫酸盐、羧甲基纤维素硫酸盐、葡聚糖硫酸盐，或淀粉硫酸盐；其中含磷酸基的合成多聚体是聚苯乙烯磺酸盐；

如上述的一种工艺，其中沉淀浴内有一种含四元铵基的多聚体的水溶液；
如上述的一种工艺，其中含有四元铵基的多聚体是聚二甲基乙烯基烷基或
或聚乙烯基苯基甲基-三甲基铵；

如上述的一种工艺，其中细胞悬浮在一种纤维素硫酸钠的水溶液中，并
被导入含有一种聚二甲基乙烯基氯化铵的水溶液的沉淀浴中；

如上述的一种方法，其中的纤维素硫酸盐水溶液由0.5-50%，优选地为
2-5%的纤维素硫酸钠及2-10%，优选地为5%的胎牛血清的缓冲盐构成；

如上述的一种方法，其中在沉淀浴中的水溶液由0.5-50%，优选地为2-10%，
或更优选地为3%的聚二甲基二烯丙基氯化铵的缓冲盐构成；

通过上述的任何一种工艺所生产的被囊化细胞；

利用上述述的被囊化细胞将基因运送到靶器官/细胞的步骤，包括：

a)在合适的培养基中培养被囊化细胞，以及

b)把被囊化细胞植入一活的动物(包括人类)体内；

如上述述的应用，其中的靶器官/细胞是乳腺或胰腺；以及

如上述述的应用，其中的靶器官/细胞是围绕动脉的平滑肌细胞和其它细胞

类型。

本发明的一个目的是提供可生产病毒颗粒的被囊化细胞，这种被囊化
细胞在植入宿主后，能允许细胞所生产的病毒颗粒从囊中释放，并且同时并不
激发明显的宿主免疫或炎性应答反应。

本发明进一步的目的是提供生产这种可生产病毒颗粒的被囊化细胞的
一种工艺。

本发明的另一个目的是通过将这种可生产病毒颗粒的被囊化细胞植入
到宿主内，提供一种将基因(尤其是治疗基因)运送到靶器官/细胞的方法，并
由此提供在靶器官中或靶细胞附近病毒颗粒的持续生产和释放。

按照本发明，提供了能生产病毒颗粒的被囊化细胞，这种被囊化细胞在
植入宿主后，可允许细胞所产生的病毒颗粒从囊中释放，并且同时并不激发
明显的宿主免疫或炎性反应。

按照本发明，被囊化细胞可通过如下步骤制备而得：将能生产病毒颗粒
的细胞悬浮在一种聚电解质(如选自含硫酸基的多糖或多糖衍生物或含磷酸
基的合成多聚体)的水溶液中，然后将预先加工成颗粒的悬浮液导入内含一种
带相反电荷的聚电解质(诸如含四元铵基的多聚体)水溶液的沉淀浴中。
含硫酸基的多糖或多糖衍生物包括纤维素硫酸盐、醋酸纤维素硫酸盐、
羧甲基纤维素硫酸盐、葡聚糖硫酸盐，是以一种盐的形式，
尤其是以一种钠盐的形式。其中含磷酸基的合成多聚体能是一种聚苯乙烯磷酸
酸盐，最好是一种钠盐。

含四元铵基的多聚体包括聚二甲基二烯丙基铵或聚乙烯基苯甲基-三甲
基铵，以其盐的形式，优选地是一种氯盐。

在本发明的一个优选地的实施方案中，将能生产病毒颗粒的细胞包裹在
一个由纤维素硫酸盐和聚二甲基二烯丙基铵所形成的复合物构成的复合物
中。

制备这种囊优选地通过将能生产病毒颗粒的细胞悬浮在内含0.5-50%、
优选地为2-5%的纤维素硫酸盐及5%的胎牛血清的溶液中(可选地在缓冲液
中)，然后用定量系统(dispensing system)(如空气喷雾或压力系统)在搅拌下将
悬浮液滴加到内含0.5-50%，优选地为2-10%，或更优选地3%左右的聚二甲
基二烯丙基氯化铵(可任选地在缓冲液中)的沉淀浴中。在数毫秒内即可形成
囊，将这种内含细胞的囊继续置沉淀浴中30秒-5分钟，然后清洗。这种方法
非常快速，确保在整个流程中细胞不被过度挤压(Stange等，1993)。

按照本发明的囊，其直径是可变的，在0.01-5mm之间，但优选地在0.1-1
mm之间。因此，囊可包含不同数量的细胞。采用按照本发明的囊化工艺，
能将高达1010个，但最好为105-107个可生产病毒颗粒的细胞包裹到聚电解质
复合物中。

由纤维素硫酸盐和聚二甲基二烯丙基铵构成的囊具有非常好的机械性
能，并且生出的囊大小和孔径均一。

囊的孔径为80-150nm，优选地为100-120nm。

被囊化的细胞可在常规细胞培养基(其性能取决于被囊化细胞)中，在标
准的湿度、温度、和CO2等浓度条件下进行培养。在培养过程中，可从囊中
生产出病毒颗粒释放到细胞培养基中，这可利用RT-PCR得到证实，或通过将
无细胞上清液(0.45μm滤膜滤过)转染到靶细胞，然后通过测定由病毒颗粒内
所含的病毒载体结构所携带基因所编码的标志蛋白的活性得到证实。如果病
毒载体所携带的标志基因是一种可使靶细胞具有耐受某一特定化合物的基
因，则可确定该系统所生产的病毒的效价。
培养适当的时间(一般不少于1小时，不超过30天)后，这种内含细胞的囊可直接手术植入或用注射器注射到身体的不同部位。

由按照本发明的被囊化细胞所生产的病毒颗粒可以是基于对基因治疗有用的任何的病毒，包括(但不仅限于)：腺病毒、腺病毒相关性病毒、疱疹病毒，或逆转录病毒，可参照综述“Gunzburg和Salmons, 1995”。

在本发明的一个优选的实施例中，被囊化的细胞是一种可生产逆转录病毒颗粒的包装细胞系，该逆转录病毒颗粒内含有一个携带标志组分可治疗基因的逆转录病毒载体结构的基因组。逆转录病毒载体系统由两个组分组成：

1)一种携带有逆转录病毒载体结构的表达载体(载体质粒)，这种载体质粒是一种经修饰的逆转录病毒，其编码病毒蛋白质的基因已被转移到靶细胞中去的治疗基因(任意地包括标志基因)所替代，由于将编码病毒蛋白的基因替换后会有效地损害病毒，因此必须用系统中的第二个组分来挽救，第二个组分可为修饰后的逆转录病毒提供其缺失的病毒蛋白。

第二组分是：

2)一种能生产大量病毒蛋白，但缺乏生产可复制病毒的能力的细胞系。这种细胞系被称为包装细胞系，是由感染了携带能使修饰后的逆转录病毒基因组合以包装的基因的质粒的一种细胞系构成。这些质粒可指导合成成为病毒颗粒生成所必需的病毒蛋白质。

为生成包装好的逆转录病毒载体，将载体质粒转染到包装细胞系中。在这种情况下，从载体质粒转录出内含所插入的治疗基因和选择性的标志基因的修饰后的逆转录病毒基因组，并将所得的修饰后的逆转录病毒基因组包装到逆转录病毒颗粒中。感染了这种病毒颗粒的细胞是能生产病毒颗粒的，因为在这些细胞中不存在病毒蛋白质，不过存在于携带有关治疗基因和标志基因的逆转录病毒载体结构，且目前已能在感染的细胞中得到表达。

WO 94/29437、WO 89/11539、和WO 96/07748描述了对本发明的目的有用的其它类型的逆转录病毒载体系统。

由按照本发明的被囊化细胞生产的病毒颗粒，能被构建成使其含有携带有关标志基因和/或治疗基因的一个病毒载体的基因组。

由病毒载体携带的标志基因或治疗基因能是如下的基因，例如：编码诸如β-半乳糖苷酶、新霉素、乙醇脱氢酶、嘌呤霉素、次黄嘌呤转磷酸核糖基
酶(HPRT)、潮霉素、以及分泌型碱性磷酸酶等蛋白质的基因，或编码诸如单纯性疱疹病毒胸苷激酶、胞嘧啶脱氨酶、鸟嘌呤转磷酸核糖基酶(gpt)、细胞色素P450等蛋白质的治疗基因，细胞周期调节基因诸如SDI，编码诸如p53等蛋白质的肿瘤抑制基因，或编码诸如蜂毒肽、天蚕抗菌肽或细胞因子(如IL-2)等蛋白质的抗增殖基因。

在一特殊的实施方案中，本发明是按照本发明的被囊化细胞在肿瘤治疗中的应用。

许多恶性肿瘤对化学疗法没有很好的应答。在大多数病例中，用于治疗肿瘤的抗癌药物是全身给药，从而扩散到病人的全身。癌症治疗所需的这种全身性的高剂量药物常使病人伴有不舒服的副作用。解决抗癌药物全身性高浓度问题的一个策略是，直接在肿瘤内或肿瘤附近直接应用或活化药物。这可通过将按照本发明的被囊化细胞植入到肿瘤细胞内或其邻近细胞而达到，该被囊化细胞能生产含有一工程病毒(特别是一逆转录病毒载体)基因组的病毒颗粒。该工程病毒携带有编码抗癌药物(例如能将一种前体药物转化为细胞毒性因子的活性酶)的基因。

在本发明的一个实施例中，提供了可生产逆转录病毒颗粒的被囊化细胞，该逆转录病毒颗粒内含一个携带有肿瘤相并酶(如细胞色素P450)基因或自杀基因(如，但并不限于：可将非-毒性药物转化为一种或多种毒性代谢物的胸苷激酶)的逆转录病毒载体基因组。可将本发明的这种被囊化细胞植入到肿瘤(胰腺或乳腺中的肿瘤)内或其附近，从而可用来治疗癌症。

也可利用可指导相连的治疗基因表达的靶细胞特异性调节元和启动子，对特定的细胞类型进行其它的寻靶作用(targeting)。

这种靶细胞特异性调节元和启动子包括：例如，胰腺特异性调节元和启动子，包括碳酸酐酶II和β-葡萄糖激酶调节元和启动子；淋巴细胞特异性调节元和启动子，包括免疫球蛋白和MMTV淋巴细胞特异性调节元和启动子；乳腺特异性调节元和启动子，包括乳清酸性蛋白(WAP)、鼠乳腺癌病毒(MMTV)β-乳球蛋白和酪蛋白特异性调节元和启动子；以及可授予对糖皮质激素应答性或指导对乳腺表达的MMTV特异性调节元和启动子。其它的启动子包括：例如，CD4、CD34、和IL2启动子。所述的调节元和启动子对所述的逆转录病毒载体的表达具有优选的调节作用。
也可利用诱导启动子，如放射诱导启动子，例如：细胞间粘连分子-1(ICAM-1)启动子，表皮生长因子受体(EGFR)启动子和肿瘤坏死(TNF)启动子。

下面的实例将对本发明作进一步的阐述，但不能理解为局限于这些：

实施例1

用pBAG脂转染(lipofection)PA317并分离G418耐受细胞

基于兼嗜性NIH3T3的PA317包装细胞(Miller和Buttimore, 1986)培养于内含10%胎牛血清的Dulbecco's改良Eagle's培养基(DMEM)中，在脂转染前一天，将细胞接种到一个10cm组织培养皿中，接种密度为3 × 10^5个细胞。然后将2 μg携带有基于MLV(鼠白血病病毒)的逆转录病毒载体的pBAG载体(Price等, 1987)，用GIBCO/BRL公司的脂转染胺(lipofectamine)试剂盒按照厂家说明脂转染到包装细胞中，然后将细胞稀释1:10，培养在添加了400 μg/ml G418(GIBCO/BRL)的普通培养基中。培养14天后，将G418耐受细胞的克隆收集合并。

实施例2

被囊化：

将10^7个细胞悬浮于1ml内含2-5%纤维素硫酸钠和5%胎牛血清的缓冲液溶液中，然后用调剂系统(空气喷雾系统)将悬浮液滴加到内含2-3%聚二甲基二烯丙基铵的缓冲液的沉淀浴中。在数毫秒内即可出现囊的形成，然后是有多孔的用于机械支持的内层的进一步形成，内层基本上由纤维素硫酸钠组成。将内含细胞的囊继续置沉淀浴中30秒~5分钟，然后用DMEM洗涤(Stange等, 1993)。不同参数(如上所述，即纤维素硫酸钠的浓度、空气喷雾系统的流速、以及沉淀浴中的时间)下取样，用于进行生物学研究。代表性条件的实例是：如，2.5%纤维素硫酸钠、2%聚二甲基二烯丙基铵、在沉淀液中1分钟，或1.5%纤维素硫酸钠、2%聚二甲基二烯丙基铵、在沉淀液中0.5分钟，或3%纤维素硫酸钠、3%聚二甲基二烯丙基铵、在沉淀液中2分钟。选择确切的参数时，也应将所需囊的确切大小、囊壁的厚度、以及其它特性考虑在内。

实例3

将囊植入鼠乳腺中：
用"匙孔"("key hole")手术将囊插入到2月龄BALB/c雌性小鼠的乳腺中，入口部位缝合一针。每一手术部位可插入多达6个直径为0.5-2mm的囊。

在从囊释放病毒的体外研究中，对囊的结构及将囊植入免疫活性小鼠中的效应作了研究，方法如下：

A) β-半乳糖苷酶活性

按文献(Cepko, 1989)所述的组织化学染色方法检测被感染的细胞。用预冷的PBS洗涤细胞、囊或组织切片，然后根据标本的厚度，用2%多聚甲醛溶液固定20分钟~24小时。用PBS充分洗涤后，将细胞、囊或组织切片置于含有底物X-gal的溶液(20mM K₃FeCN₆，20mM K₄FeCN₆·3H₂O，2mM MgCl₂和1mg/ml X-gal)中于37°C下孵育至少2小时。

B)感染

感染前6小时，将4×10⁴个靶细胞接种到6孔组织培养板中。将内含病毒
生成细胞的囊置于靶细胞的上层，并向培养基中加入聚凝胺(8μg/ml)。4小时后，更换培养基以去除残余的聚凝胺。5天后，将其中的一些孔进行如上所述的β-半乳糖苷酶活性染色，其余孔用胰酶消化，转移至较大的组织培养皿中并培养于内含400μg/ml G418的培养基中。16天后检测G418耐受克隆。

C)RT-PCR分析

将5ml囊培养基上清液超速离心(240,000 × g, 1小时, 4°C)以沉淀病毒颗粒，沉淀用裂解缓冲液(1% Triton-100, 0.5%脱氧胆酸钠，0.1%十二烷基磺酸钠，PBS)悬浮，按文献(Salmons等，1986)所述的方法，经酚提取、乙醇沉淀以提取RNA。然后用 Ready-To-Go T-primed 第一链试剂盒(Pharmacia)将RNA逆转录成DNA，然后进行PCR扩增，所用的引物位于MLV衍生的BAG载体LTR的被膜区(env)和R区内(图2)。PCR扩增在100 μl反应体系中进行，反应体系内含500mM KCl、10mM Tris-HCl(pH8.3)、1.5mM MgCl₂、0.01%(w/v)明胶、100 μM各种dNTP、40pM各种引物及2.5单位Taq聚合酶(Perkin Elmer)，反应于Perkin Elmer公司的9600型DNA扩增仪中在如下条件下进行：94°C，1分钟；53°C，2分钟；72°C，3分钟，共35个循环。PCR产物经0.8%琼脂糖凝胶电泳分离，然后按文献所述(Indraccolo等, 1995)将其转移到Zeta探
针膜(BIORAD)上，并将其按文献(Indraccolo等，1995)所述方法与由相同的引物并用pBAG为模板生成的一种^{32}P-标记的612bp的MLV基因组的PCR片段杂交。用富士(Fuji)磷成像系统(BAS 1000)显示MLV特异性序列。

5 D)PCR分析

利用PCR对基因组DNA(1μg)进行扩增，所用的一个引物位于BAG载体的残余env序列内，第二个引物位于逆转录病毒载体序列外的质粒的多瘤(polyoma)区(图3B)。如上所述进行PCR反应，采用如下的反应条件：94℃，1分钟；50℃，2分钟；68℃，3分钟，共35个循环。PCR产物与^{32}P-标记的来自pBAG的1.5kb XbaI DNA片段(该探针对多瘤序列特异)进行杂交。

10 F)电子显微镜

用于扫描电子显微镜(SEM)和透射电子显微镜(TEM)试验的标本用 PBS(pH7.35)漂洗，并在含1％戊二醛的PBS中预固定15分钟，然后在2％OsO_{4}中固定15分钟。样品用梯度等级系列的乙醇脱水，然后将其分为两组。a) SEM样品用CO_{2}进行临界点(critical-point-dried)干燥，并用1-3mm的铂(Emscope SC 500; Ashford, 英格兰)包埋。包裹好的标本在10kV场发射扫描电子显微镜(Jeol JSM-6300F; 东京, 日本)中检测。在第二种方式中用5-10kV的加速电压。b) TEM样品包埋在Epon中，超薄切片用乙酸双氧铀和枸橼酸铅进行双染色，并在Zeiss EM-10C(Oberkochen, 德国)透射电子显微镜中观察。

15 结果

从囊中释放病毒的体外研究：

20 如上面的"β-半乳糖苷酶活性"试验中所述，从实例2获得的囊用底物X-gal对囊中的细胞染色。结果表明，细胞可表达pBAG编码的β-半乳糖苷酶基因(图1)，未被囊化的载体生成细胞也可表达β-半乳糖苷酶基因(136,657),(641,699)。未显示。

25 为了证实可从囊内的细胞中释放病毒颗粒到细胞培养基中，从培养不同时间的囊上清液中沉淀而得病毒粒子，制备RNA。然后如上面的"RT-PCR分析"中所述，将RNA进行RT-PCR分析，所用引物互补于病毒的env区和R区。至少6周内可在囊培养基中观察到一条MLV特异的预期大小的PCR片段。
(612bp)(图2B, 洋道1-4), 6周以后未作继续分析。这一片段不是由于污染了DNA, 因为若在RT-PCR前用RNase预处理病毒RNA, 结果则没有信号(图2C, 洋道1-4)。

为了证实从囊中能生产和释放感染性病毒，将囊与靶细胞，如NIH3T3细胞(Jainchill等, 1969)或CRFK细胞(Crandell等, 1973), 如上面的“感染”试验中所述, 进行共培养。共培养4天后, 1份靶细胞试样以及1份被囊化的包装细胞试样都进行如上所述的β-半乳糖苷酶活性染色。剩下的靶细胞用于筛选其

G418耐受性。许多共培养的NIH3T3细胞和CRFK细胞均显示出能表达β-gal基因(图3A)。

为了确证靶细胞已通过感染获得了β-gal基因，对靶细胞进行了PCR检测。可生产BAG的包装细胞系是PA317细胞系(Miller和Buttimore, 1986), 携带有单纯疱疹病毒胸腺激酶(HSV-TK)基因，其产物可将前体药物更昔洛韦(ganciclovir)转化为细胞毒性药物。NIH3T3或CRFK靶细胞正常情况下并不携带这一基因。在一个能证实有β-gal基因表达的共培育NIH3T3和CRFK靶细胞可耐受GCV的实验中，为了证实在该实验中并未发生BAG基因组DNA，用PCR分析其位于载体外部的质粒序列(上面的PCR分析)。这些序列存在于包装细胞中，因为BAG载体以质粒pBAG的形式脂染染到了这些细胞内。不过由包装细胞所生产的病毒则不携带这些序列，因此这些序列不会存在于感染的靶细胞中，图3B显示未检测到这种质粒序列，这与用BAG载体感染这些细胞相一致。

囊的结构：

制备囊切片并用电子显微镜分析其结构。囊的内部由海绵状的基质构成，其内充满了细胞(图4)。扫描电子显微镜显示，囊表面存在着一些小孔，这些小孔大得足以允许逆转录病毒颗粒从囊中释放，因为白色的光棒代表的是逆转录病毒颗粒的平均直径(图4)。

在免疫活性小鼠中的体内稳定性：

为了确定囊的体内稳定性以及囊其产生的病毒是否会激发显著的免疫应答，将囊植入二月龄BALB/c雌性小鼠的乳腺中。于植入后不同时间将小鼠处死，评定囊的命运以及是否生成了感染性病毒。植入后至少6周，可清晰
地看到在乳腺脂肪中包埋有植入的囊(图5A)。令人感兴趣的是，在所分析的
所有动物中，都在囊的附近发生了血管化(图5A)，推测是包装细胞产生血管
原因所或成合因子的结果。

穿过囊及其周围的乳腺组织的切片证实了，在紧靠囊的邻近区可发现血
管(图5B)，这些切片也显示出在囊和乳腺细胞之间有一层连接组织，没有对
囊或对其所含的病毒生成细胞发生显著的炎性应答或免疫应答的证据。

为了证实感染性的逆转录病毒载体颗粒已从囊释放并己感染了周围的
乳腺组织，用X-gal染色对其中的一些切片分析其β-gal的表达。染色结果可
清晰地看到在囊的外面有表达β-gal基因的细胞(图5C)。

实施例4

本实施例描述的是构建一种用于瘤内感染的含有鼠细胞色素P450 2B1
基因的逆转录病毒载体。

表达载体pLX2B1(见图6)是将从pLX125质粒和pSWI质粒获得的片段连
接构建而成(Kedzie等,1991)。用Hpal酶将pLX125质粒线性化，所得的平端用
小牛肠磷酸酶脱磷酸化。用1%琼脂糖凝胶分离纯化DNA，并用Qiaquick方案
切割和制备DNA(Qiagen)。乙醇沉淀DNA，然后将DNA重悬于水中。

pSWI克隆载体用SmaI和HindII消化，产生两个平端片段。将消化混合液
在1%琼脂糖凝胶上分离。采用Qiaquick DNA提取方案，将内含鼠细胞色素
P450 2B1 cDNA(Fuji-Kuriyama等,1992)的最短的片段(1.5kb)切割和洗脱，乙
醇沉淀，然后重悬于水中。

将7.6 fmols plX125和24 fmols经SmaI/HindII切割的pSWI片段混合，用
T4-连接酶(Boehringer)在12℃下连接3天。65℃10分钟以灭活连接酶，用10倍
体积的丁醇沉淀DNA。将DNA沉淀重悬于水中，并将其电穿孔入DH10B-细
菌(Gibco)。筛选氨苄青霉素耐受克隆，制备DNA，并用SspBl/SalI、
BamHl/SspBl、PvuI,和BamHl进行消化试验。最终的正确质粒称为pLX2B1。

脂转染

脂转染前一天，将3 × 10⁵个PA317逆转录病毒包装细胞(Miller和
Buttimore, 1986)接种到6cm培养皿中。感染当天，将2 μg pLX2B1与100 μl无
血清培养基混合。同时将15 μl脂转染胺(Lipofectamine)(Gibco BRL)与100 μl
无血清培养基混合。将含质粒的溶液加到脂转染胺-混合液中，并孵育45分
钟。孵育35分钟后，包装细胞用2ml无血清培养基洗一次，将800μl无血清培养基加到脂转染-混合液中，将所得的1ml加到制备好的包装细胞上面。6小时后，加1ml内含10％FCS的Dulbecco's改良Eagle's培养基。第二天细胞用胰酶消化，并作1:10稀释，然后接种到一个100mm的培养皿中。24小时后，用内含新霉素类似物G418的培养基更换培养基，分离单个的细胞克隆或细胞群体，分析其细胞色素P450的表达。

被囊化

按上述实施例2中所述，将所得的能生产逆转录病毒载体的包装细胞包

植入

将所得的囊用"匙孔"手术导入到BALB/c或GR小鼠的移植的或自发的肿瘤内或其附近，每一手术部位插入了大约6个直径为1mm的囊。手术部位缝合

实施例5

本实施例描述的是一个可表达鼠细胞色素P450 2B1的稳定细胞系的构

建。

cp3/2B1表达载体是由从pcDNA3(Invitrogen)和pSW1质粒(Kedzie等, 1991)获得的片段连接构建而成。

cpDNA3质粒用XhoI/XbaI消化，所得的粘性末端片段用小牛肠磷酸酶去磷酸化，在1％琼脂糖凝胶上分离，并用Qiaquick方案(Qiagen)切割、制备，从而纯化载体主链DNA。经乙醇沉淀，然后用水重悬DNA。
克隆化载体pSW1用XhoI和XbaI消化而得两个片段。消化混合物在1%琼脂糖凝胶上分离。将含内含鼠细胞色素P4502B1 cDNA(Fuji-Kuriyama等, 1982)的最短片段(1.5kb)用Qiaquick DNA提取方案切割和洗脱，经乙醇沉淀，然后用水重悬。

将8.3 fmols pcDNA3主链和24.8 fmols pSW1 XhoI/XbaI片段混合在一起，用T4-连接酶(Boehringer)在12℃下连接1天。65℃10分钟以灭活连接酶，然后用10倍体积的丁醇沉淀DNA。将DNA沉淀重悬于水中，并将其电穿孔到DH10B-细菌(Gibco)中。筛选氨苄青霉素耐受克隆，制备DNA，并用EcoRI、BamHI、EcoRV和XhoI进行消化试验。最终的正确质粒称为pc3/2B1。

脂转染

感染前一天，将3 × 10⁵个NIH3T3细胞接种到35mm培养皿中。感染当天，将2 µg pc3/2B1与100 µl无血清培养基混合。同时将15 µl脂转染胺(Lipofectamine)与100 µl无血清培养基混合，将含质粒的溶液加到脂转染胺-混合液中，并孵育45分钟。孵育35分钟时，细胞用2ml无血清培养基洗一次。将800 µl无血清培养基加到脂转染-混合液中，将所得的1ml加到制备好的细胞上面。6小时后，加1ml含10% FCS的DMEM(Glutamax)，第二天细胞用胰酶消化，并作1:10稀释，然后接种到一个100mm的培养皿中。24小时后，用内含新霉素的培养基更换培养基。14天后，将新霉素耐受克隆分离，并检测载体的存在和活性。

按实施例2所述，制备内含这些细胞的囊，并将其植入到小鼠的肿瘤部位附近。用环磷酰胺或ifosfamide治疗，如上所述评价其疗效。

图示

图1：稳定地转染了pBAG的被囊化PA317细胞的组织学染色，证实有β-半乳糖苷酶的表达。

图2：由囊释放的病毒颗粒的RT-PCR分析。

(2B; 洗道1－4：囊培养2、3、5、6周后的培养基)。非被囊化的BAG病毒生成细胞的细胞培养基作为阳性对照(洗道5)，非转染的PA317的培养基作为阴性对照(洗道6)。如果在进行RT-PCR分析之前先用RNase消化病毒标本，则未观察到信号，确保所扩增的条带是来自病毒RNA(2C; 洗道1－4)。从非
被囊化BAG病毒生成细胞制备而得的未经过RNase处理的病毒RNA，在RT-PCR中作为阳性对照(泳道7)。

图3：将被囊化病毒生成细胞与NIH3T3细胞共培养。

(A) 在内含逆转录病毒载体生成包装细胞的囊加入之前一天，将靶细胞低密度接种。几天后，细胞和囊均进行组织学染色以测其β-半乳糖苷酶活性。

(B) 为了证实A中的β-半乳糖苷酶表达靶细胞是由感染而得，而不是由于从病毒生成细胞的逸出，从细胞提取基因组DNA并进行PCR分析。

图4：扫描电子显微镜所显示的囊表面，在高倍放大下，可看到类似小孔的结构，白色小棒表示100nm(逆转录病毒颗粒的直径)，指示这些结构可以代表小孔，病毒可以通过这些小孔从囊释放出来。

图5：植入小鼠乳腺中的囊的组织学分析。(A)

(B) 植入小鼠乳腺4周时，穿过一个囊的切片的光学显微镜(133倍放大)

(C) 植入含BAG载体生成PA317细胞的囊后，小鼠乳腺细胞的感染。

图6：内含鼠细胞色素P450 2B1基因的pLX2B1表达载体的结构，其在启动子转变后，将由U3-MMTV启动子控制。

参考文献:

Kedzie, KM; Balfour, CA; Escobar, GY; Grimm, SW; He, YA; Pepperl, DJ; Regan, JW; Stevens, JC; Halpert, JR: 功能单一的cyt P45011B1变种的分子基础(Molecular basis for a functionally unique cytochrome P45011B1 variant). 生物化学杂志(J. Biol. chem.) 1991 Nov 25; 266(33): 22515-21.

图 1
感染后的整合 BAG

![Diagram]

Xba I, 298

Xba I, 7316

2.3kb

a) 5' TGTGCTCTATGCGGACCA 3'
b) 5' CCGCGCTTATTAGCCTGTTA 3'

图 3B
图 5C