US 20160323397A1
a9y United States

a2y Patent Application Publication o) Pub. No.: US 2016/0323397 A1

Nagaraj et al. 43) Pub. Date: Nov. 3, 2016
(54) AYSNCHRONOUS CUSTOM EXIT POINTS (52) US. CL
CPCccvue HO4L 67/22 (2013.01); HO4L 67/02
(71) Applicant: AppDynamics Inc., San Francisco, CA (2013.01)
(US)

(72) Inventors: Samjay Nagaraj, Dublin, CA (US); 7 ABSTRACT

Ryan Ericson, San Francisco, CA (US);

> The present technology may monitor an asynchronous trans-
Alex Fedotyev, San Francisco, CA (US)

action based on a custom exit point. Once an asynchronous
method to be monitored has been identified, the transition
framework may be tracked while executing the asynchro-
(22) Filed: Apr. 30, 2015 nous method call. Within a NET framework, monitoring
may include tracking a task object, continuation method

Publication Classification calls at the completion of a method, and tracking the

continuation method as it executes other code. The asyn-

(51) Int. CL chronous method may then be correlated within a business

HO4L 29/08 (2006.01) transaction using the returned task object data.

(21) Appl. No.: 14/701,418

Server 150

Config file 154

o Coordinator 152

A
Network App Server 140
Br?:vg er Network J
— [t—> Server |-t o
130 App 142 - | Comioller
Client 160
110 A
\i
Client
device
170

5

175

Nov. 3,2016 Sheet 1 of 6 US 2016/0323397 Al

Patent Application Publication

Gl

01
=R

sl

091 < >

Jg|jonuon

vl ddy

¥ JoAIoS ddy

%G1 8l byuoo

ZC 1 Jojeulpioo)

GT JoAag

VI 3d4Nold

och

«—p JONIBS

JOMIBN

(g7
juallo

1A%
Jasmoug

}IOMISN

Patent Application Publication

Nov. 3,2016 Sheet 2 of 6

US 2016/0323397 Al

Application 142

Agent 21

o

Profiler 22

FIGURE 1B

Patent Application Publication Nov. 3,2016 Sheet 3 of 6 US 2016/0323397 A1

Receive selection of back-end calling
method to monitor N

i 210

Identify selected method as asynchronous

¢ 220

Monitor asynchronous transition framework
while executing asynchronous method call \

¢ 230

Correlate back-end calling method with
business transaction N

¢ 240

Report business transaction data with
asynchronous method performance data to —

user
250

FIGURE 2

Patent Application Publication Nov. 3,2016 Sheet 4 of 6 US 2016/0323397 A1

220

Perform BCI on called asynchronous
method NN

* 310

Execute instrumented asynchronous

method \

* 320

Detect task object creation N
* 330
Instrument task object "

* 340

At method completion, continuation method

called N

* 350

Perform BCI on called continuation method \
360

Instrumented continuation method provides
result and continues running body of N
method 370

Store data regarding asynchronous method

using instrumented code N~
380

FIGURE 3

Patent Application Publication Nov. 3,2016 Sheet 5 of 6 US 2016/0323397 A1

310

Inject intermediate language into .NET framework library \

¢ 410

Inject map into AppDomain .NET framework file \
¢ 420

Load external dll with proper call backs \
430

FIGURE 4

Patent Application Publication Nov. 3,2016 Sheet 6 of 6 US 2016/0323397 A1

Output
devices

510 — Processor ~~— 550

Input

520 — Memory Devices —— 560
Mass Display

530 ~ Storage System [~ 570

Portable

540 ¥ storage

Peripherals t~— 580

L 500

FIGURE 5

US 2016/0323397 Al

AYSNCHRONOUS CUSTOM EXIT POINTS

BACKGROUND OF THE INVENTION

[0001] The World Wide Web has expanded to provide web
services faster to consumers. Web services may be provided
by a web application which uses one or more services to
handle a transaction. The applications may be distributed
over several machines, making the topology of the machines
that provides the service more difficult to track and monitor.
[0002] A popular framework for providing a web is the
NET framework provided by Microsoft, Corp. In a .NET
framework, certain transactions such as asynchronous trans-
actions can be difficult to monitor. This is primarily due to
the fact that a first thread may handle a first portion of a
distributed business transaction, a second thread may han-
dling another part of the distributed business transaction,
and there is no connection or correlation between the two
threads within the business transaction. What is needed is an
improved manner for tracking asynchronous transactions.

SUMMARY OF THE CLAIMED INVENTION

[0003] The present technology may monitor an asynchro-
nous transaction based on a custom exit point. Once an
asynchronous method to be monitored has been identified,
the transition framework may be tracked while executing the
asynchronous method call. Within a.NET framework, moni-
toring may include tracking a task object, continuation
method calls at the completion of a method, and tracking the
continuation method as it executes other code. The asyn-
chronous method may then be correlated within a business
transaction using the returned task object data.

[0004] An embodiment may include a method for moni-
toring an asynchronous transaction. The method may detect
an asynchronous method call within an application by an
agent executing on a server. A task object associated with the
method call may be monitored. The task object creation may
be initiated by the asynchronous method call. Asynchronous
method call data may be correlated with a distributed
business transaction performed at least in part on the server.
[0005] An embodiment may include a system for moni-
toring a business transaction. The system may include a
processor, a memory and one or more modules stored in
memory and executable by the processor. When executed,
the one or more modules may detect an asynchronous
method call within an application by an agent executing on
a server, monitor a task object associated with the method
call, the task object creation initiated by the asynchronous
method call, and correlate asynchronous method call data
with a distributed business transaction performed at least in
part on the server.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1A is a block diagram of a system for moni-
toring an asynchronous transaction based on a custom exit
point.

[0007] FIG. 1B is a block diagram of a node.

[0008] FIG. 2 illustrates a method for monitoring and
asynchronous transaction.

[0009] FIG. 3 illustrates a method for monitoring asyn-
chronous transition framework.

[0010] FIG. 4 illustrates a method for instrumenting an
asynchronous method.

Nov. 3, 2016

[0011] FIG. 5 is a block diagram of a computing system
implementing the present technology

DETAILED DESCRIPTION

[0012] The present technology may monitor an asynchro-
nous transaction based on a custom exit point. Once an
asynchronous method to be monitored has been identified,
the transition framework may be tracked while executing the
asynchronous method call. Within a.NET framework, moni-
toring may include tracking a task object, continuation
method calls at the completion of a method, and tracking the
continuation method as it executes other code. The asyn-
chronous method may then be correlated within a business
transaction using the returned task object data.

[0013] A .NET framework may include one or more IIS
web servers as well as additional servers. Each IIS server
may include one or more applications and at least one
additional server may include a coordinator. An application
being monitored on an IIS server may include an agent
and/or a profiler. The profiler may detect a call within or by
the application and report the call to the coordinator. The
coordinator may determine if the detected call is one that
should be monitored, and informs the profiler appropriately.
If the call should be monitored, and agent on the application
monitors the call. In some instances, more or fewer modules
than an agent and profiler may be used to monitor an
application on a NET framework. References to an agent
and profiler are intended for purposes of example only.
[0014] One aspect of the present technology is that the
asynchronous framework of the .NET application is moni-
tored. In a.NET framework, an asynchronous method may
be called as a task object. The method may be compiled in
the NET framework with a C# compiler. The .NET frame-
work compiler may create a state machine and replace an
await function with code that sets a continuation method.
The present technology may instrument selected asynchro-
nous methods, continuation constructor methods, task
objects, and other framework aspects. When the task com-
pletes, the continuation method is called. Understanding
the.NET framework and instrumenting it as it progresses
allows the present technology to track a custom exit point
formed by an asynchronous method performed within that
framework.

[0015] FIG. 1A is a block diagram of a system for moni-
toring an asynchronous transaction based on a custom exit
point. FIG. 1A includes client 110, network 120, network
server 130, application server 140, server 150, controller
160, and client device 170. Client 110 may communicate
with network server 130 over network 120. Client 110 may
be any sort of computing device, such as for example a
desktop computer, a work station, a lap top computer a
mobile device such as a smart phone or a tablet computer, or
some other computing device. Client 110 may include
network browser 115 as well as other software. Network
browser 115 may be stored on client 110 and executed by
one or more processors to provide content through an output
device of client 110. The content may be received from
application server 140 via network server 130 and network
120. Client 110 may receive input from a user through
network browser 115 and communicate with application 1
server to provide content to the user.

[0016] Network 120 may facilitate communication of data
between different servers, devices and machines. The net-
work may be implemented as a private network, public

US 2016/0323397 Al

network, intranet, the Internet, a Wi-Fi network, cellular
network, or a combination of these networks.

[0017] Network server 130 is connected to network 120
and may receive and process requests received over network
120. Network server 130 may be implemented as one or
more servers implementing a network service. When net-
work 120 is the Internet, network server 125 may be
implemented as a web server. Network server 130 and
application server 140 may be implemented on separate or
the same server or machine.

[0018] Application server 140 may include one or more
applications 142. Application server 140 may be imple-
mented using one or more servers which communicate with
network server 130, server 150, controller 160, and other
devices. In some embodiments, network server 130 and
application server 140 may be implemented as the same
server.

[0019] Application 142 may be monitored by one or more
agents (see FIG. 1B). Application 142 may execute in any of
a number of frameworks, such as for example a JAVA
framework, a NET framework, or other framework. Appli-
cation 142 is discussed in more detail below with respect to
the method of FIG. 1B.

[0020] Server 150 may communicate with application
servers 140 and controller 160. Server 150 may include a
coordinator 152 and a configuration file 154. Coordinator
152 may manage a list of methods, calls, objects and other
code that should be monitored. Configuration file 154 may
be accessed by coordinator 152 and may include a list of
nodes that may be monitored within the system of FIG. 1A.
The list of nodes may be compiled automatically, based on
user input, or based on other parameters.

[0021] Controller 160 may control and manage monitor-
ing of business transactions distributed over application
servers 130-160. Controller 160 may receive runtime data
from agents and coordinators, associate portions of business
transaction data, communicate with agents to configure
collection of runtime data, and provide performance data
and reporting through an interface. The interface may be
viewed as a web-based interface viewable by client device
110. In some embodiments, a client device 170 may directly
communicate with controller 160 to view an interface for
monitoring data.

[0022] In some instances, controller 160 may install an
agent into one or more application servers 130. Controller
160 may receive correlation configuration data, such as an
object, a method, or class identifier, from a user through
client device 192.

[0023] FIG. 1B is a block diagram of an application.
Application 200 of FIG. 1B includes agent 210 and profiler
220.

[0024] Agent 210 may be installed on an application
server by byte code instrumentation, downloading the appli-
cation to the server, or in some other manner. Agent 210 may
be executed to monitor an application, application server, a
virtual machine, or other logical machine and may commu-
nicate with byte instrumented code on an application server,
virtual machine 132 or another application or program on an
application server. Agent 210 may detect operations such as
receiving calls, creating objects, and sending requests by an
application server, virtual machine, or logical machine.
Agent 210 may insert instrumentation and receive data from
instrumented code, process the data and transmit the data to
controller 190. Agent 210 may perform other operations

Nov. 3, 2016

related to monitoring an application or logical machine as
discussed herein. For example, agent 210 may identify other
applications, share business transaction data, aggregate
detected runtime data, and other operations.

[0025] Profiler 220 may detect when an application makes
a call and may take actions based on that detection. Profiler
220 may be implemented within or outside of application
200 on an application server. Profiler 220 may communicate
with coordinator 152 to determine if the application making
the call should be monitored. In some instances, profiler 220
may implement byte code to activate an agent or cause an
agent to be activated in case that the application should be
monitored based on information received from coordinator
152.

[0026] FIG. 2 illustrates a method for monitoring an
asynchronous transaction. A selection of a back-end calling
method to monitor is received at step 210. The method that
calls the back-end may provide an exit point from the current
application to the external back-end. Subsequent monitoring
of the selected method provides custom back-end monitor-
ing within the current framework. The method may be
selected based on user request, automated selection, or other
means.

[0027] The selected method may be identified as an asyn-
chronous method as step 220. In some instances, the present
system may automatically determine if the selected method
is an asynchronous method. For example, the system may
detect a type “task” within the method, which in a .NET
framework corresponds to an asynchronous method.

[0028] Next, the asynchronous transaction framework is
monitored while executing the asynchronous method call at
step 230. Monitoring the asynchronous transaction frame-
work may include detecting operations of the framework,
such as executing the asynchronous method, instrumenting
asynchronous methods, instrumenting a continuation
method, and other monitoring operations. More details for
monitoring and asynchronous transaction framework are
discussed with respect to the method of FIG. 3.

[0029] The back-end calling method is correlated with a
business transaction at step 230. A first thread may be
handling the asynchronous method identified at step 210. A
second method may handle a task object that is executed as
part of the asynchronous method. Data obtained from moni-
toring the asynchronous method and task object may be used
to correlate the threads together as part of a distributed
business transaction. More details for correlating are dis-
cussed with respect to the method of FIG. 4. Data regarding
the performance of the business transaction is reported at
step 240. The data may include asynchronous method call
information as part of the end to end business transaction.
The data may be reported as part of a call graph, trending
data, graphics, and other means.

[0030] FIG. 3 illustrates a method for monitoring an
asynchronous transition framework. The method of FIG. 3
provides more detail for step 220 of the method of FIG. 2.
First, BCI is performed on the called asynchronous method
at step 310. The instrumentation may include creating a new
method that encompasses the asynchronous method to be
monitored within a wrapper. The wrapper may include code
for monitoring the start and end of the called method,
collecting data for the method, and other monitoring actions.
The instrumentation itself may include modifying a frame-

US 2016/0323397 Al

work library and files. More detail for instrumenting the
asynchronous method is discussed with respect to the
method of FIG. 4.

[0031] Next, the instrumented asynchronous method is
executed at step 320. A task object creation is detected at
step 330 and the task object is instrumented at step 340. Task
object instrumentation is used to correlate different threads
associated with the asynchronous business transaction. For
example, when the task object sends a call to the back-end,
an identifier may be provided in the call. The identifier may
be stored in the thread handling the asynchronous method in
the NET application, any thread used to process the comple-
tion of the call, and a thread or other code at the back-end
server. The identifier may be used to correlate the threads
involved with aspects of the asynchronous method on the
NET application as well as the remote back-end server.
[0032] At the completion of the synchronous method, a
continuation method is called at step 350. The continuation
method is instrumented at step 360. Instrumentation for the
continuation method may result in data such as the time the
continuation method is called, the recipient of the continu-
ation method call, and other data. The instrumented con-
tinuation method may also provide results of the task object
and details regarding code in the body of the asynchronous
method which is executed by the continuation method after
the task is complete at step 370. Data regarding the asyn-
chronous method is then stored using the instrumented code
at step 380.

[0033] FIG. 4 illustrates a method for instrumenting an
asynchronous method. The method of FIG. 4 provides more
detail for step 310 the method of FIG. 3.

[0034] Intermediate language (IL) is injected into a .NET
framework library at step 410. The library may be an
mscorlib.dll library within the NET framework. The code
inserted may include a code at the beginning and end of the
asynchronous method, thereby providing a wrapper around
the method.

[0035] A map is inserted into an AppDomain file at step
420. The map indicates a method begin pointer and method
end pointer, both of which are expected to be part of the app
domain. The AppDomain file may be part of the .NET
framework and serve as a placeholder method.

[0036] An external dll is loaded with proper call backs at
step 430. The proper call backs are used to fill the place-
holder with the proper call back information. The map may
be accessed with information regarding mapping call backs
to a specific method.

[0037] FIG. 51is a block diagram of a computer system for
implementing the present technology. System 500 of FIG. 5§
may be implemented in the contexts of the likes of clients
110 and 170, network server 130, servers 140-150, and
controller 160.

[0038] The computing system 500 of FIG. 5 includes one
or more processors 510 and memory 520. Main memory 520
stores, in part, instructions and data for execution by pro-
cessor 510. Main memory 510 can store the executable code
when in operation. The system 500 of FIG. 5 further
includes a mass storage device 530, portable storage
medium drive(s) 540, output devices 550, user input devices
560, a graphics display 570, and peripheral devices 580.
[0039] The components shown in FIG. 5 are depicted as
being connected via a single bus 590. However, the com-
ponents may be connected through one or more data trans-
port means. For example, processor unit 510 and main

Nov. 3, 2016

memory 520 may be connected via a local microprocessor
bus, and the mass storage device 530, peripheral device(s)
580, portable storage device 540, and display system 570
may be connected via one or more input/output (I/O) buses.
[0040] Mass storage device 530, which may be imple-
mented with a magnetic disk drive or an optical disk drive,
is a non-volatile storage device for storing data and instruc-
tions for use by processor unit 510. Mass storage device 530
can store the system software for implementing embodi-
ments of the present invention for purposes of loading that
software into main memory 520.

[0041] Portable storage device 540 operates in conjunc-
tion with a portable non-volatile storage medium, such as a
floppy disk, compact disk or Digital video disc, to input and
output data and code to and from the computer system 500
of FIG. 5. The system software for implementing embodi-
ments of the present invention may be stored on such a
portable medium and input to the computer system 500 via
the portable storage device 540.

[0042] Input devices 560 provide a portion of a user
interface. Input devices 560 may include an alpha-numeric
keypad, such as a keyboard, for inputting alpha-numeric and
other information, or a pointing device, such as a mouse, a
trackball, stylus, or cursor direction keys. Additionally, the
system 500 as shown in FIG. 5 includes output devices 550.
Examples of suitable output devices include speakers, print-
ers, network interfaces, and monitors.

[0043] Display system 570 may include a liquid crystal
display (LCD) or other suitable display device. Display
system 570 receives textual and graphical information, and
processes the information for output to the display device.
[0044] Peripherals 580 may include any type of computer
support device to add additional functionality to the com-
puter system. For example, peripheral device(s) 580 may
include a modem or a router.

[0045] The components contained in the computer system
500 of FIG. 5 are those typically found in computer systems
that may be suitable for use with embodiments of the present
invention and are intended to represent a broad category of
such computer components that are well known in the art.
Thus, the computer system 500 of FIG. 5 can be a personal
computer, hand held computing device, telephone, mobile
computing device, workstation, server, minicomputer, main-
frame computer, or any other computing device. The com-
puter can also include different bus configurations, net-
worked platforms, multi-processor platforms, etc. Various
operating systems can be used including Unix, Linux, Win-
dows, Macintosh OS, Palm OS, Android OS, and other
suitable operating systems.

[0046] When implementing a mobile device such as smart
phone or tablet computer, the computer system 500 of FIG.
5 may include one or more antennas, radios, and other
circuitry for communicating over wireless signals, such as
for example communication using Wi-Fi, cellular, or other
wireless signals.

[0047] The foregoing detailed description of the technol-
ogy herein has been presented for purposes of illustration
and description. It is not intended to be exhaustive or to limit
the technology to the precise form disclosed. Many modi-
fications and variations are possible in light of the above
teaching. The described embodiments were chosen in order
to best explain the principles of the technology and its
practical application to thereby enable others skilled in the
art to best utilize the technology in various embodiments and

US 2016/0323397 Al

with various modifications as are suited to the particular use
contemplated. It is intended that the scope of the technology
be defined by the claims appended hereto.

What is claimed is:

1. A method for monitoring an asynchronous transaction,
comprising:

detecting an asynchronous method call within an appli-

cation by an agent executing on a server;

monitoring a task object associated with the method call,

the task object creation initiated by the asynchronous
method call; and

correlating asynchronous method call data with a distrib-

uted business transaction performed at least in part on
the server.

2. The method of claim 1, wherein tracking includes
performing byte code instrumentation on a called asynchro-
nous method.

3. The method of claim 1, wherein instrumenting includes
injecting intermediate language and a map into a .NET
framework.

4. The method of claim 1, wherein tracking includes
performing byte code instrumentation on a task object
associated with the asynchronous method.

5. The method of claim 1, further comprising:

receiving a selection of a back-end calling method to

monitor; and

automatically identifying the selected method as asyn-

chronous.

6. The method of claim 1, further comprising reporting
performance of a distributed business transaction that
includes a call to the asynchronous method.

7. The method of claim 1, wherein the framework is a
NET framework.

8. A non-transitory computer readable storage medium
having embodied thereon a program, the program being
executable by a processor to perform a method for moni-
toring an asynchronous transaction, the method comprising:

detecting an asynchronous method call within an appli-

cation by an agent executing on a server;

monitoring a task object associated with the method call,

the task object creation initiated by the asynchronous
method call; and

correlating asynchronous method call data with a distrib-

uted business transaction performed at least in part on
the server.

9. The non-transitory computer readable storage medium
of claim 7, wherein tracking includes performing byte code
instrumentation on a called asynchronous method.

10. The non-transitory computer readable storage medium
of claim 7, wherein instrumenting includes injecting inter-
mediate language and a map into a NET framework.

Nov. 3, 2016

11. The non-transitory computer readable storage medium
of claim 7, wherein tracking includes performing byte code
instrumentation on a task object associated with the asyn-
chronous method.

12. The non-transitory computer readable storage medium
of claim 7, the method further comprising:

receiving a selection of a back-end calling method to

monitor; and

automatically identifying the selected method as asyn-

chronous.

13. The non-transitory computer readable storage medium
of claim 7, the method further comprising reporting perfor-
mance of a distributed business transaction that includes a
call to the asynchronous method.

14. The non-transitory computer readable storage medium
of claim 7, wherein the framework is a NET framework.

15. A system for monitoring a business transaction, com-
prising:

a processor;

a memory; and

one or more modules stored in memory and executable by
a processor to detect an asynchronous method call
within an application by an agent executing on a server,
monitor a task object associated with the method call,
the task object creation initiated by the asynchronous
method call, and correlate asynchronous method call
data with a distributed business transaction performed
at least in part on the server.

16. The system of claim 15, wherein tracking includes
performing byte code instrumentation on a called asynchro-
nous method.

17. The system of claim 15, wherein instrumenting
includes injecting intermediate language and a map into a
NET framework.

18. The system of claim 15, wherein tracking includes
performing byte code instrumentation on a task object
associated with the asynchronous method.

19. The system of claim 15, the one or more modules
further executable to receive a selection of a back-end
calling method to monitor and automatically identify the
selected method as asynchronous.

20. The system of claim 15, the one or more modules
further executable to report performance of a distributed
business transaction that includes a call to the asynchronous
method.

21. The system of claim 15, wherein the framework is a
NET framework.

