The present invention relates to a solid pharmaceutical formulation comprising misoprostol or a pharmaceutically acceptable salt thereof. In particular, the invention relates to a dispersible tablet comprising misoprostol or a pharmaceutically acceptable salt thereof.
PROCESS FLOWSHEET

RAW MATERIALS

Dispensing of Approved Raw Materials &

Sifting

Geometrical Mixing

Dry Mixing

Lubrication

Compression

Bulk Release

Packing

Blend Analysis & Release

Inprocess Checks

Analysis of Tablets

Finished Product Analysis

Overprinting (Printed Packing Materials)

Finished Product

Fig. 1
MISOPROSTOL DISPERSIBLE TABLET

BACKGROUND

[0001] Prostaglandins (PGs) have been associated with the onset of labor in women. Naturally occurring PGs are potent stimulants of human uterine contractility at any stage of pregnancy and also cause cervical ripening.

[0002] Induction of labor is defined as the process of artificially stimulating the uterus to start labor. It may be performed by administering oxytocin or prostaglandins to the pregnant woman. Labor induction is one of the most frequent procedures in pregnant women.

[0003] Cytoec and MisoCal are commercially available misoprostol products, which comprise an extended release agent, hydrogenated castor oil.

[0004] The International patent application WO 2006/125450 A1 mentions the possibility of oral, sublingual, rectal or vaginal administration of misoprostol used in obstetric practice for controlling post-partum and post-abortive bleeding, and inducing labor or abortion. This application fails to disclose a pharmaceutical dosage form suitable for the mentioned administration forms.

[0005] The International patent application WO 2006/133048 A2 relates to a controlled release pharmaceutical gel for vaginal administration, the pharmaceutical gel comprising misoprostol, a cellulose derivative and a polyol, wherein the gel is a substantially nonaqueous gel which forms a hydrogel when placed in a vaginal tract.

[0006] The International patent application WO 2014/016394 A1 relates to the use of misoprostol for the induction of labor in a pregnant female, and in particular to the use of a sustained delivery device or insert containing 200 μg misoprostol for intravaginal use.

[0007] The International patent application WO 2007/035953 discloses vaginal tablets comprising misoprostol. The disclosed tablets comprise 100 μg misoprostol. A purged immediate release vaginal tablet and a sustained release vaginal tablet are disclosed, wherein the purged immediate release vaginal tablet are described as adhering to a tilted glass plate when placed on drops of water. Embeddings of the tablets are purged to adhere to an epithelial membrane. The vaginal tablets comprise lactose monohydrate, hydroxypropyl methylcellulose, corn starch and magnesium stearate. The vaginal tablets are manufactured by method steps comprising wet granulation, followed by drying in a fluid bed. The disclosed indications comprise cervical ripening and uterine contractions but not human labor.

[0011] No misoprostol products for oral or sublingual use have yet been approved by regulatory agencies for induction of labor.

[0012] There is a need for a misoprostol product which is developed for both sublingual and oral administration, as guidelines on a national level as well as at the level of the individual hospital may suggest use of misoprostol through either route of administration.

[0013] These and other needs are met by aspects and embodiments of the present invention.

[0014] According to an aspect the present invention concerns a pharmaceutical composition comprising misoprostol or a pharmaceutically acceptable salt thereof, allowing an administration form selected among sublingual, oral and vaginal administration.

[0015] According to another aspect the invention concerns a method for obtaining cervical ripening or the induction of labor comprising administration of a pharmaceutical composition according to the invention. Preferably, the pharmaceutical formulation is used for female human subjects.

[0016] According to a third aspect the invention concerns a method for the manufacture of a pharmaceutical composition of the invention, wherein said pharmaceutical composition is a tablet and said method comprises a step of compression.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] FIG. 1 is a flow chart of a manufacturing process for a misoprostol tablet of the present invention.

[0018] FIG. 2A shows misoprostol tablets before being subjected to a disintegration experiment. Tablet A is on the left side, Cytoec (a prior art misoprostol preparation) is on the right side.

[0019] FIG. 2B shows the tablets of FIG. 2A at 3 seconds after being placed in beakers with a few drops of water.

[0020] FIG. 2C shows the tablets of FIG. 2A at 7 seconds after being placed in beakers with a few drops of water.

[0021] FIG. 2D shows the tablets of FIG. 2A at 15 seconds after being placed in beakers with a few drops of water.

DETAILED DESCRIPTION OF THE INVENTION

[0022] According to an embodiment, the present invention concerns a pharmaceutical composition comprising misoprostol or a pharmaceutically acceptable salt thereof, allowing an administration form selected among buccal, sublingual, oral and vaginal administration.

[0023] According to an embodiment, the present invention concerns the pharmaceutical composition, wherein said pharmaceutical composition allows sublingual administration.

[0024] A pharmacokinetic study in pregnant woman, who was to terminate their pregnancy before 12 weeks, investigated plasma levels after administration of 400 μg misoprostol (Tang O.S, Schweer H, Seyberth H W, Lee S W, Ho P C; Pharmacokinetics of different routes of administration of misoprostol. Hum Reprod 2002 February; 17(2):332-6). Sublingual administration provided a larger peak in plasma concentration of misoprostol than oral and vaginal, and oral administration provided a larger peak than vaginal administration. The inter-subject variability in % at peak concentration was smaller following the sublingual route of administration than for oral and vaginal application, and the inter-subject variability in % at peak concentration for the oral route of administration was smaller than for vaginal applica-
tion. Lower inter-subject variability allows administration of a more precise dosage, providing fewer side-effects and improved efficacy.

[0025] While this would point to using the sublingual administration route, no one has successfully produced a sublingual misoprostol product before the present invention. Sublingual administration would appear to offer faster effective administration of misoprostol. This is likely to provide better efficacy and fewer side effects, as adjusting the dosage becomes easier.

[0026] According to an embodiment, the present invention concerns the pharmaceutical composition, wherein said pharmaceutical composition allows any administration form selected among sublingual and oral administration.

[0027] According to an embodiment, the present invention concerns the pharmaceutical composition, wherein said pharmaceutical composition allows any administration form selected among sublingual, oral and vaginal administration.

[0028] Misoprostol products of the prior art are designed to be placed in the vagina for a longer time period, inherently carrying the risk of falling out. Due to the requirement of the present composition of a very small amount of liquid, it appears to be suitable for a vaginal environment.

[0029] Providing a product which combines oral, sublingual and vaginal administration is complicated by the fact that oral administration have to take into account the varying pH conditions in the gastrointestinal tract, depending on location and timing of administration.

[0030] According to an embodiment, the present invention concerns the pharmaceutical composition, comprising a disintegrant comprising cross-linked PVP, preferably crospovidone. According to a preferred embodiment, the disintegrant is a superdisintegrant.

[0031] The cross-linked form of PVP is used as a disintegrant in pharmaceutical tablets. Polyvinylpyrrolidone (polyvinyl pyrrolidone, PVPP, crospovidone, crospolvindone or E1202) is a highly cross-linked modification of polyvinylpyrrolidone (PVP), making it insoluble in water, though it still absorbs water and swells very rapidly generating a swelling force. This property makes it useful as a disintegrant in tablets.

[0032] Crospovidone may provide rapid disintegration in the mouth, and is particularly preferred for a pharmaceutical composition of the invention for buccal or sublingual administration.

[0033] Disintegrating agents are substances routinely included in the tablet formulations to aid in the break up of the compacted mass when it is put into a fluid environment. They promote moisture penetration and dispersion of the tablet matrix. In recent years, several new disintegrants have been developed known as “Superdisintegrants”. These newer substances are more effective at lower concentrations with greater disintegrating efficiency and mechanical strength. On contact with water the superdisintegrant swells, hydrate, change volume or form and produce a disruptive change in the tablet. Effective superdisintegrants provide improved compressibility, compatibility and have little negative impact on the mechanical strength of formulations. Commonly available superdisintegrants along with their commercial trade names are briefly described herewith.

[0034] Modified starches: Sodium starch glycolate which is the sodium salt of a carboxymethyl ether of starch. It is usually effective at a concentration of 2-8%. It can take up more than 20 times its weight in water and the resulting high swelling capacity combined with rapid uptake of water accounts for its high disintegration rate and efficiency. It is available in various grades i.e. Type A, B and C, which differ in pH, viscosity and sodium content.

[0035] Modified celluloses, Carboxymethylcellulose and its derivative (Crossmelllose Sodium): Cross-linked sodium carboxymethylcellulose is a white, free flowing powder with high absorption capacity. It has a high swelling capacity and thus provides rapid disintegration and drug dissolution at lower levels. It also has an outstanding water wicking capability and its cross-linked chemical structure creates an insoluble hydrophilic, highly absorbent material resulting in excellent swelling properties. Its usual recommended concentration is 0.5-2.0%, which can be used up to 5.0% L-HPC (Low substituted Hydroxy propyl cellulose). It is insoluble in water, swells rapidly and is usually used in the range of 1-5%. The grades L.H-11 and L.H-21 exhibit the greatest degree of swelling.

[0036] Cross-linked polyvinylpyrrolidone is a completely water insoluble polymer. It rapidly disperses and swells in water but does not gel even after prolonged exposure. The rate of swelling is highest among all the superdisintegrants and is usually effective at 1-3%. It acts by wicking, swelling and possibly some deformation recovery. The polymer has a small particle size distribution that imparts a smooth mouth feel to dissolve quickly.

[0037] Soy polysaccharide is a natural super disintegrant that does not contain any starch or sugar so can be used in nutritional products. Cross-linked alginic acid is insoluble in water and disintegrates by swelling or wicking action. It is a hydrophilic colloidal substance, which has high sorption capacity. It is also available as salts of sodium and potassium. Gellan gum is an anionic polysaccharide of linear tetrasaccharides, derived from Pseudomonas elodea having good superdisintegrant property similar to the modified starch and cellulose. Xanthan Gum derived from Xanthomonas campestris is official in the USP with high hydrophilicity and low gelling tendency. It has low water solubility and extensive swelling properties for faster disintegration. Calcium Silicate is a highly porous, lightweight superdisintegrant, which acts by wicking action. Ion exchange resin The INDION 414 has been used as a superdisintegrant.

[0038] Superdisintegrants, such as natural or synthetic superdisintegrants, may be included in the present pharmaceutical compositions. Natural superdisintegrants used in formulations, comprise, but are not limited to the group consisting of: Cassia fistula gum, Lepidium Sativum, Locust Bean gum, Plantago ovate Mucilage, Seed powder, Plantago ovate Husk powder, and Treated Agar. Synthetic Superdisintegrants used in formulations, comprise, but are not limited to the group consisting of: crospovidone, Sodium Starch glycolate, Crossmelllose sodium (Ac-Di-Sol), kollidon Cl, B-cyclodextrin, and Citric Acid and Sodium bicarbonate.

[0039] According to an embodiment, the present invention concerns the pharmaceutical composition, comprising at least two disintegrants.

[0040] According to an embodiment, the present invention concerns the pharmaceutical composition, wherein at least one of said at least two disintegrants is a cross-linked carboxymethylcellulose, preferably crossmelllose sodium.

[0041] A suitable disintegrant is a modified cellulose, preferably a modified carboxymethylcellulose, more preferred a crosslinked polymer of carboxymethylcellulose, preferably crossmelllose. Crossmelllose sodium is an internally
According to an embodiment, the present invention concerns the pharmaceutical composition, wherein said at least two disintegrants uses mechanisms of disintegration comprising swelling, porosity and capillary action, and deformation. In other words preferably all of the mechanisms, I. (swelling), II. (wicking) and IV. (deformation) are covered by said at least two disintegrants.

According to an embodiment, the present invention concerns the pharmaceutical composition comprising a disintegrant which is starch, preferably maize starch.

According to an embodiment, the present invention concerns the pharmaceutical composition, further comprising at least one superdisintegrant.

According to an embodiment, the present invention concerns the pharmaceutical composition, wherein said pharmaceutical composition comprises an excipient selected among the group consisting of Maize starch (also known as Corn starch), Potato starch, Pea starch, Rice starch, Tapioca starch (also known as Cassava or Manioc starch), Wheat starch, and Modified starch.

According to an embodiment, the present invention concerns the pharmaceutical composition, wherein said pharmaceutical composition comprises an amount of disintegrant of 1-50%, preferably 2-30%, more preferred 3-25%, preferably 5-20%, more preferred 6-15%, preferably 8-12%, more preferred about 10%.

According to an embodiment, the present invention concerns the pharmaceutical composition, wherein said pharmaceutical composition comprises an amount of superdisintegrant of 1-50%, preferably 2-30%, more preferred 3-25%, preferably 5-20%, more preferred 6-15%, preferably 8-12%, more preferred about 10%.

According to an embodiment, the present invention concerns the pharmaceutical composition, wherein said pharmaceutical composition comprises an amount of croscarmellose sodium of 1-50%, preferably 2-30%, more preferred 3-25%, preferably 5-20%, more preferred 6-15%, preferably 8-12%, more preferred about 10%.

According to an embodiment, the present invention concerns the pharmaceutical composition, wherein said pharmaceutical composition comprises an amount of crospovidone, croscarmellose sodium, and sodium starch glycolate have become more popular.

Maize starch suffers from the drawback that tablets comprising maize starch tend to be hygroscopic and thus unstable. It has surprisingly been discovered that starch, in particular maize starch, is particularly preferred for solving the problems of the present invention. This is in particular true, if starch is combined with another disintegrant, preferably at least one superdisintegrant, more preferred at least two superdisintegrants.

According to an embodiment, the present invention concerns the pharmaceutical composition, wherein said pharmaceutical composition comprises maize starch.

<table>
<thead>
<tr>
<th>Disintegrants classified by mechanism of disintegration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism of disintegration</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>I. Swelling</td>
</tr>
<tr>
<td>II. Porosity and Capillary Action (Wicking)</td>
</tr>
<tr>
<td>III. Disintegrating particle/Particle repulsive forces</td>
</tr>
<tr>
<td>IV. Deformation</td>
</tr>
<tr>
<td>V. Chemical reaction (Acid-Base reaction)</td>
</tr>
<tr>
<td>VI. Enzymatic Reaction</td>
</tr>
</tbody>
</table>
done of 1-50%, preferably 2-30%, more preferred 3-25%, preferably 5-20%, more preferred 6-15%, preferably 8-12%, more preferred about 10%.

According to an embodiment, the present invention concerns the pharmaceutical composition, wherein said pharmaceutical composition comprises an amount of starch of 1-50%, preferably 2-30%, more preferred 3-25%, preferably 5-20%, more preferred 6-15%, preferably 8-12%, more preferred about 10%.

According to an embodiment, the present invention concerns the pharmaceutical composition, wherein said pharmaceutical composition comprises an amount of maize starch of 1-50%, preferably 2-30%, more preferred 3-25%, preferably 5-20%, more preferred 6-15%, preferably 8-12%, more preferred about 10%.

According to an embodiment, the present invention concerns the pharmaceutical composition, wherein said pharmaceutical composition comprises an amount of microcrystalline cellulose of 1-99%, preferably 5-98%, more preferred 10-97%, preferably 20-95%, more preferred 30-90%, preferably 40-85%, more preferred 50-80%, preferably 60-75%, more preferred about 70%.

According to an embodiment, the present invention concerns the pharmaceutical composition, wherein said pharmaceutical composition comprises an amount of flow agent of 0.1-10%, preferably 0.2-5%, more preferred 0.3-4%, preferably 0.5-3%, more preferred 0.8-2%, preferably about 1%.

According to an embodiment, the present invention concerns the pharmaceutical composition, wherein said pharmaceutical composition comprises an amount of colloidal silicon dioxide.

According to an embodiment, the present invention concerns the pharmaceutical composition, having a content of misoprostol or a pharmaceutically acceptable salt thereof, selected among 0.5-1000, 1-500, 2.5-250, 5-100, 10-50, 20-30, and 25 μg. In the case of a pharmaceutically acceptable salt the amount is preferably equivalent to an amount of misoprostol selected among 0.5-1000, 1-500, 2.5-250, 5-100, 10-50, 20-30, and about 25 μg.

According to an embodiment, the present invention concerns the pharmaceutical composition having a disintegration time of no more than 15 minutes, preferably less than 15 minutes, more preferred less than 10 minutes, preferably less than 5 minutes, more preferred less than 3 minutes, preferably less than 2 minutes, more preferred less than 1 minute, preferably less than 45 seconds, more preferred less than 30 seconds, preferably less than 25 seconds, more preferred less than 20 seconds, preferably less than 15 seconds, more preferred less than 10 seconds, preferably less than 9 seconds, more preferred less than 8 seconds, preferably less than 7 seconds, more preferred less than 6 seconds.

The disintegration time is preferably measured using Disintegration apparatus A according to European Pharmacopoeia 8.0, placing one tablet in each of the 6 tubes of the basket without disc. The apparatus is operated using water medium as the immersion fluid, maintained at 37±2°C.

Short disintegration time does not only allow sublingual administration, but surprisingly appears to allow vaginal administration without the need of an extended release agent and/or adherence to the vaginal tract. A few drops of water, such as about ten drops or less, are sufficient to disintegrate compositions of the present invention. Thus, both sublingual and vaginal administration may be feasible.


According to an embodiment, the present invention concerns the pharmaceutical composition, wherein said disintegration time is measured initially after manufacture, preferably 3 months after manufacture, more preferred 6 months after manufacture, preferably 9 months after manufacture, more preferred 12 months after manufacture, preferably 18 months after manufacture, more preferred 24 months after manufacture.

According to an embodiment, the present invention concerns the pharmaceutical composition, which allows dispersion of one or more of said pharmaceutical compositions in 100 ml water at 25°C within 15 minutes, preferably within 10 minutes, more preferred within 5 minutes, preferably within 3 minutes, preferably within 2 minutes, preferably within 1 minute, upon stirring, thereby providing a dispersion; said dispersion passing through a sieve screen with a nominal mesh aperture of 710 μm.

According to an embodiment, the present invention concerns the pharmaceutical composition, which allows dispersion of one or more of said pharmaceutical compositions in 100 ml water at 25°C within 15 minutes, preferably within 10 minutes, more preferred within 5 minutes, preferably within 3 minutes, preferably within 2 minutes, preferably within 1 minute, substantially without stirring, thereby providing a dispersion; said dispersion passing through a sieve screen with a nominal mesh aperture of 710 μm. The expression “substantially without stirring” means that the pharmaceutical composition provides a dispersion spontaneously upon contact with water without the need of stirring, shaking or other form of agitation, or stirring up to a speed of 1 RPM.

According to an embodiment, the present invention concerns the pharmaceutical composition, which is a dispersible tablet.

According to an embodiment, the present invention concerns the pharmaceutical composition, wherein said pharmaceutical composition is a tablet.

According to an embodiment, the present invention concerns the pharmaceutical composition, further comprising a coating. While a preferred embodiment is a tablet without coating, another alternative is a tablet having a coating, e.g., to improve storage stability.

According to an embodiment, the present invention concerns the pharmaceutical composition, further comprising at least one excipient, preferably selected among diluents, disintegrants, binders, glidants, lubricants, and coatings.

An excipient is generally a pharmacologically inactive substance. Examples include, but are not limited to, diluents, disintegrants, binders, glidants, lubricants, and coatings. Other examples of suitable excipients may be found in Handbook of Pharmaceutical Excipients, 7th Ed. by Rowe, Raymond C. et al., Pharmaceutical Press, London.

Diluents are inactive ingredients that are added to tablets and capsules in addition to the active drug. Some very common diluents in tablets include starch, cellulose derivatives, and magnesium stearate (also a lubricant). Diluents fill out the size of a tablet or capsule, making it practical to produce and convenient for the consumer to use. By increasing the bulk volume, diluents make it possible for the final product to have the proper volume for patient handling. A good diluent must be inert, compatible with the other com-
ponents of the formulation, non-hygroscopic, relatively cheap, compactable, and preferably tasteless or pleasant tasting. Plant cellulose (pure plant diluent) is a popular diluent in tablets or hard gelatin capsules. Dibasic calcium phosphate is another popular tablet diluent. A range of vegetable fats and oils can be used in soft gelatin capsules. Other examples of diluents include: lactose, sucrose, glucose, mannitol, sorbitol, calcium carbonate, and magnesium stearate.

Disintegrants may expand and dissolve when wet causing the tablet to break apart. They ensure that when the tablet is in contact with water it rapidly breaks down into smaller fragments, facilitating dissolution or dispersion. Examples of disintegrants include, but are not limited to: crosslinked polymers, such as crosslinked polyvinylpyrrolidone (crotspoviron), and crosslinked sodium carboxymethyl cellulose (crocarmellose sodium); and the modified starch sodium starch glycolate. Specific examples further include Indion 414, L-HPC, and pregelatinised starch.

Binders hold the ingredients in a tablet together. Binders ensure that tablets and granules can be formed with required mechanical strength, and give volume to tablets. Examples of binders include: saccharides and their derivatives: disaccharides, sucrose, lactose, polysaccharides and their derivatives, such as starches, cellulose or modified cellulose, such as microcrystalline cellulose and cellulose ethers such as hydroxypropyl cellulose (HPC); sugar alcohols such as xylitol, sorbitol or maltitol; further Protein: gelatin; and Synthetic polymers: polyvinylpyrrolidone (PVP), polyethylene glycol (PEG). Examples include gelatin, cellulose, cellulose derivatives, polyvinylpyrrolidone, starch, sucrose and polyethylene glycol.

Other examples include cellulose, methyl cellulose, polyvinylpyrrolidone and polyethylene glycol.

Gladins are used to promote powder flow by reducing interparticle friction and cohesion. These are used in combination with lubricants as they have no ability to reduce die wall friction. Examples include fumed silica, talc, and magnesium carbonate.

Lubricants are agents added to tablet and capsule formulations to improve certain processing characteristics. Lubricants inter alia prevent ingredients from clumping together and from sticking to the tablet punches or capsule filling machine. Lubricants also ensure that tablet formation and ejection can occur with low friction between the solid and die wall. Common minerals like talc or silica, and fats, e.g. vegetable stearin, magnesium stearate or stearic acid are examples of lubricants used in tablets or hard gelatin capsules.

Coatings protect ingredients from deterioration by moisture in the air and make large or unpleasant-tasting tablets easier to swallow. For most coated tablets, a cellulose ether hydroxypropyl methylcellulose (HPMC) film coating is used which is free of sugar and potential allergens. Occasionally, other coating materials are used, for example synthetic polymers, shellac, corn protein zein or other polysaccharides. A specific example is Opadry. Capsules are coated with gelatin.

According to an embodiment, the present invention concerns the pharmaceutical composition, for cervical ripening or the induction of labor.

According to an embodiment, the present invention concerns a method for obtaining cervical ripening or the induction of labor comprising administration of a pharmaceutical composition according to any of the preceding claims. Preferably the pharmaceutical formulation is used for female human subjects.

According to an embodiment, the present invention concerns the method, wherein 25-50 µg misoprostol, or an equivalent amount of pharmaceutically acceptable salt thereof, is administered orally or sublingually every 2-4 hours or vaginally every 6 hours.

According to an embodiment, the present invention concerns the method, wherein 25-50 µg misoprostol, or an equivalent amount of pharmaceutically acceptable salt thereof, is administered orally or sublingually every 2-4 hours.

According to an embodiment, the present invention concerns the method for the manufacture of a pharmaceutical composition, wherein said pharmaceutical composition is a tablet, and said method comprises a step of compression.

According to an embodiment, the present invention concerns the method, wherein said tablet is manufactured by a step of dry mixing followed by a step of direct compression.

All cited references are incorporated by reference.

The accompanying Figures and Examples are provided to explain rather than limit the present invention. It will be clear to the person skilled in the art that aspects, embodiments and claims of the present invention may be combined.

Unless otherwise mentioned, all percentages are in weight/weight. Unless otherwise mentioned, all measurements are conducted under standard conditions (ambient temperature and pressure).

EXAMPLES

Composition of the Invention

The following ingredients were used to manufacture tablets:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>mg/Tablet</th>
<th>Assessed function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misoprostol (as 1% HPMC dispersion)</td>
<td>2.50</td>
<td>API</td>
</tr>
<tr>
<td>Microcrystalline Cellulose (PH112)</td>
<td>69.5</td>
<td>Binder/Diluent/disintegrant</td>
</tr>
<tr>
<td>Starch Plain (maize starch)</td>
<td>10.0</td>
<td>Diluent/disintegrant</td>
</tr>
<tr>
<td>Croscarmellose Sodium (Ac-di-sol)</td>
<td>10.0</td>
<td>Super disintegrant</td>
</tr>
<tr>
<td>Polyplasdone XL10</td>
<td>10.0</td>
<td>Super disintegrant</td>
</tr>
<tr>
<td>Cellosil Silica Siside</td>
<td>1.60</td>
<td>Improver flow properties</td>
</tr>
</tbody>
</table>

Misoprostol (as 1% HPMC dispersion) provides 2.50 mg/100 = 25µg misoprostol per tablet.

FIG. 1 provides a flow chart of the manufacturing process.

Key steps of the applied process, which follows the procedure of FIG. 1, are described as follows:

Sifting:

Misoprostol and other excipients pass through 30µ sieve.
Geometrical Mixing:

[0094] Step 1: Manually mix 75 g of Misoprostol (As 1% HPMC dispersion) with 75 g of Microcrystalline cellulose PH 112.

Step 2: Mix 150 g of step 1 blend with 150 g of Microcrystalline cellulose PH 112.

Step 3: Mix 300 g of step 2 blend with 300 g of Microcrystalline cellulose PH 112.

Step 4: Mix 600 g of step 3 blend with 600 g of Microcrystalline cellulose PH 112.

Load step 4 blend into the main bowl of planetary mixer and mix for 15 min.

Dry Mixing:

[0095] Then add remaining quantity of previously mixed Microcrystalline cellulose PH 112, Starch Plain, Cross mcelleose sodium, Polyplasdone XL10 and Colloidal silicon dioxide and mix for 20 min.

Compression

[0096] Compress in a compression machine (using 7.5x4.5 mm–punch).

Packing

[0097] A container closure system was selected. Based on preformulation studies and a stability study, misoprostol (1% HPMC Dispersion) is hygroscopic in nature and also susceptible to degradation in presence of heat, light and humidity. Thus the tablet requires additional packaging precautions to protect the drug substance from heat, high humidity and light. Based on a sample Alu/Alu packing is suitable for this product.

Example 2

Disintegration Time

[0098] The disintegration time of tablets manufactured according to Example 1 were measured initially (right after manufacture) as well as after several months. The tablets were packed in Alu-Alu blister packs, maintained at 30±2° C. and 65±5% RH. The disintegration time was measured according to European Pharmacopeia 8.0, using Disintegration apparatus A, placing one tablet in each of the 6 tubes of the basket without disc. The apparatus was operated using water medium as the immersion fluid, maintained at 37±0.5° C. After disintegration of the tablets the basket was lifted from the fluid, and all of the tablets had disintegrated completely.

[0099] The measured disintegration times are provided in the table below.

<table>
<thead>
<tr>
<th>Disintegration time</th>
<th>Initial 3µth month</th>
<th>5µth month</th>
<th>9µth month</th>
<th>12µth month</th>
<th>18µth month</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 seconds</td>
<td>5 seconds</td>
<td>5 seconds</td>
<td>5 seconds</td>
<td>6 seconds</td>
</tr>
</tbody>
</table>

[0100] The tablets were found to have satisfactory disintegration time and stability.

Example 3

Comparison Experiment I

[0101] In order to compare a tablet of the present invention with a tablet of the prior art, a tablet manufactured according to Example 1 ("Tablet A") was subjected to the test of Example 4 of WO 2007/0535954. Tablet A was compared to a commercially available Cytotec misoprostol tablet.

[0102] Three drops of water were placed on a glass plate. A tablet was placed on the drops of water. The plate was then tilted at a 90 degree angle. Tablet A of the present invention immediately began to swell and disintegrate upon contacting the water. When the plate was tilted, the disintegrated Tablet A slid without adhering to the glass plate. The Cytotec tablet showed far greater adherence to the glass plate.

[0103] Due to the short disintegration time, Tablet A will immediately form a dispersion upon contact with water or an aqueous medium. Therefore, Tablet A is not dependent on adherence to the vaginal tract upon administration.

Example 4

Comparison Experiment II

[0104] A tablet of the present invention was compared with a tablet of the prior art. A tablet manufactured according to Example 1 ("Tablet A") was compared to a commercially available Cytotec misoprostol 0.2 mg tablet. Each tablet was placed in a beaker with a few drops of water. Photographs were recorded after 3, 7 and 15 seconds. Between each photograph, the beakers were very gently agitated by rotating the beakers.

[0105] FIG. 2A shows the tablets before being subjected to a disintegration experiment. Tablet A is on the left side, Cytotec is on the right side.

[0106] FIG. 2B shows the tablets 3 seconds after being placed in beakers with a few drops of water.

[0107] FIG. 2C shows the tablets 7 seconds after being placed in beakers with a few drops of water.

[0108] FIG. 2D shows the tablets 15 seconds after being placed in beakers with a few drops of water.

[0109] A dispersion is formed immediately after bringing Tablet A in contact with water. For Cytotec, no dispersion is formed, large flakes are formed, and the Cytotec tablet is not suitable for sublingual administration. Further, vaginal administration would require the Cytotec tablet to stay for a prolonged time in the vaginal tract.

1. A pharmaceutical dosage form comprising misoprostol or a pharmaceutically acceptable salt thereof as the sole active ingredient, wherein said dosage form is suitable for both sublingual and oral administration.

2. (canceled)

3. The pharmaceutical dosage form according to claim 1, further comprising cross-linked polyvinylpyrrolidone as a disintegrant.

4. The pharmaceutical dosage form according to claim 1, further comprising at least two disintegrants.

5. The pharmaceutical dosage form according to claim 4, wherein at least one of said disintegrants is a cross-linked carboxymethylcellulose.

6. The pharmaceutical dosage form according to claim 4, wherein said disintegrants use at least two different mechanisms of disintegration.
7. The pharmaceutical dosage form according to claim 6, wherein said mechanisms of disintegration are selected from the group consisting of swelling, porosity and capillary action, and deformation.

8. The pharmaceutical dosage form according to claim 4, wherein said disintegrants are superdisintegrants.

9. The pharmaceutical dosage form according to claim 1, further comprising a starch as a disintegrant.

10. The pharmaceutical dosage form according to claim 9, further comprising at least one superdisintegrant.

11. The pharmaceutical dosage form according to claim 1, further comprising an excipient selected from the group consisting of maize starch, potato starch, pea starch, rice starch, tapioca starch, wheat starch, and modified starch.

12. The pharmaceutical dosage form according to claim 11, wherein said excipient is maize starch.

13. The pharmaceutical dosage form according to claim 1, further comprising a disintegrant in an amount of 6-50% by weight.

14. The pharmaceutical dosage form according to claim 1, further comprising a superdisintegrant in an amount of 6-50% by weight.

15. The pharmaceutical dosage form according to claim 1, further comprising croscarmellose sodium in an amount of 6-50% by weight.

16. The pharmaceutical dosage form according to claim 1, further comprising crospovidone in an amount of 6-50% by weight.

17. The pharmaceutical dosage form according to claim 1, further comprising starch in an amount of 1-50% by weight.

18. The pharmaceutical dosage form according to claim 1, further comprising microcrystalline cellulose in an amount of 1-99% by weight.

19. The pharmaceutical dosage form according to claim 1, wherein said disintegrant or pharmaceutically acceptable salt thereof is present in an amount of 0.5-1000 µg.

20. The pharmaceutical dosage form according to claim 1 that has a disintegration time of less than 1 minute.

21. The pharmaceutical dosage form according to claim 1 that disperses in 100 ml water at 25°C within 15 minutes upon stirring, thereby providing a dispersion, said dispersion passing through a sieve screen with a nominal mesh aperture of 710 µm.

22. The pharmaceutical dosage form according to claim 1 that disperses in 100 ml water at 25°C within 15 minutes substantially without stirring, thereby providing a dispersion, said dispersion passing through a sieve screen with a nominal mesh aperture of 710 µm.

23. The pharmaceutical dosage form according to claim 1 that is a dispersible tablet.

24. The pharmaceutical dosage form according to claim 1, further comprising at least one excipient selected from the group consisting of diluents, disintegrants, binders, glidants, lubricants, and coatings.

25. The pharmaceutical dosage form according to claim 1 that is suitable for cervical ripening or the induction of labor upon administration to a subject.

26. A method for obtaining cervical ripening or the induction of labor, the method comprising administering the pharmaceutical dosage form according to claim 1 to a subject in need thereof.

27. (canceled)

28. A method for the manufacture of the pharmaceutical dosage form according to claim 1, the method comprising compressing a composition comprising misoprostol or a pharmaceutically acceptable salt thereof.

29. The method according to claim 28, wherein said compression is direct compression.

30. The method according to claim 28, further comprising dry mixing of ingredients to form said composition.

31. The pharmaceutical dosage form according to claim 1, wherein said misoprostol or pharmaceutically acceptable salt thereof is present in an amount of less than 1% by weight of the pharmaceutical dosage form.

32. The pharmaceutical dosage form according to claim 1, wherein said dosage form is further suitable for vaginal administration.

* * * * *