I *I Innovation, Sciences et Innovation, Science and CA 2931325 C 2020/10/06

Développement économique Canada Economic Development Canada
Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office (1 1)(21) 2 931 325
12 BREVET CANADIEN
CANADIAN PATENT
13 C
(86) Date de dépot PCT/PCT Filing Date: 2014/09/25 (51) ClLInt./Int.Cl. GO6F 21/56 (2013.01)
(87) Date publication PCT/PCT Publication Date: 2015/04/09 (72) Inventeurs/Inventors:
- . LUKACS, SANDOR, RO;
(45) Date de délivrance/lssue Date: 2020/10/06 TOSA, RAUL-VASILE, RO:
(85) Entrée phase nationale/National Entry: 2016/03/22 BOCA, PAUL-DANIEL, RO;
(86) N° demande PCT/PCT Application No.: RO 2014/000027 HAJMASAN, GHEORGHE-FLORIN, RO;

LUTAS, ANDREI-VLAD, RO

P (73) Propriétaire/Owner:
(30) Priorité/Priority: 2013/10/04 (US14/046,728) BITDEFENDER IPR MANAGEMENT LTD. CY

(74) Agent: GOWLING WLG (CANADA) LLP

(87) N° publication PCT/PCT Publication No.: 2015/050469

(54) Titre : NOTATION COMPLEXE SERVANT A LA DETECTION DE LOGICIELS MALVEILLANTS
(54) Title: COMPLEX SCORING FOR MALWARE DETECTION

B0~ 822 22h 82¢ 82d— §2e
\ ™ ™ T e
\ v y A \
Initadzztion  Propegation  Newinstance  Exception Flag-incuced
weghts welghts weights weights weights

<...>»=01

r
=

Entity

Endty group 2

group 1

(57) Abrégé/Abstract:

Described systems and methods allow protecting a computer system from malware such as viruses, Trojans, and spyware. For
each of a plurality of executable entities (such as processes and threads executing on the computer system), a scoring engine
records a plurality of evaluation scores, each score determined according to a distinct evaluation criterion. Every time an entity
satisfies an evaluation criterion (e.g, performs an action), the respective score of the entity is updated. Updating a score of an entity
may trigger score updates of entities related to the respective entity, even when the related entities are terminated, i.e., no longer
active. Related entities include, among others, a parent of the respective entity, and/or an entity injecting code into the respective
entity. The scoring engine determines whether an entity is malicious according to the plurality of evaluation scores of the respective
entity.

50 rue Victoria ¢ Place du Portage 1 ® Gatineau, (Québec) KI1AOC9 e www.opic.ic.gc.ca i+l

50 Victoria Street e Place du Portage 1 e Gatineau, Quebec KIAO0C9 e www.cipo.ic.gc.ca ( Eal lada



2015/050469 A1 |1 0000 00010 OO 0 0

<

W

(43) International Publication Date

CA 02931325 2016-03-22

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

9 April 2015 (09.04.2015)

(10) International Publication Number

WO 2015/050469 A1

WIPOIPCT

(51

eay)

(22)

(25)
(26)
(30)

1

(72)
1

74

International Patent Classification:
GO6F 21/56 (2013.01)

International Application Number:
PCT/R0O2014/000027

International Filing Date:
25 September 2014 (25.09.2014)

Filing Language: English
Publication Language: English
Priority Data:

14/046,728 4 October 2013 (04.10.2013) US
Applicant: BITDEFENDER IPR MANAGEMENT

LTD [/CY]; Kreontos 12, PC 1076, Nicosia (CY).

Inventors; and

Applicants : LUKACS, Sandor [RO/RO]; Bld. Cetatea
Fetei bl. 8, et. 3, Sat Floresti, Judetul Clyj (RO). TOSA,
Raul-Vasile [RO/RO]; Str. Edgar Quinet nr. 32, et. 4, ap.
30, Cluj-Napoca, Judetul Cluj (RO). BOCA, Paul-Daniel
[RO/RO]; Str. Agricultorilor nr. 20, sc. 2, ap. 22, Cluj-Na-
poca, Judetul Cluj (RO). HAJMASAN, Gheorghe-Florin
[RO/RO]; Sat Lunca Muresului nr. 351, Com Lunca,
Muresului, Judetul Alba (RO). LUTAS, Andrei-Vlad
[RO/RO]J; Bld. Closca nr. 111, Satu Mare, Judetul Satu
Mare (RO).

Agent: TULUCA, Doina; Bd. Lacul Tei nr. 56, bl. 19, sc.
B, ap. 52, sector 2, R-020392 Bucuresti (RO).

(81) Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
with international search report (Art. 21(3))

[Continued on next page]

(54) Title: COMPLEX SCORING FOR MALWARE DETECTION

80 82 82
~ ~ ™

Inidalization
weights

0.03

Tral
criteria

o New instance

82¢ \\‘ SM\} #2e 7\\‘

weights

S

Caiity
group 1

FIG. 9

(57) Abstract: Described systems and methods allow protecting a computer system from malware such as viruses, Trojans, and spy-
ware. For each of a plurality of executable entities (such as processes and threads executing on the computer system), a scoring en-
gine records a plurality of evaluation scores, each score determined according to a distinct evaluation criterion. Every time an entity
satisfies an evaluation criterion (e.g, performs an action), the respective score of the entity is updated. Updating a score of an entity
may trigger score updates of entities related to the respective entity, even when the related entities are terminated, i.e., no longer act-
ive. Related entities include, among others, a parent of the respective entity, and/or an entity injecting code into the respective entity.
The scoring engine determines whether an entity is malicious according to the plurality of evaluation scores of the respective entity.



CA 02931325 2016-03-22

WO 2015/050469 A1 |IIWAT 00T VAT 0T AR

—  before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))




CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

Complex Scoring for Malware Detection

BACKGROUND
[0001] The invention relates to systems and methods for protecting computer systems from

malware.

[0002] Malicious software, also known as malware, affects a great number of computer systems
worldwide. In its many forms such as computer viruses, worms, rootkits, and spyware, malware
presents a serious risk to millions of computer users, making them vulnerable to loss of data and

sensitive information, identity theft, and loss of productivity, among others.

[0003] Security software may be used to detect malware infecting a user’s computer system, and
additionally to remove or stop the execution of such malware. Several malware-detection
techniques are known in the art. Some rely on matching a fragment of code of the malware
agent to a library of malware-indicative signatures. Other conventional methods detect a set of

malware-indicative behaviors of the malware agent.

[0004] To evade detection and/or undermine the operation of security software, some malware
agents employ obfuscation techniques, such as encrypting their code, or using slightly different
code versions on each infected computer system (polymorphism). Other exemplary detection
avoidance methods divide malicious activities into several actions, each action performed by a
separate agent, possibly with a time delay. In other examples, malware may try to actively attack
and disable the security software, for instance by using privilege escalation and/or by overwriting

the security software’s code.

{0005] To keep up with a rapidly changing set of malware threats, there is a strong interest in

developing robust and scalable anti-malware solutions.

SUMMARY
[0006] According to one aspect, a host system comprises at least one processor configured to
execute an entity management module, an entity evaluator, and a scoring engine. The entity
management module is configured to manage a collection of evaluated software entities, wherein

managing the collection comprises: identifying a set of descendant entities of a first entity of the



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

collection; determining whether the first entity is termiﬁated; in response, when the first entity is
terminated, determining whether all members of the set of descendant entities are terminated,;
and in response, when all members of the set of descendant entities are terminated, removing the
first entity from the collection. The entity évaluator is configured to: evaluate the first entity
according to an evaluatlidn criterion; and in reSponse, when the first entity satisfies the evaluation
: criterion, transmit an evaluation indicator to the scoring engine. The scoring engine is
configured to: record a first score determined for the first entity and a second score determined
for a second entity of the collection, the first and second scores determined according to the
evaluation criterion; in response to recording the first and second scores, and in response to
‘receiving the evaluation indicator, update the second score according to the evaluation indicator;
and in response; determine whether the second entity is malicious according to the updated

second score.

[0007) According to another aspect, a non-transitory computer-readable medium stores -
instructions, which, when executed, configure at least one processor of a host system to manage
a collection of evaluated software entities, wherein managing the collection comprises:
identifying a set of descendant entities of a first.entity of the collection; determining whether the
first entity is terminated; in response, when the first entity is terminated, detérmining whether all
members of the set of descendant entities are terminated; and in response, when all members of
the set of descendant entities are terminated, removing the selected entity from the collection.
The instructions further coﬁfigure the at least one processor to record a first score determined for
the first entity and a second score determined for a second entity of the collectlon the first and
second scores determmed according to an evaluation criterion. The  instructions further
configure the at least one processor, in response to recording the first and second scores, to
evaluate the first entity according to the evaluation criterion. The instructioﬁs further configure
the at least one processor, in response to evaluating the first entity, when the first entity satisfies
the evaluation criterion, to update the second score, and in response to updating the second score,

to determine whether the second entity is malicious according to the updated second score.

[0008] According to another aspect, a host system comprises at least one processor configured to
execute an entity evaluator and a scoring engine. The entity evaluator is configured to: evaluate

the first software entity according to an evaluation criterion, the first software entity executing on

2



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

the client system, and in response, when the first software entity satisfies the evaluation criterion,
transmit an evaluation indicator to the scoring engine. The scoring engine is configured, in
response to receiving the evaluation indicator, to update a score according to the evaluation
indicator, wherein the score is determined for a second software entity previously executing on’
the host system, the second software entity terminated at the time of updating the score. The
scoring engine is further configured, in response to updating the second score, to determine

whether the second software entity is malicious according to the updated second score.

[0009] According to another aspect, a method comprises employihg at least one processor of a
host system to determine whether a first software entity executing on the host system satisfies an
evaluation criterion. The method further comprises, when the first software entity satisfies the
evaluation criterion, employing the at least one processor to update a score determined for a
second software entity previously executing on the host system, the second software entity
terminated at the time of updating the score, the score determined according to the evaluation
criterion. The method further comprises, in response to updating the second score, employing
the at least one processor to determine whether the second software entity is malicious according

to the updated second score.

BRIEF DESCRIPTION OF THE DRAWINGS
[0010] The foiregoing aspects and advantages of the present invention will become better
understood upon reading the following detailed description and upon reference to the drawings

where:

[0011] Fig. 1 shows an exemplary hardware configuration of av host computer system protected

from malware according to some embodiments of the present invention.

-[0012] Fig. 2-A shows an exemplary set of software objects including a security application

executing on a host system according to some embodiments of the present invention.

[0013] Fig. 2-B shows an exemplary set of software objects, including a security application

executing within a virtual machine, in a host system configured to support virtualization.



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

[0014] Fig. 3 illustrates an exemplary hierarchy of software objects executing on the host system
at various processor privilege levels, including a set of anti-malware objects according to some

embodiments of the present invention.

‘ [0015] Fig. 4 shows an exemplary sequence of steps performed by the entity management

module of Fig. 3 according to some embodiments of the present invention.

[0016] Fig. 5 shows an exemplary scoring engine receiving a plurality of entity evaluation
indicators determined for a software entity by a plurality of entity evaluator modules, according

to some embodiments of the present invention.

[0017] Fig. 6 illustrates an exemplary execution flow of a set of processes in a Windows®
environment. Solid arrows’indicate‘ an exemplary execution flow in the absence of an anti-
malware system. Dashed arrows indicate modifications to the execution flow, the modifications
introduced by a plurality of entity evaluators operating according to some embodiments of the

present invention.

[0018]} Fig. 7 shows an exemplary sequence of steps performed by an entity evaluator module

according to some embodiments of the present invention.

[0019] Fig. 8 shows a plurality of exemplary entity scoring objects (ESO), each ESO determined
for a respective software entity according to some embodiments of the present invention.
Exemplary data fields of an ESO include an éntity identity indicator EID, a plurality of scores S;,

and an aggregate score A determined for the respective entity, among others.

[0020] Fig. 9 illustrates an exemplary set of score values, and various exemplary sets of weights

used by the scoring engine to score software entities according to some embodiments of the

present invention.

[0021] Fig. 10 shows an exemplary sequence of steps performed by the scoring engine (Figs. 3-

4) according to some embodiments of the present invention.

[0022] Fig. 11 illustrates an exemplary configuration comprising a plurality of host systems

connected to a security server via a computer network.



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

[0023] Fig. 12 shows an exemplary anti-malware transaction between a host system and a

security server according to some embodiments of the present invention.

- DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
[0024] In the following description, it is understood that all recited conne__ctions‘ between
structures can be direct operative connections or indirect operative connections through
intermediary structures. A set of eléments includes one or more elements. Any recitation of an
“element is understood to refer to at least one element. A plurality of elements includes at least
two eleménts. Unless otherwise required, any described method steps need not be necessarily
p;‘,rformed in a particular illustrated order. A first element (e.g. déta) derived from a second
~ element encompasses a first element equal to the second element, as well as a first element
generated by processing the second element and optionally other data. Making a determination
or decision according to a parameter encompasses making the determination or decision
according to the parameter and optionally according to other data. Unless otherwise specified,
an indicator of some quantity/data may be the qhantity/data itself, or an indicator different from
the quantity/data itself. Unless otherwise specified, a vprocess représeﬁts an instance of a
computer program, wherein a computer program is a sequence of-instructions determining a
computer system to perform 'a speéified task. Computer readable media encompass non-
transitory media such as magnetic, optic, and semiconductor storage media (e.g. hard drives,
optical disks, flash memory, DRAM), as well as communications links such as conductive cables
and fiber optic links. According to some embodiments, the present invention provides, inter
alia, computer systems comprising hardware (e.g. one or more processors) programmed to
perform the methods described herein, as well as computer-readable media encoding instructions

to perfofm the methods described herein.

[0025] The fol’lowing description illustrates embodiments of the invention by way of example

and not necessarily by way of limitation.

[0026] Fig. 1 shows an exemplary hardware cdnfiguration of a host system 10 performing anti-
malware operations-according to some embodiments of the present invention. Host system 10
may represeﬁt a corporate computing device such as an enterprise server, or an end-user device

such as a personal computer or a smartphone, among others. Other host systems include



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

entertainment devices such'as TVs and game consoles, or any other device having a memory and
a processor supporting virtualization, and requiring malware protection. Fig. 1 shows a
computer system for illustrative purposes; other client devices such as mobile telephones or
tablets may have a different configuration. In some embodiments, system 10 comprises a set of
physical devices, including a processor 12, a memory unit 14, a set of input devices 16, a set of-
output de\}ices 18, a set of storage devices 20, and a set of network adapters 22, all connected by

a set of buses 24.

[0027]) In some embodiments, processor 12 comprises a physical device (e.g. multi-core
integrated circuit) configured to execute computational and/or logical operations with a set of
signals and/or data. In some embodiments, such logical operations are delivered to processor 12
in the form of a sequence of processor instructions (e.g. machine code or other type of software).
Memory unit 14 may comprise volatile computér«readable media (e.g. RAM) storing data/signals
accessed or generated .by processor 12 in the course of carrying out instructions. Input
devices 16 may include computer keyboards, mice, and microphones, among others, including
' the respectivé hardware interfaces and/or adapters allowing'a user to introduce data and/or
instructions into system 10. Output devices 18 may include display devices such as monitors and
speakers among others, as well as hardware interfaces/adapters such as graphic cards, allowing
| system 10 to communicate data to a user. In some embodiments, input-devices 16 and output
devices 18 may share a common piece of hardware, as in the case of touch-screen devices.
Storage devices 20 include computer-readable media enabling the non-volatile storage, reading,
and writing of software instructions and/or data. Exemplary storage devices 20 include magnetic
and optical disks and flash memory devices, as well as removable media such as CD and/or
DVD disks and drives. The set of network adapters 22 enables system 10 to connect to a
computer network and/or to other devices/computer systems. Buses 24 collectively represent the
plurality of system, peripheral, and chipset buses, and/or all other circuitry enabling the inter-
communication of devices 12-22 of host system 10. For example, buses 24 may comprise the
northbridge connecting processor 12 to memory 14, and/or the southbridge connecting -

processor 12 to devices 16-22, among others.

[0028] Fig. 2-A shows an exemplary set of software objects executing on host system 10 in a

configuration, which does not employ hardware virtualization. In some embodiments, a guest

6



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

operating system (OS) 34 comprises software that provides an interface to the hardware of host
system 10, and acts as a host for a set of software applications 42a-c and 44. OS 34 may
comprise any widely available operating system such as Windows®, MacOS®, Linux®, iOS®,
or Android™, among others. Applications.42a-c may include word processing, image

processing, database, browser, and electronic communication applications, among others.

[0029] Fig. 2-B shows an exemplary set of software objects executing on host system 10 in an
embodiment usiqg hardware virtualization. A set of guest virtual machines 32a-b are exposed
by a hypervisor 30. Virtual machines (VM) are commonly known in the art as software
emulations of actual physical machines/computer systems, each capable of running its own

operating system and software independently of other VMs. Hypervisor 30 comprises ‘software |
allowing the multiplexing (sharing) by multiple virtual machines of hardware résources of host
system 10, such as pfocessor operations, memory, storage, input/output, and networking devices.
In some embodiments, hypervisor 30 enables multiple virtual machines and/or operating systems
(OS) to run concurrently on host system 10, with various degrees of isolation. To enable such
configurations, software forming part of hypervisor 30 may create.a plurality of virtualized, i.e.,
software-emulated devices-,:»_éach virtualized device emulating a physical hardware  device of
system 10, such as processor 12 and memory 14, among others. Hypervisor 30 may further
-assign a set of virtual devices to each VM operating on host system 10. - Thus, each VM 32a-b
opérates as if it possesses its own setvof physical devices, i.e., as a more or less complete
computer system. Creation and éssignment of virtual devices to a virtual machine are commonly
known in the art as ‘exposing the respective VM. Examples of popular hypervisors include the

VMware vSphere™ from VMware Inc. and the open-source Xen hypervisor, among others.

[0030] In some embodiments, hypervisor 30 includes a memory introspection engine 40,
configured to perform anﬁ-tnalware operations as described further below. Engine 40 may be
incorporated into hypervisor 30, or may be delivered as a software component distinct and
independent from hypervisor 30, but ex}e.cuting at substan‘tialll.y sirn.ilar‘ processor privilege level
as hypervisor 30. A single engine 40 may be configured to malware-protect multiple VMs

executing on host system 10.



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

[0031] While Fig. 2-B shows just two VMs 32a-b for simplicity, host system 10 may operate a
1afge number, e.g. hundréds, of VMs concurrently, and the number. of such VMs may change
durihg the operation of ﬁbst system 10. In some embodiments, each VM 32a-b executes a guest
operating system 34a-b and/or a set of software applications 42d-e, and 42f, respe‘cti'vely,
concufrently and independently of other VMs running on host system 10. Each OS 34a-b
comprises software that provides an interface to the (virtualized) hardware of the respective

VM 32a-b, and acts as a host for computing applications executing on the respective OS.

[0032] In some embodiments, a security applicati'on'44 is configured to perform anti-malware
operations as detailed below, to protect host system 10 from malware. In the example of Fig. 2-
B, an instance of application 44 may execute on each VM 32a-b, each such instance configured .
to protect the respective virtual machine. Security application 44 may be a standalone program,
or may form part of a software suite comprising, among others, anti-malware, anti-spam, and

anti-spyware components.

[0033] Fig. 3 illustrates a hierarchy of software objects executing on host system 10 according to
some embodiments of the present igvention. Fig. 3 shows an exemplary embodiment conﬁgyred
to execute in a Virtualization. envirdﬁment; it may be clear to a person skilled in the art thaf the
illustrated embodimént may be modified to execute directly on host system 10 instead of within
VM 32. Fig. 3 is represented from the perspective of processor privilege levels, alsd known in
the art as layers or protéction rings. In some embodiments, each such layer or protection ring is
characterized by a set of instructions, which a software object executing at the respective
processor privilege level is allowed to execute. When a software object attempts to execute an
instruction, which is not allowed within the respective privilege level, the attempt may trigger a
processor event, such as an exception, a fault, or a virtual machine exit event. In some
embodiments, switching between privilege levels may be achieved via a set of dedicated
instructions. Suéh exemplary instructions include SYSCALL/SYSENTER, which switch from
-user level to kernel level, SYSRET/SYSEXIT, which switch from kernel lgvel to user level,
VMCALL, which switcﬁes from either user or kernel level to root level, and VMRESUME,

which switches from root level to either kernel or user level.



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

[0034] Most components of operating system 34 execute at a processor privilege level known in
the art as kernel level, or kernel mode (e.g., ring O on Intel platforms). An application 42g
executes at lesser processor privilege than OS 34 (e.g., ring 3, or user mbde). In an embodiment
* supporting vi_rtualizat’ion, hypervisor 30 takes control of processor 12 at the most privileged
level, also known root level or root mode (e.g., ring -1 or VMXroot on Intel® platforms),

exposing virtual machine 32 to OS 34 and other software objects such as application 42g.

[0035] In some embodiments, parts of security application 44 may execute at user-level
processor privilege, i.e., same level as application 42g. For instance, such parts may comprise a
gréphical user interface informing a user of any malware or- security threats detected on the
respective VM, and receiving input from the user indicating, e.g., a desired configuration option
for application 44. Another example of a component executing at user level is a user-level entity
evaluator 50a, operating as detailed below. In some embodiments, a part of user-level entity’
evaluator 50a may operate within security application 44, while another part (such as a hooking
module) ‘may operate within an evaluated application, such as application 42g. Other parts of
application 44 may execute at kernel privilege level. For.instance, application 44 may install an
anti-malware driver 36, an entity management module 37, and a scoring engine 38, all operating
in kernel mode. Driver 36 provides functionality to anti-malware application 44, e.g. to scaﬁ
memory for malware signatures and/or to detect malware-indicative behavior of processes and/or
other software objects executing on OS 34. In some embodiments, anti-malware driver 36:

includés_ a kernel-level entity evaluator 50b, operating as detailed below.

[0036] In some embodiments, entity management module 37 manages a collection of software
entities executing withi_n host system 10 (or VM 32). In some embodiments, the collection
c_omprisés all entities being evaluated for malware by entity evaluation modules such as 55a-b.,
To manage the collection, module 37 may add and/or remove entities from the collection in
response to detecting the occurrence of life-cycle events, such as entity léunch and/or termination
events, as shown in mode detail below. Module 37 may further determine inter-entity
relationships, such as determine child entities (e.g., child processes) of a parent entity, and/or
detérmine whether a selected entity has injected a software object, such as a library, into another
e"ntity, or whether the selected enﬁty is the target of injection by another software entity. A child

entity is an executable entity created by another executable entity called the parent entity, the

9



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

child entity executing independently from the parent entity. Exemplary child entities are child
processes, for instance created via the CreateProcess function of the Windows® OS, or via the
fork mechanism in Linux®. Code injection is a generic term used in the art to indicate a fémily
of methods of introducing a sequence of code, such as a dynamic-link library (DLL), into the
memory space of an existing process, to altér the original functionality of the respective process.
To perform tasks such as detecting the launch of a procéss and/or detecting code injection,
module 37 may employ any method known in the art, such as calling or hooking certain OS
functions. For instance, in a system running a Windows® OS, module 37 may register a
PsSetCreateProcessNotifyRoutine callback to detect the launch of a new process, and/or hook

the CreateRemoteThread function to detect execution of injected code.

[0037] Fig. 4 shows an -exemplary sequence of steps performed by entity management
module 37 accbrding to some embodimént’s of the present invention. In a Sequence of steps. 250-
252, module 37 intercepts an entity life-cycle event, using, for instance, the methods described
above. When such ah event has occurred, a s'tep 254 identifies the entity triggering the
respective event. S‘tep_ 258 may include determining a unique entity identification indicator
(EID) of the respective entity; such an indicator may be used in scoring the respective entity, as
shown further below. A step 256 determines whether the event comprises a launch of a new
~ entity (e.g., a new process), and when no, module 37 advances to a step 260. When the event
comprises a launch, in a step 258, module 37 may add the triggering entity to the éollection of’
evaluated entitieé. Step 260 comprises determining whether the event comprises a parent entity
spawning a child entity, and when no, module 37 may advance to step 264. When yes, in a |
step 262, module 37 may add the reépective child entity to the collection of evaluated entities.
Step 262 may further include determining an EID— of the child entity, and registering a relation

between the triggering entity and the child entity as a filiation (parent-child) relation.

[0038] In some embodiments, step 264 determines whether the event comprises an injection of
code, and when no, module 37 may advance to a step 268. When yes, module 37 may identify a

source entity and a target entity of the code injection, wherein the source entity injects code into

© the target entity. In a step 266, module 37 may register a relation of the code-injection type

between the source entity and the target entity.

10



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

[0039] In step 268, entity management module 37 determines whether the event comprises the
termination of the triggering entity, and when no, module 37 returns to step 250. In some
embodiments, an entity is considered terminated when all components of the respective entity
have finished execution. For instance, a process is terminated when all the threads of the
respective process have finished execution. When the event comprised the termination of the
triggerihg entity, in a step 270, module 37 may determine a set of descendant entities of the
triggering entity. In some émbodiments, descendant entities of the triggering eﬁtity include
children entities of the respective entity, as wéll as children entities of the children entities, over
multiplé generations. Ih some embodiments, descendant entities may include target entities -
comprising code injected by the triggering entity, as well as entities targeted by the targeted
entivties, recursively. In a step 272, module 37 may determine whether all entities of the set of
‘descendant entities are"terminated, and when no, execution returns to step 250. When all
descendants are terminated, in a.step 274, entity managément module .37 ma’y remove the

triggering entity from the collection of evaluated entities.

[0040] In some embodiments, scoring \engine 38 is configured to receive data from a plurality of
g:'ntity evaluator modules, such as evaluators 50a-b, the data determined for an evaluated
software. entity, and to determine whether the respective entity is malicious according to the
respective data. In some embodiments, software entities analyzed by scoring engine 38 include,
among others, executable objects such as processes and execution threads. A process is an
instance of a computer ‘program,‘SUCh as an application or a part of an operating éystem, and is
characterized by having at least an execution thread and a section of virtual memory assigned to
it by the operating system, the respective section comprising executable code. In some
embodiments, evaluated software entities may vary substantially in scope and complexity, for
instance from individual threads, to individual applications, to whole instances of operating

systems and/or virtual machines.

[0041] Fig. 5 shows an exemplary scoring engine 38 receiving a piurality of evaluation
indicators 52a-d, each indicator 52a-d determined by an entity evaluator. In Fig. 5, such
evaluators include user-level entity evaluator 50a, kernel-level entity evaluator 50b, and a system
“call evaluator 50¢, among others. Each such evaluator module may execute independently of

other evaluators, and each may determine a plurality of distinct entity evaluation indicators of the

11



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

evaluated software entity. In systems implementing hardware virtualization, some evaluation
indicators, such as indicators 52a-c in Fig. 5, are determined by components executing within
VM 32, while other evaluation indicators, such as 52d, are determined by components executing
outside VM 32 (for inStance, by memory introspection engine 40). In some embodiments, éach
evaluation indicator 52a-d comprises an entity identification indicator, allowing engine 38 to
uniquely associate the respective evaluation indicator to the software entity for which it was

determined.

[0042] Some evaluation indicators may be malware-indicative, i.e., may indicate that the
evaluated entity is malicious. Some evaluation indicators may not be malware-indicative
-themselves, but may indicate maliciousness when combined with other evaluation indicators.
Eabh evaluation indicator 52a-d may be determined according to a distinct method and/or
criterion. Exemplary evaluation criteria include behavioral criteria, such as determining whether
the evaluated entity performs a certain action, such as writing to a disk file, editing a system
register key of VM 32, or writing to a memory page belonging to a protected software object.
Another exemplary criterion may include determining whether.a section of memory belonging to

the evaluated entity contains a malware-indicative signature.

'

[0043] To illustrate thé operation of entity evaluators 50a-c, Fig. 6 shows an exemplary
execution flow of a set of software entities 70a-b according to some embodiments of the present
invention. For éimplicity, the chosen entities 70a-b are processes executing in an instance of a
Windows® OS; similar dia.grams may be rendered for other operating systems such as Linux, for
instance. Solid arrows represent the execution flow in the absence of entity evaluators (e.g., in
the absence of security application 44). Dashed arrows represent modifications to the flow due
to the presence of entity evaluators 50a-c executing according to some embodiments of the

present invention.

[0044] Process 70a loads a plurality of dynamic-linked libraries (DLLSs) '7Za-c; in the example of -
Fig. 6, DLL 72¢ is injected into process 70a by (possibly malicious) process 70b. When
process 70a (or one of its loaded DLLs) executes an instruction calling for some system
functionality, e.g. to write something to a disk file, or to edit a registry key, the respective

instruction calls a user-mode API such as KERNEL32.DLL or NTDLL.DLL. In the example of

12



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

Fig. 6, the respective user-mode API call is intercepted and analyzed by user-level behavioral
filter 50a. Such interceptions may be achieved by a method such as DLL injection or hobking,
among others. Hooking is a generic term used in the att‘for a method of intercepting function
calls,yor messages, or events passed between software components. One exemplary hooking
method comprises altering the entry point of a target function, by inserting an instruction
) redirecting execution to a second function. Following such hooking, the second function may be
executed instead, or before, the target function. In the example of Fig. 6, anti-malware driver 36
' may hook into certain functions of KERNEL32.DLL or NTDLL.DLL, to instruct the respective
functions to redirect exécution to filter 50a. Thus, filter 50a may detect that process 70a is
attempting to perform a certain behavior, identified according to the hooked function. When
filter 50a detects such behavior, filter 50 may formulate evaluation indicator 52a and transmit

indicator 52a to scoring éngine 38 '(see e.g., Fig. 5).

[0045] In a typical flow of execution, the user-mode API fuﬁction called by entity 70a may
request service from the operating system’s kernel. I[n some embodiments, such operations are
carried out by issuing a system call, such as SYSCALL and SYSENTER on x86 platforms. In
the example of ‘¥ig. 6, such system calls are intercepted by system call'evaluator 50c. In some
- embodiments, such interception comprises, for instance, modifying a System call handler routine
by changing a value stored in a model-specific register (MSR) of processor 12, which effectively
redirects execution to filter 50c. Such techniques are known in the art as MSR ‘hooking, and may
allow system call evaluat_or~50c to detect that the evaluated process is attempting to perform
certain system calls. When such system calls are intercepted, system call filter 50¢ may

formulate entity evaluation indicator 52¢ and transmit indicator 52c¢ to scoring engine 38.

[0046] Following the system call, control of the processor is typically turned over to the kernel
of OS34. In some embodiments, kernel-level entity evaluator 50b is configured to intercept
éertain operations of the OS kernel, and therefore determine that the evaluated process is
attempting to perform certain operations, which may be malicious. To intercept such operations,
some embodiment_s may employ a set of filtering mechanisms built into and exposed by OS 34.
For example, in a Windows OS, FltRegisterFilter may be used to intercept operations like
creating, opening, writing to, and deleting a file. In another example, evaluator 50b may use

ObRegisterCallback to intercept create or duplicate object-handle operations, or

- 13



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

PsSetCreateProcessNotifyRoutine to intercept the creation of new processes. In yet another
example, Windows registry operations such as creating and setting registry keys/values may be
intercepted using CmRegisterCallbackEx. Similar filtering mechanisms are known in the art for
other operating systems such as Linux®. When kernel-mode entity evaluator 50b intercepts
such operations, evaluator 50b may formulate entity evaluation indicator 52b and transmit

indicator 52b to scoring engine 38.

[0047] To transmit data, such as entity evaluation indicators 52a-c, from evaluators 50a-c to
scoring engine 38, a person skilled in the art may employ any inter-process communication
method. For instance, to communicate between user-mode and kernel-mode components,
evaluators 50a-c and engine 38 may be configured to use a shared section of memory. When
data exchange is needed between components executing within VM 32, and components
executing outside the respectivé VM, such communication may be carried out using any method
known in the art of virtualization. For instance, to transmit evaluation indicator 52d from
memory introspection engine 40 to scoring engine 38, some embodiments use an interrupt
injection mechanism to signal to engine 38 that data is being transmitted from outside the
respectfve VM. The actual data may be transferred, for instance, through the’shared memory

section described above.

[0048] Fig. 7 shows an exemplary sequencé. of steps performed by an entity evaluator, such as
evaluators 50a-c. and/or memory introspection engine 40 in Figs. 4-5, according to some
embodiments of the prvesent invention. In a sequence of steps 302-304, the entity evaluator waits
for the occurrence of a trigger event within host system 10 and/or virtual machine 32.
Exemplary trigger eventé include, among others, a software entity performing a certain behavior,
such as iSsuing a particular processor instruction, attempting to use a particular piece of hardware
such as storage devices 20 or network adapter(s) 22, or attempt;in‘g to write to a protected
memory page. For instance, a trigger event for evaluator 50c may include a software entity
issuing a system call (e.g., SYSENTER). Another example of a trigger event for evaluator 50d
may include an appliéatibn calling a function of the UrlDownloadToFile API. To détect the
occurrence of a trigger évent, the respective entity evaluator may use any method known in the
art, such as code injection and MSR hooking, among others. Some examples of trigger event

interception are described above, in relation to Fig. 6.

14



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

{0049] When a trigger event is detected, in a step 306, the entity evaluator may identify the
software entity (e.g., process) causing the respective trigger event. In some einbodifnents, the
entity evaluator may determine the identity of the software entity from a data structure used by
OS 34 to represent each process and/or thread currently in execution. For instance, in Windows,
‘each procesis is represented as an executive process block (EPROCESS), which comprises,
among othefs, handles to each of the threads of the respective process, and a unique process ID
allowing OS 34 to identify the respective process from a plurality of executing processes.

Similar process/thread representations are available for other OSs, such as Linux.

[0050] In a step 308, the entity evaluator may formulate an evaluation indicator, including an
identifier (e.g., process ID) of the respective software entity and an indicator of the kind of
action/event performed by the respective software entity and intercepted in steps 302-304. In
some embodiments, thé'entity evaluator may determine a type of action and/or behavior of the
respective software enﬁty, from parameters of the intercepted trigger event. In an example of
operation, when a process attempts to download a file from the Internet, user-level entity
evaluator 50a may intercept the attempt. Beside identifying which prdcess is performing the
action, evaluator 50a may also’determine the type of action (downloading a‘file)r, the IP-address
that the file is downloaded from, and the disk location of the downloaded file, among others.
Such data may be selectively incorporated into the evaluation indicator, allowing scoring
engine 38 to determine that entity X has performed action Y, with parameters Z. In a step 310,

the entity evaluator transmits the evaluation indicator to scoring enginb 38.

{0051} In sorﬁe embbdimehts, scoring engine 38 and/or entity management module 37 maintain
a centralized knowledgebase of evaluated software entities, such as processes and threads
executing on host system 10 (or VM 32). Fig. 8 shows a set of evaluated entities 70c-e, each
fepresented as an exemplary entity scoring object (ESO) 74a-c, respectively. Each ESO
comprises a plurality of data fields, some of which are illustrated in Fig. 8. Such fields may
include a unique entity identifier (EID) 76a, a plurality of evaluation scores 76b, and an
aggregate score 76d. In some embodiments, evaluation scores 76b are determined by engine 38
according to evaluation indicatbrs 52a-d received from individual entity evaluators. Each such
~ score may be determined according to an evaluation criterion, identified by indicators 76c¢. In

some embodiments, evaluation scores 76b have a one-to-one correspondence with evaluation

15



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

criteria 76c¢, so that each score is attributed according to the respective criterion. For instance, a
particular criterion Cy may comprise determining whether the evaluated entity downloads a file
from a computer network such as the Internet. In one such example, the respective score Sy may

be awarded only if the evaluated entity attempts a download.

[0052] In some embodiments, ESO 74a may further comprise a set of flags 76e. Some flags 76e
may be binary indicators (e.g., 0/1, yes/no). In one such example, a flag indicates whether the
respective evaluated entity E; satisfies a particular evaluation criterion (e.g., whether E; is an
executable file downloaded from the Internet, whether £; runs in command line mode, etc.).
Another exemplary flag is indicative of a classification of entity E;, e.g., an indicator that £,
belongs to a particular category of objects, such as Trojan malware, browser objects, PDF reader
applications, etc. An exemplary use of flags comprises a situation wherein an update of an
evaluation score §; of entity E; triggers an update of another evaluation score S; of E; (see
below). Flags may be used to turn such co-update mechanisms on and off. For instance, it may
be known that when E; satisfies evaluation criterion C; (e.g., if the entity performs a particular
action),Aentity E; is also likely to satisfy criterion C;. Therefore, a ﬂag F; indicating the
connection <C;, Cj> may be set for éntity E;, triggering an update of score S; when score Siis

updated.

[0053] ESO74a may further include a termination indicator 76f, indicating whether the
respective entity is curfently active or terminated. Such termination indicators may allow
scoring engine 38 to keép records of and/or update scores of termiﬁated entities. ESO 74a may
further include a set of identifiers of software entities related to the respective entity Ej;.
Examples of such related software entities may comprise a parent entity of E;, denoted by
identifier 76g, and a set of children entities of £ 1', denoted by identifier 76h. ESO 74a may
further comprise a set of indicators of injection target entities (items 76j), identifying softwaie
entities into which E; has injected code, and further a set of indicators of injectibn source entities

(items 76K), identifying software entities which have injected code into E;.

[0054] In some embodiments, scoring of evaluated software entities proceeds accdrding to a set
of score values and further according to additional parameters. Fig. 9 illustrates such data,

wherein a set of score values is denoted by item 80. Score values are indexed by their

16



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

corresponding evaluation criteria C;,...C,. Each such value may represent, for instance, a
predetermined number of points that an evaluated entity receives if it satisfies the respective
evaluation criterion (e.g., if it downloads a file from the Internet, if it writes to a MS Word®

document, etc.).

[0055] Exemplary parameters controlling scoring include a set of initialization weights 82a, a set -
of propagation weights 82b, a set of new instance weights 82¢, a set of exception weights 82d,
and a set of flag-induced weights 82e. Weights 82a-e are indexed by the evaluation criteria
Cy1,...C,. Some type of weights are in a one-to-one correspondence with evaluation criteria, so
that there is one weight value w; for each Ci. Other types of weights are in a one-to-many
correspondence with evaluation criteria. One such example is exception weights 82d in Fig. 9,
wherein there may be a plurality of weights w;; corresponding to a particular evaluation criterion
C;. Weights may be grouped by classes or categories of entities, as illustrated by the example of
Fig. 9; for instance, there may be a first weight value applicable to word pracessing applications
(e.g., MS Word®), a second weight valﬁe' (possibly distinct from the first) applicable to web
browsers (e.g., Firefox® and MS Internet Expolrer®), and a third weight value applicable to file
manager applications (e.g., Windows Explorer®). Distinguishing among different categories of
_ entities may be useful, since some evaluation criteria may be more malware-indicative for one
category of entities than for others. More generally, each scoring weight may be indexed by a
tuple <C;,Ey,...>, wherein C; denotes a particular evaluation critefion; and wherein £, denotes a
particular evaluated eniity. The actual data format for storing and accessing scoring
weights 82a-e may vary among embodiments. Weights 82a-e may be stored as matrices, lists,
relational databases (RDB), or extensible markup language (XML) structures, among others. An

exemplary use of weights for scoring will be discussed below.

[0056] Score values 80 and/or weights 82a-e are predetermined, for instance by a human
operator. In some embodiments, such values may change in time, and may be adjusted to
optimize malware detection. Updated score values and/or weight values may be delivered to
host system 10 as periodic and/or on-demand software updates from a security server (see below,

in relation to Figs. 10-11).

17



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

[0057] Fig. 10 shows an exemplary sequence of steps executed by scoring engine 38 according
to some embodiments of the'present invention. In a step 302, engine 38 receives an entity
evaluation indicator from an entity evaluator, for instance one of evaluators SOVa-c i Fig. 5. In
some embodiments implementing hardware virtﬁalization, engine 38 may receive the respective
entity evaluation indicator from a component executing outside of the respective virtﬁal machine
(e.g., memory introspection engine 40 in Fig. 5). In a step 304, engine 38 may identify the
: software entity for which the respective entity evaluation indicator was determined, e.g.,
. according' to an entity ID embedded in the respective evaluation indicator (see above, in relation

to Fig. 7).

[0058] Next, scoring engine 38 performs a block of steps 31:8-332, for the entity E identified in
step 304, as well as for other entities related to E. Such related entities may include parent and
child entities of E, injection target entities into which E has injected code, and injection source
entities which have injected code into E, among others. In this manner, each time engine 38
receives an evaluation indicator (indicating, for instance, that entity E has performed a particular
action), block 318-332 may e_xecut‘e‘several times, updating not only the evaluation scores of
entity E, but also the evaluation scores of entities related to £. In some embodiments, block 318-
332.is executed once for E and once for each entity E* related to E. In alternative embodiments,
block 318-332 is executed recursively, until some convergence criterion is satisfied. An
exemplary convergence criterion comprises verifying whether evaluation scores of £ and/or £*
change between successive executions of block 318-332, and exiting when there is no such
change. In the exémplary algorithm of Fig. 10, the variable X is used to indicate the entity

currently undergoing score updates. In a step 316, X is set to the entity E identified in step 304.

[0059] In a step 318, engine 38 updates evaluation scores of entity X (e.g., entities 76b in Fig. 8). |
In some embodiments, updating an evaluation score comprises replacing a recorded value of the

respective evaluation score with a new value: .
Sk(x) —> Sk(X) + AS/(, ‘ [1]

wherein $;* denotes the evaluation score determined for entity. X according to evaluation
criterion Cy, and wherein A4S, denotes an increment, which may be positive or negative (in some

embodiments, evaluation scores may decrease upon update).
18



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

[0060] In some embodiments, the score increment AS; is determined by scoring engine 38
according to the evaluation indicator received in step 312. The respective indicator may include
a score and/or indicate an evaluation criterion used in determining the respective indicator. In
some embodiments, scorihg engine 38 determines the score increment AS; according to score

value 80 corresponding to the respective evaluation criterion Cy (see Fig. 9), for instance:
ASi= Vi | [2]

wherein wherein V; denotes score value 80 assigned to criterion C;. In one such example,
wherein criterion Cy comp‘rises determining whether entity X downloads an object from the

@ will be increased by 20 points every time

network, and wherein V;=20, the evaluation score S
“entity X performs a download. In some embodiments, AS, = ¢ Vj, wherein ¢ is a binary exception
weight (see e.g. items 82d in Fig. 9), forcing score Sy to be updated only for a subset of evaluated
entities. Such exception weights are useful, for example to distinguish between various types of
_evalu_atéd entities. For instance, a browser should be allowed to access an unlimited number of
IP addresses without rising suspicion of malware; an evaluation criterion including detecting
Internet access may effectively be switched off for browser objects by setting the exception
weight to O for entities of the browser type, while keeping it active (¢ =1) for other 'types of

entities.

[0061] In some embbdimenté, the score increment ASy used in updating the evaluation score of
. entity X is determined according to an evaluation score determined for an entity X* related to X,
i.e., scores may propagate from one entity to a related entity, such as from a child to a parent, or
from an injection target to the source of the injection. In one such example, an action performed.
by a child process may trigger an update not only of a score of the entity performing the action
(the child process), but also of a score of the parent process of the respective child process. Such

score updates may comprise computing the score increment according to:
X* ]
ASk = Wy Sk( ), [3 ]

wherein wy denotes a numerical, criterion-specific weight, indicating a strength with which the
score of entity X* affects the score of entity X. Weights w; may include propagation weights 82b
(Fig. 9). Some embodiments distinguish- among a variety of such propagation weights, for

19



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

instance weights used to propagate scores from a child entity to a parent entity may differ in
value from weights used to propagate scores from the parent entity to the child entity. Similarly,
weights used to propagate scores from the child entity to the parent entity may differ in value
from weights used to propagate scores from an entity targeted for code injection to the entity
performing the code injection. In some embodiments, scores may propagate from active entities
to terminated entities. For instance, an action of a child process may increment the score of the

parent process, even when the parent process is terminated.

[0062] In some embodiments, entity X* in Eqn. [3] is another instance of entity X. For example,
X and X* may be copies of the same process or thread, executing concurrently. In such cases,
weight wy may be a new instance weight (e.g., item 82c in Fig. 9), or an initialization weight -
(e.g., item 82a). In some embodiments, when a new instance X’ of the entity X is launched,
engine 38 may update some or all evaluation scores of the existing entity X, using new instance
weights wy to propagate scores from X to X’. Similarly, when X~ is launched, engine 38 may
update some.or all evaluation scores of X', using initialization weights wy propagate scores from

the already executing entity X to the new entity X .
X ) " .

[0063] In some embodiments, updating an evaluation score S, may ‘t'riggér an update of a distinct

evaluation score S, of the respective entity. For instance,
S >8P+ v, triggers Sn” =S + FY fo Vi [4]

wherein F is a flag set for entity X (see e.g., items 76¢ in Fig. 8), the flag indicative of a
connection between evaluation criteria C; and C,,, and wherein fj,, is a flag-induced weight (see
e.g., item 82e in Fig. 9), indicating a strength with which the update of S influences the update

of S,, of entity X

[0064] In a step 320, scoring engine 38 may update flags of entity X (see discussion on flags
above, in relation to F1g 8), according to the evaluation indicator received in step 312. Flags
may be set to activate and)or de-activate score co-updating mechanisms, such as described
above, in relation to Eq. [4]. In one such example, an evaluated entity might be identified as
béing a web browser application according to the evaluation in_diéat‘or (step 312); such

identification should indicate to scoring engine 38 not to score the respective entity for future

20



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

downloads from the Internet. This may be achieved by setting the value of a specific flag F to 0
for the respective entity, wherein flag F indicates to scoring engine 38 to update an evaluation

* score of the respective entity, when the entity downloads an object from the Internet.

[0065] In a step 322, scoring engine 38 may determine an aggregate score of entity X by
combining individual evaluation scores determined for the respective process, for instance as a

sum:

AW <[]0 [5]
k

{0066] In a step 324, engine 38 ni_ay compare the aggregate score to a predetermined threshold.
When the aggregate score does not exceed the threshold, scoring engine 38 may proceed to a
step 326 described below. In some embodiments, the threshold may be set to a value determined
according to a user'input. Such threshold values may reflect the respéctive user’.s security
preferences. For instance, when the user opts for tight securiiy, the thfeshold. may be set to a
relatively low value; when the user prefers a more tolerant security setting, the threshold may be
set to a relatively high value. In some embodiments, the threshold value may be received from a

remote security server, as described below in relation to Figs. 10-11.

[0067] In some embodiments, in steps 322-324, scoring engine 38 may determine a plurality of
aggregate Scores, and. compare each aggregate score to a (poesibly distinct) t'hreshold. Each such
‘ aggregate score may be determined according to a distinct subset of evaluati_on scores. In an
exemplary embodiment, each such subSet ef scores, aﬂd their corresponding subset of evaluation
criteria, may'represen_t a particular class or type of malware (e.g., Trojans, rootkits, etc.). This
may allow engine 38 to perform a classification of the detected malware. In another
embodiment, scoring engine 38 employs a plurality of threshold values in order to classify the
“execution entities according to various degrees of maliciousness (e.g. clean, suspicious,

dangerous and critical).

[0068] When the aggregate'seore exceeds the threshold, in a step 326, engine 38 may decide that
the evaluated process is malicious, and may take anti-malware action. In some embodiments,

‘such anti-malware action may include, among others, terminating the evaluated process,

.21



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

quarantining the evaluated process, and removing or disablirig a resource (such as a file or a
section of memory) of the evaluated process. In some embodiments, anti-malware action may
further comprise ‘alerting a user of host system 10, and/or alerting a system administrator, for
instance by sending a méssage to the system administrator over a computer network connected to
host system 10 via network adapter(s) 22. In some embodiments, anti-malware action may also
comprise sending a security report to a remote security server, as described below in relation to

Figs. 10-11.

[0069] In a sequence of Steps 328-330, engine 38 may identify an entity X* related to X, wherein
scores of X* need updating following the current score updates of X. For instance, X* may be a
parént or a child entity of X. In some embodiments, entities X* may be identified according to
fields 76g-k of the ESO of entity X (see, e.g., Fig. 8). When no such entities X* exist, or when all
such entities X* have already been considered for score updates, engine 38 returns to step 312.
When there is at least an entity X*, in a step 332 scoring engine makes X* the current entity and

returns to step 318.

- [0070) The exemplary scoring engine 38 depicted in Figs. 3-4 operates within VM 32 at OS
processor privilege level (e.g., kernel mode). In alternative embodiments, scoring éngine 38 may
execute within VM 32 in user mode, or even outside VM 32, at the processor privilege level of

- hypervisor 30.

[0071] In some embodiments, introspection engine 40 executes substantially at the same
privilege level as hypervisor 30, and is configured to perform introspection of virtual machines
“such as VM 32 (Fig. 3). Intfospection of a VM, or of a software entity executing on the
respective VM, may comprise analyzing a behavior of the software entify, dretermining and/or
accessing memory addresses of such entities, restricting access of certain processes to a content
of memory located at such addresses, analyiing such content, and determining evaluation

indicators of the respective entities (e.g., indicator 52d in Fig. §), among others.

[0072] In some embodiments, host system 10 may be configured to exchange security
information, 4such as details about malware detectioh events, with a remote security server.
Fig. 11 illustrates such an exemplary configuration, in which a plurality of host systems 10a-c,
'such as system 10 discussed above, are connected to a security server 110 via a computer

22



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

network 26. In an exemplary embodiment, host systems 10a-c are individual computers used by
employees of a corporation, while security server 110 may comprise a computer system
configured by a network administrator of the respective corporation to monitor malware threats
or security events occurring on systems 10a-c. In- another embodiment, for instance in an
Infrastructure-as-a-service (IAAS) system wherein each host system 10a-c is a servér hosting
“tens or hundreds of virtual machines, securify server 110 may comprise a computer system
configured to manage anti-malware operations for all such VMs from a central location. In yet
another embodiment, security server 110 may comprise a computér system configured by a.
pfovider of anti-malware software (e.g., the provider of security application 44, among others),
to receive statistical and/or behavioral data about malware detected on various systems around
network 26. Network 26 may include a wide-area network such as the fnternet, while parts of

network 26 may include local area networks (LAN).

[0073] Fig. 12 shows an eXemplary data exchange between host system 10 and security
server 110 in an embodiment as shown in Fxg 11. Host system 10 may be configured to send a
- security report 80 to server 110, and to receive a set of security settings 82 from server 110. In
some embodiments, security report 80 comprises entity evéluation indicators 52a-d and/or-scores
determined by entity evaluators 50a-c and/or 40, executing on host system 10, and/or aggregate
scores determined by scoring engine 38, among others. Security report 80 may also comprise
data identifying the respective system 10 and evaluated entities (e.g., entity IDs, names, paths,
hashes, or other kinds of entity identifiers), as well as indicators associating an entity evaluation-
indicator/score to the host system.and entity for which.it was determined. In some embodiments,
‘report 80 may further comprise statistical and/or behévioral data regarding entities executing on
host system 10. System 10 may be configured to send report 80 upon detection of malware,

and/or according to a schedule (e.g., every few minutes, every hour, etc.).

[0074] In some émbodiments, security settings 82 may include operational parameters of entity
evaluators (e.g., parameters of filters 50a-c in Fig. 5), and/or parameters of scoring engine 38.
Exemplary parameters .of engine 38 include the threshold for deciding whether an evaluated

process is malicious, as well as score values 80 and weights 82a-e, among others.

23



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

[0075] In some embodiments, server 110 runs an optimization algorithm to dynamically adjust
such parameters to maximize malware-detection performance, for instance to increase detection
rate while minimizing false positives. Optimization algorithms may receive statistical and/or
behavioral data about various entities executing on the plurality of host systems 10a-¢, including
entity evaluation indicators/scores reported to scoring engine 38 by various entity evaluators, and
determine optimal values for the parameters. The values are then transmitted to the respective

host systems via network 26.

[0076] In one such example of optimization, changing score values 80 may effectively change
the relevance of the respective evaluation criteria, relative to each other, Malware threats
typically occur in waves, in which a great number of computer systems worldwide are affected
by the same malware agent in a short time interval. By receiving security reports 80 in real time
from a plurality of host systems, security server 110 may be kept up to date with the current
malware threats, and may promptly deliver optimal security settings 82 to the respective host
systems, settings 82 including, for instance, a set of score values 80 optimized for detecting the

current malware threats.

[0077) The exemplary systems and methods described above allow protecting a host system,
such as a computer system, from malware such as viruses, Trojans, and spyware. For each of a
plurality of executable entities, such as processes and threads currently executing on the host
system, a scoring engine records a plurality of evaluation scores, each score determined
according to a distinct evaluation criterion. In some embodiments, evaluated software entities
may vary substantially in scope and complexity, for instance from individual execution threads,

to individual applications, to whole instances of operating systems and/or virtual machines.

[0078] Every time a monitored entity satisfies an evaluation criterion (e.g, performs an action),
the respective score of the entity is updated. Updating a score of a target entity may trigger score
updates of other entities related to the target entity. Such related entities include, among others.
children of the target entity, the parent of the target entity, entities into which the target entity has

injected code, and entities which have injected code into the target entity.

[0079] Conventional anti-malware systems typically score each entity separately from other
entities. Some malware may try to evade detection by dividing malicious activities among

24



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

several distinct agents, such as children processes of a malicious process, so that none of the
individual agents performs sufficient malware-indicative activity to be detected. In contrast,
some embodiments of the present invention propagate scores from one entity to other related
entities, thus corroborating malware-indicative data across related entities. Score propagation

may ensure that at least one of the agents involved in malicious activities is detected.

[0080] In one exemplary evasion strategy, a malware agent may spawn a plurality of child
processes and quit. Malicious activities may be divided among child processes, such that the
actions of no individual child may trigger a malware alarm on their own. In some embodiments
of the present invention, scores may propagate from one entity to another, even when the latter is
terminated. Such a configuration may detect the parent process as malicious, even if it may fail
to detect maliciousness of the child proceéses. Some embodiments maintain a list of entities
currently under evaluation; the list may include both active and terminated entities. An entity

may be taken off the list only when all descendants of the respective entity are terminated.

[0081] In conventional anti-malware systems, only one score is typically recorded for each
entity. By keeping a plurality of per-entity scores, each computed according to its distinct
criterion, some embodiments of the present invention allow scores to be propagated among
related entities on a per-criterion basis. Such scores may either increase or decrease upon
propagation, allowing a more precise assessment of maliciousness throughout the life cycle of
each entity, with fewer false positive detections. In some embodiments, the extent to which
scores of one entity affect scores of a related entity is adjustable via a numerical propagation
weight. Such weights may differ from one entity to another and/or from one evaluation criterion
to another, allowing a flexible and precise tuning of score propagation. Weight values may be
determined by human operators and/or be subject to automated optimization aimed at improving

malware detection performance.

[0082) Some conventional anti-malware systems determine whether an evaluated entity is
malicious by determining whether the respective entity performs a malware-indicative behavior,
and/or whether the entity has malware-indicative features, such as a malware-indicative sequence
of code. In contrast, in some embodfments of the present invention, entity evaluation criteria are

not necessarily malware-indicative on their own. For instance, some criteria include determining

2§



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

whether an entity performs benign actions such as opening a file or accessing an IP address.
Nevertheless, such actions may be malicious when combined with other actions, which
themselves may not be malware-indicative on their own. By monitoring a wide variety of entity
behaviors and/or features, subsequently recording a large number (possibly hundreds) of
evaluation scores, and aggregating such scores in a per-entity fashion, some embodiments of the

present invention may increase detection rates, while minimizing false positives.

[0083] Some embodiments of the present invention may protect a virtualized environment. In an
embodiment configured to support virtualization, some components of the present invention may
execute within a virtual machiine, whereas others may execute outside the respective virtual
machine, for instance at the level of a hypervisor exposing the respective virtual machine. Such
components executing at hypervisor level may be configured to perform anti-malware operations

for a plurality of virtual machines executing concurrently on the respective host system.

[0084] It will be clear to one skilled in the art that the above embodiments may be altered in
many ways without departing from the scope of the invention. Accordingly, the scope of the

invention should be determined by the following claims and their legal equivalents.

26



Claims

What is claimed is:

1. A host system comprising a memory unit storing instructions which, when executed by
at least one hardware processor of the host system, cause the host system to form an
entity management module, an entity evaluator, and a scoring engine, wherein:
the entity management module is configured to manage a collection of evaluated

software entities, wherein managing the collection comprises:

identifying a set of descendant entities of a first entity of the collection;

determining whether the first entity is terminated,

in response, when the first entity is terminated, determining whether all
members of the set of descendant entities are terminated; and

in response, when all members of the set of descendant entities are terminated,
removing the first entity from the collection;

the entity evaluator is configured to:

evaluate the_ first entity according to an evaluation criterion; and

in response, when the first entity satisfies the evaluation criterion, transmit an
evaluation indicator to the scoring engine; and

the scoring engine is configured to:

record a first score determined for the first entity and a second score determined
for a second entity of the collection, the second entity being related to
the first entity, the first and second scores determined according to the
evaluation criterion; |

in response to recording the first and second scores, and in response to
receiving the evaluation indicator, update the second score according to
the evaluation indicator;

in response, determine whether the second entity is malicious according to the
updated second score;

in response to receiving the evaluation indicator, update the first score
according to the evaluation indicator; and

in response, determine whether the first entity is malicious according to the

updated first score.

27

CA 2931325 2020-01-07



2. The host system of claim 1, wherein the first entity is a child of the second entity.
3. The host system of claim 1, wherein the second entity is a child of the first entity.

4. The host system of claim 1, wherein the first entity comprises a section of code injected

by the second entity.

5. The host system of claim 1, wherein the second entity comprises a section of code

injected by the first entity.

6. The host system of claim 1, wherein updating the second score comprises changing the
second score by an amount determined according to w » S, wherein S is the first score,

and wherein w is a numerical weight.

7. The host system of claim 1, wherein managing the collection of evaluated software
entities further comprises:
intercepting a launch of a new software entity; and

in response, adding the new software entity to the collection.

8. A non-transitory computer-readable medium storing instructions, which, when
executed, configure at least one processor of a host system to:
manage a collection of evaluated software entities, wherein managing the collection
comprises:
identifying a set of descendant entities of a first entity of the collection;
determining whether the first entity is terminated;
in response, when the first entity is terminated, determining whether all
members of the set of descendant entities are terminated; and
in response, when all members of the set of descendant entities are terminated,
removing the first entity from the collection,
record a first score determined for the first entity and a second score determined for a
second entity of the collection, the second entity being related to the first entity

2

the first and second scores determined according to an evaluation criterion;

28

CA 2931325 2020-01-07



in response to recording the first and second scores, evaluate the first entity according
to the eyaluation criterion;

in response to evaluating the first entity, when the first entity satisfies the evaluation
criterion, update the second score; |

in response to updating the second score, determine whether the second entity is
malicious according to the updated second score;

in response to evaluating the first entity, when the first entity satisfies the evaluation
criterion, update the first score; and

in response, determine whether the first entity is malicious according to the updated

first score.

9. The computer-readable medium of claim 8, wherein the first entity is a child of the

second entity.

10. The computer-readable medium of claim 8, wherein the second entity is a child of the

first entity.

11. The computer-readable medium of claim 8, wherein the first entity comprises a section

of code injected by the second entity.

12. The computer-readable medium of claim 8, wherein the second entity comprises a

section of code injected by the first entity.

13. The computer-readable medium of claim 8, wherein updating the second score
comprises changing the second score by an amount determined according tow s S,

wherein S is the first score, and wherein w is a numerical weight.

14. The computer-readable medium of claim 8, wherein managing the collection of
evaluated software entities further comprises: '
intercepting a launch of a new software entity; and

in response, adding the new software entity to the collection.

29

CA 2931325 2020-01-07



15. A method comprising employing at least one processor of a host system to:
manage a collection of evaluated software entities, wherein managing the collection
comprises:
identifying a set of descendant entities of a first entity of the collection;
determining whether the first entity is terminated;
in response, when the first entity is terminated, determining whether all
members of the ‘set of descendant entities are terminated; and
in response, when all members of the set of descendant entities are terminated,
removing the first entity from the collection;

record a first score determined for the first entity and a second score determined for a
second entity of the collection, the second entity being related to the first entity,
the first and second scores determined according to an evaluation criterion;

in response to recording the first and second scores, evaluate the first entity according
to the evaluation criterion;

in response to evaluating the first entity, when the first entity satisfies the evaluation
criterion, update the second score;

in response to updating the second score, determine whether the second entity is
malicious according to the updated second score;

in response to evaluating the first entity, when the first entity satisfies the evaluation
criterion, update the first score; and

in response, determine whether the first entity is malicious according to the updated

first score.

30

CA 2931325 2020-01-07



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027
Y 12 24 —~ 14 ~
i /
Processor Memory
A
16 . , 18
Input devices Output devices
20 ‘ _ Network \
Storage deﬁces Buses adapter(s) ﬂ : 22
Host system- )
10
FIG. 1
. : 44
42a 42b 42c
App. App. App. Security 34
o App.
Guest OS
10 Host system hardwate

FIG. 2-A



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

2/10

2a 32b
Guest virtual machine Guest virtual machine
42d 42e 42f /
App. App. 34a App. Security | 34b
App.
Guest OS Guest OS
30
o 40
Hypervisor : Me”.’o” ,
introspection engine
10 Host system hatdware
FIG. 2-B
. 42g 44 50a
(imal T C 1N { |
machine ' ~
: Application Uset-level ] Security User-level |
| Loy tores entity evaluator application entity evaluator :
| Llrer dece , |
l f#/ 4 L |
} Kerveel teved 36 50b Pl - (37 ‘I, \\\38 B :
- 7~
| , < ; - |
! 34 Operating Anti- Kernel-level Enuty Scoring l
: System malware entity evaluator mgm. enm’né |I
| oy driver cntty cvatuato module © |
| ]
Roor teved
Hypervisor Memory introspection engine
32
30 40)

FIG. 3



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

3/10

Listen for entity
life cycle events

Event
occurred?

254

Identity
triggering entity 258

Add new entity
to collection

) ) 262
Spa\\’ﬂéd ‘ Add child entity 262
child entity? to collection

TN X
- 2006

' ‘Code Register code injection

injection? relation

270

Identity descendants

All
descendants
terminated?

274

Remove entty
from collection

F1G. 4



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

4/10

Virtual machine

38w

!

[

l

:

4 [

50b | Kernel-level Evaluation >2b : Scoring :
: entity evaluator indicator | | engine |
| , |
: !

|

|

!

|

Evaluation 52a
indicator

50a | User-level
entity evaluator

Evaluation
indicator

: System call
I evaluator
|

e e e e )
: ‘ Evaluation J .
52d

[ indicator
407N -

Memory introspection engine

FIG. 5



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027
2
72b 72c
702 Process 1 Process 2
DLL DLL DLL
Vsl 1
=== *
~ o\ > 20b
72a User-level entity evaluator

50a

#

 kernel32.dll ( CreateFile(), WriteFile(), OpenProcess() ...

ndlil.dll  ( ZwCreateFile( ), ZwWriteFile( ), ZwOpenProcess() ... )

Lirer teved
Kerwel toved

\N SYSCﬂth

MSR

{

System call
evaluator

50b

File system driver

KiSystemService( ) KiFastCalEntry() o
with SSDT list i
— \\ =
\ z )
] Kernel-level NT Kernel:

NT Kernel: entity ObjectManager,

FltMgr.sys evaluator ProcessManager,
- - ConfigurationManager

(Virtualized) hardware:
memory, storage, network adapters ...

FIG. 6

50c¢



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

6/10

Start

302 Listen for trigger event

NO

Trigger event detected?

306 Identify entity £
308 Determine eval. indicator of entity £
/\
310 Transmit eval. indicator
of entity £ to scoting engine

FIG. 7



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

742
Entity scoring
X ESO: ESO:
obiect (ESO) 1 S ?
Tda
\
//- EID
76&1/, S S Sn
76b - Ci Ca Ca
.
6(://. A
76d
/> b F P
T6e
/ !
76§ .
76 .
& o|Em©@| EID:©
T
76h © ®
/» EID: EID:
761 / EID:® | EID:®
76k

FI1G. 8



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

8/10

8()‘\ | 823N | 82b\ | 82c\ 82d\ 826\

Scote Initalizatton  Propagation  New instance  Exception Flag-induced
values weights weights weights weights weights
Cr— | 10 0.08 0 oot 1 I <...>=01
C =125 0 0.05 0.01 0 <...>=025
Ci—=— 1] 8 0.1 0.1 0.05 0
Cn - | 12 0.03 0 0.01 {
'=J )
Eval.
criteria
C — 1 1 1 0
Cy —— 0 1 0 1
Cy ——— 0 0 0 0
Co — 1 0 1 0
Entity Entity
group 1 gIOUp L

FI1G. 9



CA 02931325 2016-03-22

WO 2015/050469 PCT/R0O2014/000027
312 Receive entity eval. indicator
Identify evaluated entity & 314
according to entity
evaluation indicator
316
X=F
__________________________________________ §
318
326
Update scores of entity X Take anp-malwgre acton
] against entity X
320
‘ Identify entity X* related to X,
Update flags of entity X wherein scores of X*nced to
be updated because of update of X
322
Compute aggregate score
of entity X
324
Score
of X exceeds X =X
threshold?
" 332

\J

PN |



CA 02931325 2016-03-22

WO 2015/050469 PCT/RO2014/000027

10/10

Host system 26

110

Host system Security server

10c

Host system

FIG. 11

80
’ )
/L Security report J\
' ' ’ 110
| 82
Host system > Security server

Security settings

FIG. 12



go\ 822 \ sz\ SZCN s:d\ 82&\‘

Scote Initialization Propagation New instance  Exception  Flag-induced

values weights weights weights weights weights
Ci—~ t €...> =01
Cr - 0 <> =025
Cy =~ 0

(S

|

Eval.
criteria
\ Ct 1 1 1 0
C 0 1 a 1
Ca a 0 0 0
Ca 1 0 1 0
d Entity
Enyy group 2

group 1



	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - ABSTRACT
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - CLAIMS
	Page 31 - CLAIMS
	Page 32 - CLAIMS
	Page 33 - CLAIMS
	Page 34 - DRAWINGS
	Page 35 - DRAWINGS
	Page 36 - DRAWINGS
	Page 37 - DRAWINGS
	Page 38 - DRAWINGS
	Page 39 - DRAWINGS
	Page 40 - DRAWINGS
	Page 41 - DRAWINGS
	Page 42 - DRAWINGS
	Page 43 - DRAWINGS
	Page 44 - REPRESENTATIVE_DRAWING

