The surfaces of concrete floor slabs are struck off or leveled by drawing a straight edge member, known as a "screed," over the surface of the soft concrete. The screed is supported from screed bars which are carefully leveled to produce a floor slab of the desired thickness with a perfectly level top surface. The screed bars are supported from the lower slab form upon screed chairs or screed legs. These chairs or legs are usually ordered and made to a specific height to conform to the type of screed bar and the desired thickness of the concrete slab, thus necessitating different screed legs for different conditions. Often the slab form is not perfectly level and it is necessary to shim or cut the fixed screed legs in order to level the screed bars.

This invention relates to a screed chair or leg for supporting the screed bars in reinforced concrete floor slab construction, and has for its principal object the provision of a simple, inexpensive device which can be quickly and easily adjusted to vary the height of the screed bars, and to level the same to accommodate any given construction conditions.

Another object of the invention is to so construct the device that it can be quickly and easily attached to the slab form without the use of nails or other attachment devices.

A further object is to so construct the device that it may be removed from the finished slab immediately after being struck off to the desired surface level so that it may be re-used repeatedly.

Other objects and advantages reside in the detail construction of the invention, which is designed for simplicity, economy, and efficiency. These will become more apparent from the following description.

In the following detailed description of the invention, reference is had to the accompanying drawings which form a part hereof. Like numerals refer to like parts in all views of the drawing and throughout the description.

In the drawing:

Fig. 1 is a cross-section through a concrete slab on a slab form, illustrating the invention in use supporting a flush screed bar;

Fig. 2 is a similar view, illustrating the invention in use supporting a screed bar above the surface of the slab;

Fig. 3 is an end view of the improved screed leg;

Fig. 4 is a side view thereof;

Fig. 5 is a vertical section, taken on the line 5—5, Fig. 4; and

Fig. 6 is a horizontal cross-section, taken on the line 6—6, Fig. 4.

In Figs. 1 and 2, the concrete reinforcing bars usually employed in floor slab construction have been eliminated for the purpose of clarity. In these figures the concrete floor slab is indicated at 16, with its supporting form at 11.

The invention is designed more particularly for use with a wooden screed bar, such as a 2" x 2' or a 2' x 4', such as indicated at 12. It is not limited, however, to a wooden screed bar, as it can be used to support a pipe, metallic rod or bar.

The improved screed leg consists of a vertical post 13 terminating at its bottom in a pointed, threaded extremity 14, the threads conforming to the usual wood screw design. A base plate or washer 15 is welded or otherwise secured to the lower extremity of the post 13 above the threaded extremity 14.

A plurality of spaced, relatively shallow notches 16 are formed in vertical alignment along one side of the post 13. A tubular sleeve portion 17 is rotatably mounted on the post 13. A U-shaped plate saddle 18 is welded or otherwise secured to the upper extremity of the tubular sleeve portion 17 to form a socket for the reception of the screed bar 12. The sides of the saddle 18 are perforated, as shown at 19, to provide nail holes, by means of which it may be fixedly attached to the screed bar 12.

A small nail 20 or a piece of wire is passed through nail openings 21 formed in the tubular portion 17 adjacent one side thereof so that the nail will pass tangentially across the post 13 and lie in one of the notches 16. The projecting extremity of the nail is bent downwardly along the sleeve 17.

In use, the threaded extremity 14 is screwed into the form 11, as shown in Figs. 1 and 2. The tubular portion 17 is adjusted vertically to bring the upper surface of the screed bar 12 to the proper level, as shown in either Fig. 1 or 2. The nail 20 is then passed through the nearest notch 16 in the post 13, and bent downward. The screed bars are then supported accurately in place ready for use.

Immediately after the slab has been poured and the top struck off level, the screed 12 is removed and the screed legs are rotated to the left so as to unscrew the screw 14 from the form 11. The entire leg is then pulled upwardly to remove it from the concrete while still soft. The resulting
hole is immediately filled with concrete and struck off to the surface level. Thus, the legs are not lost in the concrete and are ready for use on future jobs.

While a specific form of the improvement has been described and illustrated herein, it is desired to be understood that the same may be varied, within the scope of the appended claims, without departing from the spirit of the invention.

Having thus described the invention what is claimed and desired secured by Letters Patent is:

A screwed support comprising: a vertical post; means on said post for supporting same in an upright position; a tubular sleeve slidably fitted over said post; a U-shaped screwed saddle mounted on the upper extremity of said tubular sleeve; a plurality of spaced-apart, relatively shallow, horizontal notches formed in vertical alignment along one side of said post, there being a nail hole in said tubular sleeve positioned so that said notches will successively align therewith; and a nail extending through said nail hole and projecting partially into one of said notches, the inserted extremity of said nail being turned downward so as to lie against and along said sleeve to facilitate withdrawal of said support from soft concrete.

PAUL W. COX, Sr.

REFERENCES CITED

The following references are of record in the file of this patent:

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,051,144</td>
<td>Manny</td>
<td>Jan. 21, 1913</td>
</tr>
<tr>
<td>1,592,681</td>
<td>Grothe</td>
<td>July 13, 1926</td>
</tr>
<tr>
<td>1,682,247</td>
<td>Grothe</td>
<td>Sept. 4, 1928</td>
</tr>
<tr>
<td>1,685,445</td>
<td>Bash</td>
<td>Sept. 25, 1928</td>
</tr>
</tbody>
</table>