发明名称
用于发送和接收具有可变数据传输率的OFDM符号的OFDM发送/接收装置及其方法

摘要
提供一种OFDM发送装置，其将OFDM符号发送到至少一个接收装置。所述装置包括：OFDM发送处理单元，用于产生多个OFDM符号；导频插入单元，用于将导频插入每个OFDM符号；以及控制单元，用于根据从多个导频插入图案中确定的相应于通信环境的导频插入图案来控制导频插入单元插入导频。因此，可获得适合通信环境的数据传输率。
1. 一种正交频分复用 OFDM 发送装置，其将 OFDM 符号发送到至少一个接收装置，所述 OFDM 发送装置包括：

 OFDM 发送处理单元，用于产生多个 OFDM 符号；
 导频插入单元，用于将导频信号插入所述多个 OFDM 符号中的每一个；以及
 控制单元，用于根据从多个导频插入单元中选择的相应于通信环境的导频插入单元来控制导频插入单元插入导频信号，并经所述多个 OFDM 符号中的至少一个 OFDM 符号中的数据向所述至少一个接收装置通知关于选择的导频插入单元的信息。

2. 如权利要求 1 所述的 OFDM 发送装置，其中，如果静态通信环境被建立，其中，至少一个接收装置在被固定于某处的同时接收多个 OFDM 符号，则控制单元控制导频插入单元仅将导频信号插入所述多个 OFDM 符号中的某些 OFDM 符号。

3. 如权利要求 1 所述的 OFDM 发送装置，其中，如果动态通信环境被建立，其中，至少一个接收装置在移动的同时接收多个 OFDM 符号，则控制单元控制导频插入单元将导频信号插入所述多个 OFDM 符号中的每一个。

4. 如权利要求 1 所述的 OFDM 发送装置，控制单元从第一导频插入单元、第二导频插入单元、第三导频插入单元和第四导频插入单元中选择一导频插入单元，并根据选择的导频插入单元来控制导频插入单元插入导频信号，其中，在第一导频插入单元中，导频信号仅插入所述三个 OFDM 符号中的一个 OFDM 符号，在第二导频插入单元中，导频信号仅插入所述三个 OFDM 符号中的两个 OFDM 符号，在第三导频插入单元中，导频信号仅插入所述五个 OFDM 符号中的四个 OFDM 符号，在第四导频插入单元中，导频信号仅插入所述多个 OFDM 符号中的所有 OFDM 符号。

5. 如权利要求 4 所述的 OFDM 发送装置，还包括：

 存储单元，用于存储关于第一到第四导频插入单元的信息；
 输入单元，用于输入关于通信环境的信息；

其中，控制单元选择相应于从输入单元接收的关于通信环境的信息的导频插入单元，导频插入单元从存储单元读取关于选择的导频插入单元的信息，并基于读取的信息来插入导频信号。

6. 如权利要求 1 所述的 OFDM 发送装置，其中，导频插入单元每 12 个音将每个导频信号插在单个 OFDM 符号上，从而 OFDM 符号上的导频信号与先前 OFDM 符号上的导频信号间隔三个音。

7. 如权利要求 6 所述的 OFDM 发送装置，其中，控制单元根据通信环境的类型控制导频插入单元仅在所述多个 OFDM 符号中的某些 OFDM 符号上将每个导频信号插入每个预设的导频插入位置。

8. 如权利要求 1 所述的 OFDM 发送装置，其中，导频插入单元每 n 个音将每个导频信号插入单个 OFDM 符号，从而所述 OFDM 符号上的导频信号与先前 OFDM 符号上的导频信号间隔 m 个音，其中，n 和 m 是自然数。

9. 如权利要求 8 所述的 OFDM 发送装置，其中，控制单元根据通信环境的类型调整 n 和 m 中的至少一个来改变导频插入单元。

10. 如权利要求 8 所述的 OFDM 发送装置，其中，如果 n 和 m 是固定值，则控制单元根据通信环境的类型控制导频插入单元仅在所述多个 OFDM 符号中的某些 OFDM 符号上将每个导频信号插入每个预设的导频插入位置。
11. 一种正交频分用 OFDM 发送方法，其将 OFDM 符号发送到至少一个接收装置，所述
OFDM 发送方法包括：

产生多个 OFDM 符号；

根据与所述至少一个接收装置的通信环境的类型从多个导频插入图案中选择一导频
插入图案；

根据选择的导频插入图案将导频音插入所述多个 OFDM 符号中的每一个；以及

将所述多个 OFDM 符号发送到所述至少一个接收装置，并且，经由所述多个 OFDM 符号中
的至少一个 OFDM 符号中的数据音向所述至少一个接收装置通知关于选择的导频插入图案
的信息。

12. 如权利要求 11 所述的 OFDM 发送方法，其中，所述选择步骤包括：如果静态通信环
境被建立，其中，至少一个接收装置在被固定于某处的同时接收多个 OFDM 符号，则选择仅
将导频音插入所述多个 OFDM 符号中的某些 OFDM 符号的导频插入图案。

13. 如权利要求 11 所述的 OFDM 发送方法，其中，所述选择步骤包括：如果动态通信环
境被建立，其中，至少一个接收装置在移动的同时接收多个 OFDM 符号，则选择将导频音插
入所述多个 OFDM 符号中的每一个的导频插入图案。

14. 如权利要求 11 所述的 OFDM 发送方法，其中，所述选择步骤包括：根据通信环境的
类型从第一导频插入图案、第二导频插入图案、第三导频插入图案和第四导频插入图案中
选择一导频插入图案，其中，在第一导频插入图案中，导频音仅被插入每三个 OFDM 符号中
的一个 OFDM 符号，在第二导频插入图案中，导频音仅被插入每三个 OFDM 符号中的两个 OFDM
符号，在第三导频插入图案中，导频音被插入每五个 OFDM 符号中的四个 OFDM 符号，在第四
导频插入图案中，导频音被插入所述多个 OFDM 符号中的所有 OFDM 符号。

15. 如权利要求 11 所述的 OFDM 发送方法，其中，所述插入步骤包括：每 12 个音将每个
导频音插入单个 OFDM 符号，从而 OFDM 符号上的导频音与先前 OFDM 符号上的导频音间隔
三个音。

16. 如权利要求 15 所述的 OFDM 发送方法，其中，所述插入步骤包括：根据通信环境的
类型仅在所述多个 OFDM 符号中的某些 OFDM 符号上将每个导频音插入每个预设的导频插入
位置。

17. 如权利要求 11 所述的 OFDM 发送方法，其中，所述插入步骤包括：根据每个 n 个音将每
个导频音插入单个 OFDM 符号的导频插入图案将导频音插入所述多个 OFDM 符号，从而 OFDM
符号上的导频音与先前 OFDM 符号上的导频音间隔 m 个音，其中，n 和 m 是自然数。

18. 如权利要求 17 所述的 OFDM 发送方法，其中，所述选择步骤包括：根据通信环境的
类型调整 n 和 m 中的至少一个，从多个导频插入图案中选择一导频插入图案。

19. 如权利要求 17 所述的 OFDM 发送方法，其中，所述选择步骤包括：如果 n 和 m 是固
定值，则根据通信环境的类型选择仅在所述多个 OFDM 符号中的某些 OFDM 符号上将每个导
频音插入每个预设的导频插入位置的导频插入图案。

20. 一种正交频分复用 OFDM 接收装置，所述 OFDM 接收装置包括：

接收单元，用于接收多个 OFDM 符号，所述多个 OFDM 符号的数据传输率根据导频插入图
案的改变而变化；

导频插入图案确定单元，用于检测包含在所述多个 OFDM 符号中的导频插入图案信息，
并使用检测的信息来确定在所述多个 OFDM 符号中使用了哪种导频插入图案，以及
OFDM 接收处理单元，用于基于确定的导频插入图案从所述多个 OFDM 符号检测导频音，并处理所述多个 OFDM 符号。

21. 如权利要求 20 所述的 OFDM 接收装置，还包括：
存储单元，用于存储与 OFDM 发送装置共享的导频插入图案信息，
其中，导频图案确定单元从存储单元读取导频插入图案信息。

22. 如权利要求 20 所述的 OFDM 接收装置，其中，如果静态通信环境被建立，其中，OFDM
接收装置在被固定于某处的同时接收多个 OFDM 符号，则接收单元接收多个 OFDM 符号，在所述
多个 OFDM 符号中，仅有某些 OFDM 符号包含导频音，如果动态通信环境被建立，其中，OFDM
接收装置在移动的同时接收多个 OFDM 符号，则接收单元接收多个 OFDM 符号，在所述多个
OFDM 符号中，每个 OFDM 符号均包含导频音。

23. 如权利要求 20 到 22 中的任何一个所述的 OFDM 接收装置，其中，根据从第一导频
插入图案、第二导频插入图案、第三导频插入图案和第四导频插入图案中选择的一导频插入
图案将导频音插入所述多个 OFDM 符号中，其中，在第一导频插入图案中，导频音仅被插入
每三个 OFDM 符号中的一个 OFDM 符号，在第二导频插入图案中，导频音仅被插入每三个 OFDM
符号中的两个 OFDM 符号，在第三导频插入图案中，导频音被插入每五个 OFDM 符号中的四个
OFDM 符号，在第四导频插入图案中，导频音被插入所述多个 OFDM 符号中的每个 OFDM 符号。

24. 如权利要求 20 到 22 中的任何一个所述的 OFDM 接收装置，其中，通过每 12 个音将
每个导频音插入单个 OFDM 符号来设置每个导频插入位置，从而 OFDM 符号上的导频音与先前
OFDM 符号上的导频音间隔三个音，如果根据通信环境的类型仅相对于所述多个 OFDM 符号
中的某些 OFDM 符号跳过导频插入，则在所述多个 OFDM 符号的剩余 OFDM 符号上将每个导频
音插入设置的导频插入位置。

25. 如权利要求 20 到 22 中的任何一个所述的 OFDM 接收装置，其中，通过每 n 个音将每个
导频音插入单个 OFDM 符号来设置每个导频插入位置，从而所述 OFDM 符号上的导频音与先前
OFDM 符号上的导频音间隔 m 个音，其中，n 和 m 是自然数，以及
如果根据通信环境的类型仅相对于所述多个 OFDM 符号中的某些 OFDM 符号跳过导频插入，
则在所述多个 OFDM 符号的剩余 OFDM 符号上将每个导频音插入设置的导频插入位置。

26. 如权利要求 20 到 22 中的任何一个所述的 OFDM 接收装置，其中，通过每 n 个音将每个
导频音插入单个 OFDM 符号来设置每个导频插入位置，从而所述 OFDM 符号上的导频音与先前
OFDM 符号上的导频音间隔 m 个音，其中，n 和 m 是自然数，以及
根据相应于通信环境的类型调整 n 和 m 中的至少一个的导频插入图案来插入导频音。

27. 一种正交频复用 OFDM 接收装置中的 OFDM 接收方法，所述 OFDM 接收方法包括：
接收多个 OFDM 符号，所述多个 OFDM 符号的数据传输率根据导频插入图案的改变而变
化；
检测包含在所述多个 OFDM 符号中的导频插入图案信息，并使用检测的信息来确定在
所述多个 OFDM 符号中使用了哪种导频插入图案，以及
基于确定的导频插入图案从所述多个 OFDM 符号检测导频音，并处理所述多个 OFDM 符
号。

28. 如权利要求 27 所述的 OFDM 接收方法，其中，所述检测和处理步骤包括：读取先前
存储的与 OFDM 传输装置共享的导频插入图案信息。

29. 如权利要求 27 所述的 OFDM 接收方法，其中，所述接收步骤包括：如果静态通信环境被建立，其中，OFDM 接收装置在被固定于某处的同时接收多个 OFDM 符号，则接收多个 OFDM 符号，在所述多个 OFDM 符号中，仅有某些 OFDM 符号包含导频音，以及

如果动态通信环境被建立，其中，OFDM 接收装置在移动的同时接收多个 OFDM 符号，则接收多个 OFDM 符号，在所述多个 OFDM 符号中，每个 OFDM 符号均包含导频音。

30. 如权利要求 27 到 29 中的任何一个所述的 OFDM 接收方法，其中，根据从第一导频插入图案、第二导频插入图案、第三导频插入图案和第四导频插入图案中选择的一导频插入图案将导频音插入所述多个 OFDM 符号，其中，在第一导频插入图案中，导频音仅被插入每三个 OFDM 符号中的一个 OFDM 符号，在第二导频插入图案中，导频音仅被插入每三个 OFDM 符号中的两个 OFDM 符号，在第三导频插入图案中，导频音被插入每五个 OFDM 符号中的四个 OFDM 符号，在第四导频插入图案中，导频音被插入所述多个 OFDM 符号中的所有 OFDM 符号。

31. 如权利要求 27 到 29 中的任何一个所述的 OFDM 接收方法，其中，通过每 12 个音将每个导频音插入单个 OFDM 符号来设置每个导频插入位置，从而 OFDM 符号上的导频音间隔三个音，如果根据通信环境的类型仅相对于所述多个 OFDM 符号中的某些 OFDM 符号跳过导频插入，则在所述多个 OFDM 符号的剩余 OFDM 符号上将每个导频音插入设置的导频插入位置。

32. 如权利要求 27 到 29 中的任何一个所述的 OFDM 接收方法，其中，通过每 n 个音将每个导频音插入单个 OFDM 符号来设置每个导频插入位置，从而所述 OFDM 符号上的导频音间隔 n 个音，其中，n 和 m 是自然数。

如果根据通信环境的类型仅相对于所述多个 OFDM 符号中的某些 OFDM 符号跳过导频插入，则在所述多个 OFDM 符号的剩余 OFDM 符号上将每个导频音插入设置的导频插入位置。

33. 如权利要求 27 到 29 中的任何一个所述的 OFDM 接收方法，其中，通过每 n 个音将每个导频音插入单个 OFDM 符号来设置每个导频插入位置，从而所述 OFDM 符号上的导频音间隔 m 个音，n 和 m 是自然数。

根据相应于通信环境的类型调整 n 和 m 中的至少一个的导频插入图案来插入导频音。
用于发送和接收具有可变数据传输率的 OFDM 符号的 OFDM
发送 / 接收装置及其方法

技术领域

[0001] 本发明涉及正交频分复用 (OFDM) 发送和接收装置及其方法。更具体地说，本发明
涉及发送和接收具有可变数据传输率的 OFDM 符号的 OFDM 发送和接收装置及其方法。

背景技术

[0002] 随着电子技术以及通信技术的发展，数字技术已被引入广播系统领域，并已公布
各种用于数字广播的标准。所述标准的具体示例为面向美国的高级电视系统委员会残留带
(DTV)，标准和面向欧洲的地面数字电视广播 (DVB) 标准。这两个标准在很多方面
（诸如音频压缩的方式以及采用的信道编码）均不相同。具体说来，ATSC VSAT 标准采用
单载波方案，而 DVB-T 标准采用多载波方案。

[0003] DVB-T 标准中采用的多载波方案是正交频分复用 (OFDM) 方案。OFDM 方案被用作
IEEE 802.11a、ETSI HIPERLAN 2、欧洲数字音频广播 (DAB) 和数字电视 (DVB-T) 的标
准。在传统的单载波传输方案中，信息由单个载波携带，这造成信号间干扰的增加，从而也
增加了失真。因此，接收机的均衡器必定比较复杂。为了解决传统单载波传输方案的这些
问题，引入了 OFDM 方案。

[0004] OFDM 方案实现了使用多个载波来发送数据。所述 OFDM 方案能够将串行输入的
数据符号转换为并行数据符号，从而将每个并行符号调制为多个彼此正交的音符号 (tone
signal)，并发送调制的信号。

[0005] OFDM 方案已被广泛地应用于数字传输技术，诸如数字音频广播 (DAB)、数字电视、
无线局域网 (WLAN) 或无线异步传输模式 (WATM)。具体说来，OFDM 方案保持音符号之间的
正交性，这不同于传统多载波方案，因此，OFDM 方案能够在高速数据传输期间获得最佳传输
效率。此外，几乎可使用整个可用频带，并且可减少多径衰落。

[0006] 在 DVB-T 系统中，导频音被插入 OFDM 符号，插入导频音的 OFDM 符号被发送到接收
装置，从而接收装置可执行信道均衡和估计。可根据标准的类型来确定所使用的导频音的
数量。例如，在 2K 快速傅里叶变换 (FFT) 传输模式下可使用 142 个导频音，在 8K FFT 传输
模式下可使用 568 个导频音。导频音的量大约相当于总数据传输量的 8.3%。

[0007] 接收装置检查插入 OFDM 符号的导频音，分析信道的噪声，从而执行信道均衡。根
据接收装置与发送装置之间共享的有规律的导频插入图案将导频音插入 OFDM 符号。

[0008] 传统 DVB-T 系统的优点在于其能够在移动的同时接收信号，这是因为信道估计信
息由于在时间轴上频繁插入导频音而被快速更新。然而，过多的导频插入造成实际发送的
数据量的减少。

[0009] 如果接收装置被固定于某处而几乎不移动，则在接收装置与发送装置之间形成的
信道的时间特性不会有很多改变。

[0010] 然而，即使在这种情况下，在传统 DVB-T 系统中，也不改变导频插入图案，而将导
频音插入 OFDM 符号，因此，不需要地降低了数据传输率。
发明内容
[0011] 技术问题
[0012] 本发明提供正交频分复用（OFDM）发送和接收装置及其方法，其中，所述OFDM发送和接收装置能够收发可变数据传输率的OFDM符号，从而有效地发送数据。
[0013] 本发明还提供正交频分复用（OFDM）发送和接收装置及其方法，其中，所述OFDM发送和接收装置能够在使用被用作OFDM收发器的原始系统的同时通过可变地调整数据传输率来收发数据。
[0014] 技术方案
[0015] 根据本发明的一方面，提供一种正交频分复用（OFDM）发送装置，其将OFDM符号发送到至少一个接收装置，所述OFDM发送装置包括：OFDM发送处理单元，用于产生多个OFDM符号；编码插入单元，用于将编码插入所述多个OFDM符号中的每一个；控制单元，用于根据从多个编码插入差分中选择的相应于通信环境的编码插入差分来控制编码插入单元插入编码。
[0016] 如果静态通信环境（其中，至少一个接收装置在被固定于某处的同时接收多个OFDM符号）被建立，则控制单元可控制编码插入单元仅将编码插入所述多个OFDM符号中的某些OFDM符号。
[0017] 如果动态通信环境（其中，至少一个接收装置在移动的同时接收多个OFDM符号）被建立，则控制单元可控制编码插入单元仅将编码插入所述多个OFDM符号中的每一个。
[0018] 控制单元可从第一编码插入差分、第二编码插入差分、第三编码插入差分和第四编码插入差分中选择一编码插入差分，并可根据选择的编码插入差分来控制编码插入单元将编码插入所述多个OFDM符号中的一个OFDM符号，其中，在第一编码插入差分中，编码插入仅被插入每三个OFDM符号中的一个OFDM符号，在第二编码插入差分中，编码插入仅被插入每三个OFDM符号中的两个OFDM符号，在第三编码插入差分中，编码插入被插入每五个OFDM符号中的四个OFDM符号，在第四编码插入差分中，编码插入被插入所述多个OFDM符号中的所有OFDM符号。
[0019] OFDM发送装置还可包括：存储单元，用于存储关于第一到第四编码插入差分的信息；输入单元，用于输入关于通信环境的信息。控制单元可选择相应于从输入单元接收的关于通信环境的信息的编码插入差分，编码插入单元可从存储单元读取关于选择的编码插入差分的信息，并基于读取的信息来插入编码。
[0020] 编码插入单元可每12个符号将每个编码插入单个OFDM符号，从而OFDM符号上的编码插入单元可与编码插入间隔三个符号。
[0021] 控制单元可根据通信环境的类型控制编码插入单元仅在所述多个OFDM符号中的某些OFDM符号上将每个编码插入位置编码插入每个预设的编码插入位置。
[0022] 编码插入单元可将每个编码插入单个OFDM符号，从而所述OFDM符号上的编码插入可与编码插入间隔m个符号。这里，n和m可以是自然数。
[0023] 控制单元可控制通信环境的类型调整n和m中的至少一个来改变编码插入差分。
[0024] 如果n和m是固定值，则控制单元可根据通信环境的类型控制编码插入单元仅在所述多个OFDM符号中的某些OFDM符号上将每个编码插入每个预设的编码插入位置。
控制单元可经由所述多个OFDM符号中的至少一个OFDM符号中的数据音向至少一个接收装置通知关于选择的导频插入图案的信息。

根据本发明的另一方面，提供一种正交频分复用（OFDM）发送方法，其将OFDM符号发送到至少一个接收装置，所述OFDM发送方法包括：产生多个OFDM符号；根据与所述至少一个接收装置的通信环境的类型从多个导频插入图案中选择一导频插入图案；根据选择的导频插入图案将导频音插入所述多个OFDM符号中的每一个；将所述多个OFDM符号发送到所述至少一个接收装置。

所述选择步骤可包括：如果静态通信环境（其中，至少一个接收装置在被固定于某处的同时接收多个OFDM符号）被建立，则选择仅将导频音插入所述多个OFDM符号中的某些OFDM符号的导频插入图案。

所述选择步骤可包括：如果动态通信环境（其中，至少一个接收装置在移动的同时接收多个OFDM符号）被建立，则选择将导频音插入所述多个OFDM符号中的每一个的导频插入图案。

所述选择步骤可包括：根据通信环境的类型从第一导频插入图案、第二导频插入图案、第三导频插入图案和第四导频插入图案中选择一导频插入图案，其中，在第一导频插入图案中，导频音仅被插入每三个OFDM符号中的一个OFDM符号；在第二导频插入图案中，导频音仅被插入每三个OFDM符号中的两个OFDM符号，在第三导频插入图案中，导频音被插入每五个OFDM符号中的四个OFDM符号，在第四导频插入图案中，导频音被插入所述多个OFDM符号中的所有OFDM符号。

所述插入步骤可包括：每12个音将每个导频音插入单个OFDM符号，从而OFDM符号上的导频音可与先前OFDM符号上的导频音间隔三个音。

所述插入步骤可包括：根据通信环境的类型仅在所述多个OFDM符号中的某些OFDM符号上将每个导频音插入每个预设的导频插入位置。

所述插入步骤可包括：每n个音将每个导频音插入单个OFDM符号，从而所述OFDM符号上的导频音可与先前OFDM符号上的导频音间隔m个音。这里，n和m可以是自然数。所述选择步骤可包括：根据通信环境的类型调整n和m中的至少一个来选择多个导频插入图案中的一个。

所述选择步骤可包括：如果n和m是固定值，则根据通信环境的类型选择仅在所述多个OFDM符号中的某些OFDM符号上将每个导频音插入每个预设的导频插入位置的导频插入图案。

所述OFDM传输方法还可包括：经由所述多个OFDM符号中的至少一个OFDM符号中的数据音向至少一个接收装置通知关于选择的导频插入图案的信息。

根据本发明的另一方面，提供一种正交频分复用（OFDM）接收装置，所述OFDM接收装置包括：接收单元，用于接收多个OFDM符号，所述多个OFDM符号的数据传输率根据导频插入图案的改变而变化，导频插入图案确定单元，用于检测包含在所述多个OFDM符号中的导频插入图案信息，并使用检测的信息来确定在所述多个OFDM符号中使用了哪种导频插入图案；OFDM接收处理单元，用于基于确定的导频插入图案从所述多个OFDM符号检测导频音，并处理所述多个OFDM符号。

OFDM接收装置还可包括：存储单元，用于存储与OFDM发送装置共享的导频插入图
案信息。在这种情况下，导频图案确定单元可从存储单元读取导频插入图案信息。

[0038] 如果静态通信环境（其中，OFDM接收装置在被固定于某处的同时接收多个OFDM符号）被建立，则接收单元可接收多个OFDM符号，在所述多个OFDM符号中，仅有某些OFDM符号包含导频音。如果动态通信环境（其中，OFDM接收装置在移动的同时接收多个OFDM符号）被建立，则接收单元可接收多个OFDM符号，在所述多个OFDM符号中，每个OFDM符号均包含导频音。

[0039] 可根据从第一导频插入图案、第二导频插入图案、第三导频插入图案和第四导频插入图案中选择的一导频插入图案将导频音插入所述多个OFDM符号，其中，在第一导频插入图案中，导频音仅被插入每三个OFDM符号中的一个OFDM符号，在第二导频插入图案中，导频音仅被插入每三个OFDM符号中的两个OFDM符号，在第三导频插入图案中，导频音被插入每五个OFDM符号中的四个OFDM符号，在第四导频插入图案中，导频音被插入所述多个OFDM符号中的每个OFDM符号。

[0040] 可通过每12个音将每个导频音插入单个OFDM符号来设置每个导频插入位置，从而OFDM符号上的导频音可与前一OFDM符号上的导频音间隔三个音。如果根据通信环境的类型选则所述多个OFDM符号中的某些OFDM符号跳过导频插入，则可在所述多个OFDM符号的剩余OFDM符号上将每个导频音插入设置的导频插入位置。

[0041] 可通过每n个音将每个导频音插入单个OFDM符号来设置每个导频插入位置，从而所述OFDM符号上的导频音可与前一OFDM符号上的导频音间隔m个音。这里，n和m可以是自然数。可根据相应于通信环境的类型调整n和m中的至少一个的导频插入图案来插入导频音。

[0042] 根据本发明的另一方面，提供一种正交频分复用（OFDM）接收装置的OFDM接收方法，所述OFDM接收方法包括：接收多个OFDM符号，所述多个OFDM符号的数据传输率根据导频插入图案的改变而变化；检测包含在所述多个OFDM符号中的导频插入图案信息，并使用检测的信息来确定所述多个OFDM符号中使用了哪种导频插入图案；基于确定的导频插入图案从所述多个OFDM符号检测导频音，并处理所述多个OFDM符号。

[0043] 所述检测和处理步骤可包括：读取先前存储的与OFDM传输装置共享的导频插入图案信息。

[0044] 所述接收步骤包括：如果静态通信环境（其中，OFDM接收装置在被固定于某处的同时接收多个OFDM符号）被建立，则接收多个OFDM符号，在所述多个OFDM符号中，仅有某些OFDM符号包含导频音；如果动态通信环境（其中，OFDM接收装置在移动的同时接收多个OFDM符号）被建立，则接收多个OFDM符号，在所述多个OFDM符号中，每个OFDM符号均包含导频音。

[0045] 可通过从第一导频插入图案、第二导频插入图案、第三导频插入图案和第四导频插入图案中选择的一导频插入图案将导频音插入所述多个OFDM符号，其中，在第一导频插入图案中，导频音仅被插入每三个OFDM符号中的一个OFDM符号，在第二导频插入图案中，导频音仅被插入每三个OFDM符号中的两个OFDM符号，在第三导频插入图案中，导频音被插入每五个OFDM符号中的四个OFDM符号，在第四导频插入图案中，导频音被插入所述多个OFDM符号中的所有OFDM符号。

[0046] 可通过每12个音将每个导频音插入单个OFDM符号来设置每个导频插入位置，从
而 OFDM 符号上的导频音可与先前 OFDM 符号上的导频音间隔三个音。如果根据通信环境的类型仅相对于所述多个 OFDM 符号中的某些 OFDM 符号跳过导频插入，则可在所述多个 OFDM 符号的剩余 OFDM 符号上将每个导频音插入设置的导频插入位置。

【0047】可通过 n 个音将每个导频音插入单个 OFDM 符号来设置每个导频插入位置，从而所述 OFDM 符号上的导频音可与先前 OFDM 符号上的导频音间隔 m 个音。这里，n 和 m 可以是自然数。如果根据通信环境的类型仅相对于所述多个 OFDM 符号中的某些 OFDM 符号跳过导频插入，则可在所述多个 OFDM 符号的剩余 OFDM 符号上将每个导频音插入设置的导频插入位置。

【0048】可通过 n 个音将每个导频音插入单个 OFDM 符号来设置每个导频插入位置，从而所述 OFDM 符号上的导频音可与先前 OFDM 符号上的导频音间隔 m 个音。这里，n 和 m 可以是自然数。可根据相应于通信环境的类型调整 n 和 m 中的至少一个的导频插入音来插入导频音。

【0049】有益效果
【0050】如上所述，根据本发明，所描述的通信环境的类型来适应性地选择导频插入音，因此，可减少发送不必要的导频音的次数，从而可更有效地收发数据。

【0051】此外，可调整每个 OFDM 符号的导频插入音位置之间的距离以及导频插入周期。因此，如果根据传统标准来设置导频插入周期和距离，则期望根据本发明的系统的参数与采用传统标准的系统系统同样方式，因此，可在使用传统系统的同时增加数据传输率。换句话说，OFDM 发送和接收装置与传统 OFDM 发送和接收装置兼容。

附图说明
【0052】图 1 是示出根据本发明示例性实施例的正交频分复用（OFDM）发送装置的框图，
【0053】图 2 是示出图 1 的 OFDM 发送装置的详细框图，
【0054】图 3 到图 6 是示出将导频音插入由图 1 的 OFDM 发送装置发送的 OFDM 符号的各种导频插入音，
【0055】图 7 是解释根据本发明示例性实施例的 OFDM 发送方法的流程图，
【0056】图 8 是示出根据本发明示例性实施例的 OFDM 接收装置的框图，
【0057】图 9 是示出图 8 的 OFDM 接收装置的详细框图，
【0058】图 10 是解释根据本发明示例性实施例的 OFDM 接收方法的流程图，以及
【0059】图 11 和图 12 是示出可应用于在 OFDM 发送装置与 OFDM 接收装置之间收发的 OFDM 符号的各种导频插入音，
【0060】“附图中标志的描述”
【0061】110：OFDM 发送处理单元
【0062】120：导频插入单元
【0063】130：控制单元 140：存储单元
【0064】150：接收单元 210：接收单元
【0065】220：导频插入单元确定单元
【0066】230：OFDM 接收处理单元
具体实施方案

以下，将参照附图来详细描述本发明的示例性实施例。

图 1 是示出根据本发明示例性实施例的正交频分复用 (OFDM) 发送装置的框图。该图的 OFDM 发送装置包括：OFDM 发送处理单元 110、导频插入单元 120 和控制单元 130。

控制单元 130 产生将被发送到 OFDM 接收装置（未示出）的多个 OFDM 符号。具体地说，如果传输流 (TS) 被从广播设备接收到，则 OFDM 发送单元 110 将接收的 TS 调制到多个子载波上，以产生 OFDM 符号。然后将详细地描述 OFDM 发送处理单元 110 的配置。

控制单元 130 根据 OFDM 发送装置与 OFDM 接收装置之间的通信环境来选择导频插入图案。具体来说，控制单元 130 可从先前已发送的 OFDM 发送装置与 OFDM 接收装置之间设置的多个导频插入图案中选择与当前通信环境相应的导频插入图案。例如，如果动态通信环境被建立，则 OFDM 接收装置在移动的同时接收广播，则控制单元 130 可选择较大多数人能的导频音被使用的导频插入图案。或者，如果静态通信环境被建立，则如果无法移动的 OFDM 接收装置接收广播，则控制单元 130 可选择较少数据的导频音被使用的导频插入图案。

通过考虑应用 OFDM 传输模式的网络的特征来确定通信环境的类型。例如，在用于发送高清晰度 (HD) 级广播数据的网络的情况下，HD 级广播数据与标准清晰度 (SD) 级广播数据相比具有更大的容量，因此需要增加数据传输率。相应地，不同静态通信环境中那样选择较少数据的导频音被使用的导频插入图案。

导频插入单元 120 将导频音插入由 OFDM 发送处理单元 110 产生的多个 OFDM 符号中。这里，导频插入单元 120 可将每个导频音插入根据由控制单元 130 选择的导频插入图案中设置的 OFDM 符号的位置。导频插入处理已经在 DVB-T 标准中被公开，因此，省略对其的详细描述。

图 2 是示出图 1 的 OFDM 发送装置的详细框图。除了 OFDM 发送处理单元 110、导频插入单元 120 和控制单元 130 之外，OFDM 发送装置还包括存储单元 140 和输入单元 150。

OFDM 发送处理单元 110 产生多个 OFDM 符号，并经由天线将产生的 OFDM 符号发送到接收装置。OFDM 发送处理单元 110 包括：加扰器 111、前向纠错 (FEC) 编码器 112、映射器 113、傅里叶逆变换 (IFFT) 处理单元 114 和数模转换器 (DAC) 115。

加扰器 111 对将被发送的数据进行加扰。

FEC 编码器 112 检测在接收装置中出现的差错，并对 OFDM 数据进行编码以收集检测到的差错。具体来说，FEC 编码器 112 执行包括卷积编码和里德 - 所罗门 (RS) 编码的编码。

映射器 113 使用符号星座（诸如正交相移键控 (QPSK)、16-正交幅度调制 (QAM) 或 64-QAM）来映射编码的 OFDM 数据。在普通 DVB-T 传输的情况下，可使用 64-QAM 星座。如果在 DVB-T 传输系统中激活 TV 传输模式，则映射器 113 使用以下符号星座，其中，OFDM 符号的同相 (I) 分量和正交 (Q) 分量被规则地投射到坐标 (-7, -5, -3, -1, 1, 3, 5, 7)。

IFFT 处理单元 114 执行 IFFT 处理，从而使频域 OFDM 信号被转换为时域 OFDM 信号。具体地说，IFFT 处理单元 114 将包括多条并行数据的频域 OFDM 信号分配到多个子载波，
调制所述频域 OFDM 信号，并输出 OFDM 符号。

【0080】导频插入单元 120 产生用于 OFDM 信号的 I 和 Q 分量的导频音信号，并将产生到导频音信号发送到 IFFT 处理单元 114。因此，IFFT 处理单元 114 可执行 IFFT 处理，从而导频音信号可被设置在 OFDM 符号内的每个位置。

【0081】DAC 115 对从 IFFT 处理单元 114 输出的 OFDM 符号执行 DAC，从而这些 OFDM 符号经由天线被发送到接收装置。

【0082】尽管未在图 2 中显示，但是 OFDM 发送处理单元 110 还可包括：保护间隔 (GI) 插入单元，用于将 GI 插入每个 OFDM 符号的前端；同步信号插入单元，用于将时间同步信号和伪随机噪声 (PN) 序列插入 GI 的前端；滤波器单元，用于对有 PN 序列的 OFDM 符号进行滤波，从而 OFDM 符号呈现预定的波形；射频 (RF) 处理单元，用于将由无线信道来发送滤波的 OFDM 符号。如上所述，在本发明的各个示例性实施例中，OFDM 发送处理单元 110 的配置可改变。

【0083】存储单元 140 存储多个导频和插入图案。根据本发明示例性实施例的 OFDM 发送装置与 OFDM 接收装置（未示出）共享导频插入图案。所述多个导频插入图案中的每一个可与通信环境的类型相匹配地存储。例如，如果数据传输率较高的通信环境被建立，则可使用导频音仅被插入某些 OFDM 符号的导频插入图案。或者，如果需要稳定数据接收的通信环境被形成，例如，动态通信环境，则可使用导频音被单独插入每个 OFDM 符号的导频插入图案。

【0084】控制单元 130 从存储在存储单元 140 的多个导频插入图案中选择一导频插入图案，并根据选择的导频插入图案来控制导频插入单元 120 将导频音插入 OFDM 符号。

【0085】更具体地说，控制单元 130 可从输入单元 150 接收关于通信环境的信息。响应于从输入单元 150 输入的输入信号，控制单元 130 可从多个导频插入图案中选择一导频插入图案。或者，可将输入单元 150 实现为能够从 OFDM 接收装置接收关于通信环境的信息或请求的接口。在这种情况下，控制单元 130 可响应于 OFDM 接收装置的输入单元 150 进行的请求来选择导频插入图案。

【0086】存储在存储单元 140 中的多个导频插入图案通常符合 DVB-T 标准。因此，按照预定的周期（例如，每个 12 个音）在单个 OFDM 符号上插入每个导频音。在这种情况下，当前 OFDM 符号上的导频音与先前 OFDM 符号上的导频音间隔两个音。为了增加数据传输率，可将导频插入图案设计为仅相对于某些 OFDM 符号跳过导频插入。在这种情况下，导频音被插入剩余 OFDM 符号的预设位置，从而根据本实施例的 OFDM 发送装置可不需要改变即在传统 DVB-T 传输系统中执行导频插入和导频检测。

【0087】图 3 到图 6 示例性示出各种导频插入图案，并仅示出连续发送的多个 OFDM 符号中的某些 OFDM 符号。在图 3 到图 6 中，水平轴指示频率，从而水平轴上的单条线表示单个 OFDM 符号；垂直轴指示时间，从而可随着时间按顺序发送多个 OFDM 符号。此外，白色位置指示数据音，黑色音指示被插入 OFDM 符号的导频音。为了有助于理解本发明，按照从上到下的顺序，将图 3 到图 6 示出的 OFDM 符号称为符号 1、符号 2、符号 3……符号 n。此外，单个 OFDM 符号的最左侧的位置被称为位置 Kmin，最右侧的位置被称为位置 Kmax。尽管如图 3 到图 6 所示，位置 Kmin 和 Kmax 均包含导频音，但是对此并无限制。

【0088】图 3 示出以下称为第一导频插入图案的导频插入图案，其中，每三个 OFDM 符号中，仅将导频音插入一个 OFDM 符号，并相对于两个 OFDM 符号跳过导频插入。这里，导频音总是
被插入位置 \(K_{\text{max}} \) 和位置 \(K_{\text{min}} \)。

[0089] 如图 3 的第一导频插入图案所示，在第一 OFDM 符号（即，符号 1）上，第二导频插入从位置 \(K_{\text{min}} \) 开始的第十二个位置，第三导频插入从第二导频插入开始的第十二个位置。因此，在单个 OFDM 符号上，可每 12 个位置插入导频。

[0090] 根据图 3 的第一导频插入图案，插入了位置 \(K_{\text{min}} \) 和 \(K_{\text{max}} \) 之外，导频插入没有被插入第二符号和第三符号（即，符号 2 和符号 3），并且，导频插入被插入第四符号。在第四符号上，第二导频插入从位置 \(K_{\text{min}} \) 开始的第十九个位置。例如，如果在第二符号上，导频插入被插入从位置 \(K_{\text{min}} \) 开始的第三个位置，而在第三符号上，导频插入从位置 \(K_{\text{min}} \) 开始的第六个位置，则在不发生变化的情况下，在第四符号上，导频插入可被插入从位置 \(K_{\text{min}} \) 开始的第九个位置。因此，可实现与 DVB-T 系统的兼容性。按照上述方式将导频插入其它 OFDM 符号。

[0091] 图 4 示出导频插入每三个 OFDM 符号中的两个 OFDM 符号的导频插入图案，其中，在第三、第六、第九，等等。第 3N OFDM 符号上，除了位置 \(K_{\text{min}} \) 和 \(K_{\text{max}} \) 之外，导频插入没有被插入其它位置。以下，将这种导频插入图案称为第二导频插入图案。

[0092] 图 5 示出导频插入每五个 OFDM 符号中的四个 OFDM 符号的导频插入图案，其中，在第一、第六、第十，等等。第 (5N-4) OFDM 符号上，除了位置 \(K_{\text{min}} \) 和 \(K_{\text{max}} \) 之外，导频插入没有被插入其它位置。以下，将这种导频插入图案称为第三导频插入图案。

[0093] 图 6 示出导频插入所有 OFDM 符号的导频插入图案。插入某个符号的每个导频插入为距离插入先前符号的每个导频插入右顺序三个音。可在动态通信环境中采用图 6 所示的导频插入图案，以下，将其称为第四导频插入图案。

[0094] 在图 3 到图 6 所示的导频插入图案中没有被插入 OFDM 符号的导频插入被用作数据音。比较每个导频插入图案，除了导频插入没有被插入某些 OFDM 符号之外，插入 OFDM 符号的导频插入的位置在时间轴上保持不变。这些导频插入图案符合 DVB-T 标准，因此，根据本示例性实施方案的系统可具有与传统 DVB-T 系统的兼容性。

[0095] 图 3 到图 6 所示的导频插入图案中的 \(K_{\text{max}} \) 在使用 DVB-T 标准设置的 2K FFT 模式下为 1704，因此，1704 个音的信号可形成单个符号。此外，图 3 到图 6 所示的导频插入图案中的 \(K_{\text{max}} \) 在使用 DVB-T 标准设置的 8K FFT 模式下为 6816，因此，6816 个音的信号可形成单个符号。如果按照与第四导频插入图案相同的方法插入导频插入，则 1704 个音中的 142 个音在 2K FFT 模式下被用作导频插入，6816 个音中的 568 个音在 8K FFT 模式下被用作导频插入。这相当于总数据传输率的 8.3%。因此，可选择性地使用第一到第三导频插入图案之一，以便减少导频插入信号对于全部音的比率，从而可增加数据传输率。

[0096] 控制单元 130 根据通信环境从第一到第四导频插入图案选择一导频插入图案，并按照选择的图案来控制导频插入单元 120 将导频插入 OFDM 符号。例如，控制单元 130 可选择与动态通信环境匹配的第四导频插入图案。或者，如果 HD 及广播数据被发送到固定接收装置，则控制单元 130 可选择第一导频插入图案。另外，控制单元 130 可考虑将被发送的数据量或者稳定性从第一到第四导频插入图案选择一导频插入图案，并采用选择的图案。

[0097] 如上所述，可响应于通过输入单元 150 输入的发送者选择信号或接收者请求来选择导频插入图案。

[0098] 控制单元 130 需要向 OFDM 接收装置通知使用的是哪个导频插入图案，从而 OFDM
接收装置可精确地检测按照使用的导频插入图案插入的导频音，并可将检测到的导频音用于信道均衡和估计。因此，控制单元 130 可在多个 OFDM 符号的每一个上将导频插入图案信息记录在某些数据音上，并可发送所述信息。或者，控制单元 130 可在用于部分 OFDM 符号的数据音的至少一部分上记录导频插入图案信息，并可发送所述信息。可由一比特或两比特来表示导频插入图案信息。例如，将 01、10、11 和 00 分别用作用于指定第一到第四导频插入图案的信号。

图 7 是解释根据本发明示例性实施例的 OFDM 发送方法的流程图。OFDM 发送装置产生多个 OFDM 符号 (ST10)。用于产生 OFDM 符号的处理是本领域技术人员已知的，因此，省略对其的详细描述。

OFDM 发送装置选择导频插入图案 (ST20)。可根据通信环境的类型来选择插入图案。更具体地说，OFDM 发送装置可根据 OFDM 接收装置是用于动态通信环境还是静态通信环境，或者根据是否需要发送高容量数据来选择导频插入图案。在本发明的该示例性实施例中，OFDM 发送装置可从图 3 到图 6 所示的导频插入图案中选择导频插入图案。

OFDM 发送装置按照选择的导频插入图案将导频音插入多个 OFDM 符号 (ST30)。在图 3 到图 6 中示出根据选择的导频插入图案插入导频音的多个 OFDM 符号。

OFDM 发送装置顺序地发送插导频音的多个 OFDM 符号 (ST40)。因此，可利用与通信环境匹配的数据传输率来提供 OFDM 广播。

图 8 是示出根据本发明示例性实施例的 OFDM 接收装置的框图。图 8 的 OFDM 接收装置包括：接收单元 210、导频插入图案确定单元 220 和 OFDM 接收处理单元 230。

接收单元 210 从 OFDM 发送装置接收多个 OFDM 符号。所述多个接收的 OFDM 符号包括基于根据通信环境的类型选择的导频插入图案的改变而插入其中的导频音，所以数据传输率是可变的。这里，OFDM 发送装置可具有图 1 或图 2 所示的配置。

导频插入图案确定单元 220 从多个接收的 OFDM 符号检测导频插入图案信息。导频插入图案信息用于通知所使用的是哪个导频插入图案，所以导频插入图案确定单元 220 可使用检测的信息来确定导频插入图案的类型。可将图 3 到图 6 所示的导频插入图案之一应用于 OFDM 符号，也可使用具有其它形式的导频插入图案。可按照以下方式来设计每个导频插入图案：导频音没有在时间轴上按照规则的周期插入预定数量的 OFDM 符号，而是在频率轴上保持导频音的排列。因此，可按照与传统 DVB-T 系统相同的方式来执行导频插入和导频检测处理。

OFDM 接收处理单元 230 基于确定的导频插入图案从 OFDM 系统检测导频音，并处理多个 OFDM 符号。将参照图 9 来详细描述 OFDM 接收处理单元 230 的配置。

图 9 是示出图 8 的 OFDM 接收装置的详细框图。除了接收单元 210、导频插入图案确定单元 220 和 OFDM 接收处理单元 230 之外，图 9 所示的 OFDM 接收装置还包括存储单元 240。

接收单元 210 包括：模数转换器 (ADC) 211、下变换器 212 和 FFT 处理单元 213。接收单元 210 从 OFDM 发送装置接收多个 OFDM 符号。

ADC 211 将经由天线接收的模拟数据转换为数字数据，并输出转换的数据。

下变换器 212 将从 ADC 211 输出的数字数据下变换为基带信号。

FFT 处理单元 213 对下变换的信号执行 FFT 处理，并输出频域 OFDM 符号。
[0112] 导频插入图案确定单元 220 从包含在 FFT 输出单元 213 输出的 OFDM 符号中包含的数据音检测导频插入图案信息，并确定哪种导频插入图案被应用于当前接收的 OFDM 符号。具体说来，可从存储单元 240 选择相应于检测的信息的导频插入图案。

[0113] 存储单元 240 存储先前在 OFDM 接收装置与 OFDM 发送装置之间设置的多个导频插入图案。更具体地说，存储单元 240 可存储图 3 到图 6 所示的导频插入图案，从而可实现与传统 DVB-T 标准相同的配置，而具有与传统 DVB-T 标准的兼容性。

[0114] 导频插入图案确定单元 220 将确定的导频插入图案发送到 OFDM 接收处理单元 230。

[0115] OFDM 接收处理单元 230 包括均衡器 231 和 FEC 解码器 232。OFDM 接收处理单元 230 处理多个 OFDM 符号中的每一个。

[0116] 如果由导频插入图案确定单元 220 提供导频插入图案，则均衡器 231 从多个 OFDM 符号检测导频音，并使用检测的导频音来均衡 OFDM 符号。

[0117] FEC 解码器 232 对均衡的 OFDM 符号执行前向纠错。可按照本领域技术人员已知的方式来接收 OFDM 符号，并使用检测的导频音来均衡 OFDM 符号。

[0118] 图 10 是解释根据本发明示例性实施例的 OFDM 接收方法的流程图。在图 10 中，如果从 OFDM 发送装置接收的 OFDM 符号（S1010），则 OFDM 接收装置使用由 OFDM 符号中的特定数据音标识的导频插入图案信息来确定导频音的位置，即可，编辑插入图案（S1020）。

[0119] 因此，OFDM 接收装置根据确定的导频插入图案来检测导频音，并使用检测的导频音对 OFDM 符号执行均衡处理（S1030）。

[0120] 这里，可相应于 OFDM 接收装置接收 OFDM 符号的范围来自适应性地选择导频插入图案。例如，如果 OFDM 接收装置能够在动态通信环境下移动，则可使用导频音被插入多个 OFDM 符号中的每一个的导频插入图案，即，图 6 所示的第四导频插入图案。或者，可考虑数据传输率而任选第一到第三导频插入图案之一。此外，OFDM 接收装置将通信环境信息发送到 OFDM 发送装置，或者，可按照各种方式将通信环境信息发送到 OFDM 发送装置。

[0121] 可使用除了图 3 到图 6 所示的导频插入图案之外的各种导频插入图案，例如，图 11 和图 12 所示的导频插入图案。

[0122] 参照图 11，OFDM 发送装置可通过调整当前 OFDM 符号中的导频插入位置与先前 OFDM 符号中的导频插入位置之间的导频插入周期 n 和距离 m 来选择导频插入图案。换言之，尽管在图 3 到图 6 所示的导频插入图案中，n 为 12，m 为 3，但是可调整 n 和 m 之一或 n 和 m 两者，从而还可调整导频插入图案。

[0123] 例如，如果有必要增加数据传输率，即，如果静态通信环境被形成，则 OFDM 发送装置的导频插入单元 120 可将 n 或 m 设置得更大。

[0124] 图 11 显示当 n 被设置为 24，m 被设置为 4 时的导频插入图案。在这种情况下，即使导频音被插入所有 OFDM 符号也可显著减少导频音的数量，从而可增加数据传输率。

[0125] 控制单元 130 可通过调整 n 和 m 以相应于通信环境的方式来选择导频插入图案。例如，如果动态通信环境被形成，则控制单元 130 可选择 n 被设置为 6，m 被设置为 2 的第一导频插入图案。此外，如果具有较低移动性的动态通信环境被形成，则控制单元 130 可选择 n 被设置为 12 或 16，m 被设置为 3 或 4 的第二导频插入图案，从而可确保数据传输率和稳定性。此外，如果在不具有移动性的静态通信环境下，则控制单元 130 可选择 n 被设置
24, m 被设置为 4 的第三导频插入图案，如图 11 所示。因此，不同于图 3 到图 6 所示的导频插入图案，可在时间上将导频音插入所有 OFDM 符号的同时调整数据传输率。

【0126】此外，在导频音没有被插入部分的 OFDM 符号的同时调整 n 和 m，从而调整数据传输率。图 12 示出根据这种示例性实施例的导频插入图案。

【0127】在图 12 所示的导频插入图案中，n 被设置为 24，m 被设置为 6，每三个 OFDM 符号跳过导频插入。或者，可根据 OFDM 发送和接收系统的使用和设计环境来跳过导频插入。此外，考虑导频插入周期和位置差，n 和 m 在当前使用的系统环境中保持不变，因此 OFDM 发送和接收系统可具有与传统系统的兼容性。例如，如果在传统系统中，n 被设置为 20，m 被设置为 5，则在导频音仅被插入某些 OFDM 符号的同时，可本发明的 OFDM 发送和接收系统可在不改变 n 和 m 的情况下改变数据传输率。

【0128】尽管已经示出并描述了本发明总体构思的一些实施例，但是本领域的技术人员将理解，在不脱离本发明总体构思的原理和精神的情况下，可对这些实施例进行各种改变，本发明总体构思的范围由权利要求及其等同物来限定。

【0129】产业上的可利用性

【0130】本发明可应用于使用多个载波方案来收发数字广播流的广播系统。
图 1

图 2
开始

S710 —— 产生多个OFDM符号

S720 —— 选择导频插入图案

S730 —— 插入导频音

S740 —— 发送多个OFDM符号

结束

图7

220

导频插入图案确定单元

接收单元

OFDM接收处理单元

210

230

图8
图 9

开始

S1010 - 接收多个OFDM符号

S1020 - 确定导频插入图案

S1030 - 检测导频音并处理OFDM符号

结束

图 10