PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 97/48043
GO6F 9/44 Al

(43) International Publication Date: 18 December 1997 (18.12.97)

(21) International Application Number: PCT/US97/10304 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

(22) International Filing Date: 11 June 1997 (11.06.97)

(30) Priority Data:

60/019,572 11 June 1996 (11.06.96) us
60/030,349 6 November 1996 (06.11.96) Us
60/033,008 16 December 1996 (16.12.96) US
60/034,206 21 January 1997 (21.01.97) us
60/036,702 31 January 1997 (31.01.97) uUsS

(60) Parent Application or Grant
(63) Related by Continuation
us
Filed on

60/019,572 (CON)
11 June 1996 (11.06.96)

(71X(72) Applicants and Inventors: CODD, Edgar, F. [US/US];
Suite 2506, 1000 Island Boulevard, Aventura, FL 33160
(US). CODD, Sharon [US/US]; Suite 2506, 1000 Island
Boulevard, Aventura, FL 33160 (US).

(74) Agents: DURANT, Stephen, C. et al.; Morrison & Foerster
LLP, 425 Market Street, San Francisco, CA 94105-2482
(US).

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ,
PL, PT, RO, RU, 8D, SE, SG, S], SK, T}, T™M, TR, TT,
UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE,
LS, MW, 8D, SZ, UG, ZW), Eurasian patent (AM, AZ, BY,
KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH,
DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC, NL, PT,
SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML,
MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: DELTA MODEL PROCESSING LOGIC REPRESENTATION AND EXECUTION SYSTEM

(57) Abstract

The invention presents novel method, apparatus, and data structures for storing, maintaining, and executing processing logic on
a computer system. Processing logic is encoded into its distinct, constituent elements that are flexibly linked, facilitating reuse and
reconfiguration. Executable responses are selected for an input signal by identifying a correspondence between the input signal and an
expression, evaluating the expression to a resulting value, and identifying a correspondence between the expression and its resulting value,

and an executable response.

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armnenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Buigaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d'Ivoire
Cameroon
China

Cuba

Czech Republic
Germmany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
™
TG
TJ
™
TR
TT
UA
uG
us
vz
VN
YU
zw

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 97/48043

DELTA MODEL
PROCESSING LOGIC REPRESENTATION AND EXECUTION SYSTEM

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of U.S. Provisional Application No.
60/019,572, filed June 11, 1996 and U.S. Provisional Application No. 60/030,349
filed November 6, 1996 and U.S. Provisional Application No. 60/033,008, filed
December 16, 1996 and U.S. Provisional Application No. 60/034,206 filed
January 21, 1997 and U.S. Provisional Application No. 60/036,702 filed January
31, 1997.

b

FIELD OF INVENTION

The invention relates generally to computer-based process execution
systems, and more particularly, to the optimized representation of processing
logic.

DESCRIPTION OF THE RELATED ART

In the earliest days of electronic data processing, jumper wires on
plugboards contained the definition of the process a machine was supposed to
execute. Humans could not easily read this processing logic contained on the
plugboards, and that processing logic represented only a very small and very low-
level portion of the rules used to conduct a business enterprise. For example, the
entire processing logic contained on a plugboard may have said little more than
that numeric values contained in punched cards read by the machine should be
summed, but only for those cards having an “X” in the first column of the card.

As tabulating machinery gave way to general purpose, stored-program
computers, the processing logic moved from plugboards to application programs.
The application programs had both machine-readable and human-readable forms.
Making the processing logic easily accessible to people, as well as to the

computer, was a major advantage over the plugboard -- responsible people need to

PCT/US97/10304

10

15

20

25

WO 97/48043

PCT/US97/10304

2

continually create, identify, understand, and maintain the processing logic, and the
computer needs to continually execute it.

Processing logic in an application program generally comprises both the
functional data manipulations for the computer to perform and the conditions
under which those manipulations should be performed. For example, the
processing logic may state that under the condition a payment is being made late,
then the amount of the payment should be calculated at 103% times the invoiced
amount, otherwise the amount of the payment should be calculated at 100% times
the invoiced amount.

The ability to evaluate a condition and then determine which, if any,
course of action to take dependent on the outcome is known as conditional
branching. The computer’s ability to perform conditional branching is a key to its
widespread success and its application to problems diverse in nature and
complexity. Computer programming languages, e.g., FORTRAN, COBOL,
BASIC, and C, provide a variety of means to achieve conditional branching and
the sophistication of a programming language may be judged on the conditional
branching alternatives it provides. For example, the C language provides
IF...THEN, SWITCH...CASE, FOR...NEXT, and other statement constructs for
achieving conditional branching. Newer languages, such as C++, are not designed
to simplify conditional branching but may include features to further facilitate or
refine conditional branching mechanisms. Examples include the private and
protected methods of classes in C++ that may restrict the courses of action
targeted by a conditional branch.

Regardless of the conditional branching construct used, the purpose is to
associate a condition with a course of action. These associations fundamentally
represent the processing logic embodied by the application program.
Unfortunately, the many possible constructs available for representing these

condition-to-action associations obscures their underlying similarity.

10

15

20

25

WO 97/48043

3

The lack of similarity in the representations of the processing logic in
traditional programming languages makes it difficult to collect and analyze the
processing logic as a whole. For example, a business enterprise may have its
manufacturing software, contained in hundreds of individual program modules,
written in C, BASIC, and FORTRAN. The same business enterprise may have its
accounting software, also containing hundreds of modules, written in COBOL and
BASIC. Moreover, the manufacturing software may reside and execute on
machines and operating systems from one vendor, while the accounting software
resides and executes on machines and operating systems from another vendor.
Furthermore, the BASIC language used for accounting programs may be a
different variant than the BASIC language used for manufacturing program.
Considering the dissimilar languages employed, the dissimilar ways to represent
condition-to-action associations within each language, the dissimilar locations
where the application programs may reside, and the dissimilar operating systems
and hardware, it would be very difficult to programmatically collect and analyze
the processing logic contained in all of the manufacturing and accounting
application programs together. The same may be true within either of the
manufacturing software or accounting software systems, by itself.

So, in a collective sense, the processing logic of the business cannot be
readily collected and analyzed with the aid of the computer, despite the fact that
the processing logic embodied in application programs is machine-readable. Such
analysis of the collective processing logic is highly desirable for performing
business modeling and for identifying contradictions, conflicts, and relationships
among individual elements of processing logic. Business modeling involves the
symbolic representation of the objects, entities, and processes involved in the
operation of the business for planning, analysis, modification, simulation, and
reporting.

The lack of similarity in the representations of the processing logic in

conventional programming languages also has disadvantages despite its being

PCT/US97/10304

10

15

20

25

WO 97/48043

Y
human-readable. At the core of the problem is that fact that the business people
responsible for determining the processing logic for the operation of the business
enterprise, €.g., supervisors, managers, and directors (managers, or management),
generally do not have the technical training required to understand and use
computer programming languages. Consequently, management relies on
intermediaries, i.e., computer programmers, to translate its intentions into a
programming language that the computer understands. For example, if an
appropriate company manager decides that a new class of employee needs to be
created that earns benefits according to a different set of criteria than other
existing classes of employees, then the manager must relate the new criteria to a
programmer who modifies an application program or programs accordingly.
Besides the inherent delay, this brings with it the possibility that “something gets
lost in the translation.” Disconnects frequently result between the business model
intended by the management and the business model embodied in the processing
logic in the application programs.

One potential solution to the above problems may be to develop software
tools allowing management to directly manipulate the application programs
written in traditional programming languages. Such a tool could provide an
interface that translates between the traditional programming language and some
intermediate level of representation more easily understood by managers. Again,
because of the diversity of programming languages, a generalized tool would be
difficult to develop and any such tool would likely be restricted as a practical
matter to particular programming languages, hardware, and operating systems.

Another potential solution to the above problems appears to be
standardization on a single computing language within the business enterprise.
First, this may not be practical because of a need to use multiple computing
platforms, some of which may be incapable of supporting the standard language.
Further, the business enterprise may purchase some of its applications from

software vendors and have no control over the language in which it is written.

PCT/US97/10304

10

15

20

25

WO 97/48043 PCT/US97/10304

5

Even if standardization is possible, representation of the condition-to-action
associations may be dissimilar within the language, e.g., IF... THEN vs.
SWITCH...CASE; and managers are unlikely to have or obtain the technical
training required to understand and use the language.

Furthermore, traditional computer languages are targeted for representing
only the detailed levels of business processing logic, e.g., the calculation of a
particular value to be printed on a particular line of an invoice. The management,
however, also generally works with business processing logic at higher levels of
abstraction, e.g., the billing of customers with outstanding balances. The high-
level abstraction of business processing logic, although integrally related to the
detailed levels, is not typically embodied in the application programs of the
business enterprise at all. Instead it may be embodied in written or unwritten
manual procedures, or in automated scheduling or workflow systems. The
automated scheduling and workflow systems may support the storage of
rudimentary processing logic in machine-readable form, albeit typically in some
proprietary fashion tailored to the specific abilities of the system.

Consequently, there is a need in the art for method, apparatus, and
structure for simply and uniformly representing processing logic in terms of its
condition-to-action associations, readily susceptible to direct manipulation by
persons with limited technical training, and able to simultaneously represent
processing logic at multiple levels of detail and abstraction. Such method,
apparatus, and structure would have the further advantages of ease of portability
and interoperability between and among various makes, models, and versions of
computer hardware and operating systems; susceptibility to automated analysis;
and support for incremental implementation. Such method, apparatus, and
structure would not be limited to applications of business processing, but may be
advantageously employed wherever computer-based representation of processing

logic is desired. The present invention meets these needs.

10

15

20

25

WO 97/48043

k
SUMMARY OF THE INVENTION

The present invention involves method, apparatus, and data structures for
representing and executing processing logic using a computer system. The
processing logic may be as complex, for example, as the combined practices,
procedures, and policies used to run an entire business enterprise, or, as simple,
for example, as the process performed by a single machine using an embedded
computer.

In the practice of the invention, the processing logic of a subject process is
reduced to novel data structures containing its definition. A first data structure
stores expressions for evaluating various aspects of the state of the subject
process. The expression is a series of symbols that can be evaluated to have a
particular value and represents a condition placed on subsequent processing. A
second data structure stores information representing correspondences between
expression results and tasks to perform. A third data structure stores task
definitions. Tasks represent executable responses, i.¢., a predefined set of one or
more instructions that may be performed using a computer, e.g., a computer
program module.

During the operation of the subject process, events occur that are signaled
using the computer system. For example, in a manufacturing process, a machine
jam may be a type of event that occurs. The particular type of the occurring event,
the event-type, is used to identify an expression in the first data structure. The
event-type is implicitly or explicitly contained in the input signal. Evaluation of
the identified expression produces a resulting value, which together with the
event-type, may identify one or more correspondences stored in the second data
structure. The identified correspondence information is then used to identify task
definitions stored in the third data structure. Execution of identified tasks is then
initiated.

In other words, the expressions represent conditions placed on the

execution of executable responses, the task definitions define a pool of executable

PCT/US97/10304

10

15

20

25

WO 97/48043 PCT/US97/10304

7

~ responses, and the correspondences relate the conditions to particular executable

responses. By separating the expressions from the executable responses, and
relating them via the correspondences data structure entries, the processing logic
may be easily reconfigured and existing definitions reused.

In a preferred embodiment, the data structures are maintained as relational
tables. The expressions in the first data structure conform to a system of multi-
valued predicate logic after the fashion discussed in E. F. Codd, The Relational
Model for Database Management, Version 2 (Addison-Wesley 1990). Evaluation
of an expression results in a “truth” value, e.g., true or false. In this preferred
embodiment, only “true” results produce downstream activity (i.e., only an
evaluation of an expression that produces a “true” result has task correspondence
entries in the second data structure).

These and other objects, advantages, and features of the present invention
will become apparent from the following detailed description when taken in

conjunction with the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 depicts a block diagram of processing logic element stores
encoded in a memory medium.

Figure 2 depicts processing logic element stores with representative entry
data structures.

Figure 3 depicts a functional block diagram of a Process Management
Knowledgebase System (PMKBS) encoded in a memory medium.

Figure 4A and 4B depict representative computer hardware environments
that may be used to implement a PMKBS.

Figure 5 depicts one method of defining processing logic to the process
management knowledgebase (PMKB).

Figures 6A to 6D depict record layouts encoded in a memory medium for

PMKBS catalog entries.

10

15

20

25

WO 97/48043

¥

Figures 7A to 7D depict record layouts encoded in a memory medium for
PMKABS operating data structure entries.

Figures 8A to 8D depict operational flowcharts of functional elements in
the PMKBS.

Figure 9 depicts the software and data components residing on a storage
device for illustrating the operation of the PMKBS in one embodiment of the
invention.

Figures 10A to 10C depict abbreviated sample contents of PMKBS
catalog tables encoded in a memory medium for purposes of illustration.

Figures 11A to 11B depict abbreviated sample contents of PMKBS
process-independent data tables encoded in a memory medium useful for purposes
of illustration.

Figures 12A to 12Dvdepict abbreviated sample contents of PMKBS
process-dependent data tables encoded in a memory medium useful for purposes
of illustration.

Figures 13A to 13B depict sample contents of hypothetical data tables
encoded in a memory medium as may be employed in an inventory management

application of a manufacturing business.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention comprises novel method, apparatus, and data
structures for representing and executing processing logic. The following
description is presented to enable any person skilled in the art to make and use the
invention, and is provided in the context of particular applications and their
requirements. Various modifications to the preferred embodiment will be readily
apparent to those skilled in the art, and the generic principles defined herein may
be applied to other embodiments and applications without departing from the

spirit and scope of the invention. Thus, the present invention is not intended to be

PCT/US97/10304

10

15

20

25

WO 97/48043 PCT/US97/10304

9

limited to the embodiment shown, but is to be accorded the widest scope

conststent with the principles and features disclosed herein.

PMKBS Structural Overview

Figure 1 depicts a block diagram of data stores for processing logic
elements encoded in a memory medium in one embodiment. Processing logic
elements comprise individual memory-encoded representation of conditions,
associations, and courses of action. Data stores for processing logic elements
include a conditions data store 100, a correspondences data store 120, and a
responses data store 140.

The processing logic in an embodiment practicing the present invention is
defined in terms of conditions associated with courses of action. Unlike
traditional programming languages, however, an embodiment practicing the
present invention stores the conditions, associations, and courses-of-action
elements of the processing logic as distinctly addressable data items.
Nevertheless, the elements are linked in an overal structure. Conditions are stored
in the conditions data store 100, associations are stored in the correspondences
data store 120, and courses of action are stored in the responses data store 140.

Storage of processing logic elements in this fashion, and utilizing the
associations as an intermediate link between conditions and responses, permits an
embodiment to easily allow multiple use and reuse of individual processing logic
elements. For example, a course of action that is executed under many conditions
can be defined once and be referenced by as many associations as necessary. This
represents a further advantage of the present invention.

Figure 2 depicts processing logic element stores with representative entry
data structures. The conditions data store 100 in one embodiment contains one or
more entries. The purpose of each entry 210 is to represent a condition to be
satisfied if a certain course of action is to be taken. Each entry 210 comprises an

expression field 214. The expression field 214 may store an expression, itself, or

10

15

20

25

WO 97/48043

10
a reference to another storage location where an expression can be found in a

memory medium.

Each expression is a series of information that can be evaluated to have a
particular value. Achieving a certain particular value can then be the condition on
which taking a subsequent course of action is based. An expression generally
tests the state or states of one or more data items that represent elements related to
a subject process. The data items to be evaluated may be contained in or
determined by an input signal 201. For example, an expression may test the state,
e.g., value, of a numeric data item that represents the quantity of a particular part
in the stockroom for an inventory process. This construction permits the linkages
of different corresondences 220 to be utiilzed depending on the result of
expression evaluation 242. That is, the link between the condition store, and the
correspondnece store is determined (a resolved) based upon the result of the
evaluation of the expression.

Each entry 210 in the conditions data store 100 may further comprise an
identifier 212. The identifier 212 serves to uniquely identify the entry 210, i.e.,
the expression 214, from among any others in the conditions data store 100. The
identifier 212 may be implicit or explicit. For example, the memory address
where the entry is stored in a memory medium may be used as the implicit and
unique identifier. Alternatively, the identifier 212 may be a field in the entry 210
that stores a value, e.g., a string of characters like “ABC123”, which value is used
to explicitly and uniquely identify the related expression field 214,

The responses data store 140 in one embodiment contains one or more
entries that are associated with each other in the memory medium. Each entry 230
comprises an executable response field 234. The executable response field 234
may store an executable response, itself, or a reference to another storage location
where an executable response can be found in a memory medium.

An executable response comprises a predefined set of instructions that may

be performed using a computer. For example, an executable response may be a

PCT/US97/10304

10

15

20

25

WO 97/48043 PCT/US97/10304

4
program, a program name, a program address, or a statement susceptible to

execution by the operating system or a subsystem. As a specific example, an
executable response may be a command line recognizable by the operating system
that causes execution of a program that forecasts the usage rate and inventory
level for a particular part.

Each entry 230 in the responses data store 140 may further comprise an
identifier 232. The identifier 232 serves to uniquely identify the entry 230, i.e.,
the executable response 234, from among any others in the responses data store
140. The identifier 232 may be implicit or explicit. For example, the memory
address where the entry is stored in a memory medium may be used as the implicit
and unique identifier. Alternatively, the identifier 232 may be a field in the entry
230 that stores a value, e.g., a string of characters like “XYZ789”, which value is
used to explicitly and uniquely identify the related executable response field.

The correspondences data store 120 in one embodiment contains one or
more entries. The role of each entry 220 is to link a condition to a course of
action. Implementing those linkages as distinctly addressable processing logic
elements facilitates reusability and reconfiguration which are farther advantages of
the present invention. Each entry 220 comprises a field 224 containing an
identifier for a particular entry in the responses data store 140, i.e., a course of
action. Each entry 220 further comprises an identifier 222 corresponding to a
particular combination of an expression 214 in the conditions data store 210 and a
particular value that may result from an evaluation of the expression 242, i.e., a
condition. This identifier 222 may be implicit or explicit. For example, the
memory address where the entry is stored in a memory medium may be calculable
using the conditions data store entry identifier 212 and the value resulting from
evaluation of the expression 242. Alternatively, the identifier 222 may be a field
or fields in the entry 220 that stores a value, e.g., a string of characters like
*ABCI123/TRUE.”

10

15

20

25

WO 97/48043

2
As an example, a correspondence entry 220 may be identified by a less-

than-ten value resulting from the evaluation of an expression that tests the state of
a numeric data item that represents the quantity of a particular part in the
stockroom for an inventory process, which expression is contained in a particular
entry in the conditions data store. The same correspondence entry 220 may
contain an identifier 224 for a responses table entry containing an executable
response that is a command line recognizable by the operating system that causes
execution of a program that forecasts the usage rate and inventory level for a
particular part.

Using the examples described above, if during operation an input signal
associated with the example entry in the conditions data store 100 prompts
evaluation of the expression 214 contained therein, and the evaluation produces a
less-than-ten resulting value 242, the resulting value 242 leads to the example
entry in the correspondence data store 120 which, in turn, leads to the example
entry in the responses data store 140, causing initiation of the program that
forecasts usage and inventory level for the part.

The conditions 100, correspondences 120, and responses 140 data stores
may together be referred to as a process management knowledgebase (PMKB)
catalog. A system utilizing the processing logic represented in the PMKB catalog
to facilitate execution of a subject process may be referred to as a process
management knowledgebase system (PMKBS).

Figure 3 depicts a functional block diagram of a Process Management
Knowledgebase system encoded in a memory medium. The system comprises a
signal source 330, an event discriminator 335, and expression correlator 340, an
evaluator 345, a task correlator 350, a task initiator 355, an execution engine 360,
an expressions data store 310, a correspondences data store 315, and a responses
data store 320.

The Process Management Knowledgebase system is a data processing

system for controlling and monitoring the execution of a subject process where the

PCT/US97/10304

10

15

20

25

WO 97/48043

/3
processing logic is defined in a process management knowledgebase. The PMKB

comprises the expressions data store 310, the correspondences data store 315, and
the responses data store 320. The expressions 310, correspondences 315 and
responses 320 data stores correspond to the conditions 100, correspondences 120,
and responses 140 data stores of Figure 1, respectively.

The expressions data store 310 in this embodiment contains event-type
identifiers and related expressions. An event-type identifier corresponds to the
identifier 212 in the conditions data store 100 depicted in Figure 2. It is called an
event-type identifier because, in the present embodiment, a particular type of
event that occurs in a subject process may have a corresponding entry in the
expressions data store.

The related expressions are used to evaluate aspects of the state of the
subject process that is being controlled and monitored by the PMKBS. Evaluation
of the related expression generally occurs upon the occurrence of some event in
the subject process signaled to the PMKBS.

The response data store 320 in this embodiment contains task-type
identifiers and related responses. A task-type identifier corresponds to the
identifier 232 in the responses data store 140 depicted in Figure 2. The related
responses in this embodiment are unordered sets of programmed instruction
sequences that may be executed on a computing system using, for example, the
operating system, a subsystem, a utility or application program, specialized
hardware or a subcomponent of the PMKBS, itself.

The correspondences data store 315 contains representations for
associating the result of the evaluation of an expression from the expression data
store 310 with a response from the response data store 320. In one embodiment,
an event-type identifier, alone, represents both the particular expression and the
particular result, because in that embodiment, only a result of “TRUE” is

permitted to have an associated response. The result value of “TRUE” is thus

PCT/US97/10304

10

15

20

25

WO 97/48043 PCT/US97/10304

14

implied in every entry of the correspondences data store 315 and does not need
explicit representation. A task-type identifier represents the response.

The signal source 330 actively or passively collects input signals
containing information about events occurring in the process external to the
PMKBS. For example, the signal source 330 may actively collect input signals by
periodically scanning a database for specific types of changes. As an alternative
example, the signal source 330 may passively collect input signals by providing
an entry point in its programming code that programs external to the PMKBS can
call to signal the PMKBS.

The event discriminator 335 analyzes information in and about the input
signal 332 to identify it with an event-type represented in the expression data store
310. The expression correlator 340 uses the identified event-type to locate a
corresponding expression in the expression data store 310. The expression
correlator 340 may then process the stored expression, transforming it from a
general form to a specific form, for example, by performing variable substitution.
For instance, the stored expression may be of a general form saying “check the
inventory quantity of a part” while the specific form may say “check the inventory
quantity of part number Y123.” Alternatively, this transformation could be
performed by the evaluator 345.

The evaluator 345 analyzes the expression from the expression correlator
340 and resolves it to a resulting value. The task correlator 350 uses the resulting
value to locate corresponding task-type identifiers in the correspondences data
store 315. The task correlator 350 uses the identified task-types to locate
corresponding responses in the responses data store 320. The task initiator 355
then takes the identified responses and submits them, after any preprocessing, to
an execution engine 360. Preprocessing may involve, for example, the
substitution of variables. The execution engine 360 then executes the responses

that have been submitted to it.

10

15

20

25

WO 97/48043 PCT/US97/10304

-

/9
Hardware Architecture

Figure 4A and 4B depict representative computer hardware environments
that may be used to implement a PMKBS. Figure 4A depicts a single computer
system 400 comprising a CPU 410, memory 412, memory media 414, network
interface 416, and input/output devices 418 all connected via a data and control
signal bus 420. Such a computer configuration is widely known in the art. The
CPU 410 executes instructions using instructions and data stored in the memory
412 and accessed by the CPU 410 using the signal bus 420. Memory 412 may
comprise combinations of RAM and ROM. The CPU 410 in a multiprocessing or
parallel processing computer system may comprise multiple individual CPU’s,
and likewise its memory 412 may comprise multiple sections, each accessible or
inaccessible to some combination of the individual CPU’s.

Instructions and data may transfer between the CPU 410 or memory 412,
and the memory media 414, network interface 416, and 1/0 devices 418 using the
signal bus 420. Memory media 414 may comprise devices employing, e.g.,
magnetic, optical, magneto-optical, or other recording techniques for reading
and/or writing to tape, disk, cartridge or other media. 1/0 devices 418 may
comprise keyboards, pointing devices, video displays, printers, speakers, scanners,
cameras, accelerator cards, supplemental processor cards, or other peripherals
through which a user may interface with the computer system or which may
extend the processing functionality of the computer system. The network
interface 416 may comprise, e.g., network interface cards or modems which
permit the computer 400 to establish data communication with other computer
systems.

Figure 4B depicts multiple individual computer systems 401, 402, like the
one 400 illustrated in Figure 4A, coupled by an electronic data communications
network 490. The network 490 allows the individual computer systems 401, 402
to exchange data. Further, software on the individual computer systems 401, 402

may employ exchanged data to represent service requests and responses, allowing

10

15

20

25

WO 97/48043

16
the individual computers 401, 402 to cooperate in the processing of a workload.

Such cooperative processing is well known in the art and may take many forms,

e.g., peer-to-peer, client-server, multi-tiered, parallel-processing architecture, and

combinations.

Definine Processing Logi

For the PMKBS to control and monitor a subject process, the processing
logic, of that process must first be encoded in memory medium in a form the
PMKBS accepts. Figure S depicts one method of defining processing logic into a
process management knowledgebase (PMKB). In one embodiment, the PMKB is
maintained using the services of a relational database management system
(RDBMS). RDBMS’s are widely known in the art. Many RDBMS products are
available commercially. An advanced RDBMS product may contain many or all
of the features described in E. F. Codd, The Relational Model for Database
Management, Version 2 (Addison-Wesley 1990) and hereby incorporated by
reference. Advanced features that may be employed to implement the presently
described embodiment of the invention include, e.g., field-level triggering and
access to a predicate logic expression evaluator via an RDBMS language.

In the embodiment depicted in Figure 5, conventional RDBMS software
on the computer manages relations, or tables, designated TABLES 550, ET 555,
TT 565, ETCORR 560, DTQ 575, NOTICE 580, and E10 570, on a memory
media device 540. The TABLES table 550 is shown for illustrative purposes and
represents an exemplary RDBMS conventional catalog structure. For purposes of
illustration, the TABLES table 550 contains one record, or row, for each table
managed by the RDBMS.

The Event-Type (ET) 555, Task-Type (TT) 565, and Event-to-Task
Correspondence (ETCORR) 560 tables are part of a PMKBS catalog 546.
Relating back to Figure 3, the ET table 555 acts as the expression data store 310,
the TT table 565 acts as the response data store 320; and the ETCORR table 560

PCT/US97/10304

10

15

20

25

WO 97/48043 PCT/US97/10304

17
acts as the correspondences data store 315. These tables 555, 560, 565 are defined

to the RDBMS as part of the installation process for the PMKBS.

In the present embodiment, a computer user interfaces to the computer
using a keyboard, monitor, and possibly a mouse 510. The computer user creates
a file of statements 514. The statements in the file 515 codify elements of the
processing logic of the subject process being defined to the PMKBS. Each
statement defines a row to be inserted in one of the ET 555, TT 565, or ETCORR
560 tables. The file of statements 5 14 may be created directly by the user through
the use of a text-editing program or a word processor. Alternatively, the computer
user may employ a front-end utility program 512, such as a GUI-based
development tool, that produces the file of statements 516 in response to user
inputs.

The completed file of statements 514 is an input to a definition program
520. The definition program 520, in some embodiment, may be a software
program of the PMKBS. The definition program 520 reads each statement from
the input file 514 and inserts a row into the PMKBS catalog 546 table to which
the statement pertains. In this embodiment, the definition program 520 creates
additional tables in the PMKB. The additional tables are used to record activity
during operation of the subject process under the PMKBS. To create the
additional tables, the definition program 520 creates SQL statements 522. The
definition program 520 then invokes the RDBMS 524, passing the SQL
statements 522. In response to the SQL statements 522, the RDBMS 524
establishes the new tables.

An example of the defining process depicted in Figure 5 assumes the
computer user wants to define a new event-type, E10. Using an editor or GUI-
based development tool, the user creates a statement defining the event-type 516.
The definition program 520 reads the statement and parses it to determine that it
defines an event-type. Relevant information is extracted from the statement and

inserted into a new row in the ET table 555 as indicated by arrow A 530. The

10

15

20

25

WO 97/48043 PCT/US97/10304

/¥
definition program 520 also creates an SQL statement 523 compatible with the

SQL language provided by the RDBMS 524, as indicated by arrow B 532, to
define a new table to hold instances of the E10 event-type that occur during
operation of the process. The definition program 520 invokes the RDBMS 524 as
indicated by arrow C 534, passing the SQL statement 523 to it. The RDBMS 524
makes an entry 551 for the E10 table in its catalog 542 as indicated by arrow D
536, and creates an empty table 570 to hold E10 records as indicated by arrow E
538.

The operation of the definition program 520 is described above in terms of
a batch/compiler mbde of operation. One skilled in the art recognizes that other
alternatives to populating the PMKBS catalog may be employed, e.g., interpreters,
or transaction processors, without departing from the spirit of the invention. For
example, a graphical user interface, such as the one contained in Microsoft

ACCESS, may give a user fast and easy access to directly manipulate the data in

the PMKBS catalog 546 tables.

PMKBS Catalog Data Structures
Figures 6A to 6D depict record layouts for PMKBS catalog 546 entries.

Figure 6A depicts the record layout for an event-type definition record 660
contained in the ET table 555. The record 600 comprises event-type identifier
601, time stamp 603, expression template 605, active time 607, end time 609, and
source identifier 611 fields. The primary key 619 of the record 600 comprises the
event-type identifier 601 plus the time stamp 603 fields. The combined contents
of the fields in a primary key uniquely identify a particular record in a table, and
may serve to define a default order in which records appear or are processed. The
event-type identifier field 601 contains a unique name for a type of event that can
occur in a subject process. The time stamp field 603 contains a representation of

the date and time at which the record 600 is inserted into the table.

10

15

20

25

WO 97/48043

19

The expression template field 605 contains a template for an expression to
be evaluated to determine some aspect of the state of the subject process when an
event of event-type occurs during operation of the subject process. In the present
embodiment, the expression template is a predicate logic expression conforming
to a syntax supporting predicate logic. Predicate logic is known in the art and is
discussed in references such as Donald Gillies, Artificial Intelligence and
Scientific Method (Oxford University Press 1996), and Alonzo Church, Predicate
Logic (Princeton). The expression template may contain names of variables that
are substituted prior to evaluation. Variables used in the expression template in
this embodiment may refer to any data item addressable using the RDBMS.

It is noted here that the ability to reference any data item addressable using
the RDBMS gives the PMKBS extensive reach for the processes it manages when
used in conjunction with a distributed RDBMS. If, for example, a company’s
distributed RDBMS connects companies nationwide, the PMKBS could make
decisions, i.c., check conditions, based on factors not just in a local office, but
around the nation.

The active time field 607 contains the earliest date and time that the event
definition is to be considered active and valid during operation of the PMKBS.
The end time field 609 contains the earliest date and time, after the time of its
initial activation, that the event definition is to be considered inactive. The source
identifier field 611 contains the identity of the computer user or system
responsible for creating the instant event-type definition.

The inclusion of the active time 607 and end time 609 fields allows
alternative definitions for event-types to be staged in anticipation of a planned
change of the process model. Such fields may be similarly implemented with the
other record types for tables in the PMKBS catalog. Implementing such fields
provides flexibility in the PMKBS for use with relatively dynamic process

models.

PCT/US97/10304

10

15

20

25

WO 97/48043

X0
Figure 6B depicts the record layout 620 for a task-type definition record

contained in the TT table 565. The record 620 comprises task-type identifier 621,
executable response template 623, and source identifier 625 fields. The primary
key 639 comprises the task-type identifier field 621. The task-type identifier field
621 contains a unique name for an executable response.

The executable response template field 623 contains a set of command
statements. In the present embodiment, a command statement is either a
statement containing an SQL statement to be executed by the RDBMS, or a
statement containing a program name and parameters to be executed by the
operating system shell. The format of the statements in the preferred embodiment
appears in Table 1. The “SQL:” statement permits processing of data maintained
by the RDBMS via a language provided by the RDBMS. The “PRG:” statement
permits execution of a named program recognized by the operating system. As
such, the PMKBS can initiate virtually any type of processing supported by the
operating system and subsystems, so long as a program has been created to

perform the desired processing.

Table 1. Executable Response Statement Formats
(Items appearing in brackets are optional)

SQL: sql-statement

PRG: |pathnamelprogram-name [program-parameter-

string]

In the prcscntly‘described embodiment, the executable response template
associated with a task-type contains an unordered set of command statements.
Furthermore, there is no provision for branching between and among the
individual commands in the set. As such, the computer user can make no
assumption about the order in which the work units are actually executed in any

particular instance. The unordered and unbranched nature of the set renders the

PCT/US97/10304

10

15

20

25

WO 97/48043 PCT/US97/10304

Al
representation of the process model in the PMKBS catalog more susceptible to

automated analysis because the analyzer does not have to identify and account for
operational interdependencies between individual commands. The unordered and
unbranched nature precludes such interdependencies. For the same reason, the
unordered and unbranched nature also permits easy exploitation of parallel
processing capabilities. These represent further advantages of the invention.

The source identifier field 625 contains the identity of the computer user or
system responsible for creating the instant task-type definition.

Figure 6C depicts the record layout for an event-to-task correspondence
record 640 contained in the ETCORR 560 table. The record 640 comprises event-
type identifier 641, task-type identifier 643, scheduled-time expression template
645, and source identifier fields 647. The primary key 659 comprises the event-
type identifier 641 and task-type identifier 643 fields. The event-type identifier
field 641 contains a unique name for a type of event that can occur in the subject
process and matches the value stored in the event-type identifier field 601 of a
record 600 in the ET table 555. The task-type identifier field 643 contains a
unique name for an executable response and matches the value stored in the task-
type identifier field 621 of a record 620 in the TT table 565.

The scheduled-time expression template field 645 contains an expression
that may resolve in any particular instance to a date-time value. The resolved
date-time value represents the earliest desired execution time for the executable
response associated with the task-type. Inclusion of this field 645 in the present
embodiment allows the PMKBS to feature deferred task execution, in addition to
immediate task execution.

The source identifier field 647 contains the identity of the computer user or
system responsible for creating the instant event-type definition.

Figure 6D depicts an alternative embodiment 660 for an event-to-task
correspondence record 640 that may be contained in an ETCORR table 560. The
record layout 660 depicted in Figure 6D differs from the record layout 640

10

15

20

25

WO 97/48043 PCT/US97/10304

AA
depicted in Figure 6C only by the addition of an expression value field 663 in the

primary key area 679 of the record. Using the record layout 660 of Figure 6D,
the table is more appropriately entitled the event-result-to-task correspondence
table. This reflects the possibility that in some embodiments, evaluation of the
expression stemming from the expression template 605 in the event-type
definition record 600 could produce more than one resulting value that should
correlate to a task. For example, in an embodiment of a PMKBS an expression
may be able to evaluate to a resulting value of 1, 2, or 3. If the resulting value is
1, then it is desired to perform a task-type that sends email; if type 2, a task-type
that sends fax; and if type 3, a task-type that sends regular mail. Adding the
expression value field 663 to the correspondence record 660 allows it to correlate
particular resulting values for an event-type, to task-types, rather than just
correlating event-types to task-types.

The reason that the preferred embodiment of the PMKBS uses the record
layout 640 depicted in Figure 6C that omits the expression value field is that the
preferred embodiment only executes tasks when evaluation of an expression
produces a value of “TRUE.” A resulting expression value of “TRUE” is implied
in every event-to-task correspondence and can thus be omitted. The preferred
embodiment could employ the record layout 660 depicted in Figure 6D that
includes the expression value field 663, but the field would contain the value
“TRUE” in every record. This would needlessly consume storage space and could
slow down the processing of records by forcing the RDBMS to regularly consider
the “TRUE” value in each record by virtue of its position in the primary key. In

the preferred embodiment, the expression value is implied.

PMKBS Operating Data Structures
While the data structures in the PMKBS catalog 542 contain declarative
information that generally define elements of the processing logic, data structures

in the PMKBS operating data space 548 contain information that specifically

10

15

20

25

WO 97/48043

23

reflect particular instances, or occurrences, arising during operation of the subject
process. For this reason, individual records within the operating tables may be
referred to, themselves, as instances or occurrences. Further, an instance or
occurrence in an operating table may be derived from an archetype record in the
PMKBS catalog. The derivation may involve, for example, variable substitution.
In such a case, the process of derivation is called specialization and the record is
said to be specialized.

Figures 7A to 7D depict record layouts for PMKBS operating data
structure entries. Figure 7A depicts the record layout for a Notice record 700
contained in the NOTICE table 580. In the presently described embodiment, the
NOTICE table serves as the signal source for the PMKBS. The NOTICE record
700 comprises notice identifier 701, event-type identifier 703, parameter data 705,
and time stamp 707 fields. The primary key 719 of the record 700 comprises the
notice identifier field 701. The notice identifier field 701 contains a unique value
with which to identify the particular row in the NOTICE table from among all
others.

The event-type identifier field 703 contains a unique name for a type of
event that can occur in the subject process and matches the value stored in the
event-type identifier field 601 of a record 600 in the ET table 555. The parameter
data field 705 may contain a list of data items that contextualize the event that
incited the input signal represented by the NOTICE record 700 instance. For
example, if a change in the number of a part in inventory is the type of event, then
the parameter data 705 may provide context for the event by specifying the
particular part number. In the present embodiment, the list of data items is in
keyword-value format using the syntax depicted in Table T2. The time stamp field
707 contains a representation of the date and time at which the record 700 was

inserted into the table 580.

PCT/US97/10304

10

15

20

25

WO 97/48043 PCT/US97/10304

24
Table T2. Parameter Data Format
(Items appearing in brackets are optional)

[keyword=value][,keyword=value]...

Figure 7B depicts the record layout for an event occurrence record 720.
Records of this format may occur in multiple tables in the PMKBS operating data
area 648 as, in this embodiment, there is one table per declared event-type for
storing instance data. The purpose of the event-type occurrence records in the
present embodiment is to maintain a log of PMKBS activity. The records may
also be used to incite execution of portions of the PMKBS program code as
discussed in more detail in relation to Figure 8A to 8D. The record 720
comprises event-type identifier 721, notice identifier 723, expression 725,
expression value 727, and time stamp 729 fields. The primary key 739 of the
record 720 comprises the event-type identifier 721 and notice identifier 723 fields.
The event-type identifier field 721 contains a unique name for a type of event that
can occur in the subject process and matches the value stored in the event-type
identifier field 601 of a record 600 in the ET table 555. The notice identifier field
723 contains a unique value that identifies a particular row in the NOTICE table
580. The expression field 725 contains the specialized form of the expression
template contained in the active record in the ET table having the matching event-
type identifier with that of the instant record. The expression value field 727 may
contain the resultant value from the evaluation of the specialized expression
contained in the expression field 725. The time stamp field 729 contains a
representation of the date and time at which the record 720 is inserted into a table.

Figure 7C depicts the record layout for a task occurrence record 740.
Records of this format may occur in multiple tables in the PMKBS operating data
area as, in this embodiment, there is one table per declared task-type for storing
instance data. The purpose of the task-type occurrence records in the present

embodiment is to maintain a log of PMKBS activity. The record may also be

10

15

20

25

WO 97/48043

RS

used to incite execution of portions of the PMKBS program code as discussed in
more detail in relation to Figure 8A to 8D.

The record comprises task-type identifier 741, notice identifier 743,
executable response 745, and time stamp 747 fields. The primary key 759 of the
record 740 comprises the task-type identifier 741 and notice identifier 743 fields.
The task-type identifier field 741 contains a unique name for an executable
response, and matches the value stored in the task-type identifier field 621 of a
record 620 in the TT table 565. The notice identifier field 743 contains a unique
value that identifies a particular record in the NOTICE table. The executable
response field 745 contains the specialized form of the executable response model
contained in the record in the TT table having the matching task-type identifier
with that of the instant record. The time stamp field 747 contains a representation
of the date and time at which the record was inserted into a table.

Figure 7D depicts the record layout for a delayed task queue record 750
contained in the Delayed Task Queue (DTQ) table 575. The DTQ table 575 in
this embodiment is used to implement deferred tasks. The purpose of the delayed
task queue records 750 in the present embodiment is to maintain a log of PMKBS
activity and to maintain a record of pending deferred execution requests. The
records may also be used to incite execution of portions of the PMKBS program
code as discussed in more detail in relation to Figures 8A to 8D. The record 750
comprises scheduled time 751, task-type identifier 753, notice identifier 755, and
executable response 757 fields. The primary key 769 of the record 750 comprises
the scheduled time field 751. The scheduled time field 751 contains a
representation of the earliest date and time at which a deferred task is to be
executed. The task-type identifier field 753 contains a unique name for an
executable response to be deferred, and matches the value stored in the task-type
identifier field 621 of a record 620 in the TT table 565. The notice identifier field
755 contains a unique value that identifies the particular row in the NOTICE table

that gave rise to the instant DTQ record. The executable response field 757

PCT/US97/10304

10

15

20

25

WO 97/48043

PCT/US97/10304

2
contains the specialized form of the executable response model contained in the

record in the TT table having the matching task-type identifier with that of the
instant record.
An operational example involving the use of the operating data structures

illustrated in Figures 7A to 7D is described later in reference to Figure 9.

PMKBS Operational Descrinti

Figures 8A to 8E depict operational flowcharts of functional elements in
the PMKBS. In the present embodiment, the depicted functional elements are
implemented as software that may execute on a computer hardware configuration
as previously described in relation to Figures 4A and 4B. Figure 8A depicts a
flowchart of the event discriminator 335 and the expression correlator 340,
referring back to Figure 3, which are integrated into one program module in the
presently described embodiment. The event discriminator 335 comprises logic
block 803. The expression correlator 340 comprises logic blocks 805 through
813.

The event discriminator 335 begins processing when a new record is
inserted into the NOTICE table 580 as represented by logic block 801. The
RDBMS employed in this embodiment include.s support for triggers, or triggered
program execution, which is known in the art (rf., e.g., Alan Freedman, The
Computer Desktop Encyclopedia (AMACOM 1996). The trigger feature of the
RDBMS permits the RDBMS user to define program code to be executed when
“triggered” by events arising within the RDBMS. Triggering events may include,
e.g., the insertion of a record, or the update of a particular field. The entry point
of logic block 803 is defined as the target program for the trigger corresponding to
the insert-new-row event of the NOTICE table.

As noted earlier, the NOTICE table 580 serves as the signal source 330 for
the PMKBS in the present embodiment. Software that is executing on any

computer able to insert a record into the NOTICE table, may inform the PMKBS

10

15

20

25

WO 97/48043 PCT/US97/10304

27
about an occurrence of an event relevant to a subject process by inserting a

NOTICE record. The executing software may or may not have been initialized,
itself, by the PMKBS. For example, a transaction processing application program
that is initiated by a computer user to record information about an order received
in the mail, may insert a record into the NOTICE table to alert the PMKBS that an
order has been received. An event is signaled to the PMKBS in order to utilize
the processing logic defined to the PMKBS.

Event discrimination identifies the type of event represented by an input
signal. Performing event discrimination in the present embodiment is
straightforward, as the event-type identifier exists as a field within the NOTICE
table. The event discriminator 335 extracts the value in this field from the newly
inserted record, in logic block 803. The event discriminator 335 is aware of the
identity of the newly inserted record by means of the RDBMS’s triggering
process. PMKBS processing then continues on to the expression correlator 340.

The process of expression correlation resolves an expression that is used to
determine some condition relevant to the subject process. In logic block 805, the
expression correlator 340 uses the event-type identifier passed by the event
discriminator 335 to locate the expression template that corresponds to the instant
event-type. The expression correlator locates and retrieves the expression
template by querying the RDMBS for the active record in the ET table with a
matching event-type identifier.

In logic block 807, the expression correlator retrieves and parses the
parameter data field from the newly inserted NOTICE record. Parsing data fields
to isolate and identify individual constituent elements is well known in the art. In
logic block 809, the expression correlator specializes the just retrieved expression
template, performing any variable substitution, possibly using the parsed
parameter data.

In logic block 811, the expression correlator fixes values for the event-type

identifier, notice identifier, expression, and the time stamp fields for an event

10

15

20

25

WO 97/48043 PCT/US97/10304

2y
occurrence record. The expression correlator then inserts the new event

occurrence record into the table named after the event-type, using the services of
the RDBMS. The expression correlator then terminates its processing in logic
block 813.

The expression correlator program code in this embodiment may not
directly pass control to the evaluator program code, to continue the processing of
the input signal. Instead, it may reach the evaluator program code through the
RDBMS trigger mechanism when, in logic block 811, the expression correlator
program code inserts the new event occurrence record.

Figure 8B depicts a flowchart of the expression evaluator 345 together
with the task correlator 350. The expression evaluator 345 and task correlator 350
are integrated into one program module in the presently described embodiment.
The expression evaluator comprises logic block 823. The task correlator
comprises logic blocks 825 through 841.

The process of expression evaluation determines some condition relevant
to the subject process. The expression evaluator 345 begins processing when a
new record is inserted into an event occurrence table as represented by logic
block 821. The entry point of logic block 823 is defined as the target program for
the trigger corresponding to the insert-new-row event of each event occurrence
table. Logic block 823 retrieves the expression field from the newly inserted
record, and evaluates it to a single resulting value. Often, the resulting value
represents the current state condition of some aspect of the subject process. The
evaluator 345 then stores the resulting value in the expression value field of the
instant record. Processing continues to the task correlator 350.

The task correlation process identifies the course or courses of action to
take given the occurrence of a particular type of event at a time when a particular
condition exists. The task correlator 350 tests the value resulting from expression
evaluation to determine which, if any, task execution should arise from the

particular resulting value from the particular event-type. In the presently

10

15

20

25

WO 97/48043

29
described embodiment, the expressions are predicate logic expressions, as

described earlier in reference to Figure 6A, that result in a truth value. In the
present embodiment, subsequent task execution only occurs when the resulting
truth value is “TRUE.” In logic block 825, the task correlator tests whether the
resulting value is “TRUE.” If it is not, processing of the task correlator, and the
input signal, terminate at logic block 827 because in this embodiment, only
“TRUE” conditions lead to executable responses.

If the resulting value is “TRUE,” the task correlator in logic block 829
performs a query against the ETCORR table, using the event-type identifier as a
search argument, to find all task-types associated with the instant event-type. In
the present embodiment an event-type can be associated with multiple task-types.
This further contributes to reuse of elements of processing logic by encouraging
modules task-type design. Task-types can, in effect, be used as subroutines are in
traditional programming languages.

In block 831, the task correlator selects an ETCORR record 640 from the
query result produced by logic block 829 — one that has not been previously
selected. In logic block 833, the task correlator tests whether all of the ETCORR
records in the query result have already processed. If so, the task correlator
terminates in logic block 827 because all appropriate courses of action have been
forwarded toward the task initiator.

If the task correlator 350 finds an unprocessed ETCORR record 640 in the
query results, it determines whether the task should be deferred or executed
immediately, by looking for a non-blank value in the scheduled-time expression
template field 645 of the instant ETCORR record 640. Logic block 835 tests
whether an execution-time expression is found.

Scheduled-time expressions represent a future time, so if a scheduled-time
expression is not found, the task is, by definition, immediately executable and
control passes to logic block 839. In this case, the task correlator will insert a

record 740 into a task-type occurrence tables. The task correlator retrieves the

PCT/US97/10304

10

15

20

25

WO 97/48043 PCT/US97/10304

30
task-type definition record 620 identified by the task-type identifier in the instant

ETCORR record from the query result. The task correlator then fixes values for
the task-type identifier 741, notice identifier 743, executable response 745 fields
for a task occurrence record 740 using values from the corresponding fields of the
task-type definition record 620. The task correlator may perform specialization of
the executable response field 745 in the manner the expression correlator performs
specialization for the event occurrence’s expression field.

The value of the time stamp field 747 is fixed with the time-of-day value
customarily available from the computer system. The task correlator then inserts
a new task occurrence record 740 into the table named after the task-type, using
the services of the RDBMS. Inserting the record 740 logs the PMKBS processing
activity and incites the execution of the task initiator code. Control then passes
back to logic block 831 to process any other tasks associated with the event-type.

If a scheduled-time expression is found, the task is, by definition, a
deferred task and control passes to logic block 841. In this case, the task evaluator
350 will insert a record 750 in the delayed task queue table where it will be held
until its scheduled time. The task correlator retrieves the task-type definition
record 620 identified by the task-type identifier in the instant ETCORR record
640 from the query result. The task correlator then fixes values for the task-type
identifier 753, notice identifier 755, and executable response 757 fields for a
delayed task queue record 750 using values from the corresponding fields of the
task-type definition record 620. The task correlator 350 may perform
specialization of the executable response field 757.

The task correlator evaluates the scheduled-time expression from the
instant ETCORR record 640 in the query result from logic block 831, to produce a
date-time value for the earliest execution time for the task. The task correlator
then fixes the value for the scheduled-time field 751 using the date-time value for
the earliest execution time as just determined. The task correlator then inserts a

new record 750 into the DTQ table using the services of the RDBMS. Control

10

15

20

25

WO 97/48043

PCT/US97/10304

then passes back to logic block 831 to pro‘ztfss any other tasks associated with the
event-type. Processing proceeds from the task correlator code to the task initiator
code by means of the RDBMS trigger mechanism.

Figure 8C depicts a flowchart of the task initiator code. The task initiator
starts the execution of courses of action identified by task correlation processing.
The task initiator 335 begins processing when a new record 740 is inserted into a
task occurrence table. The entry point of logic block 853 is defined as the target
program for the trigger corresponding to the insert-new-row event of each task
occurrence table. Starting at the beginning of the field, logic block 853 retrieves
the next statement from the executable response field 745 of the newly inserted
task occurrence record 740. Logic block 855 then tests whether a statement is
found. If not, the task initiator terminates its processing in logic block 859
because each of the statements included in the task definition has been submitted
for execution. If a statement is found, logic block 857 submits the statement to an
execution engine 360 for execution.

In the presently described embodiment, two execution engines are used.
The RDBMS serves as the execution engine for “SQL:” statements in the
executable response field. The operating system, accessed directly or indirectly,
serves as the execution engine for “PRG:” statements in the executable response
field.

Figure 8D depicts a flowchart of the queue monitor code. The queue
monitor process initiates execution of deferred tasks at their scheduled times. The
queue monitor in this embodiment is a subcomponent of the task initiator 355
functional block. More specifically, it extends the main task initiator code to
provide for the execution of tasks on a deferred basis. The basic function of the
queue monitor is to remain aware of outstanding deferred tasks represented as
records in the deferred task queue table, and to instigate their execution at the

scheduled time.

10

15

20

25

WO 97/48043 PCT/US97/10304

32
The queue monitor initialization code in logic block 875 is principally

invoked whenever a new entry is placed into the DTQ table as represented by
logic block 871. This may be achieved using the insert-new-row trigger of the
DTQ table. The queue monitor initialization code may also be invoked in an
alternative embodiment having program code that is executed to start or restart
operation of the PMKBS as represented by logic block 873.

To initialize the queue monitor, logic block 875 queries the DTQ table 575
to find the record 750 representing the unexecuted task containing the lowest, i.c.,
earliest, date-time value in the scheduled-time field 751. Logic block 877 then
sets a timer to that lowest date-time value. The operating system or a subsystem
may provide the timer function. In logic block 879, the queue monitor waits for
the timer to expire.

When the timer expires, the queue monitor queries the DTQ table 575 for
all records having a scheduled-time value less than or equal to the current time.
This happens in logic block 881. Then, in logic block 883, the queue monitor
selects a DTQ record from the query results — one that has not been previously
selected. Logic block 885 tests whether such a record is found. If not, control
passes back to logic block 875 to reset the timer for the next scheduled task time.
If a record is found and selected, control passes to logic block 887 where the task-
type identifier 753, notice identifier 755, and executable response field 757 values
are retrieved from the instant DTQ record and then fixed as the values for the
corresponding fields in a task occurrence record 740. The value of the time-stamp
field 757 is fixed with the time-of-day value that is customarily available from the
computer system. In logic block 889, the queue monitor then inserts a new task
occurrence record 740 into the table named after the task-type, using the services
of the RDBMS. Inserting the record 740 into the task occurrence table indirectly
invokes the main task initiator code to ultimately submit the task for execution.
After inserting the new record 740, control passes back to logic block 883 to

process any other DTQ records ready for execution.

10

15

20

25

WO 97/48043 PCT/US97/10304

33
PMKBS Operational Example

The following operational example is intended to facilitate an
understanding of the invention as employed in the present embodiment. The
figures accompanying the example show only those elements most useful for
describing the example.

The chosen example is based on a hypothetical inventory control system as
may be employed by a business concern. The example describes the first response
of the PMKBS to the removal of parts from the inventory. In the processing logic
for the hypothetical business, changes to the inventory of a part cause an
automated purchase requisition to be generated when the inventory drops below a
threshold level.

Figure 9 depicts the software and data components on a memory medium
540 for illustrating the operation of the PMKBS in one embodiment. Figure 9
depicts memory medium 540 containing operating system 910, RDBMS 912,
PMKBS 914, inventory transaction 916, SENDMSG 918, and PARTFCST 920
program code; RDBMS catalog 542, PMKB catalog 546, PMKB data 548, and
general data 903 logical spaces; and relational tables named TABLES 550, ET
555, TT 565, ETCORR 560, DTQ 575, NOTICE 580, E10 570, E20 935, T11
937, T12 941, T21 945,INV 947, and REQN 951.

The memory medium 540 provides persistent storage for copies of the
program and data it contains. The programs and data are copied, in whole or in
part, from the memory medium to memory, where they may be directly utilized by
the CPU. Operating system program code 910 is loaded into memory and
executed by the CPU, and other program code and data is loaded to and from
memory and utilized, by means well known and well understood in the art. One
skilled in the art also recognizes that the memory medium 540 may comprise one

or more possibly disparate devices.

10

15

20

25

WO 97/48043 PCT/US97/10304

39
The operating system (OS) program code 910 is appropriate to the

underlying hardware and may be one of many commercially available operating
systems; e.g., UNIX, Microsoft Windows NT, VMS, or MVS. A variety of
hardware platforms and operating systems may be utilized in a networked
environment.

The RDBMS program code 912 is compatible with the underlying
hardware and operating system. The RDBMS program code may be one of many
commercially available RDBMS software products; e.g., ORACLE, SQL-Server,
DB2, or Microsoft Access.

The PMKBS program code 914 comprises event discriminator, expression
correlator, evaluator, task correlator, and task initiator portions as described
earlier. This program code may be created and maintained using one or more
computer languages; e.g., C, C++, BASIC, VISUAL BASIC, COBOL, or
Assembler.

The inventory transaction 916, SENDMSG 918, and PARTFCST 920
programs are application or utility programs existing apart from the PMKBS, are
exemplary only, and form no part of the present invention. The programs play a
role in an example subject process used here to illustrate the operation of one
PMKBS embodiment.

In the presently preferred embodiment, the RDBMS catalog space 542
contains the TABLES table 550 as discussed earlier in reference to Figure 5. The
PMKB catalog space 546 contains the ET 555, TT 565, and ETCORR 560 tables
that have been populated as discussed earlier in reference to Figure 5, having
record formats discussed earlier in reference to Figures 6A to 6C. The PMKB
data space 548 contains NOTICE 580, DTQ 575, event occurrence (E10 and E20)
570, 935, and task occurrence (T11, T12, and T21) 937, 941, 945 tables, created
as discussed earlier in reference to Figure 5, having record formats discussed
earlier in reference to Figures 7A to 7D. The general data space 903 contains

INV 947 and REQN 951 tables existing apart from the PMKBS, are exemplary

10

15

20

25

WO 97/48043

PCT/US97/10304

35
only, and form no part of the invention. The tables play a role in an example

subject process used here to illustrate one PMKBS embodiment.

Note that the RDBMS catalog 542, PMKB catalog 546, PMKB data 548,
and general data 903 spaces represent logical groupings to facilitate a conceptual
understanding of the present embodiment of the invention. One skilled in the art
recognizes that the logical groupings may or may not be reflected by equivalent
groupings using grouping mechanisms provided by, e.g., the operating system,
network, or RDBMS.

The following discussion of Figures 10A to 13B describes sample
contents of tables depicted in Figure 9. After the discussion of the contents of the
tables, a processing example making use of those contents is described. The two
discussions considered together illuminate one practice of the invention and its
advantageous use in representing and executing processing logic using a
computer.

Figures 10A to 10C depict abbreviated sample contents of PMKBS
catalog tables for purposes of illustration. The tables are process-independent
because their structures exist as part of the PMKBS without regard to any subject
process defined to the PMKBS (although their contents may reflect subject
process matter). Fields and records unnecessary to the illustration have been
omitted, in order not to obscure an understanding of the invention. A processing
example making use of the sample contents follows the discussion related to
Figure 13B.

Figure 10A depicts sample records in the ET table 555. A record here
reflects the occurrence of some event relevant to a subject process. The first and
second records 556, 921 shown have event-type identifier values of E10 and E20,
respectively. The first and second records 556, 921 have expression template
values complying with the following syntax. The expression template is an
expression. An expression is made up of a first argument, followed by an

arithmetic or comparison operator, followed by a second argument. Each

10

15

20

25

WO 97/48043 PCT/US97/10304

36
argument may be a constant, a variable, or an expression. A variable may be a
parameter variable, identified by a dollar sign ($) prefix, or a table-data-value
variable, identified by enclosure in square brackets ([...]). Table-data-value
variables consist of a table name, followed by a period (.), followed by a primary
key value, followed by a period (.), followed by a column name. A table name,
primary key value, or column name field of a table-data-value variable, may itself
be a variable.

Figure 10B depicts sample records in the TT table 565. The first, second,
and third records 929, 931, 933 shown have task-type identifier values of T11,
T12, and T21, respectively. Each record also has an executable response value
that is a list of executable response statements complying with the syntax
discussed earlier in reference to Table 1; each statement in the list after the first,
separated from the previous statement by a semi-colon.

Figure 10C depicts sample records in the ETCORR table 560. The first,
second, and third records 923, 925, 927 shown have event-type identifier values of
E10, E10, and E20, respectively; and task-type identifier values of T11, T12, and
T21, respectively. The second record 925 shown has a value in the execution time
expression template field compliant with the following syntax. The execution
time expression template is a date-time expression. A date-time expression
consists of a date constant or variable, followed by a colon, followed by a time

constant or variable.

Figures 11A to 11B depict abbreviated sample contents of PMKBS

_process-independent operational data tables useful for purposes of illustration.

The tables are process-independent because their structures exist as part of the
PMKBS without regard to any subject process defined to the PMKBS (although
their contents may reflect subject process matter). The records shown reflect a
snapshot of the database at the completion of the processing example. (Records
may exist at the onset of the described processing, or be inserted as a result of the

processing.) Fields and records unnecessary to the illustration have been omitted,

10

15

20

25

WO 97/48043 PCT/US97/10304

0’
37
in order not to obscure an understanding of the invention. A processing example

making use of the sample contents follows the discussion related to Figure 13B.

Figure 11A depicts sample records in the NOTICE table 580. A record
here reflects the occurrence of some event relevant to a subject process. The first
and second records 953, 955 shown have notice identifier values of N001001 and
N001002, respectively. In the presently described embodiment, notice identifiers
consist of a sequential number prefixed with the letter “N” and uniquely identify
each record from among the others in the table. The first and second records 953,
955 shown have event-type identifier values of E10 and E20, respectively. The
first and second records shown both have parameter data field values compliant
with the syntax previously discussed in reference to Table 2 used to store
contextualizing data used during the specialization process.

Figure 11B depicts a sample record in the DTQ table 575. A record here
represents that a task was scheduled for execution on a delayed basis. The record
957 shown has a value in the scheduled-time field that is a numeric value
representing the number of seconds elapsed from a system-defined base date and
time. For example, if the system-defined base date and time is January 1, 2000 at
12:00:00 A.M., then the time value for January 1, 2000 at 12:01:00 A.M. is 60.
The record 957 shown also has a value in the task-type identifier field of T12, and
a value in the notice identifier field of N0O01001.

Figures 12A to 12D depict abbreviated sample contents of PMKBS
process-dependent data tables useful for purposes of illustration. The tables are
process-dependent because their structures and contents exist as part of the
process of defining the processing logic for a subject process to the PMKBS. The
records shown reflect a snapshot of the database at the completion of the
processing example. (Records may exist at the onset of the described processing,
or be inserted or updated as a result of the processing.) Fields and records

unnecessary to the illustration have been omitted, in order not to obscure an

10

15

20

25

WO 97/48043 PCT/US97/10304

3%

understanding of the invention. A processing example making use of the sample
contents follows the discussion related to Figure 13B.

Figure 12A depicts sample records in an E10 table 570. A record here
indicates an occurrence of an E10-type event during the operation of the subject
process. One record 959 is shown having values in the event-type identifier,
notice identifier, expression, and expression value fields of E10, N001001, 9<10,
and TRUE, respectively.

Figure 12B depicts sample records in a T11 table 937. A record here
indicates that events and conditions occurring in the subject process indicated a
need to perform a task of the T11 type. One record 939 is shown having values in
the task-type identifier and notice identifier fields of T11 and N001001,
respectively. The record 939 also has a value in the executable response field
which is a list of three executable response statements.

Figure 12C depicts sample records in a T12 table 941. A record here
indicates that events and conditions occurring in the subject process indicated a
need to perform a task of the T12 type. One record 943 is shown having values in
the task-type identifier and notice identifier fields of T12 and N001001,
respectively. The record 943 also has a value in the executable response field that
i1s a list containing a single executable response statement.

Figure 12D depicts sample records in a T21 table 945. A record here
indicates that events and conditions occurring in the subject process indicated a
need to perform a task of the T21-type. An empty record 959 is shown.

Figures 13A to 13B depict sample contents of hypothetical data tables as
may be employed in an inventory management application of a manufacturing
business. The hypothetical data tables and the hypothetical inventory
management application are exemplary only and form no part of the present
invention. The records shown reflect a snapshot of the tables at the completion of

the processing example. (Records may exist at the onset of the described

10

15

20

25

WO 97/48043 PCT/US97/10304

34

processing, or be inserted as a result of the processing.) A processing example
making use of the sample contents follows the discussion related to Figure 13B.

Figure 13A depicts sample records in a hypothetical Inventory (INV) table
947 that forms no part of the present invention. The INV table 947 in this
example contains information about an inventory of parts maintained in a
stockroom. An INV record contains a part number field as its primary key; a
buyer code field containing an identifier for the purchasing agent responsible for
buying the part; a quantity-on-hand field for recording the quantity-on-hand of the
part; a minimum-quantity field for recording the minimum number of the part to
maintain in inventory; and a purchase-quantity field for recording the quantity of
the part to be purchased when a new order is placed. One record 949 is shown
having values in the part number, buyer code, quantity-on-hand, minimum-
quantity, and purchase-quantity fields of Y123, ABC, 9, 10, and 36, respectively.

Figure 13B depicts sample records in a hypothetical Purchase Requisition
(REQN) table 951 that forms no part of the present invention. The REQN table in
this example contains information about new purchase orders that need to be
placed. A REQN record contains a part number field as its primary key; a
quantity field indicating the quantity to order; and a requestor field for recording
the identity of the entity responsible for requisitioning the parts. One record 953
is shown having values in the part number, quantity, and requestor fields of Y123,
36, and PMKBS, respectively.

An example of PMKBS operation will now be described in reference to
Figure 9, and the more detailed descriptions of the table contents of Figure 9 as
depicted in Figures 10A to 13B.

The example starts with a stockroom clerk removing some quantity of an
item having a part number of Y123, from the stockroom inventory. As part of
his/her duties, the stockroom clerk records the removal of the parts from inventory
by accessing his/her company’s inventory transaction program 916 via a computer

terminal located in the stockroom. According to the processing logic used by the

10

15

20

25

WO 97/48043

PCT/US97/10304

Yo

hypothetical company every change to the quantity of a part in the inventory
should be checked to see if the part needs to be reordered; and, if so, then order
the part, forecast its usage rate and inventory level, and check to see if there is a
critical shortage. |

The inventory transaction program 916 used by the stockroom clerk
updates the value in the quantity-on-hand field of the inventory record 949 for part
number Y123, from its previous value to 9, the new quantity on hand 1314. Then
the application program 916 notifies the PMKBS of the change in inventory by
inserting a notice record instance 953 into the NOTICE table 580. Alternatively,
program code associated with the trigger for an update on the quantity-on-hand
field could insert the notice record 953.

A unique notice identifier is generated by the program code 916 inserting
the notice record 953, and recorded in the notice identifier field 1110 of the record
953. The event-type identifier associated with a change in quantity-on-hand
event, E10, is recorded in the record 953. The part number associated with the
particular instance of this event-type is recorded in the parameter data field 1114
in the record 953, using the keyword of PNPARM (for part number parameter).
Insertion of the NOTICE record 953 incites execution of PKMBS program code
as depicted in Figure 8A by logic block 801. The PMKBS is alerted to the
change in the quantity of a part in the inventory.

Referring to Figures 8A and 9, in logic block 803, the event discriminator
335 extracts the E10 value from the event-type identifier field 1112 of the input
signal, i.e., the newly inserted NOTICE record 953. In logic block 805, the
expression correlator 340 retrieves the expression template,
[INV.$PNPARM.QUANTITY-ON-HAND] <[INV. $PNPARM.MINIMUM-
QUANTITY], from the E10 record 956 in the ET table 555. This expression will
test for the condition that the part needs to be reordered. In logic block 807, the

expression correlator retrieves and parses the parameter data, PNPARM=XY123,

10

15

20

25

WO 97/48043 PCT/US97/10304

4
from the newly inserted NOTICE record 953 to identify and isolate the keyword

and its associated value.

In logic block 809, the expression correlator specializes the expression
template. First, substitutions are made for parameter variables in the model
expression, resulting in [INV.XY123.QUANTITY-ON-
HANDI<[INV.XY 123 MINIMUM-QUANTITY]. Next, substitutions are made
for table-data-value variables. [INV.XY123.QUANTITY-ON-HAND] is replaced
with 9, the value from the QUANTITY-ON-HAND field 1314 of the Y123 record
949 of the INV table 947. [INV.XY123.MINIMUM-QUANTITY] is replaced
with 10, the value from the MINIMUM-QUANTITY field 1316 of the Y123
record 949 of the INV table 947. The resulting specialized expression is 9<10.

In logic block 811, the expression correlator formats and inserts new
record 959 into the E10 table. Values for the event-type identifier, notice
identifier, and expression fields are fixed at E10, N001001, and 9<10,
respectively. At this point in time, the expression value field 1216 is empty.

Insertion of the new record 959 into the E10 table 570 incites execution of
PKMBS program code as depicted in Figure 8B by logic block 821. In logic
block 823, the evaluator 345 evaluates the expression 9<10 according to the
syntax and rules of predicate logic, producing a resulting value of TRUE,
indicating that the part needs to be reordered. The evaluator updates the
expression value field 1216 in the E10 record xx to reflect the TRUE result.

In logic block 825, the task correlator 350 tests the result 1216 to
determine if it is TRUE. Because it is true, logic block 829 queries the ETCORR
table 560 finding two records 923, 925 with an event-type identifier of E10. In
logic block 831, the task correlator tries to select an unprocessed record from the
two discovered in the last step 829. Record 923 is selected and logic block 833 is
satisfied. The PMKBS has determined that task-type T11 is a course of action
that should be taken. Logic block 835 retrieves any value in the execution-time

expression template field 1044 in the selected record 923. None is found,

10

15

20

25

WO 97/48043

TN
meaning that the task is to be executed immediately, so processing proceeds to
logic block 839. The task correlator formats and inserts new record 939 into the
T11 table 937. The values for the task-type identifier 1220 and notice identifier
fields 1222 of the new record 939 are set to T11 and N001001, respectively. The
task correlator retrieves the value from the executable response field 1022 of the
T11 record 929 of the TT table 565 , specializes it, and fixes the specialized
version as the value for the executable response field 1224 of the new record 939
in the T11 table 937. After the record 939 is inserted, the task correlator loops
back to logic block 831.

The task correlator 350 tries to select an unprocessed record from the two
discovered when logic block 829 last processed. Record 925 is selected and logic
block 853 is satisfied. The PMKBS has determined that task-type T12 is a course
of action that should be taken. Logic block 835 then retrieves any value in the
execution-time expression template field 1052 in the selected record 925. The
value $$TODAY:22:00:00 is retrieved, indicating deferred execution of the task,
e.g., at 10:00 P.M. this evening, so processing proceeds to logic block 841. The
task correlator 350 formats and inserts new record 957 into the DTQ table 575.
The date-time expression $$TODAY:22:00:00 is evaluated to an absolute system
date-time value. The absolute date-time value is fixed as the value for the
scheduled-time field 1130 of the new record 957. Values for the task-type
identifier 1132 and notice identifier 1134 fields are set to T12 and N001001,
respectively. The task correlator retrieves the value from the executable response
field 1026 of the T12 record 931 of the TT table 565, specializes it, and fixes the
specialized version as the value for the executable response field 1136 of the new
record 957 in the DTQ table 575. After the record 957 is inserted, the task
correlator loops back to logic block 831.

The task correlator 350 tries to select an unprocessed record from the two

discovered when logic block 829 last processed. At this point, no unprocessed

PCT/US97/10304

10

15

20

25

WO 97/48043 PCT/US97/10304

43

records remain so the task correlator terminates its processing related to the instant
input signal in logic block 827.

Earlier insertion of a new record 939 into the T11 table by the task
correlator, incited execution of PKMBS program code as depicted in Figure 8C.
In logic block 853, when incited, the task initiator 355 extracts the specialized
SQL:insert requisition record statement 1226 from the list in the executable
response field 1224 of the newly inserted record 939. Logic block 855 is satisfied
so logic block 857 performs any necessary formatting of the statement, i.e., to
make it conform with RDBMS interface specifications, and uses the RDBMS’s
interface to submit the statement for execution. This action causes the placement
of a new order for the part. As a result of ensuing RDBMS action, a new record
953 is inserted into the REQN table 951.

In the present embodiment, execution of the statement submitted 1226 to
the RDBMS and the processing of the task initiator 355 are asynchronous.
Asynchronous operation of different program processes in a computer system is
well known in the art. Having a design that permits asynchronous operation
facilitates the exploitation of multiple processor CPU configurations including
parallel processors.

So, at the point in time the request was made in logic block 857 to the
RDBMS to execute the statement, the task initiator 355 looped back to logic block
853 without waiting for completion of execution of the statement by the RDBMS.

In logic block 853, the task initiator extracts the specialized SQL:insert
E20 notice record statement 1228 from the list in the executable response field
1224 of the newly inserted record 939. Logic block 855 is satisfied so logic block
857 performs any necessary formatting of the statement 1228, and uses the
RDBMS’s interface to submit the statement for execution. This action leads to an
evaluation of whether a critical shortage condition exists. As a result of ensuing

RDBMS action, a new record 955 is inserted into the NOTICE table 580. As

10

15

20

25

WO 97/48043 PCT/US97/10304

Yy

before, the task initiator loops back to logic block 853 without waiting for
completion of execution of the statement 1228 by the RDBMS.

In logic block 853, the task initiator attempts to extract another statement
from the list in the executable response field 1224 of the newly inserted record
939. None is found, logic block 855 is not satisfied, so the task initiator 355
terminates its immediate processing in logic block 859.

Earlier insertion of a new record 957 into the DTQ table 575 by the task
correlator 350 incited execution of PKMBS program code as depicted in Figure
8D. In logic block 875, when incited, the queue monitor extension to the main
task initiator queried the DTQ table 575 to locate the record with the lowest, i.e.,
earliest, value in the scheduled-time field. Assuming, for the sake of example,
that the query produced record 957, logic block 877 extracts the 511200 value
from the scheduled-time field 1130 of the record 957. The queue monitor
converts the value if necessary to a format compatible with a timer function, and
sets an operating system or subsystem timer function to expire at the designated
time of, e.g., 10:00 P.M. this evening. The queue monitor then waits in logic
block 879 for the timer to expire, actively or passively, using methods well known
in the art. At 10:00 P.M. in the evening when the timer does expire, processing
continues in logic block 881.

The queue monitor queries the DTQ table 575 or all unprocessed records
having a value in the scheduled-time field that is less than or equal to the value of
the current date and time. This query returns record 957, logic block 885 is
satisfied, and processing continues in logic block 887.

The queue monitor retrieves T12, N001001, and PRG:execute Jorecasting
program values from the task-type identifier 1132, notice identifier 1134, and
executable response 1136 fields of the DTQ record 957, respectively. These
values are fixed as the values for the corresponding fields in a T12 table record,
and a new T12 record 943 is inserted. Queue monitor processing then loops back

to logic block 883. The earlier query in logic block 881 produced no other DTQ

10

15

20

25

WO 97/48043

vy

entries ready for execution, logic block 885 is not satisfied, so queue monitor
processing loops back to logic block 875 where the queue monitor restarts its
main processing loop.

Insertion of a new record 943 into the T12 table by the queue monitor,
incites execution of PKMBS program code as depicted in Figure 8C. In logic
block 853, when incited, the task initiator extrécts the specialized PRG:execute
Jforecasting program statement 1243 from the list in the executable response field
1244 of the newly inserted record 943. Logic block 855 is satisfied so logic block
857 performs any necessary formatting of the statement, and uses an operating
system or subsystem provided interface to submit the statement for execution to
an execution engine like the operating system shell. This action causes a
forecasting of the part’s usage rate and inventory level per the design of the
hypothetical application program. Like RDBMS executions, program executions
are asynchronous in the present embodiment. As an example, the hypothetical
program, PARTFCST 920, may perform an analysis of historic and projected
usage rate and inventory level of part Y123. In the process, the program may
incite the insertion of new records into the NOTICE table 580, to avail the process
of which it is a part of the management and monitoring functions of the PMKBS.

In logic block 853, the task initiator attempts to extract another statement
from the list in the executable response field 1244 of the newly inserted record
943. None is found, logic block 855 is not satisfied so the task initiator terminates
its immediate processing in logic block 859.

At some point in time, The RDMBS completes execution of the
specialized SQL:insert E20 notice record statement, submitted to it by the task
initiator when processing record 939 in the T11 table 1220, as a result of
processing for the N0O01001/E10 NOTICE table record 953. Execution of the
specialized statement by the RDBMS creates record N001002 955 in the NOTICE
table 580. The new NOTICE table record 955 is processed through the PMKBS

in the same fashion as just described for the earlier, seminal NOTICE record 953.

PCT/US97/10304

10

15

20

25

WO 97/48043 PCT/US97/10304

Ye
The insertion of the NOTICE 955 record leads to execution of the event

discriminator, expression correlator, and the evaluator. The evaluator output may
then lead to execution of the task correlator and task initiator. As the N001002
NOTICE record 955 was inserted by a task execution resulting from the N001001
NOTICE record 953, it can be seen that interdependencies may be incorporated
into the PMKBS processing logic definitional structure, as would be required in
applications of all but the simplest processes.

Various modifications to the preferred embodiment can be made without
departing from the spirit and scope of the invention. For example, storage of data
items in memory and memory media may generally be accomplished using
various data structuring techniques well known in the art, e.g., arrays, lists, trees.
Moreover, the value stored in a field representing a particular item of data may be
a reference leading to the actual storage location of the particular item of data,
rather than the desired item of data, itself. Such indirect addressing is well known
in the art. Moreover, a references to, or address of, a data item is generally not
limited to a value representing its physical location in a hardware memory, but
may be any value that may be used, directly or indirectly, to locate the data item,
e.g., ordinal position in a set, row and column coordinates in a table, offset from a
base address. One skilled in the art recognizes these and other alternative may be
employed without departing from the spirit and scope of the invention.

Other alternatives are readily apparent to one skilled in the art. For
example, abstraction layers could be inserted at various places in the described
embodiment. For example, in the described embodiment, a task-type leads
directly to a set of command statements. As an alternative, a task-type could lead
to a set of subtask-types, and each subtask-type in the set could, in turn, lead to a
set of command statements. Such modifications are apparent to one skilled in the
art and do not depart from the spirit and scope of the invention.

Thus, the foregoing description is not intended to limit the invention that is

described in the appended claims in which:

WO 97/48043 PCT/US97/10304

Y7

What is claimed is:
1. A method for selecting an executable response in a computer system
managing the execution of a predefined process, the steps comprising:
identifying a correspondence between an input signal and an
expression;
evaluating the expression to a resulting value;
identifying a correspondence between the resulting value and an

executable response.

2. A method for managing the execution of a predefined process on a

computer, the steps comprising:

receiving an input signal;

identifying a correspondence between the input signal and a stored
expression;

evaluating the expression to a resulting value;

identifying a correspondence between the resulting value and an
executable response;

inciting execution of the executable response.

3. A data structure for performing executable response selection in a
system for managing the execution of a predefined process, the data structure
comprising:

a first table containing a plurality of entries, each entry in the plurality
of entries comprising an expression;

a second table containing a plurality of entries, each entry in the
plurality of entries comprising an executable response;

a third table containing a plurality of entries, each entry in the plurality
of entries comprising a first identifier for locating an entry in the first array and a

second identifier for locating an entry in the second array.

WO 97/48043 PCT/US97/10304

Yy

4. An apparatus for selecting an executable response to be used by a
process management system, where a subject process is defined by expressions,
executable responses, and correspondences between the expressions and

5 executable responses, the apparatus comprising:
an expression correlator for identifying a correspondence between an
identified type of event from an input signal and a stored expression;
an evaluator for evaluating the expression to determine a result value;

an executable response correlator for identifying a correspondence

10 between the result value and an executable response.

5. An executable response selector for a process management system,
stored via storage media, the storage media comprising:
a first plurality of values for identifying a correspondence between the
15 input signal and a stored expression;
a second plurality of values for evaluating the expression to a resulting
value;
a third plurality of values for identifying a correspondence between the

resulting value and an executable response.

20

WO 97/48043 PCT/US97/10304

100
CONDITIONS
120 .
Figure 1
CORRESPONDENCES
A
140
RESPONSES
201
1% CONDITIONS
o
212 21] 210
i identifier expression
Va ~

. 240
evaluation

result

242

120 CORRESPONDENCES
""" é)'(b'ré's’éia’ﬁ"%_iééﬁlf T execulable response | 220
identifier identifier 4
222 . 4
A
140 / RESPONSES
"""""" i 230
i identifier executable response |/
232 234
299

Figure 2

'///3

WO 97/48043

Functional Block Diagram

330

Signal Source

L/asz

335

Event
Discriminator

|

310

Expressions Data
Store

340

Expression
Correlator

345

Evaluator

350

Task Correlator

315

Correspondences
Data Store

355

Task Initiator

320

Responses Data
Store

360

Execution Engine

Figure 3

VE

PCT/US97/10304

WO 97/48043 PCT/US97/10304

Computer Hardware Environments

400
410 412 414
CPU MEMORY MEMORY MEDIA F .
420 4 A
! /
DATA and CONTROU SIGNAL BUS T
416 418
NETWORK
INTERFACE /O DEVICES
401 402
430 432 434 450 452 454
MEMORY MEMORY
CcPU | MEMORY MEDIA CPU MEMORY) MEDIA
440
‘ DATA and CONTROE SIGNAL BUS DATA and CONTROE SIGNAL BUS
436 438 456 458
NETWORK NETWORK
INTERFACE /O DEVICES INTERFACE 1/0 DEVICES

Figure 4B

3/R3

WO 97/48043 PCT/US97/10304
510
£ 512 TABLES 550
/ ora
ET
GUI-BASED ETCORR
DEVELOPMENT E10
e TOOL 551~
————— NOTICE
Y=V P
516 — E-TYPE(E10,...)
E-TYPE(E20....)
T-TYPE(T11,..) ~— RDBMS Catalog Space 542 ___—
T-TYPE(T12,..) RDBMS Relation Space 54
T-TYPE(T21....)
ET-CORR(E10, T12,...)

DEFINITION PROGRAM

52 Vm
AN

SQL DEFINE TABLE E10 .—1 523
SQL DEFINE TABLE E20 ...
SQL DEFINE TABLE T11 ...
SQL DEFINE TABLE T12 ...
SQL DEFINE TABLE T21 ..

— 534

1

SOMOAUL N
LY

RDBMS

556

-~

538

DEFINITION OF PROCESSING
LOGIC

Figure 5

ET 555
E10
ETCORR 560 T 565
———__ _ _ PMKBCatalog Space s46_ _ _ _ -~~~ -
PMKB Data Space 548
E10 570
bre 378 NOTICE 580

/3

WO 97/48043 PCT/US97/10304

Event-type Definition Format

600 601 603 605 607 609 611 613
Event-type Time Active Source
Identifier Stamp Expression Template Time End Time | Identifier
N~————
Primary Key
619

Figure 64

Task-type Definition Format

620 621 623 625 627
Task-type Source
Identifier Executable Response Template Identifier

Primary Key
639

Figure 6B

Event-to-Task Correspondence Definition Format

640 641 643 645 647 649
Event-type Task-type Source
identifier Identifier Scheduied-time Expression Template identifier

Primary Key
659

Figure 6C

Event-to-Task Correspondence Definition Format

660 661 663 685 667 669 671
Event-type Task-type Source
\dentifier Expression Value Identifier Scheduled-time Expression Template identifier

_/\/__/

Primary Key \679 .
Figure 6D

5k

WO 97/48043 PCT/US97/10304

Notice Occurrence Format

7b0 Toi 703 T05] 07| 709
Notice identifier ﬁ::::g:: Parameter Data s‘:‘":p ...
Prmary Key
M Figure 74

Event Occurrence Format

e o 3 128 T T2 T3
E‘;:::?{:: Notice (dentifier Expression Expression Value ;;la":p
~— —~——
Primary Key
e Figure 7B

Task Occurrence Format

140 Ml STES a9s | ™I N
T::::{.:f Notice Identifier Executable Response J;":p
N —~————
Primary Key
754 Figure 7C

Queue-entry Occurrence Format

“1% 751 153 Is 7870 5
Schgduled Time .{::::gl:‘: Notice identifier Executable Response .o
N————
Primary Key
769 Figure 7D

WO 97/48043 PCT/US97/10304

NOTICE

201 N
M5

notice record
Inserted

retrieve expression
and evaluate

335
303
retrieve event-type .
from notice record 350
721
o l I evaluates ¥
goE 3o True?
Retrieve the
expression :
associated with ; §29
the event-type : Perform query
trom the ET against ETCORR
relation in the and find all task-
PMKBS catalog ; types associated
: with this event-
: type
q07 } l
Retrieve 331
parameter data for Select an
t:e instance f"°:;‘ : unprocessed entry
the notice recol from the query
results set
§a_ 4
Replace
expression 333
variables found one?
Y839
Format and insert
an event :
occurrence record . : Locate information
‘ about task deferral
g! Deferred task
24

m v 337
: Insert a queue
Y—»{ entry record into

the DTQ table

Figure 84
N g3

* {Immediate
task
Insert task
occurrence record

!

Figure 8B
/13

WO 97/48043

Task Occurrence
Record Inserted

p— 1 r

Extract next
command
statement

Submit for
execution

L 7

355

Figure 8C

———% 883

PCT/US97/10304

QUEUE MONITOR

Queue entry
record inserted

1%

g5
Find eartiest
scheduled time
among
unexecuted queue
entries

211+

Set timer to
earliest time

My

Wait for Timer

3 v
Retrieve results of
query for all
queue entries
where execution
time is less than or
equal to the
current time

Select an
unprocessed
queue entry from
the query results

3¢S

found one?

Y 387

retrieve task

occurrence
information from

queue entry

Iy

h

Insert a task
occumrence record

PMKBS Start

Figure 8D

WO 97/48043

PCT/US97/10304

— R
PROGRAM STORAGE atb 9ol
910 Inventory 920
qn 0 Transaction
i PARTFCST
os !
ROBMS
PMKB SYSTEM
SENDMSG
DATA STORAGE 90%
sib . ROBMS Catalog Spaco 947
S yepue— 1y gt ABLES p
556~ =8 ora
/(, €20 ET
921 . ETCORR
. _/’E10
. S
NV
ETCORR 560
92%—{ E10 | TH T 565 nomce
q25—] E10 | T12 ady T REQH
21— €20 | 72 1% _T12 d
Q ; - 1934 T21 ™
- : T12
; T21
N — R
DTQ ®75 E10 s1p £20 235 43
o7 511200 T2 | - 9594 E10 |N0D1001| - -
943 59 ‘
NOTICE 580 T11 937 an) T21 Mg
253 —{N001001 | E10 | — 439 T11 [N0o1001 | ~ |NF T12 [N001001 [-~ -
a5~ NOO1002 | €20 | — . - . .
953
NV 41 (reEQN 951
Q4q~f xv123 XY123
Figure 9

/43

WO 97/48043

PCT/US97/10304
ET 555
El‘é::::iy;e Expression Template
Figure 1
556 €10 '0'0 [INV.SPNPARM.quantity-on-hand] < [INV.SPNPARM.minimum-quantity] '°1Z g OA
421 £20 'O |(INV.SPNPARM.quantity-on-hand] < ([INV.SPNPARM.minimum-quantity] /3) °
TT 569
T::::t-giz: Executable Response
29 - 1020 SQL:insert requisition record, (022 r
429 ™ SQL:insert £20 notice record F igure 1 0B
‘Tbl . 112 '9™pRG:execute forecasting program for this part ozb
433 - T21 ' 28 PRG:execute program to send email message to buyer of this part 1030
ETCORR 560
Event-! g
GZ"‘:&tﬁy:f T:::ﬂtfyiz: Execution Time Expression Template
923— E10 '°7° T11 4% touH
925 — E10 1048 112 1°59|$810d8y:22:00:00 32 Figure 10C
ql” g €20 \056_' T21 'DS 8 1060

J0J13

WO 97/48043

NOTICE 580
. Event-type
Notice Identifier Identifier Parameter Data
953 1110 112 1114
N001001 E10 PNPARM=XY123
955 1116 1118 1120
N001002 E20 PNPARM=XY123
DTQ 575
" Task-type
Scheduled Time \dentifier Notice (dentifier Executable Response
1134 1136
1130 1132 PRG: execute forecasting
857 511200 T2 N001001 program for this part

11/43

PCT/US97/10304

Figure 114

Figure 11B

WO 97/48043

PCT/US97/10304

E10 570
Event-type Notifice identifier Expression Expression Value
identifier
qg9+ g1o ‘210 nootoo1 2™ 9<10 FAT) TRUE @ F igure 124
T;::ﬁ:: Notice identifier Executable Response
‘220 \zz 126 iy .
SQL:insert requisition record, Fl re] 2 B
A~ ™ N001001 SQL:insert E20 notice record ~—111 Y gu
T12 qy
I::::{:: Notice identifier Executable Response
QY3 T12 1Mo N001001 ‘*%) PRG:execute forecasting program for this part — [p,4% 24y Fi gure 12C
T21 q4 5
Tl;::u.wﬁ: Notice ldentifier Executable Response F .] 2D
igure
q 5(].... Vo0 1262 o6

1a/43

WO 97/48043 PCT/US97/10304

INV (Inventory Table) Q41
tity- | M -| Reorder- .
PartNumber | B | | Quantity | Quantiy | Fi gure 13A4

qdqd xvizs o | asd™r| 9 "N 1oPlE 3BT

REQN (Purchase Requisition Table) a5

Part Number Quantity |Requestor| ... F igul” e] 3B

32
xv12s "0 | 360 puke™d

a53

)33

INTERNATIONAL SEARCH REPORT

Internatic Application No

PCT/US 97/10304

. CLASSIFICATION OF SU[]B.JECT MATTER

C 6 GOBbFI/4

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 GO6F

Documentation searched other than minimum documentation to the extent that such documenta are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation ot dooument, with indioation, where appropriate, of the reievant passages Ralevant to claim No.

X WO 96 02033 A (JR EAST JAPAN INFORMATION 1-5
SYST ;INST OF SOFTWARE SCIENT CONST (JP))
25 January 1996

& EP 0 722 140 A (JR EAST JAPAN
INFORMATION SYST ;INST OF SOFTWARE SCIENT
CONST (JP))

see page 2, line 1 - page 4, line 16

D Further documents are kisted in the continuation of box C. Patent family membaers are iisted in annex.

° Speoial categories of cited documents :
P 9 °T* later document published aftar the international filing date

or priority date and not in confiict with the application but
cited to understand the principle or theory underlying the
invention

*A" document defining the general state of the art which is not
considered to be of particular relevance

°E" earker dooument but published an or after the intemational *X* document of partioular relevance; the claimed invention
filing date cannot be considered navel or cannct be considered to
‘L docun;.ent whigh may thlm'vlv cr!‘oubts on prio:i’ty claim(s) ;r involve an inventive step when the document is taken alone
which is oited to establish the publication date of ancother *y* document of . . . : .
et " L partioular relevance; the claimed invention
citation or ather special reason (as specified) cannot ba considered to involve an inventive step when the
*0" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious fo a person skilled
P document published prior to the international filing date but in the art.
|ater than the prionty date claimed *&" dooument member of the same patent family
Date of the actual compietion of the international search Date of mailing of the intemational search report
3 November 1997 19.11.97
Name and mailing acddress of the ISA Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,

Fax: (+31-70) 340-3016 Brandt, J

Form PCT/ISA/210 {second sheet) (July 1992}

INTERNATIONAL SEARCH REPORT

information on patent family members

internatic Application No

PCT/US 97/10304

Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 9602033 A 25-01-96 EP 0722140 A 17-07-96

Fom PCT/ISA/210 (patent family annex) (July 1892)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

