
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2003/0191865 A1

De Armas et al.

US 2003.019 1865A1

(43) Pub. Date: Oct. 9, 2003

(54)

(75)

(73)

(21)

(22)

(62)

128

PROGRAMMESSAG

METHOD AND APPARATUS FOR
SOFTWARE TECHNOLOGY INJECTION
FOR OPERATING SYSTEMS WHICH
ASSIGN SEPARATE PROCESSADDRESS
SPACES

Inventors: Mario E. De Armas, West Palm Beach,
FL (US); Edward D. Shockley,
Boynton Beach, FL (US)

Correspondence Address:
Akerman Senterfitt
4th Floor
222 Lakeview Avenue
West Palm Beach, FL 33401 (US)

Assignee: International Business Machines Cor
poration, Armonk, NY

Appl. No.: 10/411,429

Filed: Apr. 10, 2003

Related U.S. Application Data

Division of application No. 08/747,040, filed on Nov.
8, 1996.

OPERATING
102 SYSTEM

nth APPLICATION

OUEUE

TARGET
MESSAGE CRUEUE

110

nth TARGET
WINDOW WINDOW

PROCEDURE PROCEDURE

116
TARGET

APPLICATION
PROGRAM

nth
APPLICATION
PROGRAM

AP
ROUTINES

TS
MESSAGE OUEUE

112

Publication Classification

1. nt. Cl. 5 ; G06F 9/54; 5 Int. C.7 G06F 15/163 5
G06F 9/00

(52) U.S. Cl. .. 709/310

(57) ABSTRACT

A method for enhancing the operable functionality of an
existing target Software application with a complex techno
logical add-in can include mapping a library function con
taining a Surrogate procedure to at least one of a multiplicity
of application programs executing in a computer System.
Upon command from an injection Software application
program, the library function can be Selectively caused to
map to the existing target Software application. More spe
cifically, a first pointer to a target procedure can be replaced
with a Second pointer to the Surrogate procedure, So that the
Surrogate procedure receives intercepted messages that
would otherwise be received by the target procedure. The
intercepted messages can be processed in the Surrogate
procedure to modify an operating feature of the target
application program. Also, an emulation procedure Separate
from and external to the Surrogate procedure can be called
to assist the Surrogate procedure in processing the inter
cepted messages.

TIS MAIN
WINDOW

PROCEDURE
SURROGATE
WINDOW

PROCEDURE
EMULATION
WNDOW

PROCEDURE 142

V TIS PROGRAM
134

Patent Application Publication Oct. 9, 2003 Sheet 1 of 8 US 2003/019 1865 A1

TARGET APPLICATION
PROGRAM

OPERATING
SYSTEM

F.G. 1

100

102

104

102

OPERATING
SYSTEM

TARGET APPLICATION
PROGRAM

1

106 TIS PROGRAM

FIG. 2

US 2003/019 1865 A1

SIL

Patent Application Publication

US 2003/019 1865 A1 Oct. 9, 2003 Sheet 3 of 8 Patent Application Publication

ERHTACIE OORHc]

v ºsol-1

Patent Application Publication Oct. 9, 2003 Sheet 4 of 8 US 2003/019 1865 A1

102

OPERATING
OVERWRITES SYSTEM
EXISTING
TARGET

APPLICATION 140
PONTER

NJECTION
138 DLL

134

142

TIS PROGRAM

OMPUTER
RANDOM
ACCESS
MEMORY
(RAM)

FIG 5

Patent Application Publication Oct. 9, 2003 Sheet 5 of 8 US 2003/019 1865 A1

148 RECEIVE MESSAGE

RETRIEVE WINDOW HANDLE FOR
EMULATION WINDOW. PROCEDURE
120 AND ADDRESS FOR TARGET
WINDOW PROCEDURE 116

DOES
MESSAGE

RECQUIRE PRE-PROCESSING
BY THE SURROGATE WINDOW

PROCEDURE 124
PRE-PROCESSING

DOES
MESSAGE

RECQUIRE PRE-PROCESSING
BY EMULATION WINDOW

PROCEDURE 120
CALL SendMessage AP

TO TRANSMIT MESSAGE TO
EMULATION WINDOW
PROCEDURE 120 FOR

PROCESSING

FIG. 6(a)

Patent Application Publication Oct. 9, 2003 Sheet 6 of 8 US 2003/019 1865 A1

(A)
FIG. 6(b)

DOES
MESSAGE

REQUIRE PROCESSING
BY TARGET WINDOW
PROCEDURE 116

p CALL TARGET WINDOW
PROCEDURE 116 USING
AP CaWindoWProC

DOES
MESSAGE

REQUIRE POST-PROCESSING
BY EMULATION WINDOW

PROCEDURE

CALL SendMessage AP
TO TRANSMIT MESSAGE TO

EMULATION WINDOW
PROCEDURE 120 FOR

PROCESSING

DOES
MESSAGE

REQUIRE POST-PROCESSING
BY THE SURROGATE WINDOW

PROCEDURE 124
2

POST-PROCESSING

RETURN CONTROL 168
TO OPERATING SYSTEM

US 2003/019 1865 A1 Oct. 9, 2003 Sheet 7 of 8 Patent Application Publication

(e)/, "?IH

(CIECINQO89 Nid 9) ETmGOW BONVITddw

NVO HSV HL/OH LSETIÐ/QE8 HELSVW/NEHOLIX/OH ?NINIO/OSIXTIWWE/ÕRT5NT?T?

US 2003/019 1865 A1 Oct. 9, 2003 Sheet 8 of 8 Patent Application Publication

(q)/, "?IH
NVO HSV HL/OH LSB09/CEE HELSVW/NEHO LIX!/OSI 5DNINIO/OSIXTIWWE/OSTENTATT/TV-JENE5

US 2003/019 1865 A1

METHOD AND APPARATUS FOR SOFTWARE
TECHNOLOGY INJECTION FOR OPERATING
SYSTEMS WHICH ASSIGN SEPARATE PROCESS

ADDRESS SPACES

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a divisional of U.S. patent
application Ser. No. 08/747,040 which was filed in the
United States Patent and Trademark Office on Nov. 8, 1996.

BACKGROUND OF THE INVENTION

0002) 1. Technical Field
0003. This invention relates to the field of sub-classing,
and more particularly to the modification of a target appli
cation user interface with user interface enhancements.

0004 2. Description of the Related Art
0005 There are presently available a wide variety of
computer Software application programs to enable computer
users to perform a various specialized tasks. For example,
Software application programs exist which can perform
word processing, spread-sheet analysis, Scheduling, and a
multitude of other common tasks associated with busineSS
and technology. These programs are developed to Satisfy
certain well known requirements of a group of users, and are
generally designed to offer capabilities which Satisfy all of
the tasks normally associated with Such requirements. To
this extent, the commercial application programs which are
generally available to the public are quite Satisfactory.
0006 Occasionally, however, certain users may have
specialized needs which have been either overlooked by
Software developers or which have been intentionally
ignored, because implementation of functional features to
address Such needs has been deemed uneconomical, given
the relatively Small number of users who have a requirement
for them. Alternatively, certain functional features may not
be present in existing Software applications programs
because the technology to implement Such features has not
previously been available or is beyond the expertise of a
particular Software application developer.
0007 One example of a functional feature having both of
the foregoing characteristics is Speech recognition technol
ogy, or the ability of a Software application to recognize
spoken words. Speech recognition is a highly complex
technology requiring Significant specialized expertise on the
part of the developer. On the other hand, the need or demand
for this technology may not be Sufficiently widespread at this
time So as to provide clear economic justification for an
individual computer Software application developer to gen
erally include the feature in Software application products.
0008. Where a particular commercial software developer
chooses not to implement a particular product feature, Such
as Speech recognition, in an application program, third party
Software developerS may wish to independently provide
Such feature or functionality. In Such cases, it would be
desirable for the third party software developer to be able to
develop and offer such functionality. Likewise, it would be
desirable for such third party developers to be able to
Seamlessly integrate the new function into a graphical user
interface (GUI) of the existing application's user interface.

Oct. 9, 2003

In this regard, it should be understood that, as used herein,
the phrase “Seamless integration” means that the user inter
face for the additional functionality to be added to a par
ticular application, appears to a user to be an integrated or
cohesive part of the existing Software application's user
interface, and not as a Separate window or Separate program.
0009 Significantly, however, seamless integration of
additional Software functions and features within the context
of an existing application's GUI creates Several problems.
Specifically, modification of a Software application program
to Seamlessly implement an additional function within the
context of the existing GUI generally requires access to the
program's Source code. This requirement can present an
insurmountable obstacle to implementation of the desired
feature, as Software owners are often quite reluctant to allow
third parties to have access to Source code for an application
program. At a minimum, the need to have access to a
Software application's Source code, along with the owner's
permission to modify Such code, will inevitably cause delayS
and added expense.
0010. Accordingly, it would be desirable to provide a
method for integrating one or more new functions to an
existing target application program, and for adding one or
more features to a GUI of an existing Software application
program. It would also be desirable to provide a method and
System for Seamlessly injecting a new function and/or a user
interface feature into an existing Software application pro
gram, without access to, or modification of, the Source code
for Such existing Software application program.
0011. The method and apparatus as disclosed herein is
particularly intended for use in conjunction with operating
Systems wherein each application program which may be
operating concurrently, each residing within its own process
address Space, as defined by the operating System. This fact
is of particular significance, as operating System architec
tures of this type generally do not permit one application
program to share with another program the memory block
allocated for the first program's particular process address
Space. Thus, a combination of innovative techniques must be
employed to overcome the inherent limitations of Such
operating Systems.

0012. In order to better understand the field of the present
invention, it is helpful to consider the normal interaction
between an application program and an operating System of
this type, such as the Microsoft Windows family of operat
ing Systems. In this regard, when a Windows based appli
cation is launched, one or more windows are created by the
operating System. Each window can handle events passed to
the window by the operating System. In particular, certain
user interface events Such as mouse clicks which are per
formed within the window, generally, can be passed by the
operating to the window procedure for processing. The
initial handling of an event in a window procedure can occur
within an “event handler'.

0013 There are two basic methods by which messages
are transmitted from the Windows operating Systems to an
application program. According to one method, the operat
ing System establishes a message queue for each thread
asSociated with an application program when that applica
tion program is launched. The message queue Stores mes
Sages to all of the windows a program may create. A function
called WinMain, which is part of all Windows application

US 2003/019 1865 A1

programs, will periodically issue a command, which causes
any messages left in the application message queue to be
retrieved.

0.014. By making use of a Windows function or API,
called “GetMessage', the application program obtains the
message from the message queue. The message is then
transmitted to the appropriate window procedure when the
application program calls an API function named "Dispatch
Message'. The DispatchMessage function determines the
recipient window procedure for Such messages based upon
a window handle assigned to the particular window proce
dure, which is included with the message as one of its
parameters. This type of communication between the oper
ating System and a window is called a “queued' message.
0.015 According to a second method of communication
between the Windows operating Systems and an application
program, messages may also be sent directly to a particular
window procedure, without being placed in the message
queue. These types of messages are referred to as “non
queued' messages. Queued messages are posted to a mes
Sage queue while non-queued messages are Sent to the
window procedure. Generally, messages are either queued or
non-queued, depending upon what operations they relate to.
For example, queued messages are most often those which
result from user input events in the form of keystrokes,
mouse clicks or movements. Certain other message types
which also tend to be queued include incrementation of an
internal clock, repaint messages and the quit messages. Most
other message types are non-queued.
0016. When a window procedure receives a message
from the operating System, it normally analyzes the message
and performs any necessary processing. When it has com
pleted Such tasks, it returns control to the operating System.
In those instances when an application program needs to
communicate with the Windows operating System, it gen
erally does so by means of a call to an API function. As
further explanation of message passing between an applica
tion and the operating System, FIG. 1 is a block diagram
which illustrates, the basic architecture of a computer,
including a target application program 100, a computer
operating system 102 and computer hardware 104. As
shown in FIG. 1, the target application program 100 com
municates with the operating System 102, which in turn
communicates with the computer hardware 104.
0017 Importantly, it will be recognized by the skilled
artisan that the manner in which a window procedure can
process a received message can be modified without modi
fying the Source code of the window procedure through a
technique known as "Sub-classing. In the Sub-classing
technique an operating System vector pointing to the win
dow procedure assigned to handle events for a particular
window can be replaced with a vector pointing to a Surrogate
procedure. The Surrogate procedure can proceSS all mes
Sages intended for the replaced window procedure. Where
the Surrogate procedure has not defined an event handler for
a particular event, the event can be passed to the replaced
window procedure for processing.

0.018. It will be noted by the skilled artisan, while Sub
classing techniques can be helpful in regard to the minor
modification of a target application, conventional Sub-class
ing cannot elegantly and effectively handle large Scale
modifications to the target application Such as in the case of

Oct. 9, 2003

adding speech recognition functionality to a target applica
tion. In Such cases, the amount of codebase required to
undertake the process of Speech recognition can be too large
for use in a replacement event handler in a Surrogate
procedure. Thus, conventional Sub-classing has proven inad
equate augmenting a target application to perform complex
processing.

SUMMARY OF THE INVENTION

0019. This invention solves the aforementioned problems
in the context of an operating System wherein each appli
cation program resides in a proceSS address Space which
cannot be directly accessed by another application program.
More particularly, the method provides a method and appa
ratus for Seamlessly integrating new functionality to an
existing target application program. It also permits SeamleSS
integration of modified user interface features to a GUI of an
existing target application program. Significantly, the dis
closed invention does not require access to the existing
application program's Source code in order to accomplish
the foregoing results.

0020 Rather, the disclosed method and apparatus pro
vides an approach which allows a technology injection
system (TIS) to inject itself directly between a computer
operating System and the target program So as to intercept
messages and commands to the target program. In this way,
the TIS can modify any inputs and outputs of the target
program. By intercepting and then performing Special pro
cessing of those messages to the target application which
relate to the new functionality and/or which determine the
appearance of the target application user interface, the TIS
can implement the new functional features and Seize control
over the appearance of the interface. Importantly, an emu
lation procedure can be coupled to the TIS so as to off-load
complex processing from the TIS.
0021 Interception of messages between the operating
System and the target application program is achieved by
utilizing a combination of techniques which take advantage
of available operating System functions, to insert a Surrogate
window procedure contained in a Dynamic Link Library
(DLL), into the process address Space of the target applica
tion program. Upon command from the TIS program, the
Surrogate window procedure initiates a Sub-classing process
whereby a pointer to the target application program's main
window procedure is overwritten with a new pointer to the
Surrogate window procedure. Depending upon the nature of
the functional or interface modifications to be implemented,
Such modifications may be performed directly by the Sur
rogate window procedure, i.e. if permitted by the operating
System architecture, or by a emulation window procedure
residing in the TIS program. In a preferred embodiment,
messages are transmitted between the primary and Second
ary window procedures, by manipulating existing operating
System functions to overcome System architecture limita
tions which would normally prevent functional and user
interface modifications to a target application program.
0022. A method for enhancing the operable functionality
of an existing target Software application with a complex
technological add-in can include mapping a library function
containing a Surrogate procedure to at least one of a multi
plicity of application programs executing in a computer
System. In this regard, the application program can include

US 2003/019 1865 A1

the existing target Software application. Upon command
from an injection Software application program, the library
function can be Selectively caused to map to the existing
target Software application. More Specifically, a first pointer
in memory to a target procedure for the existing target
Software application can be replaced with a Second pointer
to the Surrogate procedure, So that the Surrogate procedure
receives intercepted messages that would otherwise be
received by the target procedure.
0023 The intercepted messages can be processed in the
Surrogate procedure to modify an operating feature of the
target application program. More importantly, an emulation
procedure Separate from and external to the Surrogate pro
cedure can be called to assist the Surrogate procedure in
processing the intercepted messages. To that end, the emu
lation procedure can perform complex processing to
enhance the operable functionality of the existing target
Software application.

BRIEF DESCRIPTION OF THE DRAWINGS

0024. There are presently shown in the drawings embodi
ments which are presently preferred, it being understood,
however, that the invention is not So limited to the precise
arrangements and instrumentalities shown, wherein:
0.025 FIG. 1 is a block diagram which illustrates a basic
computer architecture.
0.026 FIG. 2 is a block diagram which illustrates, in
basic form, a preferred embodiment of the present invention.
0027 FIG. 3 is a block diagram which illustrates the
normal operation of the target application program in the
context of a Windows 95 or Windows NT operating system.
0028 FIG. 4 illustrates the operation of a preferred
embodiment of the System according to the invention.
0029 FIG. 5 is a block diagram showing how the inven
tion overwrites a pointer to a target application program's
window procedure with a new pointer, for the purpose of
intercepting messages to the target application program.

0030 FIG. 6(a) is a flow chart for a surrogate window
procedure.

0031 FIG. 6(b) is a continuation of the flow chart of
FIG. 6(a).
0032 FIG. 7(a) shows a main target application program
window prior to modification.
0033 FIG. 7(b) shows a version of the window in FIG.
7(a), which has been modified to include additional user
interface elements for a voice recognition function.

DETAILED DESCRIPTION OF THE
INVENTION

0034. In accordance with the inventive arrangements a
novel and non-obvious Sub-classing technique for modify
ing the handling of a received message can be applied to a
target application program So as to alter the user interface
and/or the behavior of the target application program with
out also modifying the Source code of the target application
program. Significantly, where additional, intensive or oth
erwise complex processing is required to handle a message
intercepted in a Surrogate procedure, an emulation procedure

Oct. 9, 2003

can be communicatively coupled to the Surrogate procedure
to Separately handle the event. In this way, processing
intensive modifications Such as Speech recognition can be
incorporated into an existing target application program
without requiring any modification to the Source code of the
target application program and without requiring the inclu
Sion of vast quantities of logic in the Surrogate procedure.
0035 FIG. 2 is a block diagram which illustrates the
Sub-classing process of the present invention, in basic form.
As shown in FIG. 2, a technology injection system (TIS)
106, intercepts all messages (queued and non-queued) from
the operating System 102, to the target application program
100, and modifies the manner in which the target application
program interacts with the operating System. More particu
larly, upon receiving a message from the operating System
102, the TIS 106 evaluates the message to determine
whether it concerns a function or GUI feature which is to be
modified or implemented by the TIS program.
0036). If it is not such a message, it is transmitted to the
target application program, which responds to the message
and performs any requested action. If the message does
concern a function or GUI feature which is to be imple
mented or modified by the TIS 106, then the TIS will
perform any necessary processing to implement the function
or user interface modification. Such processing may include
requests to the target application program for the purpose of
retrieving certain information or for performing a portion of
the processing. In this way, the TIS 106 can seamlessly
modify the target application program 100. The Specific
manner in which Such processing is accomplished is
explained below in relation to FIGS. 3-6.
0037. Before discussing the details of the implementation
of the TIS, it is helpful to note that in operating Systems. Such
as the MicroSoft Windows operating System, a separate
process address Space is assigned for each application pro
gram which may be running. One of the limitations associ
ated with this architecture, is that it does not permit appli
cations to share memory locations (i.e. data pointers,
function addresses, etc.) between separate process address
Spaces. The addresses of pointers in one process address
Space have no meaning to a Second address Space. Thus,
Such operating Systems prevent application programs from
modifying or overwriting a pointer to a window procedure
contained in another program. This limitation is a funda
mental obstacle to achieving the desired interaction among
the operating system 102, target application 100 and TIS
106, as illustrated in FIG. 2. Accordingly, a first step in
modifying the user interface or functionality of a target
application program in a separate process address Space
environment, is to achieve Some means for overwriting a
pointer to the target application main window procedure,
with a pointer to a Surrogate window procedure associated
with the TIS 106.

0038 FIGS. 3 and 4 illustrate the manner in which a
Surrogate window procedure is inserted into the process
address Space of the target application in a preferred embodi
ment according to the present invention. For convenience,
the invention will be described in the context of a Windows
operating System. However, it should be understood that the
invention is not So limited, and can be used in conjunction
with other operating Systems which also assign Separate
address Spaces for application programs which are Simulta
neously running.

US 2003/019 1865 A1

0039. As shown in FIG. 3, the Windows operating sys
tem 102 includes an Application Programming Interface
(API) 126. In the Windows environment, the APIs 126
consist of certain operating System functions implemented
by the operating System, which are available for use by an
application programmer. AS an aside, it should be noted that
thread message queues are not used when API functions are
called. Instead, the application program's call is made to the
operating System directly, and the operating System, in turn,
returns the requested information directly to the application
program.

0040 FIG. 3 illustrates the normal operation of the target
application program 100 relative to the operating System
102. The operating system 102 communicates with the target
window procedure 116 through a target queue 110. Simi
larly, the operating system 102 communicates with the TIS
program 142, through a TIS message queue 112 and with an
nth application program 122 through a message queue 108.
In each case, messages from the operating System are
distributed from the message queues 108, 110, 112 to the
appropriate window procedure within each program. Typi
cally, an application program has one main window proce
dure. In FIG. 3, these are identified as nth window proce
dure 114, target window procedure 116, and TIS main
window procedure 118.
0041 As shown in FIG. 3, each of the application
programs 100, 142, 122 reside within a separate process
address space 128, 130, 132, respectively. These process
address Spaces are assigned by the operating System, and are
not shared with respect to other application programs which
may also be running. Also shown in FIG. 3 is an injection
DLL 134, containing Surrogate window procedure 124.
Significantly, it should be noted that the TIS 106 illustrated
in FIG. 2 is comprised of the combination of injection DLL
134 and TIS program 142.
0042. As noted above, operating systems such as 32-bit
Windows, which assign distinct process address SpaceS for
each application program, do not allow one program to be
Sub-classed by another, i.e., they do not permit a pointer to
a window procedure of a first application program to be
overwritten with a pointer to a Second window procedure,
because the Second window procedure is not contained
within the proceSS address Space of the first application.
Significantly, however, certain existing features of the 32-bit
Windows operating System can be used in a unique way, to
overcome this limitation.

0.043 Operating systems, including Windows, often
include “hooks”, which may be installed in an application
program through the use of an API. In the Windows oper
ating System, a hook is generally understood as referring to
Some programming mechanism by which a programmed
function can intercept events, Such as messages, mouse
actions, and keystrokes, before they reach an application.
The function can be programmed to respond to certain
events, react to events in a particular way, or to ignore them.
Typically, functions that are designed to receive events are
called filter functions.

0044) A hook can be installed to a specific application
program thread, or System-wide to multiple application
programs. When certain System-wide hooks are installed in
the context of the Windows operating system, they will
cause a designated DLL file to be mapped into the proceSS

Oct. 9, 2003

address Space of each application program then running. The
present invention takes advantage of this operating System
characteristic to ensure that a designated DLL is written to
all threads contained within a target application program.
This process enables the TIS program 142 to gain access to
the target application program 100, as will now be described.
0045. In order to insert injection DLL 134 into the
process address Space 130 of the target application, the TIS
main window procedure 118 calls a Windows API called
“SetWindowsHookEx(). This function is specifically made
available for the purpose of adding a filter function to a
hook. There are four arguments associated with the forego
ing API. These include (1) a code describing the hook to
attach to the filter function, (2) the filter function address, (3)
the instance handle of the module containing the filter
function, and (4) the thread identifier where the hook is to be
installed. Of particular importance with respect to the
present invention, are the arguments (1) and (4) above,
which specify that the type of hook to be set, and that the
hook is to be set System wide.
0046. In a preferred embodiment according to the present
invention, the Set WindowsHookEx() API is used to set a
WH_GETMESSAGE type hook. The WH GETMESSAGE
hook is designed for processing or modifying all System
messages whenever a GetMessage function is called to
retrieve a message from a thread message queue). The hook
is specified by inserting a WH GETMESSAGE function as
parameter (1) in the WindowsHookEx() API. The hook is
Set System-wide by Setting parameter (4) to Zero. By Setting
the hook system-wide, the hook may be called in the context
of any thread in the System.
0047. In a preferred embodiment of the invention, when
the SetWindowHookEx() API is called with a WH GET
MESSAGE parameter, it will cause the operating system
102 to map the injection DLL 134 into the process address
space of each application program 100, 142, 122. This
mapping, which is illustrated in FIG. 4 by mapping arrows
144, may be viewed as a side effect of installing the hook in
the 32-bit Windows operating systems. The present inven
tion takes advantage of this side effect to map new code,
including Surrogate window procedure 124, into the process
address space 130 of the target application 100. The remain
ing reasons for installing the WH GETMESSAGE hook
will be explained below.
0048. Upon command from the TIS program 142, sys
tem-wide hook procedure (WH GETMESSAGE) over
writes an existing pointer to the target window procedure
116 with a pointer to the surrogate window procedure 124.
It does So by using an available operating System API as
described below. This “sub-classing process results in all
future messages to the target window procedure 116 being
intercepted and dispatched to the Surrogate window proce
dure 124 instead.

0049. The installation of the WH GETMESSAGE hook
causes injection DLL 134 to be notified of all messages and
their parameters whenever a GetMessage API function is
called by any application program thread to retrieve mes
sages from its message queue. As shown in FIG. 5, the TIS
program 142 initiates the Sub-classing proceSS by means of
a PostMessage() API call 146. For convenience, in FIG. 5
an arrow is shown directly from the TIS program 142 to the
injection DLL 134 to illustrate the PostMessage() call. It

US 2003/019 1865 A1

should be understood, however, that the PostMessage() API
call is actually made from the application program, to the
operating System 102, which places a message in a thread
message queue for the target application.

0050. The PostMessage() API call 146 includes four
parameters, which include (1) a window handle (to identify
the application thread to which the message is to be posted),
(2) a message number, and (3, 4) two additional message
Specific parameters. The target application window handle
may be ascertained by the TIS program by any suitable
means, and the invention is not limited in this regard. For
example, the TIS program may use the window handle for
the window which currently has system focus. In the Win
dows operating System, Such focus is generally reflected by
a highlighted window title bar. Such window handle can be
obtained by the TIS program from the operating System. In
the case of a user Selected target application, the TIS
program can be designed to accept a target application based
upon Specific inputs provided by a user.
0051. The Windows operating system allows the message
number (item (2) above) to be defined as application spe
cific, Such that it has significance only for a particular
application window procedure. Thus, according to a pre
ferred embodiment of the invention, the process for inter
cepting messages to the target application may be initiated
by means of a flag, in the form of a unique message number
which has significance only to the Surrogate window pro
cedure.

0052. Upon receipt of such command, the injection DLL
134 initiates the Sub-classing process. Specifically, it begins
by requesting from the operating System 102, the location or
address in the computer's random access memory (RAM)
136 where the target window procedure 116 is located. In
FIG. 5, the request for the pointer information for the target
application window procedure is illustrated by function call
arrow 140.

0053) The value of pointer 138 (which identifies the
address of the target window procedure) is returned to
injection DLL 134, as shown by return arrow 142. Once the
injection DLL has obtained the pointer value, it requests the
operating System 102 to overwrite the original pointer with
a replacement pointer to the TIS Surrogate window proce
dure 124, which is contained within injection DLL 134.
Significantly, by changing the pointer 138 as described
above, any Subsequent messages to the target window pro
cedure 116 will be dispatched instead to the TIS surrogate
window procedure 124, as mapped into the target applica
tion program process address Space 130.
0.054 For the purposes of the present invention, two APIs
in particular are used to modify the value of pointer 138. One
API is to retrieve a pointer to the target application pro
gram's window procedure 116, and another is to cause the
operating System 102 to overwrite the existing pointer with
a new pointer to the Surrogate window procedure 124. More
particularly, the injection DLL 134 calls an API known as
“GetWindowLong(hwind.nOffset)" to get the value of the
pointer 138 to the target window procedure 116. This call is
shown in FIG. 5 by function call arrow 140. The hwnd
parameter or “window handle' identifies the Specific target
application window procedure for which the pointer is
sought. When the parameter noffset is chosen to be GWL
WNDPROC, the API GetWindowLong() will access the

Oct. 9, 2003

internal Windows operating System information to deter
mine the pointer value 138 to the target application window
procedure 116.
0055. The pointer value 138 is returned to the TIS pro
gram as illustrated by return arrow 142. Once this informa
tion is received, the injection DLL 134 calls a second API,
i.e., “SetWindowLong(hwind.nOffset, nVal)". When the
hwind and noffset parameters are set as described above, and
the nVal parameter is a pointer to TIS Surrogate window
procedure 124, this API will cause the operating system 102
to overwrite the pointer value 138 for the original window
procedure of the target application 116, with a new pointer
value to the Surrogate window procedure 124. Thus, any
Subsequent messages from the operating System 102 to the
target window procedure 116, will be dispatched by the
target application program 100, to the Surrogate window
procedure 124.
0056 Depending upon the specific features to be imple
mented, the mapping of the injection DLL 134 into the target
application program process Space, by itself, may be Suffi
cient to accomplish the goal of modifying the functionality
and or user interface of the target application program.
Often, however, it may be necessary to provide additional
processing capabilities which cannot be implemented in the
context of the injection DLL. DLL Structures Such as injec
tion DLL 134 are limited by the operating system architec
ture as to those functions they can perform. Thus, in order
to accomplish any additional necessary processing, Some
means must be provided to allow the Surrogate window
procedure 124 to Send and receive messages from an exter
nal block of code residing in the TIS program 106. In a
preferred embodiment according to the present invention,
the external block of code for performing Such additional
processing is an emulation window procedure 120, residing
in the process address Space of the TIS program 142.
0057 Communication of messages from the surrogate
window procedure 124 to the emulation window procedure
120 is accomplished by means of a SendMessage() API. The
SendMessage() API allows the emulation window proce
dure 120 to Send a message to the Surrogate window
procedure 120, even though Such window procedures are
assigned to Separate process address Spaces. The SendMes
Sage() API accommodates the Sending of three pieces of
information, namely a message type and two parameter
values. The parameter values can be any type of data chosen
by a programmer, but are limited to 32-bits in length and
cannot be a pointer or memory address.
0058 Significantly, if the message type is chosen to be
WM COPYDATA, the SendMessage() API can be used to
Send a block of data of any size. Upon receipt of a
WM COPYDATA message, the emulation window proce
dure 120 will copy and decode the block of data sent from
Surrogate window procedure. In this way, messages and data
can be communicated from the Surrogate window procedure
124, to the emulation window procedure 120, whenever it is
necessary for the emulation window procedure 120 to per
form processing required by the Surrogate window proce
dure 124. The same procedure may be used (where required)
for Sending messages from the emulation window procedure
120 to the surrogate window procedure 124.
0059) The SendMessage API permits one value to be
returned from the window procedure to which a message

US 2003/019 1865 A1

and/or data has been Sent. In a preferred embodiment of the
present invention, this value is used as a flag to the Surrogate
window procedure 124. The Surrogate window procedure is
preferably programmed So that upon return of a specific
predetermined flag Value, it will perform particular process
ing functions. For example, depending upon the flag Value,
the Surrogate window procedure 124 may pass an inter
cepted message to the target window procedure 116, with or
without modification, or it may simply return control to the
operating System.
0060 FIG. 4 illustrates the operation of a preferred
embodiment of the System according to the invention. AS
shown in FIG. 4, the Windows operating system 114 con
tinues to communicate normally with the TIS main window
procedure 134 through the TIS message queue 112. Signifi
cantly, however, messages to the target window procedure
116 which are posted in the target message queue 110, are
now dispatched to the Surrogate window procedure 124
which has been mapped into the target application program
proceSS address Space 130. Thus, all messages to the target
window procedure 116 will be intercepted by the surrogate
window procedure 124.
0061 FIGS. 6(a)-(b) show a flow chart which illustrates
the basic operation of the Surrogate window procedure 124
in a preferred embodiment. As shown in FIGS. 6(a) and (b),
after an intercepted message is received in block 148, the
Surrogate window procedure 124 retrieves a window handle
for the emulation window procedure 120 and the address of
the target window procedure 116 in block 150. These
attributes are preferably stored as window property values
because they allow the TIS DLL to maintain the sub-classing
information in an easily accessible location which is unique
to each window instance. The information must be retrieved
before proceeding further Since it provides the necessary
information for establishing a “link” between the injection
DLL 134 and the TIS program 142.
0.062 Once the window handle for the emulation window
procedure 120 and the address of the target window proce
dure 116 are retrieved, the Surrogate window procedure
evaluates each message to determine what action should be
performed. Those messages which do not concern any new
functionality or the display of the window elements com
prising the target application GUI user interface, are gener
ally passed on to the target window procedure 116 by means
of a “CallWindowProc()" API in block 162. The target
window procedure functions as it normally does under Such
circumstances by performing any necessary action, and then
returns control to the Surrogate window procedure 124.
0.063. If no further processing is required, the surrogate
window procedure 124 will then return control to the 32-bit
Windows Operating System. Alternatively, if the intercepted
message does concern new functionality or user interface
features to be provided by the TIS system, then any neces
Sary pre-processing will be performed either in Surrogate
window procedure 124 or the emulation window procedure
156. These steps are illustrated in blocks 154 and 158 in
FIG. 6(a).
0.064 Once any necessary pre-processing has been per
formed in blocks 154 and 158, a decision is made in block
160 as to whether it is necessary for the target window
procedure 116 to perform any processing in block 162. If So,
the Surrogate window procedure 124 calls the target window

Oct. 9, 2003

procedure 116 by means of a CallWindowProc() API. Upon
completion of any necessary processing by the target win
dow procedure, control is returned to the Surrogate window
procedure 124. At this point, a decision will be made in Step
163 as to whether any post processing needs to be performed
by the emulation window procedure 120. If so, the surrogate
procedure will transmit the message to the emulation win
dow procedure 120 by using a SendMessage API, and the
emulation window procedure will perform any necessary
post processing. Further, a decision will be made in the
surrogate window procedure 124 at block 164, as to whether
any post processing is necessary in block 166.

0065. If so, the surrogate window procedure 124 per
forms any necessary post-processing in Step 166 and then
returns control to the operating system 102 at block 168.
Although the target application window procedure can be
called to handle part or all of the processing responsive to
Some operating System messages, it should be noted that the
Surrogate window procedure 124 and/or the emulation win
dow procedure 120 may, in Some cases, perform all neces
Sary processing, without any call to the target application
window procedure.

0066. To better understand the foregoing process, it is
helpful to consider a specific example. In particular, the
operation of the TIS system with respect to a few specific
messages relating to the appearance of the target application
user interface will now be discussed. AWM NCCALCSIZE
message from the operating System 102 is sent to the target
application when the size and position of a window's client
area need to be calculated. AS an aside, it should be noted
that this is a non-queued type message, and therefore does
not pass through the target message queue 110, but rather, is
sent directly to the window procedure. Also, it should be
noted that for the purposes of this specification, the term
“client area' is understood to mean that portion of a window
where an application displays a document, spreadsheet,
database, form or other data an application is working with.

0067. In the present case, the WM NCCALCSIZE mes
Sage will not be delivered to the target window procedure
116, as originally intended, but will instead be dispatched to
the surrogate window procedure 124. When a WM NC
CALCSIZE message is received, a window procedure nor
mally would respond by providing the operating System with
window Specification data. Such data typically includes
information relating to the various elements comprising the
window interface, Such as the location and size of menus,
Scroll bars, client area and borders. In the present case,
however, in order to make any necessary modification to the
target application's main window, the Surrogate window
procedure 124 requires window Specification data for the
target application main window.

0068. This information is needed so that the original
appearance of the window can be integrated with the new
features or modifications to be provided. In order to obtain
the window Specification data, the Surrogate window pro
cedure 124 initiates an API call to the target window
procedure 116. This is accomplished using the original target
window procedure pointer as a call parameter in the “Call
WindowProc()" API, along with a WM NCCALCSIZE
message. This is the same pointer value which was previ
ously overwritten by the injection DLL 134, in order to
intercept messages to the target window procedure 116.

US 2003/019 1865 A1

Upon receipt of the “CallWindowProc()” API containing a
WM NCCALCSIZE message, the target window procedure
116 returns to the surrogate window procedure 124, the
window Specification data.

0069. For greater clarity, an arrow is shown in FIG. 4 to
illustrate the CallWindowProc() API call from the surrogate
window procedure 124 to the target window procedure 116.
It should be understood, however, that this communication
is actually achieved through the API routines 126 within the
operating System 102, and not directly between the two
programs. Upon receipt of the window Specification data by
the Surrogate window procedure 124, the data is edited in the
Surrogate window procedure to modify or add features to the
existing interface, including items. Such as push-buttons,
graphic indicators, program Status indicators, icons, infor
mational data, etc. In fact, practically any desired change to
the target window interface is possible with the invention as
described herein. Upon completion of any necessary
changes, the modified window Specification data is finally
returned to the operating System 102 by the Surrogate
window procedure 124, in response to the original WM NC
CALCSIZE message. The modified target application win
dow elements are then available for display by the operating
system 102.
0070) Subsequent to receiving a response to the
WM NCCALCSIZE message, the operating system 102
will typically post a WM NCPAINT message to the target
message queue 110. This message requests that the target
window procedure 116 paint the window frame, i.e. those
window elements Surrounding the client area. This message
will also be intercepted by the Surrogate window procedure
124. The surrogate window procedure 124, in this case, will
generally call the target window procedure 116 using a
“CallWindowProc()" API call, with a WM NCPAINT
message parameter. See FIG. 6, block 162. This action will
cause the target window procedure to paint the original
unmodified elements comprising the graphical user inter
face. When the target window procedure 116 has painted the
window frame, it will return control to the Surrogate window
procedure 124. The emulation window procedure 120 will
then preferably perform post processing in block 164, i.e., it
will paint the new or modified elements of the window
interface which have been left blank by the target window
procedure 116.
0071. The foregoing illustration relates to user interface
modifications of the target application. However, the same
techniques are applied to provide new or modified function
ality to the target application program 100. Queued and
non-queued messages from the operating System to the
target window procedure 116 are intercepted and dispatched
to the Surrogate window procedure 124. If the intercepted
message concerns a task which is unrelated to the new or
modified functionality provided by the TIS system, then the
Surrogate window procedure 124 passes the message to the
target application window procedure without further pro
cessing. On the other hand, if the intercepted message does
concern the new or modified functionality, e.g. a mouse click
on a push-button added by the TIS system, or other operating
System message relating to TIS implemented functions, then
the TIS system will follow the process outlined in FIGS. 6(a)
and (b). Specifically, it will perform pre-processing and post
processing, and call the target application window procedure
in Some instances to perform a portion of the processing.

Oct. 9, 2003

0.072 FIGS. 7(a) and (b) show one example of how a
target application user interface may be modified using the
present invention. FIG. 7(a) shows a main target application
program window prior to modification. The window
includes a title bar 170, a menu bar 172, a series of
push-button icons 174 below the menu bar, and a client area
176 below the push-buttons. FIG.7(b) shows the window in
FIG. 7(a), after it has been modified to include additional
user interface elements for a Voice recognition function. AS
can be seen from FIG. 7(b), the additional user interface
elements are placed, in this case, between the menu bar 172
and the push-buttons 174. The new elements in this example
include an on/off button 178, a graphic volume level indi
cator 180, a voice prompt 182, and a corporate logo 184. The
additional user interface elements 178, 180, 182, 184 are
merely exemplary, and the invention is not limited in this
regard. ESSentially, any new user interface elements chosen
by a programmer can be integrated into the target application
in the method according to the present invention.

0073. As can be seen from FIG. 7(b), the new interface
elements are Seamlessly integrated in the modified window
as though they had been painted there by the target appli
cation program. In a preferred embodiment, the new or
modified user interface elements provided by the Surrogate
window procedure are preferably painted to match the color
and texture adopted in the original target application pro
gram GUI. Matching the color and texture in this manner
enhances the SeamleSS appearance of the new interface
elements.

0074. In view of the foregoing, it should be apparent that
the System and apparatus according to the invention is
designed to operate in conjunction with a computer System
comprising a central processing unit, one or more electronic
memory Storage devices, and related peripheral equipment
Such as a data entry device (e.g., a mouse and/or keyboard)
and at least one user interface unit (e.g., CRT). The central
processing unit (or CPU) is electronically coupled to the one
or more electronic memory Storage devices, data entry
device and display unit by Suitable means which are well
know by those of ordinary skill in this field. Similarly, the
CPU can be comprised of any suitable microprocessor or
other electronic processing unit as is well known to those
skilled in the art. An example of Such a processor would
include the Pentium brand microprocessor available from
Intel Corporation.

0075. The various hardware requirements for the com
puter System as described herein can generally be Satisfied
by any one of many commercially available high Speed
personal computers offered by manufacturerS Such as Com
paq, Hewlett Packard, or IBM Corp. Likewise, the system as
disclosed herein can be implemented by a programmer using
commercially available development tools for the operating
Systems described above. While the foregoing Specification
illustrates and describes the preferred embodiments of this
invention, it is to be understood that the invention is not
limited to the precise construction herein disclosed. The
invention can be embodied in other specific forms without
departing from the Spirit or essential attributes. Accordingly,
reference should be made to the following claims, rather
than to the foregoing Specification, as indicating the Scope of
the invention.

US 2003/019 1865 A1

1. A method for enhancing the operable functionality of an
existing target Software application with a complex techno
logical add-in, the method comprising the Steps of:

mapping a library function containing a Surrogate proce
dure to at least one of a plurality of application pro
grams executing in a computer System, Said at least one
application program including the existing target Soft
ware application;

upon command from an injection Software application
program, Selectively causing only Said library function
mapped to the existing target Software application to
replace a first pointer in memory to a target procedure
for the existing target Software application with a
Second pointer to Said Surrogate procedure, So that Said
Surrogate procedure receives intercepted messages that
would otherwise be received by Said target procedure;

processing Said intercepted messages in Said Surrogate
procedure to modify an operating feature of Said target
application program; and,

calling an emulation procedure Separate from and external
to Said Surrogate procedure to assist Said Surrogate
procedure in processing Said intercepted messages by
performing complex processing to enhance the oper
able functionality of the existing target Software appli
cation.

2. The method of claim 1, further comprising the Step of
calling Said emulation procedure by means of an application
programming interface routine which has a return value, and
further wherein Said return value determines Said processing
to be performed by said surrogate procedure.

3. The method of claim 1 further comprising the step of
processing in Said Surrogate window procedure, each of

Said intercepted messages, to determine if Said inter
cepted message requires post-processing by Said Sur
rogate procedure after any processing by Said target
procedure and Said emulation procedure has been com
pleted, in order to modify Said operating feature of Said
target application program.

4. The method of claim 3, further comprising the step of:
retrieving from Said target procedure to Said Surrogate

procedure, graphical user interface Specification data
for a graphical user interface of Said target application
program, when Said message is a request from Said
operating System for information which will determine
the appearance of the target application graphical user
interface.

5. The method of claim 4, wherein said graphical user
interface Specification data is edited by Said Surrogate win
dow procedure to create a modified portion of Said target
application graphical user interface.

6. The method of claim 1 wherein said modified feature
modifies the operation of the target application program
without modifying the Screen displays of Said target appli
cation program.

7. The method of claim 1 wherein said modified feature
modifies the Screen displays that are seen by the user during
operation of the target application program.

8. A machine readable Storage having Stored thereon a
computer program for enhancing the operable functionality
of an existing target Software application with a complex
technological add-in, the computer program comprising a
routine Set of instruction for causing the machine to perform
the Steps of:

Oct. 9, 2003

mapping a library function containing a Surrogate proce
dure to at least one of a plurality of application pro
grams executing in a computer System, Said at least one
application program including the existing target Soft
ware application;

upon command from an injection Software application
program, Selectively causing only Said library function
mapped to the existing target Software application to
replace a first pointer in memory to a target procedure
for the existing target Software application with a
Second pointer to Said Surrogate procedure, So that Said
Surrogate procedure receives intercepted messages that
would otherwise be received by Said target procedure;

processing Said intercepted messages in Said Surrogate
procedure to modify an operating feature of Said target
application program; and,

calling an emulation procedure Separate from and external
to Said Surrogate procedure to assist Said Surrogate
procedure in processing Said intercepted messages by
performing complex processing to enhance the oper
able functionality of the existing target Software appli
cation.

9. The machine readable storage of claim 8, further
comprising the Step of calling Said emulation procedure by
means of an application programming interface routine
which has a return value, and further wherein Said return
value determines Said processing to be performed by Said
Surrogate procedure.

10. The machine readable storage of claim 8, further
comprising the Step of

processing in Said Surrogate window procedure, each of
Said intercepted messages, to determine if Said inter
cepted message requires post-processing by Said Sur
rogate procedure after any processing by Said target
procedure and Said emulation procedure has been com
pleted, in order to modify Said operating feature of Said
target application program.

11. The machine readable storage of claim 10, further
comprising the Step of:

retrieving from Said target procedure to Said Surrogate
procedure, graphical user interface Specification data
for a graphical user interface of Said target application
program, when Said message is a request from Said
operating System for information which will determine
the appearance of the target application graphical user
interface.

12. The machine readable Storage of claim 11, wherein
Said graphical user interface Specification data is edited by
Said Surrogate window procedure to create a modified por
tion of Said target application graphical user interface.

13. The machine readable storage of claim 8, wherein said
modified feature modifies the operation of the target appli
cation program without modifying the Screen displays of
Said target application program.

14. The machine readable Storage of claim 8, wherein Said
modified feature modifies the Screen displays that are Seen
by the user during operation of the target application pro
gram.

